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Abstract. Datalog systems evaluate joins over arithmetic (in)equalities
as a naive generate-and-test of Cartesian products. We exploit aggre-
gates in a source-to-source transformation to reduce the size of Cartesian
products and to improve performance. Our approach approximates the
well-known propagation technique from Constraint Programming.
Experimental evaluation shows good run time speed-ups on a range of
non-recursive as well as recursive programs. Furthermore, our technique
improves upon the previously reported in the literature constraint magic
set transformation approach.

1 Introduction

Datalog [13,1] is a syntactic subset of Prolog introduced in the 1980s for database
processing. By supporting a limited, safe form of recursion, Datalog considerably
extends the expressive power of traditional database query languages like SQL.
At the same time, unlike Prolog, Datalog allows SQL’s set-at-a-time evaluation.
Also similarly to SQL, the programs in Datalog are guaranteed to terminate.
Hence, extra-logical constructs such as Prolog’s cut (‘!’) operator are not needed.

After its original introduction as a smarter version of SQL, Datalog lost
the interest of researchers for a time, until recently re-gaining attention in ap-
plications falling outside of the realm of traditional database reasoning, which
include: program analysis [8], networks [12], security protocols [10], knowledge
representation [9], robotics [2] and gaming [19]. Our industrial partner, Log-
icBlox Inc. [11], uses a variant of Datalog, called DatalogLB, as the basis for
implementing decision automation and business planning systems.

Many of the above application domains rely on processing numerical data
with arithmetic operations, in Datalog available as built-in relations (predicates).
We focus in particular on built-in arithmetic (in)equality predicates (>, <, etc.)
which we also refer to as (arithmetic) constraints. Existing Datalog compilers
do not exploit the constraining properties of arithmetic predicates, but rather
implement them as ordinary tests. As a result, evaluation of programs with arith-
metic constraints follows the naive generate-and-test approach, where ordinary
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predicates act as generators, and the entire search space they produce is enu-
merated before the constraints can be applied to prune the candidate solutions.
In database terminology, the full O(n2) Cartesian product of two tables is com-
puted. This is in stark contrast with O(n log n) equality-based joins, for which
current Datalog systems are optimized.

The research area of Constraint Programming (CP) offers approaches that
prune the search space more eagerly, e.g., constrain-and-generate, as well as the
constraint implementation technique, called constraint propagators, which allows
to prune the domains of the variables involved in the constraints to narrow down
the sets of candidate values even before the values are enumerated.

We adapt the CP constraint propagator technique to filter the individual Dat-
alog generators in O(n) time before they are used in, potentially much smaller,
Cartesian products. For this purpose we extended the DatalogLB system with an
automatic program transformation framework. Experimental evaluation shows
that our technique enables good run-time improvements for a variety of test
programs.

2 DatalogLB

LogicBlox is a commercial Datalog-based platform for building enterprise-scale
corporate planning and pricing applications. LogicBlox is currently used in sev-
eral commercial decision automation applications, including retail supply-chain
management [14] and software program analysis [3,4,16]. A typical LogicBlox ap-
plication involves computational analyses that require aggregation across very
large data sets combined with simulation and modeling techniques. The platform
accommodates these features by means of its custom query language DatalogLB,
a type-safe variant of Datalog, based on incremental evaluation, with trigger-
like functionality and support for dynamic updates, declarative specification
of functional dependencies, non-deterministic choice, stratified negation, meta-
programming, and a wide range of extra-logical computations, including aggre-
gation utilized by our optimization approach. In the following paragraphs we
outline the main features of DatalogLB and the LogicBlox run-time system. A
more exhaustive description of DatalogLB can be found in [21]. Readers famil-
iar with Datalog may want to use this section as a reference when reading the
remainder of the paper.

The DatalogLB Language. Figure 1 shows a DatalogLB encoding of the crypta-
rithmetic puzzle LP+FP=PL, the goal of which is to find an assignment of digits
to letters that satisfies the equation LP+FP = PL.

The basic programming construct in DatalogLB is the implication ‘<-’, de-
noting derivation rules of the form:

Head <- Body.

where Head and Body are conjunctions of atoms. An atom can be either a predi-
cate with variable or constant arguments, a comparison expression, an arithmetic



1 digit(_) ->.

