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Abstract. We present a technique exploiting Datalog with aggregates
to improve the performance of programs with arithmetic (in)equalities.
Our approach employs a source-to-source program transformation which
approximates the propagation technique from Constraint Programming.
The experimental evaluation of the approach shows good run time speed-
ups on a range of non-recursive as well as recursive programs. Further-
more, our technique improves upon the previously reported in the liter-
ature constraint magic set transformation approach.

1 Introduction

Datalog [15,1] is a syntactic subset of Prolog introduced in the 1980s for database
processing. By supporting a limited, safe form of recursion, Datalog considerably
extends the expressive power of traditional database query languages like SQL.
At the same time, unlike Prolog, Datalog allows SQL’s set-at-a-time evaluation.
Also similarly to SQL, the programs in Datalog are guaranteed to terminate.
Hence, extra-logical constructs such as Prolog’s cut (‘!’) operator are not needed.

After its original introduction as a smarter version of SQL, Datalog lost the
interest of researchers for a time, until recently re-gaining attention in applica-
tions falling outside of the realm of traditional database reasoning, which include:
program analysis [9,8,7], networks [13,14], security protocols [11], knowledge rep-
resentation [10], robotics [2] and gaming [20]. Our industrial partner, LogicBlox
Inc. [12], uses a variant of Datalog, called DatalogLB, as the basis for implement-
ing decision automation and business planning systems.

Many of the above application domains rely on processing numerical data
with arithmetic operations, in Datalog available as built-in relations (predicates).
We focus in particular on built-in arithmetic (in)equality predicates (>, <, etc.)
which we also refer to as (arithmetic) constraints. The existing Datalog compil-
ers do not exploit the constraining properties of the arithmetic predicates, but
rather implement them as ordinary tests. As a result, evaluation of programs
with arithmetic constraints follows the naive generate-and-test approach, where
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ordinary predicates act as generators, and the entire search space that they pro-
duce is enumerated before the constraints can be applied to prune the candidate
solutions. The research area of Constraint Programming (CP) offers approaches
that prune the search space more eagerly, e.g., constrain-and-generate, as well
as the constraint implementation technique, called constraint propagators, which
allows to prune the domains of the variables involved in the constraints to narrow
down the sets of candidate values even before the values are enumerated.

We adapt the CP constraint propagator technique to filter the individual
generators in Datalog programs before they are used in the joins represented as
arithmetic constraints. For this purpose we have developed an automatic pro-
gram transformation framework in the DatalogLB system. Experimental evalua-
tion shows that our technique enables good run-time improvements for a variety
of test programs.

2 DatalogLB

LogicBlox is a commercial Datalog-based platform for building enterprise-scale
corporate planning and pricing applications. LogicBlox is currently used in sev-
eral commercial decision automation applications, including retail supply-chain
management [16] and software program analysis [3,4,18]. A typical LogicBlox ap-
plication involves computational analyses that require aggregation across very
large data sets combined with simulation and modeling techniques. The platform
accommodates these features by means of its custom query language DatalogLB,
a type-safe variant of Datalog, based on incremental evaluation, with trigger-
like functionality and support for dynamic updates, declarative specification
of functional dependencies, non-deterministic choice, stratified negation, meta-
programming, and a wide range of extra-logical computations, including aggre-
gation utilized by our optimization approach. In the following paragraphs we
outline the main features of DatalogLB and the LogicBlox run-time system. A
more exhaustive description of DatalogLB can be found in [22]. Readers famil-
iar with Datalog may want to use this section as a reference when reading the
remainder of the paper.

The DatalogLB Language. Figure 1 shows a DatalogLB encoding of the crypta-
rithmetic puzzle I*AM=SAM, the goal of which is to find the assignment of digits
to letters that satisfies the equation I*AM = SAM.

The basic programming construct in DatalogLB is the implication ‘<-’, de-
noting derivation rules of the form:

Head <- Body.

where Head and Body are conjunctions of atoms. An atom can be either a predi-
cate with variable or constant arguments, a comparison expression, an arithmetic
expressions, or a negated atom. The above rule means that the atoms consti-
tuting Head can be derived from the atoms constituting Body. The example
program in Figure 1 contains only one rule (lines 5-15), which derives the facts



1 digit(_) ->.

