2,045 research outputs found

    Benchmarking Implementations of Functional Languages with ``Pseudoknot'', a Float-Intensive Benchmark

    Get PDF
    Over 25 implementations of different functional languages are benchmarked using the same program, a floatingpoint intensive application taken from molecular biology. The principal aspects studied are compile time and execution time for the various implementations that were benchmarked. An important consideration is how the program can be modified and tuned to obtain maximal performance on each language implementation.\ud With few exceptions, the compilers take a significant amount of time to compile this program, though most compilers were faster than the then current GNU C compiler (GCC version 2.5.8). Compilers that generate C or Lisp are often slower than those that generate native code directly: the cost of compiling the intermediate form is normally a large fraction of the total compilation time.\ud There is no clear distinction between the runtime performance of eager and lazy implementations when appropriate annotations are used: lazy implementations have clearly come of age when it comes to implementing largely strict applications, such as the Pseudoknot program. The speed of C can be approached by some implemtations, but to achieve this performance, special measures such as strictness annotations are required by non-strict implementations.\ud The benchmark results have to be interpreted with care. Firstly, a benchmark based on a single program cannot cover a wide spectrum of 'typical' applications.j Secondly, the compilers vary in the kind and level of optimisations offered, so the effort required to obtain an optimal version of the program is similarly varied

    Benchmarking implementations of functional languages with ‘Pseudoknot', a float-intensive benchmark

    Get PDF
    Over 25 implementations of different functional languages are benchmarked using the same program, a floating-point intensive application taken from molecular biology. The principal aspects studied are compile time and execution time for the various implementations that were benchmarked. An important consideration is how the program can be modified and tuned to obtain maximal performance on each language implementation. With few exceptions, the compilers take a significant amount of time to compile this program, though most compilers were faster than the then current GNU C compiler (GCC version 2.5.8). Compilers that generate C or Lisp are often slower than those that generate native code directly: the cost of compiling the intermediate form is normally a large fraction of the total compilation time. There is no clear distinction between the runtime performance of eager and lazy implementations when appropriate annotations are used: lazy implementations have clearly come of age when it comes to implementing largely strict applications, such as the Pseudoknot program. The speed of C can be approached by some implementations, but to achieve this performance, special measures such as strictness annotations are required by non-strict implementations. The benchmark results have to be interpreted with care. Firstly, a benchmark based on a single program cannot cover a wide spectrum of ‘typical' applications. Secondly, the compilers vary in the kind and level of optimisations offered, so the effort required to obtain an optimal version of the program is similarly varie

    Costing JIT Traces

    Get PDF
    Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute frequently. The AJITPar project aims to investigate whether the information in JIT traces can be used to make better scheduling decisions or perform code transformations to adapt the code for a specific parallel architecture. To achieve this goal, a cost model must be developed to estimate the execution time of an individual trace. This paper presents the design and implementation of a system for extracting JIT trace information from the Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We perform a search of the cost model parameter space using genetic algorithms to identify the best weightings for those parameters. We test the accuracy of these cost models for predicting the cost of individual traces on a set of loop-based micro-benchmarks. We also compare the accuracy of the cost models for predicting whole program execution time over the Pycket benchmark suite. Our results show that the weighted cost model using the weightings found from the genetic algorithm search has the best accuracy

    Analysis of a benchmark suite to evaluate mixed numeric and symbolic processing

    Get PDF
    The suite of programs that formed the benchmark for a proposed advanced computer is described and analyzed. The features of the processor and its operating system that are tested by the benchmark are discussed. The computer codes and the supporting data for the analysis are given as appendices

    Computability and Complexity from a Programming Perspective (MFPS Draft preview)

    Get PDF
    AbstractThe author's forthcoming book proves central results in computability and complexity theory from a programmer-oriented perspective. In addition to giving more natural definitions, proofs and perspectives on classical theorems by Cook, Hartmanis, Savitch, etc., some new results have come from the alternative approach.One: for a computation model more natural than the Turing machine, multiplying the available problem-solving time provably increases problem-solving power (in general not true for Turing machines). Another: the class of decision problems solvable by Wadler's “treeless” programs [8], or by cons-free programs on Lisp-like lists, are identical with the well-studied complexity class LOGSPACE.A third is that cons-free programs augmented with recursion can solve all and only PTIME problems. Paradoxically, these programs often run in exponential time (not a contradiction, since they can be simulated in polynomial time by memoization.) This tradeoff indicates a tension between running time and memory space which seems worth further investigation

    And now for something completely different: running Lisp on GPUs

    Get PDF
    The internal parallelism of compute resources increases permanently, and graphics processing units (GPUs) and other accelerators have been gaining importance in many domains. Researchers from life science, bioinformatics or artificial intelligence, for example, use GPUs to accelerate their computations. However, languages typically used in some of these disciplines often do not benefit from the technical developments because they cannot be executed natively on GPUs. Instead existing programs must be rewritten in other, less dynamic programming languages. On the other hand, the gap in programming features between accelerators and common CPUs shrinks permanently. Since accelerators are becoming more competitive with regard to general computations, they will not be mere special-purpose processors in the future. It is a valid assumption that future GPU generations can be used in a similar or even the same way as CPUs and that compilers or interpreters will be needed for a wider range of computer languages. We present CuLi, an interactive Lisp interpreter, that performs all computations on a CUDA-capable GPU. The host system is needed only for the input and the output. At the moment, Lisp programs running on CPUs outperform Lisp programs on GPUs, but we present trends indicating that this might change in the future. Our study gives an outlook on the possibility of running Lisp programs or other dynamic programming languages on next-generation accelerators

    Architectures for reasoning in parallel

    Get PDF
    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN
    corecore