2 digit(d), val(d:v) -> uint[8](v), v<=9.

3

4 solution(l,p,f) -> digit(l), digit(p), digit(f).

5 solution(l,p,f) <-

6 digit(l), val(l:vl),

7 digit(p), val(p:vp),

8 digit(f), val(f:vf),

9 vl != 0, vp != 0, vf != 0,

10 vl != vp, vl != vf, vp != vf

11 10*vl+vp + 10*vf+vp = 10*vp+vl.

Fig. 1: The DatalogLB encoding of the LP+FP=PL cryptarithmetic puzzle.

expressions, or a negated atom. The above rule means that the atoms consti-
tuting Head can be derived from the atoms constituting Body. The example
program in Figure 1 contains only one rule (lines 5-11), which derives the facts
of the predicate solution based on the facts of the predicates digit and val,
and the constraints represented as comparisons and arithmetic expressions on
their arguments.

DatalogLB extends Datalog with the notion of an integrity constraint of the
form:

Lhs -> Rhs.

Informally, the above constraint means that if Lhs is true, then Rhs must also
be true, where Lhs and Rhs are conjunctions of atoms. The difference between
a constraint and a rule is that a rule derives data for the atoms in its head,
whereas a constraint checks that for the existing data matching its left-hand
side, the right-hand side holds. The integrity constraints constitute the basis of
DatalogLB’s static type system, which guarantees at compile-time that certain
kinds of constraints always hold for all possible instantiations of a given schema.
Our approach uses integrity constraints to declare filter types which allow to
reduce the domains of predicates subjected to arithmetic constraints.

DatalogLB types are represented as unary predicates. Custom types may be
defined using entity predicates. For instance, in Figure 1, the constraint in line 1
declares the entity predicate digit. The constraint in line 4 is a type declaration
for the predicate solution, which states that for every tuple solution(l,p,f),
the arguments l, p, and f must be digit entities. An entity predicate P may
be associated with a reference mode predicate, which uniquely identifies each
element in P with a value of a primitive type, thus allowing to access the specific
entity elements from user applications. For instance, line 2 of Figure 1 declares
a reference mode predicate val, which associates each entity element d in digit

with v, an 8-bit unsigned integer value no greater than 9, thus binding the digit
type to represent single-digit integers. The syntactic form val(d:v) denotes the



one-to-one functional relation between d and v, and is reserved for declaring
reference mode predicates. The decision to express digits as entities is dictated
by one of the mechanisms contributing to DatalogLB’s termination guarantee,
which restricts the use of primitive types as arguments to built-in predicates
such as arithmetic operations.

The extra-logical operations supported by LogicBlox, including aggregation
computations, are represented by special-syntax rules of the form:

result[x1,...,xn]=v <- Op <<v=Method >> Body.

The head of the rule uses DatalogLB’s shorthand notation for declaring func-
tional dependencies: result[x1,...,xn]=v declares the predicate result to be
a function from x1,...,xn to v. The notation also allows declaring singleton
(constant) values: p[]=v declares the predicate p to be a singleton that contains
only the value v. The value can be retrieved through p[]. The right-hand side
of the above rule, in addition to the conjunction of atoms in Body, includes a
directive which specifies the type of the operation to be performed (e.g., aggrega-
tion), and the particular method (e.g., finding the minimum value) to be used.
For instance, in Section 3.1 we show the following rule which finds the lower
bound for the val predicate:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).

Above, agg states that the rule computes an aggregation, and min names the
specific operation to be applied to the values referenced by v.

3 The Filter Predicates Transformation

This section describes the details of our transformation, beginning with non-
recursive programs, and then considering the impact of recursion.

3.1 Non-Recursive Programs

Recall the LP+FP=PL program from the previous section. Our goal is to reduce
the number of different candidate values that are used for producing answers.
Thus, we exploit the equality constraint

10 ∗ vl + vp + 10 ∗ vf + vp = 10 ∗ vp + vl

from the program rule to filter candidate values in the generator predicate digit.
Specifically, for each generator predicate atom appearing in the constraint, we
consider the value generated by this atom in the context of the upper and lower
bounds of the values produced by other generator atoms.