2 digit(d), val(d:v) -> uint[8](v), v<=9.

3

4 solution(i,a,m,s) -> digit(i), digit(a), digit(m), digit(s).

5 solution(i,a,m,s) <-

6 digit(i), val(i:vi),

7 digit(a), val(a:va),

8 digit(m), val(m:vm),

9 digit(s), val(s:vs),

10 vi != 0,

11 vs != 0,

12 vi != va, vi != vm, vi != vs,

13 va != vm, va != vs,

14 vm != vs,

15 vi*(10*va+vm) = 100*vs+10*va+vm.

Fig. 1: The DatalogLB encoding of the I*AM=SAM cryptarithmetic puzzle.

of the predicate solution based on the facts of the predicates digit and val,
and the constraints represented as comparisons and arithmetic expressions on
their arguments.

DatalogLB extends Datalog with the notion of an integrity constraint of the
form:

Lhs -> Rhs.

Informally, the above constraint means that if Lhs is true, then Rhs must also
be true, where Lhs and Rhs are conjunctions of atoms. The difference between
a constraint and a rule is that a rule derives data for the atoms in its head,
whereas a constraint checks that for the existing data matching its left-hand
side, the right-hand side holds. The integrity constraints constitute the basis of
DatalogLB’s static type system, which guarantees at compile-time that certain
kinds of constraints always hold for all possible instantiations of a given schema.
Our approach uses integrity constraints to declare filter types which allow to
reduce the domains of predicates subjected to arithmetic constraints.

DatalogLB types are represented as unary predicates. Custom types may
be defined using entity predicates. For instance, in Figure 1, the constraint
in line 1 declares the entity predicate digit. The constraint in line 4 is a
type declaration for the predicate solution, which states that for every tuple
solution(i,a,m,s), the arguments i, a, m, and s must be digit entities. An
entity predicate P may be associated with a reference mode predicate, which
uniquely identifies each element in P with a value of a primitive type, thus al-
lowing to access the specific entity elements from user applications. For instance,
line 2 of Figure 1 declares a reference mode predicate val, which associates each
entity element d in digit with v, an 8-bit unsigned integer value no greater than
9, thus binding the digit type to represent single-digit integers. The syntactic
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form val(d:v) denotes the one-to-one functional relation between d and v, and
is reserved for declaring reference mode predicates. The decision to express dig-
its as entities is dictated by one of the mechanisms contributing to DatalogLB’s
termination guarantee, which restricts the use of primitive types as arguments
to built-in predicates such as arithmetic operations.

The extra-logical operations supported by LogicBlox, including aggregation
computations, are represented by special-syntax rules of the form:

result[x1,...,xn]=v <- Op <<v=Method >> Body.

The head of the rule uses DatalogLB’s shorthand notation for declaring func-
tional dependencies: result[x1,...,xn]=v declares the predicate result to be
a function from x1,...,xn to v. The notation also allows declaring singleton
(constant) values: p[]=v declares the predicate p to be a singleton that contains
only the value v. The value can be retrieved through p[]. The right-hand side
of the above rule, in addition to the conjunction of atoms in Body, includes a
directive which specifies the type of the operation to be performed (e.g., aggrega-
tion), and the particular method (e.g., finding the minimum value) to be used.
For instance, in Section 3.1 we show the following rule which finds the lower
bound for the val predicate:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).

Above, agg states that the rule computes an aggregation, and min names the
specific operation to be applied to the values referenced by v.

The LogicBlox Run-time System. Figure 2 illustrates the architecture of Log-
icBlox run time. After compilation, discussed in more detail in Section 4, the
predicate definitions, rules, and constraints of the input DatalogLB program are
loaded into a designated data base instance called a workspace. The workspace



may be then accessed (queried and/or modified) from the LogicBlox API. When-
ever a user application adds or removes facts from a predicate, the LogicBlox
run-time engine incrementally re-evaluates the installed program rules until the
workspace reaches a fixed point, i.e., no more facts can be derived by the rules.
At the same time the engine checks the program’s constraints, reporting any
violations and restoring the workspace to a consistent state as needed.

