@ https:/intrs.nasa.gov/search.jsp?R=19920023642 2020-03-17T11:22:32+00:00Z

i'; #"",_, /j /\/ T /

/17 757

p. 3

NASA Technical Memorandum 103907

Analysis of a Benchmark Suite
to Evaluate Mixed Numeric and
Symbolic Processing

Bharathi Ragharan and David Galant

(NASA-TM-103907) ANALYSIS OF A N92-32886
BENCHMARK SUITE TO EVALUATE MIXED

NUMERIC AND SYMBOLIC PROCESSING

{NASA) 36 p Unclas

G3/62 0117757

August 1992

NASA

National Aeronautics and
Space Administration

Y

NASA Technical Memorandum 103907

Analysis of a Benchmark Suite
to Evaluate Mixed Numeric and
Symbolic Processing

Bharathi Ragharan and David Galant, Ames Research Center, Moffett Field, California

August 1992

NNASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

b

Al

TABLE OF CONTENTS

Page
1.0 SUMMARY .ttt e sss s sna s sasssesassassbeaesassbesban s assessessassssnnssssnsesneneeusasnannasnens 1
2.0 INTRODUCTIONcoioiiirrieirinerirneeseeseesesrsssssnssessesssssnssessasssssesssssssssssssssassesstesssssssnssnsnsesnessess 1
3.0 MACHINE DESCRIPTIONScovtrctiimierrirsreneermssresiissesierasssesassnsssssresssssssssssssssssssesssssnssassseas 2
3.1 The Symbolics 3675..c.ccviiiiviirniiiristesnsns st 2
3.2 DEC 8800......cccuvrerteemrnrrersesnssresssasrsrmsessrresestessssassessasssssassnsssssasssesssssssssesaesssesssssesseasessnioes 3
3.3 Compaq 386/20€ccceoveveireriucninnnnnnns e iktesreeeseeeeraerrerre s e e e e eea e s e e e s e s e e e e e R et 3
3.4 SUN-4 ...ooiirenrciriinnneennnnaens O 3
3.5 TIMA5000ocoovrreerrrerrerrererteseersessessessesnessssesrsstssresteraseserassnsebesse s s e s esses s ssanssessesaentsnnens 4
3.6 MIPS M/2000.......cocoeerercrvmrirnsaerinennes eseeeseereeTererrerareertiee —estteae s et r e R s e e b e s n s e e R e re s 4
4.0 Execution Environment Considerations........covvvreieerneimmmininmninieeeens s, 5
4.1 Programming LanguUagescccccvurverrrermemimirinninniinnc e s 5
4.1.1 Lisp Implementationccovvverrenresernivnennsenistsensssrr et 5
B.1.2 AQQ oot eenee s R R bR 6
4.2 COMPIIEL et e s e 7
4.3 Garbage COECHIONc.cceevivrerinmrinmrmrrrerr et s 7
5.0 COMPARISON OF LISP LANGUAGE IMPLEMENTATIONSoconiiniiinneeeeeen 7
5.1 TBUKI Common LiSP......cccvermmrernieirerimrnmerresssnsinines e s ssnenmsninsnnssnsas s 7
5.2 Lucid COmMMON LiSP ..eoceerreeiimnriviniisrmsasseresssssnisessssesnssis et enmssnsnsnsssss s nssnsens 8
5.3 Allegro Common LiSPcccovvvvirmiiirimirmienssnininnees et s 10
6.0 DESCRIPTION OF THE BENCHMARK SUITEcvvevirriiitirnninniennrnceennecenee 10
6.1 The Numerical Benchmarks........cccvvvereeeienrerienmmniiirnriennnn e sessnene
6.1.1 WHRELSIONE.cvuvircrnericnrrisnrrrsrmrrsrssessrssssssnnsessnsarssnesssssesassnnessrressesssesssssnnsssnnnsssns
6.1.2 LiNPack....coccvirirmivvisninvmuiemmrsnnsees et
LT RG] 2. o O RO PI PP
6.1.4 ChOISKYM ...covrurreeecriniciiinisniinrte et n
6.2 The Symbolic Benchmarkscccvrvveeremivenieninie i
6.2.1 BOYET ..cucoeirirrerrerrencitstsiesiei s e e
6.2.2 BIOWSE ...eoveererirrrrrreerssessnsserrseessessssssnessrsssisssssssssnsassssssssassnssssssssmsssssnnessnsssssssnses
6.2.3 TILAVEISE ..vvererurrerinrerennasssnnesssncsessnrsossansssrnnesssnessrsnssrmsssssrnsssssnssssstrsssintssssaeneassnnes
6.2.4 Trianglecoovvevrrverevnranen
6.3 AULOCLASSIL ..evveeeviiiteereecerrreereraresseerangsneeseesssnessnnsastessatsssnassnsssseesanessnnrssnesssnesssnsessarssanss
6.4 JSC Real-Time Ada Programscoccecerriereiiinnnmrnnnerenonnnmneseiscniesncsesnesosnns
6.5 University of Michigan Real-Time Ada Programs ..o, 13
7.0 DESCRIPTION OF THE EVALUATION PROCESScocoiiiitirmnrenennscnnncnmnnna, 14