For instance, for the generator atom digit(l), the original constraint, which
is equivalent to the pair of inequalities:{

10 ∗ vl + vp + 10 ∗ vf + vp ≤ 10 ∗ vp + vl
10 ∗ vl + vp + 10 ∗ vf + vp ≥ 10 ∗ vp + vl



yields the pair of inequalities:{
10 ∗ vl + ld + 10 ∗ ld + ld ≤ 10 ∗ ud + vl
10 ∗ vl + ud + 10 ∗ ud + ud ≥ 10 ∗ ld + vl

where ud and ld represent the upper and lower bound of the generator predicate
digit, respectively. We use these inequalities in the Datalog definition of the
filter predicate for digit(l), which is linear in the size of the digit set.

digit_filtered_l(l) <-

digit(l),

val(l:vl),

lb_digit[]=ld,

ub_digit[]=ud,

10*vl+ld+10*ld+ld <= 10*ud+vl,

10*ld+vl <= 10*vl+ud+10*ud+ud.

Similar filter predicates are generated for the remaining generator atoms.
The bounds for the generator predicates are computed in separate aggregate

predicates, again adding only linear overhead, and reused in all filter predicates:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).

ub_digit[]=n <- agg<<n=max(v)>> digit(d), val(d:v).

In the last step of the transformation we replace the generator predicate
atoms in the body of the solution/3 rule by atoms representing corresponding
filter predicates:

solution(l,p,f) <-

digit_filtered_l(l),

digit_filtered_p(p),

digit_filtered_f(f),

... % rest of the original LP+FP=PL program

As the transformation adds only linear overhead, the overall worst-case time
complexity is not increased. Moreover, the filtered generator sets are potentially
much smaller than the original sets, thus resulting in a Cartesian product much
smaller than the original one. In this small example the filtered generator sets
for l, p and f are all reduced from [0, 9] to respectively [1, 8], [2, 9] and [1, 8].

Our approach is inspired by the well-known bounds consistency technique [5],
in CP implemented by finite-domain constraint propagators. We simplify con-
straint propagation in two ways: (1) by computing filtered domains on the orig-
inal domains rather than as a fixed point of the filtering process, and (2) by
filtering only at the beginning of the evaluation rather than repeatedly after ev-
ery enumeration step (in CP terminology known as labeling). As a consequence of
these simplifications, (1) we cannot encode unbounded fixpoint computations,



p(t,w) -> string(t), int[64](w).

s(t,w) -> string(t), int[64](w).

e(t,w) -> string(t), int[64](w).

e(t,w) <- p(t,w).

e(t,w) <- s(t,w),

e(tp,wp),

w - wp <= 100,

w + wp >= 19500.

Fig. 2: The Engine program.

e(t,w) <- p(t,w). s_filtered(t,w) <-

e(t,w) <- s_filtered(t,w), s(t,w),

e_filtered(tp,wp), w-ub_e[] <= 100,

w-wp <= 100, 19500 <= w+ub_e[].

w+wp >= 19500.

e_filtered(tp,wp) <-

e(tp,wp),

lb_s[]=n <- agg<<n=min(v)>> s(_,v). lb_s[]-wp <= 100,

ub_s[]=n <- agg<<n=max(v)>> s(_,v). 19500 <= ub_s[]+wp.

ub_e[]=n <- agg<<n=max(v)>> e(_,v). % ERROR

Fig. 3: Ill-formed Engine program after naive transformation.

and (2) computing and storing many successively filtered tables for the same
variable adds considerable time and space overhead. Nevertheless, our approach
yields a light-weight technique that is easily provided on top of the existing Data-
log implementations, offering a satisfactory compromise between the anticipated
speed-up and the overhead.

3.2 Recursive Programs

Recursion considerably complicates our transformation. Consider the Engine
program listed in Figure 2. The program selects suitable engines for an engine
yard. In the predicates p(t,w), s(t,w) and e(t,w), t corresponds to the engine
type and w to the produced wattage. The predicate p represents the primary
engines, and the predicate s represents the potentially spare engines. A suitable
engine for the engine compound e(t,w) is either a primary engine, or a spare
engine that can assist another engine in the compound. The difference in wattage
between the assisting engine and the assistee should not exceed 100, and the total
wattage of the compound should be no less than 19,500.