3 The Filter Predicates Transformation

This section describes the details of our transformation, beginning with non-
recursive programs, and then considering the impact of recursion.

3.1 Non-Recursive Programs

Recall the I*AM=SAM program from the previous section. Our goal is to reduce
the number of different candidate values that are used for producing answers.
Thus, we exploit the equality constraint

vi ∗ (10 ∗ va + vm) = 100 ∗ vs + 10 ∗ va + vm

from the program rule to filter candidate values in the generator predicate digit.
Specifically, for each generator predicate atom appearing in the constraint, we
consider the value generated by this atom in the context of the upper and lower
bounds of the values produced by other generator atoms.

For instance, for the generator atom digit(i), the original constraint, which
is equivalent to the pair of inequalities:{

vi ∗ (10 ∗ va + vm) ≤ 100 ∗ vs + 10 ∗ va + vm
vi ∗ (10 ∗ va + vm) ≥ 100 ∗ vs + 10 ∗ va + vm

yields the pair of inequalities:{
vi ∗ (10 ∗ ld + ld ) ≤ 100 ∗ ud + 10 ∗ ud + ud

vi ∗ (10 ∗ ud + ud) ≥ 100 ∗ ld + 10 ∗ ld + ld

where ud and ld represent the upper and lower bound of the generator predicate
digit, respectively. We use these inequalities in the Datalog definition of the
filter predicate for digit(i):

digit_filtered_i(i) <-

digit(i),

val(i:vi),

lb_digit[]=t_1,

ub_digit[]=t_2,

vi* (10*t_1+t_1) <= 100*t_2+10*t_2+t_2,

100*t_1+10*t_1+t_1 <= vi* (10*t_2+t_2).



Similar filter predicates are generated for the remaining generator atoms.
The bounds for the generator predicates are computed in separate aggregate

predicates, and reused in all filter predicates:

lb_digit[]=n <- agg<<n=min(v)>> digit(d), val(d:v).

ub_digit[]=n <- agg<<n=max(v)>> digit(d), val(d:v).

In the last step of the transformation we replace the generator predicate
atoms in the body of the solution/4 rule by atoms representing corresponding
filter predicates:

solution(i,a,m,s) <-

digit_filtered_i(i),

digit_filtered_a(a),

digit_filtered_m(m),

digit_filtered_s(s),

... % rest of the original I AM SAM program

Our approach is inspired by the well-known bounds consistency technique, in
CP implemented by finite-domain constraint propagators. We simplify constraint
propagation in two ways: (1) by computing filtered domains on the original do-
mains rather than as a fixed point of the filtering process, and (2) by filtering
only at the beginning of the evaluation rather than repeatedly after every enu-
meration step (in CP terminology known as labeling). As a consequence of these
simplifications, (1) we cannot encode unbounded fixpoint computations, and (2)
computing and storing many successively filtered tables for the same variable
adds considerable time and space overhead. Nevertheless, our approach yields
a light-weight technique that is easily provided on top of the existing Data-
log implementations, offering a satisfactory compromise between the anticipated
speed-up and the overhead.

3.2 Recursive Programs

Recursion considerably complicates our transformation. Consider the Engine
program listed in Figure 3. The program selects suitable engines for an engine
yard. In the predicates p(t,w), s(t,w) and e(t,w), t corresponds to the engine
type and w to the produced wattage. The predicate p represents the primary
engines, and the predicate s represents the potentially spare engines. A suitable
engine for the engine compound e(t,w) is either a primary engine, or a spare
engine that can assist another engine in the compound. The difference in wattage
between the assisting engine and the assistee should not exceed 100, and the total
wattage of the compound should be no less than 19,500.