1

'
NUNTICHALLY BLANE

PRECEDING PAGE BLANK NOT FILMED i

TABLE OF CONTENTS (continued)

8.0 EVALUATION RESULTS AND ANALYSIS ...t vnvsevsesrrsnssee e esae s 14
8.1 WHRELSIOME ..vineitiiiiiiiiiciinii it s s e sr e s e e sn s e e e sae e 14

8.1.1 Profiler analysiS.......cccovviriiinininiirienerinn e see e enns 14

8.1.2 Program €XECULIOMeovveureiireeesesseessresssssmessresseenteeserasessessssssnesseessenssansesssennses 15

8.2 LINPACK....iiriiriiiiicricticcec ettt e e e s 16

8.2.1 Profiler analysiS.......cocveiriiminrinininiinnicnnitnee e 16

8.2.2 Program EXECULIONccoevriireriieiiieereisresnisniss e ses st esssesessseessneneesnesnseens 16

8.3 CIft2AM ..ottt e s sre s n e 17

8.3.1 Profiler analysiS......ccvvvmrviirminiiiniiniiiiitennese et 17

8.3.2 Program €XECULIONccvruiruerierinieiiiissiine ettt ceeeesseens e sssssnesneeseenesnneenes 17

LT I O+ T0) 0 ¢ o L O PSOOP 18

8.4.1 Profiler analysis.........cccuueiviriiniiniiiiiiiic s 18

8.4.2 Program €XECULIONccevvrrrrrrreeserrseessmeserseesseermersessnrssnessesrsssssesssessansrsssssnssseseses 18

TR T = T TR 19

8.5.1 Profiler analySiS.......cccceeriimirririiriincri e 19

8.5.2 Program eXeCUIONocviimiimieiinininnnnitee e 19

8.5.3 Effect Of OPtiMUZAtIONcoovveemiiireiieericieiee et eesneas 20

8.0 BIOWSE .vicviiiriiririiiiiiiint et s a e a s s e e 20

8.6.1 Profiler analysiS.......cccvvvenmiiieniniiiicniniiecienesiecessesstesessseesees e reeee e 20

8.6.2 Program eXeCutioncccccevveevvuncsrnnrsveees Creser i eae e s 20

8.6.3 Effect Of OPtMIZALIONcevvuvveerirnrenrceersrrseeessneererererssnesrenrssersrsnesssnessereeserssnees 21

8.7 TIAVETSC ...vivteirrrrriiiisirinciitinev st e r s ns e b e ae s srn s a e s s e e aa e e an e ne e resanesanens 21

8.7.1 Profiler analysiS.......ccvviviimniinminmeierei e 21

8.7.2 Program €XECULIONccvuvvreirieirmiinisniisiiiinernissnssessiesnessnssssessesessnessarssasssssesseses 21

8.7.3 Effect of OptMIZAtioNcoevviriiiiiiiiiniecincr s 22

8.8 THIANEIE ... e e e s 22

8.8.1 Profiler analysiS......ccoocererrrrrrrrerrrere e e 22

8.8.2 Program €XECULIONcccvvrirerrrrmriisiesiisiesosiesiiietiesisresnensssssessesmensesnsssnsanesses 23

8.8.3 Effect of OptMIZAtioncocvviiiiininniiieire 23

8.9 AULOCIASSIIoeiiiretrrnrc e 23

8.9.1 Profiler analysiS......c.ocovrcrriinrnniniinnri e 23

8.9.2 Program EXECULIONceververeermrersescsiesiensesiesissessissesesassesseseessessssesessesssssssnmnrsesas 24

8.9.3 Effect Of OPHMUZAtION ..ecvvvreereieeeereeiirn ettt eseesaes s sseesnes 24

9.0 OTHER CONSIDERATIONS.......oociinininiitiiinininiinieie e sises s semsassasssesseensens 25
9.1 Design of Benchmarkscccocviviricnnminiininicies 25

0.2 OpPHIMEZALON....ecciiiiiiiireiiiii e sae st e s e e s sanassnscavasensen 26

10.0 SUMMARY OF RESULTS.....cooiiiiiiimninininiiniiimentitoniniiniemesssnessnssene 28
10.1 Ada Version Implementation of the Symbolic Set ... 28

10.2 Lisp Version Implementation of the NUmeric Setcoouvenmnvveniiienicenninnnnccnenen 29

S L35 1101 OO O TP OO PP UIPTOUPPOIPPPN SRR 30

iv

1.0 SUMMARY

The suite of programs that formed the benchmark for a proposed advanced computer is described
and analyzed. The features of the processor and its operating system that are tested by the benchmark
are discussed. The computer codes and the supporting data for the analysis are given as appendices.