The naive application of our technique yields the ill-formed program shown
in Figure 3. The program involves recursion through aggregation: in order to



compute the set of e/2 we need to know the upper bound of e/2. Such recursion
is not supported by DatalogLB (nor by any other LP system we are aware of).

Since it is not possible to effectively compute the exact upper bound on e/2,
we approximate it as the upper bound of the approximated upper bounds of the
two rules defining e/2. For the first, non-recursive rule, such an approximated
(and exact) upper bound is ub p[]. A crudely approximated upper bound for
the second, recursive rule, is ub s[]. Hence:

ub_e[]=n <- n=max(ub_p[],ub_s[]).

where

ub_p[]=n <- agg<<n=max(v)>> p(_,v).

We may attempt to tighten the upper bound of the second rule, based on
the observation that it is bounded from above by ub e[]+100:

ub_e[]=n <- n=max(ub_p[],min(ub_s[],ub_e[]+100)).

Alas, this step reintroduces recursion through aggregation. We eliminate it in the
same way as before, by substituting the cruder approximation derived earlier:

ub_e[]=n <- n=max(ub_p[],min(ub_s[],max(ub_p[],ub_s[])+100).

We further simplify the above expression by noticing that

∀x, y, c ∈ N.min(x,max(y, x) + c) = x

This step brings us back to the first approximation, thus proving that the re-
finement attempt was unsuccessful. Nevertheless, as we show in Section 5, our
approximation is still quite effective at pruning the predicate domains and im-
proving the performance of the programs.

4 Implementation

Most of the DatalogLB syntax is compatible with the term syntax of standard
Prolog. The discrepancies in the particular notations, such as the functional de-
pendency syntax, can be easily accommodated by simple processing steps. Hence,
we chose Prolog (specifically, SWI-Prolog [20]) to implement the transformations
of DatalogLB programs. Our analyzer consists of three Prolog modules, for the
total of about 1,500 lines of Prolog code, including comments.

4.1 LogicBlox/SWI-Prolog Interface

Figure 4 shows the LogicBlox compilation scheme and outlines the communica-
tion between the LogicBlox engine and the SWI-Prolog analyzer.

The LogicBlox compiler rewrites a source DatalogLB program into a core
representation, which is then encoded using Google’s protocol buffers (GPBs)
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interface for further use by a number of tools, including an interpreter. GPBs [7]
is a platform-independent, extensible mechanism for serializing structured data
to binary form. GPBs allow the programmers to determine how to structure
their data by defining simple data structures (messages) in a dedicated specifi-
cation language, and then to compile those data structures into the language and
platform of their choice. As shown in Figure 4, the core program representation
generated by the LogicBlox compiler is either passed directly to the subsequent
phase of run-time processing, or subjected to one or more optional transforma-
tions aimed at optimizing the compiled code or collecting information to be used
in further evaluation steps. This infrastructure makes the GPBs the medium of
choice for interfacing LogicBlox with external analysis modules. The interface
for our application comprises three Prolog modules for the total of about 1,700
lines of code (including comments), and five new modules in the LogicBlox code,
for the total of 1,800 lines.

The interface on the SWI-Prolog side is based on SWI-Prolog’s native GPBs
library [15]. We extended the library with the capability to represent recursively
structured data (which is essential to encode DatalogLB programs), and opti-
mized it to linear run-time complexity. Our version of the library is available in
a dedicated branch of the SWI-Prolog code repository.

The communication between LogicBlox and SWI-Prolog proceeds as follows.
The output of the DatalogLB compiler is received by a new LogicBlox module
which extracts from it the information relevant to our analysis, encodes it as a
collection of GPBs messages, and opens a socket connection with SWI-Prolog.
Once the connection is established, the messages are supplied to our analyzer.
The analyzer decodes the messages into a program representation, applies the
transformation, encodes the resulting program, and sends it back to the Log-
icBlox side, where another dedicated module retrieves the transformation results
and updates the core representation of the program accordingly.

We illustrate the use of GPBs on DatalogLB rule bodies. A rule body is a for-
mula defined as an atom, a disjunction, a conjunction, or a negation. LogicBlox
serializes and deserializes formulas with GPBs messages of the following form:



message Formula {

optional Atom atom = 1;

optional Negation negation = 2;

optional Conjunction conjunction = 3;

optional Disjunction disjunction = 4;

}

message Conjunction { repeated Formula formula = 1; }

...