The naive application of our technique yields the ill-formed program shown
in Figure 4. The program involves recursion through aggregation: in order to



p(t,w) -> string(t), int[64](w).

s(t,w) -> string(t), int[64](w).

e(t,w) -> string(t), int[64](w).

e(t,w) <- p(t,w).

e(t,w) <- s(t,w),

e(tp,wp),

w - wp <= 100,

w + wp >= 19500.

Fig. 3: The Engine program.

e(t,w) <- p(t,w). s_filtered(t,w) <-

e(t,w) <- s_filtered(t,w), s(t,w),

e_filtered(tp,wp), w-ub_p[] <= 100,

w-wp <= 100, 19500 <= w+ub_p[].

w+wp >= 19500.

e_filtered(tp,wp) <-

e(tp,wp),

lb_s[]=n <- agg<<n=min(v)>> s(_,v). lb_s[]-wp <= 100,

ub_s[]=n <- agg<<n=max(v)>> s(_,v). 19500 <= ub_s[]+wp.

ub_e[]=n <- agg<<n=max(v)>> e(_,v). % ERROR

Fig. 4: Ill-formed Engine program after naive transformation.

compute the set of e/2 we need to know the upper bound of e/2. Such recursion
is not supported by DatalogLB (nor by any other LP system we are aware of).

Since it is not possible to effectively compute the exact upper bound on e/2,
we approximate it as the upper bound of the approximated upper bounds of the
two rules defining e/2. For the first, non-recursive rule, such an approximated
(and exact) upper bound is ub p[]. A crudely approximated upper bound for
the second, recursive rule, is ub s[]. Hence:

ub_e[]=n <- n=max(ub_p[],ub_s[]).

where

ub_p[]=n <- agg<<n=max(v)>> p(_,v).

We may attempt to tighten the upper bound of the second rule, based on
the observation that it is bounded from above by ub e[]+100:

ub_e[]=n <- n=max(ub_p[],min(ub_s[],ub_e[]+100)).

Alas, this step reintroduces recursion through aggregation. We eliminate it in the
same way as before, by substituting the cruder approximation derived earlier:
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ub_e[]=n <- n=max(ub_p[],min(ub_s[],max(ub_p[],ub_s[])+100).

We further simplify the above expression by noticing that

∀x, y, c ∈ N.min(x,max(y, x) + c) = x

This step brings us back to the first approximation, thus proving that the re-
finement attempt was unsuccessful. Nevertheless, as we show in Section 5, our
approximation is still quite effective at pruning the predicate domains and im-
proving the performance of the programs.

4 Implementation

Most of the DatalogLB syntax is compatible with the term syntax of standard
Prolog. The discrepancies in the particular notations, such as the functional
dependency syntax, can be easily accommodated by simple processing steps.
Hence, we chose Prolog (specifically, SWI-Prolog [21]) to implement the trans-
formations of DatalogLB programs. Our analyzer consists of five Prolog modules,
for the total of about 3,500 lines of Prolog code, including comments.

4.1 LogicBlox/SWI-Prolog Interface

Figure 5 shows in more detail the LogicBlox compilation scheme and outlines
the communication between the LogicBlox engine and the SWI-Prolog analyzer.

The LogicBlox compiler rewrites a source DatalogLB program into a core
representation, which is then encoded using Google’s protocol buffer (GPB) in-
terface for further use by a number tools, including an interpreter. GPB [6] is
a platform-independent, extensible mechanism for serializing structured data.
GPBs allow the programmers to determine how to structure their data by defin-
ing simple data structures (messages) in a dedicated specification language, and
then to compile those data structures into the language and platform of their
choice. As shown in Figure 5, the core program representation generated by the



LogicBlox compiler is either passed directly to the subsequent phase of run-
time processing, or subjected to one or more optional transformations aimed
at optimizing the compiled code or collecting information to be used in further
evaluation steps. This infrastructure makes the GPBs the medium of choice for
interfacing LogicBlox with external analysis modules. In case of our application,
the entire interface, including simplified message specification (discussed below),
comprises five new modules, for the total of 1,800 lines of code.