2.0 INTRODUCTION

This benchmark program suite, chosen to test the Symbolic VHSIC (Very High-Speed Integrated
Circuit) Multiprocessor System, provides a measure of the symbolic and numeric computational
capabilities of a system, especially in the absence of actual applications. This benchmark suite was
chosen to test system behavior resulting from a combination of language implementation, operating
system, and system hardware. It does not test the raw speed of the hardware nor any particular
component of the system. Note that the benchmark programs actually presented were tested on
uniprocessor systems and may not be strictly appropriate for efficient parallel processing.

The individual programs of the suite and their performance on various systems are discussed.
The tested hardware systems are Symbolics 3675, Vax 8800, Compaq 386, MIPS, Sun-4 and
IIM45000. Program descriptions and performance analyses are given, and the static and dynamic
counts of the functional level are discussed. Timing results obtained from each system are analyzed
to determine the effects of machine architecture and optimization levels on the behavior of the pro-
grams. The timing results are not intended as criteria for measuring the relative merits of the
hardware systems used. Conclusions regarding the selection of programs appropriate to test a given
system are given. Also, methods to incorporate an application into a benchmark program suite are
discussed.

The benchmark program suite consists of a Symbolic Set (ref. 1), using specifically Boyer,
Browse, traverse, and Triangle; a Numeric Set, consisting of Whetstone, Linpack, Cfft2dm, and
Cholskym; AutoclassIl; NASA/JSC Ada programs (ref. 6); and the University of Michigan Ada pro-
grams (ref. 7). Except for the last two programs, all programs are implemented in both Lisp and Ada.
Descriptions of these programs are provided in section 2. The Common Lisp version of the programs
are generic, in that they do not include specific type declarations or optimizations. The programs are
run in each hardware system’s default (commercially available) execution environment (to study the
program behavior) as opposed to any specially provided custom or optimized environment. The
benchmark suite and associated programs can be obtained from the second author.

The authors would like to thank the following team members for their contributions to this effort:
Gloria J. Davis, James Gibson, Yuan-kwie Liu, Pushpa Majumdar, Ellen Ochoa, and Nancy Sliwa.
The Ada version of AutoclassII has been developed by Gloria J. Davis, and the Ada version of the
numeric set has been developed by James Gibson. We extend our thanks to Rodney Swab and
Charles Fry for reviewing and providing expert opinion and comments.

3.0 MACHINE DESCRIPTIONS

Descriptions are given to provide understanding of the machines, not for relative comparisons.
In generic Lisp machines, a certain number of bits in the address (format shown in table 3.1) are
reserved to represent data types. These bits are called tags and the machines are classified as tagged

architecture machines. Non-tagged architecture machines are called stock hardware machines.

Table 3.1. Tagged format

data-type] hobiect—reference
<-tag-> <---object-—->

3.1 The Symbolics 3675

The Symbolics 3675 is a 36-bit tagged architecture Lisp machine running Symbolics Common
Lisp, herein referred to as S C-lisp, which is Common Lisp with some extensions. It uses a mi-
crocoded 36-bit TTL processor with a clock time of about 200 ns. The tagged format has three fields:
compact Lisp code, data type, and object reference. An object reference is defined as a conceptual
object, which is used to reference a Lisp object.

Table 3.2. The Symbolics tagged format

compact-Lisp code l data-type object-reference
< tag > <---object--->

A compact Lisp code technique called CDR coding—a type of tagged, compact list
representation—is used for internal list representations. This technique reduces the memory
requirement for list construction by as much as half. Therefore, any non-tagged architecture requires
as much as twice the memory as a tagged architecture for list computation.

The data-type bits contain information about the type of the object. Type checking is supported
by the hardware and performed in parallel with the instruction execution.

The machine has a demand-paged word-addressable virtual memory, which makes its main
memory a large cache. Random access takes three machine cycles, and sequential access takes one
machine cycle. The compiler can specify sequential access, where appropriate, to speed up memory
access. Array referencing takes only a single instruction. Normally, one-dimensional array access
takes approximately ten machine cycles, and multidimensional array access takes three more cycles
per dimension. Array bounds are checked on every access.