Note the mutually recursive nature of the Formula and Conjunction definitions.
On the SWI-Prolog side, the messages are defined in message/2 clauses:

protobufs:message(formula, [ optional(1,message(atom))

, optional(2,message(negation))

, optional(3,message(conjunction))

, optional(4,message(disjunction)) ]).

protobufs:message(conjunction, [ repeated(1,message(formula)) ]).

The predicate message/2, which we added to the SWI-Prolog GPBs library,
enables naming message templates. It is essential for recursive and repeated em-
bedded messages. The protobuf message/2 predicate serializes and deserializes
messages to and from binary form, like the representation of the single-atom
formula digit(d).

?- protobuf_message(message(formula,

[ optional(1, message(atom,

[ string(1,"digit")

, repeated(2,[ /* variable d */ ],term) ]))

]),Bytes).

4.2 The Transformation

Given a representation of a DatalogLB program, our transformation processes in
turn each of its rules. For every rule with one or more arithmetic constraints,
it identifies the generator predicate atoms, exploits the constraints to produce
corresponding filter predicates, and replaces the generator atoms accordingly.
It also extends the program with the definitions for the auxiliary predicates
performing bounds computations.

Implementation of the code that generates the bounds-computing predicates
turned out to be one of the more involved aspects of our project. The numeri-
cal data appearing in the arithmetic constraints pertinent to our transformation
is often represented as the values of the DatalogLB reference mode predicates
where the keys are the entities produced by the predicates serving as genera-
tors. To access these data, it is necessary to reconstruct the chain of functional
dependencies connecting each value with the appropriate entity generator. For
instance, to compute predicate bounds for the atom set:



p(x), val_1(x:vx), q(y), val_2(y:vy), vx > vy

we need to reconstruct the chain connecting vx with p and vy with q. Additional
complications arise when the reference mode predicates (and the corresponding
generators) have non-unary keys, in which case the reconstructed dependencies
are trees with the functional dependencies as nodes and the generators as leaves.

As mentioned in Section 2, DatalogLB’s static type system relies on the type
information in the form of the integrity constraints. To ensure completeness of
the type information in the transformed programs, we need to provide type dec-
larations for the predicates generated by the analyzer (i.e., filter and aggregate
predicates). It turns out that we can conveniently derive these directly from the
original predicates, with no additional bookkeeping during the transformation.

5 Evaluation

We now present the results of applying our transformation to a variety of pro-
grams. All experiments were performed on a machine with a 2.83 GHz Intel R©
CoreTM 2 Quad CPU and 4 GB of RAM, running Ubuntu 10.10 (Linux kernel
2.6.35-24-server). For each experiment we show the run times, in seconds, for
the original programs (Original column), and the relative performance change
after the filter predicates transformations (FP column).

For LogicBlox (v 3.7), in the Opt column, we additionally measure the impact
of the system’s optimizer [17] aimed at improving the performance of equality-
based joins by reordering the goals and applying a variant of magic-set rewrite.

In order to have a point of reference, we also report the results of tabled
top-down evaluation of our test suites using XSB Prolog 3.3.1. The changes
required to accommodate DatalogLB programs in XSB are minimal and mainly
syntactic in nature: we omit type declarations, replace ‘<-’ arrows with ‘:-’, cap-
italize variable names, change functional dependencies to ordinary arguments,
and provide Prolog implementations for aggregates. To guarantee termination,
we declare all predicates as tabled.

5.1 Non-Recursive Programs

Cryptarithmetic Puzzles. Table 1 shows the evaluation run times for a set of
cryptarithmetic puzzles building on the idea of the LP+FP=PL program from
Section 2. In almost all cases the transformation yields drastic performance im-
provements (3× to 10×) over both original and optimized LogicBlox evaluation.
There are two exceptions. In the first case, the overhead of the auxiliary predi-
cates introduced by the transformation dominates the extremely short run time
of the original program. In the second case, the transformed program prunes
very few values from the initial domains, and consequently shows performance
similar to that of the original program.

The XSB evaluation yields similar results both in terms of the original pro-
gram performance, and the benefits from the transformation.