The interface on the SWI-Prolog side is based on the system’s native GPB
library [17], which we extended with support for necessary features of DatalogLB

(e.g., recursively structured data), and optimized to linear run-time complexity.
At this time our version of the library is available in a dedicated branch of the
SWI-Prolog code repository.

The communication between LogicBlox and SWI-Prolog proceeds as follows.
The output of the DatalogLB compiler is received by a new LogicBlox module
which extracts from it the information relevant to our analysis, encodes it as a
collection of GPB messages, and opens a socket connection with SWI-Prolog.
Once the connection is established, the messages are supplied to our analyzer.
The analyzer decodes the messages into a program representation, applies the
transformation, encodes the resulting program, and sends it back to the Log-
icBlox side, where another dedicated module retrieves the transformation results
and updates the core representation of the program accordingly.

We illustrate the use of GPBs on DatalogLB rule bodies. A rule body is a for-
mula defined as an atom, a disjunction, a conjunction, or a negation. LogicBlox
serializes and deserializes formulas with GBP messages of the following form:

message Formula {

optional Atom atom = 1;

optional Negation negation = 2;

optional Conjunction conjunction = 3;

optional Disjunction disjunction = 4;

}

message Conjunction { repeated Formula formula = 1; }

...

Note the mutually recursive nature of the Formula and Conjunction definitions.
On the SWI-Prolog side, the messages are defined in message/2 clauses:

protobufs:message(formula,Template) :-

Template = [ optional(embedded(1,message(atom,_)),_)

, optional(embedded(2,message(negation,_)),_)

, optional(embedded(3,message(conjunction,_)),_)

, optional(embedded(4,message(disjunction,_)),_)

].

protobufs:message(conjunction,Template) :-

Template = [ repeated(1,embedded(_,message(formula,_))) ].



The predicate message/2, which we added to the SWI-Prolog GPB library, en-
ables naming message templates. It is essential for recursive and repeated em-
bedded messages. The protobuf message/2 predicate serializes and deserializes
messages to and from binary form, like the representation of the single-atom
formula digit(d).

?- protobuf_message(message(formula,

[ optional(embedded(1,

message(atom,

[ string(1,"digit"),

repeated(2,embedded([ ...

% Term for variable d

],term))

])),present),

optional(embedded(2,message(negation,_)),not_present),

optional(embedded(3,message(conjunction,_)),not_present),

optional(embedded(4,message(disjunction,_)),not_present)

]),Bytes).

4.2 The Transformation

Given a representation of a DatalogLB program, our transformation processes in
turn each of its rules. For every rule with one or more arithmetic constraints,
it identifies the generator predicate atoms, exploits the constraints to produce
corresponding filter predicates, and replaces the generator atoms accordingly.
It also extends the program with the definitions for the auxiliary predicates
performing bounds computations.

Implementation of the code that generates the bounds-computing predicates
turned out to be one of the more involved aspects of our project. The numeri-
cal data appearing in the arithmetic constraints pertinent to our transformation
is often represented as the values of the DatalogLB reference mode predicates
where the keys are the entities produced by the predicates serving as genera-
tors. To access these data, it is necessary to reconstruct the chain of functional
dependencies connecting each value with the appropriate entity generator. For
instance, to compute predicate bounds for the atom set:

p(x), val_1(x:vx), q(y), val_2(y:vy), vx > vy

we need to reconstruct the chain connecting vx with p and vy with q. Additional
complications arise when the reference mode predicates (and the corresponding
generators) have non-unary keys, in which case the reconstructed dependencies
are trees with the functional dependencies as nodes and the generators as leaves.

As mentioned in Section 2, DatalogLB’s static type system relies on the type
information in the form of the integrity constraints. To ensure completeness of
the type information in the transformed programs, we need to provide type dec-
larations for the predicates generated by the analyzer (i.e., filter and aggregate
predicates). It turns out that we can conveniently derive these directly from the
original predicates, with no additional bookkeeping during the transformation.



Puzzle
DatalogLB XSB

Original FP Original FP

I * AM = SAM 0.01 sec. 140.90 % 0.01 sec. 100.00 %

BASE + BALL = GAMES 0.80 sec. 14.02 % 0.65 sec. 15.38 %

SEND + MORE = MONEY 3.10 sec. 11.42 % 2.60 sec. 11.92 %

BANJO + VIOLA = VIOLIN 2.67 sec. 12.79 % 2.73 sec. 12.09 %

SATURN + URANUS = PLANETS 6.39 sec. 15.02 % 7.70 sec. 12.60 %

SIX + SEVEN + SEVEN = TWENTY 3.90 sec. 27.05 % 8.75 sec. 25.26 %

DONALD + GERALD = ROBERT 17.54 sec. 105.01 % 17.20 sec. 107.62 %

BLACK + GREEN = ORANGE 20.63 sec. 11.71 % 19.99 sec. 52.53 %

Table 1: Benchmark results for cryptarithmetic puzzles.

5 Evaluation

We now present the results of applying our transformation to a variety of pro-
grams. All experiments were performed using LogicBlox 3.7, on a machine with a
2.83 GHz Intel R© CoreTM 2 Quad CPU and 4 GB of RAM, running Ubuntu 10.10
(Linux kernel 2.6.35-24-server). Additionally, we report the results obtained by
the tabled top-down evaluation using XSB Prolog 3.3.1. For each experiment we
show run times, in seconds, for the original programs, and the relative perfor-
mance change after the transformation.

The changes required to accommodate DatalogLB programs in XSB are min-
imal and mainly syntactic in nature: we omitted type declarations, replaced ‘<-’
arrows with ‘:-’, modified variable names to begin with capital letters, changed
functional dependencies to ordinary arguments, and provided implementation for
aggregates. The key feature to guarantee termination is tabling: all predicates
are declared tabled.

5.1 Non-Recursive Programs

Cryptarithmetic Puzzles. Table 1 reports the evaluation run times for a set
of cryptarithmetic puzzles building on the idea of the I*AM=SAM program from
Section 2. In almost all cases the transformation yields drastic performance im-
provements (3× to 10×). There are two exceptions. In case of the I*AM=SAM

benchmark, the overhead of the auxiliary predicates introduced by the transfor-
mation dominates the extremely short run time of the original program. In case
of the DONALD+GERALD=ROBERT puzzle, the transformed program prunes very few
values from the initial domains, and consequently shows performance similar to
that of the original program.

The XSB evaluation yields similar results both in terms of the original pro-
gram performance, and the benefits from the transformation.

The Production Problem. The Production program4 models the mathemati-
cal programming problem of optimizing the profit from manufacturing several

4 We refer to http://users.ugent.be/~tschrijv/Datalog for the source code.



Tons range
DatalogLB XSB

Original FP Original FP

[1,500] 0.60 sec. 103.64 % 0.29 sec. 96.55 %

[1,1000] 2.81 sec. 100.75 % 1.10 sec. 98.18 %

[1,2500] 12.37 sec. 40.60 % 5.01 sec. 92.41 %

[1,5000] 13.71 sec. 41.27 % 5.90 sec. 88.30 %

Table 2: Benchmark results for the Production problem.

types of products, subject to a set of constraints such as production costs and
maximum number of items to be manufactured for each product type, or the
availability of the factory line. From the technical point of view this program is
interesting because it contains multi-key functional dependencies that drive the
filter predicates. Another non-standard feature is the use of the aggregates for
computing the optimized profit.

Table 2 reports the results of evaluating the original and transformed program
with four data sets differing in the range of the generator predicate indicating
the number of tons of products being manufactured. Clearly, for LogicBlox eval-
uation, the transformation has no significant effect on the program for the small
tons ranges, but enables a lot of pruning, and thus considerable performance
improvement, when the tons ranges are large. On XSB the effects of the trans-
formation are more uniform across the different data sets, with slightly better
performance improvements for the larger tons ranges.