Puzzle
DatalogLB XSB

Original Opt FP Original FP

Puzzle 1 0.01 sec. 100.00 % 140.90 % 0.01 sec. 100.00 %

LP+FP=PL 0.01 sec. 100.00 % 100.00 % 0.01 sec. 100.00 %

Puzzle 2 0.80 sec. 72.50 % 14.02 % 0.65 sec. 15.38 %

Puzzle 3 3.10 sec. 25.16 % 11.42 % 2.60 sec. 11.92 %

Puzzle 4 2.67 sec. 104.49 % 12.79 % 2.73 sec. 12.09 %

Puzzle 5 6.39 sec. 114.71 % 15.02 % 7.70 sec. 12.60 %

Puzzle 6 3.90 sec. 82.56 % 27.05 % 8.75 sec. 25.26 %

Puzzle 7 17.54 sec. 50.85 % 105.01 % 17.20 sec. 107.62 %

Puzzle 8 20.63 sec. 92.05 % 11.71 % 19.99 sec. 52.53 %

Table 1: Benchmark results for cryptarithmetic puzzles.

Tons range
DatalogLB XSB

Original Opt FP Original FP

[1,500] 0.60 sec. 101.67 % 103.64 % 0.29 sec. 96.55 %

[1,1000] 2.81 sec. 46.26 % 100.75 % 1.10 sec. 98.18 %

[1,2500] 12.37 sec. 42.52 % 40.60 % 5.01 sec. 92.41 %

[1,5000] 13.71 sec. 43.69 % 41.27 % 5.90 sec. 88.30 %

Table 2: Benchmark results for the Production problem.

The Production Problem. The Production program4 models the mathemati-
cal programming problem of optimizing the profit from manufacturing several
types of products, subject to a set of constraints such as production costs and
maximum number of items to be manufactured for each product type, or the
availability of the factory line. From a technical point of view this program is
interesting because it contains multi-key functional dependencies that drive the
filter predicates. Another non-standard feature is the use of the aggregates for
computing the optimized profit.

Table 2 reports the results of evaluating the original and transformed program
with four data sets differing in the range of the generator predicate indicating
the number of tons of products being manufactured. Clearly, for LogicBlox eval-
uation, the transformation has no significant effect on the program for the small
tons ranges, but enables a lot of pruning, and thus considerable performance
improvement, when the tons ranges are large. On XSB the effects of the trans-
formation are more uniform across the different data sets, with slightly better
performance improvements for the larger tons ranges.

5.2 Recursive programs

The Engine Program. To evaluate the effects of our transformation on the
recursive Engine program from Figure 2, we used four different data sets. Each

4 We refer to http://users.ugent.be/~tschrijv/Datalog for the source code.



Data set
DatalogLB XSB

Original Opt FP Original FP

Set1 26.87 sec. 106.43 % 21.41 % 43.40 sec. 6.11 %

Set2 9.82 sec. 106.92 % 4.65 % 8.29 sec. 0.84 %

Set3 172.47 sec. 100.93 % 84.18 % 119.82 sec. 64.91 %

Set4 53.61 sec. 100.39 % 104.75 % 20.30 sec. 97.93 %

Table 3: Benchmark results for the Engine program.

data set defines the sets of couples produced by p/2 (denoted P in the following),
and s/2 (denoted S). Let

T = {Steam engine, Internal combustion engine,Gas Turbine}

The four data sets define the sets P and S as follows.

– Set1:

{
P = T × [1100, 11500]
S = T × [1, 10000]

– Set2:

{
P = T × [500, 5000]
S = T × [1, 6000]

– Set3:

{
P = T × [500, 16000]
S = T × [1000, 14000]

– Set4:

{
P = T × [10000, 16000]
S = T × [8, 12000]

The results of the evaluation are shown in Table 3. There is a visible correla-
tion between the particular data set and the effects of the transformation. With
little pruning comes modest speed-up or even a slow-down, whereas consider-
able pruning yields large performance improvements. Again our transformation
achieves drastic improvements where the LogicBlox optimizer does not.

Multi-Legged Flights Program. The Flights program (Figure 5) models multi-
legged flights and their travel distance. More abstractly, it captures the transitive
closure of a directed weighted graph. The DatalogLB encoding consists of the ba-
sic variant of the program, based on that studied by Stuckey and Sudarshan [18],
together with a sample query to compute all possible destinations no further than
10,000 miles from Sydney.