5.2 Recursive programs

The Engine Program. To evaluate the effects of our transformation on the
recursive Engine program from Figure 3, we used four different data sets. Each
data set defines the sets of couples produced by p/2 (denoted P in the following),
and s/2 (denoted S). Let

T = {Steam engine, Internal combustion engine,Gas Turbine}

The four data sets define the sets P and S as follows.

– Set1:

{
P = T × [1100, 11500]
S = T × [1, 10000]

– Set2:

{
P = T × [500, 5000]}
S = T × [1, 6000]}

– Set3:

{
P = T × [500, 16000]}
S = T × [1000, 14000]}

– Set4:

{
P = T × [10000, 16000]}
S = T × [8, 12000]}

The results of the evaluation are shown in Table 3. There is a visible correla-
tion between the particular data set and the effects of the transformation. With
little pruning possible, we see a modest speed-up or even a slow-down, whereas
considerable pruning yields large performance improvements.



Data set
DatalogLB XSB

Original FP Original FP

Set1 26.87 sec. 21.41 % 43.40 sec. 6.11 %

Set2 9.82 sec. 4.65 % 8.29 sec. 0.84 %

Set3 172.47 sec. 84.18 % 119.82 sec. 64.91 %

Set4 53.61 sec. 104.75 % 20.30 sec. 97.93 %

Table 3: Benchmark results for the Engine program.

1 e(x,y,d) -> string(x), string(y), int[64](d).

2

3 f(x,y,d) -> string(x), string(y), int[64](d).

4 f(x,y,d) <- e(x,y,d), d >= 0.

5 f(x,y,d) <- e(x,z,d1), d1 >= 0,

6 f(z,y,d2), d2 >= 0,

7 d = d1 + d2, d <= 10000.

8

9 query(x,y,d) -> string(x), string(y), int[64](d).

10 query("Sydney",y,d) <- f("Sydney",y,d), d >= 0, d <= 10000.

Fig. 6: The DatalogLB encoding of the Flights program.

Multi-Legged Flights Program. The Flights program (Figure 6) models multi-
legged flights and their travel distance. More abstractly, it captures the transitive
closure of a directed weighted graph. The DatalogLB encoding consists of the ba-
sic variant of the program, based on that studied by Stuckey and Sudarshan [19],
together with a sample query to compute all possible destinations no further than
10,000 miles from Sydney.

Predicate e(x,y,d) (line 1) denotes a flight leg, i.e., a direct connection
between cities x and y with the distance d. The data of this predicate are given
as facts. The predicate f (lines 3-7) defines a multi-legged flight as the transitive
closure of the predicate e. Since the second rule for f contains recursion, to be
expressible in DatalogLB, it needs to be bounded. Hence, we have added the
constraint ‘d <= 10000’ (line 7), which is not present in the encoding of [19].
Lines 9-10 define the query predicate.

It turns out that our transformation has no significant effect on the perfor-
mance of the Flights program; it does not provide additional pruning. Fortu-
nately, to our aid comes the constraint magic set transformation [19]. Not only
is the constraint magic set rewritten (CMR) variant of the program (Figure 7)
faster than the original, but also it is amenable to our transformation.

Table 4 shows the results of evaluating the CMR variant of the Flights

program without (CMR) and with (CMR+FP) filter predicate transformation
for a collection of 19 different data graphs. The graphs, generated using three
different methods, have the following structure:



answer_f(x,y,d) -> string(x), string(y), int[64](d).

answer_f(x,y,d) <-

x = "Sydney", f_a(x,y,d), d >= 0, d <= 10000.

f_a(x,y,d) -> string(x), string(y), int[64](d).

f_a(x,y,d) <-

query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0, d >= ld, d <= ud.

f_a(x,y,d) <-

query_f_a(x,ld,ud), ld <= ud,

e(x,z,d1), d1 >= 0,

f_a(z,y,d2), d2 >= 0,

d = d1 + d2, d >= ld, d <= ud.

query_f_a(x,ld,ud) -> string(x), int[64](ld), int[64](ud).

query_f_a("Sydney",0,10000).

query_f_a(y,ld2,ud2) <-

query_f_a(x,ld,ud), ld <= ud,

e(x,y,d), d >= 0,

ud2 = ud - d, ld2 = max(ld-d,0).

e(x,y,d) -> string(x), string(y), int[64](d).

Fig. 7: Constraint magic rewritten variant of the Flights program.

– there are six graphs with n nodes, where each node has [0,bn/mc] random
bi-directional edges with random distance in [0,10000].

– there are four graphs with 6 ·n nodes consisting of 6 subgraphs with n nodes.
Within a subgraph, each node has [0,m] bi-directional edges with distance
[0,7000]. Each subgraph is connected to [0, o] other subgraphs with distance
[0,15000].

– there are nine graphs with n ·m nodes, consisting of m complete subgraphs
of n nodes that are not connected to one another.

For the LogicBlox evaluation, Table 4 reports performance decrease for three
transformed programs with corresponding original run times below 0.1s, and
visible improvement for all other benchmarks. The speed-up varies roughly be-
tween 2× for the original programs with the shorter run times and 8× for those
with longer run times. Interestingly, the performance in XSB is very different.
First, we observe that the run times for programs without the transformation
are considerably shorter than in LogicBlox. Furthermore, applying the trans-
formation has no effect on the three programs with the shortest original run
times, whereas it significantly slows down the evaluation of all other programs.
We attribute this negative effect to the ordering of constraints—imposed by our
transformation when introducing filter predicates—which forces overhead com-
putations in the order-sensitive XSB.



Graph
DatalogLB XSB

CMR CMR+FP CMR CMR+FP

Graph 1 0.01 sec. 191.1 % 0.01 sec. 100.0 %

Graph 2 0.03 sec. 162.0 % 0.01 sec. 100.0 %

Graph 3 0.02 sec. 117.2 % 0.01 sec. 100.0 %

Graph 4 0.19 sec. 54.5 % 0.02 sec. 250.0 %

Graph 5 4.47 sec. 21.2 % 0.51 sec. 468.6 %

Graph 6 0.24 sec. 63.5 % 0.04 sec. 925.0 %

Graph 7 0.76 sec. 41.7 % 0.12 sec. 2266.7 %

Graph 8 2.91 sec. 22.1 % 0.31 sec. 442.8 %

Graph 9 65.79 sec. 13.3 % 5.28 sec. 988.8 %

Graph 10 5.76 sec. 42.0 % 1.26 sec. 504.8 %

Graph 11 1.94 sec. 21.3 % 0.19 sec. 163.1 %

Graph 12 2.40 sec. 38.0 % 0.39 sec. 2761.5 %

Graph 13 2.83 sec. 22.1 % 0.29 sec. 320.7 %

Graph 14 4.99 sec. 25.5 % 0.73 sec. 291.8 %

Graph 15 66.93 sec. 13.0 % 5.14 sec. 1010.9 %

Graph 16 1.92 sec. 22.9 % 0.17 sec. 170.6 %

Graph 17 2.85 sec. 21.5 % 0.27 sec. 340.7 %

Graph 18 1.92 sec. 21.4 % 0.16 sec. 181.2 %

Graph 19 67.60 sec. 13.3 % 5.06 sec. 1030.0 %

Table 4: Benchmark results for the Flights program.

6 Conclusion and Future Work

We presented a technique exploiting Datalog with aggregates to improve the per-
formance of DatalogLB programs with arithmetic (in)equalities. Our approach
employs a source-to-source program transformation that approximates the prop-
agation technique from Constraint Programming. The experimental evaluation
of the approach shows good run time speed-ups on a range of non-recursive as
well as recursive programs. Furthermore, our technique improves upon the con-
straint magic set transformation approach proposed by Stuckey and Sudarshan.

In the future we plan to investigate ways to integrate finite domain solvers
with the Datalog’s semi-naive bottom-up evaluation mechanism to enable fur-
ther benefits from constraint propagation. We would also like to compare our
transformation-based approach to the tabled constraint programming approach
proposed by Cui and Warren [5], applied to a finite domain constraint solver.
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