Predicate e(x,y,d) (line 1) denotes a flight leg, i.e., a direct connection
between cities x and y with the distance d. The data of this predicate are given
as facts. The predicate f (lines 3-7) defines a multi-legged flight as the transitive
closure of the predicate e. Since the second rule for f contains recursion, to be
expressible in DatalogLB, it needs to be bounded. Hence, we have added the
constraint ‘d <= 10000’ (line 7), which is not present in the encoding of [18].
Lines 9-10 define the query predicate.

It turns out that our transformation has no significant effect on the perfor-
mance of the Flights program; it does not provide additional pruning. Fortu-
nately, to our aid comes the constraint magic set transformation [18]. Not only
is the constraint magic set rewritten (CMR) variant of the program (Figure 6)
faster than the original, but also it is amenable to our transformation.



1 e(x,y,d) -> string(x), string(y), int[64](d).

2

3 f(x,y,d) -> string(x), string(y), int[64](d).

4 f(x,y,d) <- e(x,y,d), d >= 0.

5 f(x,y,d) <- e(x,z,d1), d1 >= 0,

6 f(z,y,d2), d2 >= 0,

7 d = d1 + d2, d <= 10000.

8

9 query(x,y,d) -> string(x), string(y), int[64](d).

10 query("Sydney",y,d) <- f("Sydney",y,d), d >= 0, d <= 10000.

Fig. 5: The DatalogLB encoding of the Flights program.

Table 4 shows the results of evaluating the CMR variant of the Flights

program without (CMR) and with (CMR+FP) filter predicate transformation
for a collection of 19 different data graphs, with different structures.

For the LogicBlox evaluation, Table 4 reports performance decrease for three
transformed programs with corresponding original run times below 0.1s, and
visible improvement for all other benchmarks. The speed-up varies roughly be-
tween 2× for the original programs with the shorter run times and 8× for those
with longer run times. Interestingly, the performance in XSB is very different.
First, we observe that the run times for programs without the transformation
are considerably shorter than in LogicBlox. Furthermore, applying the trans-
formation has no effect on the three programs with the shortest original run
times, whereas it significantly slows down the evaluation of all other programs.
We attribute this negative effect to the ordering of constraints—imposed by our
transformation when introducing filter predicates—which forces overhead com-
putations in the order-sensitive XSB.

6 Conclusion and Future Work

We presented a technique exploiting Datalog with aggregates to improve the per-
formance of DatalogLB programs with arithmetic (in)equalities. Our approach
employs a source-to-source program transformation that approximates the prop-
agation technique from Constraint Programming. The experimental evaluation
of the approach shows good run time speed-ups on a range of non-recursive as
well as recursive programs. Furthermore, our technique improves upon the con-
straint magic set transformation approach proposed by Stuckey and Sudarshan.

In the future we plan to investigate ways to integrate finite domain solvers
with the Datalog’s semi-naive bottom-up evaluation mechanism to enable fur-
ther benefits from constraint propagation. We would also like to compare our
transformation-based approach to the tabled constraint programming approach
proposed by Cui and Warren [6], applied to a finite domain constraint solver.



answer_f(x,y,d) -> string(x), string(y), int[64](d).

answer_f(x,y,d) <- x = "Sydney", f_a(x,y,d), d >= 0, d <= 10000.

f_a(x,y,d) -> string(x), string(y), int[64](d).

f_a(x,y,d) <- query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0, d >= ld, d <= ud.

f_a(x,y,d) <- query_f_a(x,ld,ud), ld <= ud,

e(x,z,d1), d1 >= 0,

f_a(z,y,d2), d2 >= 0,

d = d1 + d2, d >= ld, d <= ud.

query_f_a(x,ld,ud) -> string(x), int[64](ld), int[64](ud).

query_f_a("Sydney",0,10000).

query_f_a(y,ld2,ud2) <- query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0,

ud2 = ud - d, ld2 = max(ld-d,0).

e(x,y,d) -> string(x), string(y), int[64](d).

Fig. 6: Constraint magic rewritten variant of the Flights program.
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