A single-precision, floating-point number is represented as an immediate datum in a single-
machine word with type information in the tag field. If both operands of an arithmetic operator are

single-precision and the floating-point accelerator is installed, results are computed in a couple
of cycles.

The architecture uses stacks to get operands, to stash results, to pass arguments to functions,
to return values, and to make local data references. Stack management tasks are handled by
processor hardware. There are no general purpose registers at the macro instruction level. High-
speed stack groups provide efficient execution of function calls and recursion. The stack access time
is one cycle.

3.2 DEC 8800

The DEC 8800 is a 32-bit stock hardware machine. It consists of the console subsystem, a
primary CPU, a memory subsystem with one to eight memory arrays, a power system, and one to
two VAX bus interconnect adapters. The system is interconnected through a synchronous backplane
bus called the VAX 8700/8800 memory interconnect. This provides the system with a communica-
tion path between the CPU’s, memory, and the adapters attached to the VAX bus interconnects. It
runs Lucid Common Lisp, Allegro Common Lisp, and Telesoft Ada under the VMS operating
system. The architecture supports a stack that occupies one half of the memory address space. Lisp,
which needs both a large stack and a large address space, uses this stack.

3.3 Compagq 386/20e

The Compaq 386 is a personal computer built around the Intel 386 processor. The
Compaq 386/20e contains a 20 MHz Intel 386 processor, a 20 MHz Intel 80387 Floating-Point
coprocessor, and a 20 MHz Intel 82385 Cache Memory Controller with a 32-kilobyte cache of
high-speed static memory. The total system memory is 8 megabytes of dynamic RAM using a
proprietary 32-bit bus. Mass storage is a 110-megabyte hard disk drive with average access time of
less than 25-milliseconds. It runs Lucid Common Lisp and Alsys and DDCI Ada under the Unix
operating system.

3.4 SUN-4

The Sun-4 is a SPARC (Scalable Processor ARChitecture) (ref. 4) machine. It has an Integer
Unit (TU), an optional SPARC Floating-Point Unit (FPU), a memory management unit (MMU), an
optional virtually addressed cache, an optional VME bus interface and several control registers
(ref. 4). Computations are register intensive, and memory access is through load and store instruc-
tions, via the cache. Computational instructions obtain their data from registers and immediate fields
in instructions and put their results in registers.

The SPARC architecture defines a set of 32-bit instructions, a set of registers, how the registers
work, and how traps and interrupts are handled. The instruction categories are memory reference,
multiprocessor, arithmetic/logic, tagged, special, and control transfer (ref. 13). Tagged instructions
provide support for languages that can benefit from operand tags. Tags are used to classify data and

pointers differently and to perform legal operations on the data and pointers. They assume 30-bit,
left-justified signed integers and use the least significant two bits of a word as tag.

The Sun-4 workstation that used to run these programs has the Fujitsu implementation of the
SPARC design. It runs Allegro Common Lisp under the Unix operating system. The tag field in the
instruction format contains information about the data-type and fixed-point numbers, which are both
immediate data and machine format integers. When a floating-point instruction is decoded by the
integer chip, it signals the floating-point coprocessor to start execution immediately. Integer and
floating-point operations without dependencies execute concurrently. This increases the execution
speed, but time is spent to dispatch to the floating-point coprocessor. SPARC uses a 32-bit byte-
addressing format. The chip uses two major buses for accessing the cache: a 32-bit address-bus and a
32-bit bi-directional data bus for performance improvement.

3.5 IIM45000

The Integrated Inference Machine is a generic 40-bit (32 bits of data, 8 bits of tag) tagged-
architecture Lisp machine running Integrated Inference Machine Common Lisp with extensions
under DOS operating system. It has 40 megabytes of memory and is referred to as IIM.

3.6 MIPS M/2000

MIPS M/2000 (Microprocessor without Interlocking Pipeline Stages), referred to as MIPS, is a
32-bit RISC (ref. 12) computer system. It is a multiuser system which runs IBUKI Common Lisp
and Verdix Ada under the Unix operating system. It uses a 25 MHz clock R3000 processor based on
the MIPS RISC architecture. The execution environment of the R3000 is provided by the R3200
CPU board which allows the processor to operate at maximum efficiency.

The major functional components of the R3200 CPU are:

1. Full-custom R3000 CMOS VLSI processor.

2. Optional full-custom R3010 CMOS VLSI floating-point accelerator (FPA) coprocessor.

3. 64-K instruction cache and 64-K data cache.

4. A master-only interface to the system bus (VMEbus). The CPU is also a system controller and
an interrupt handler.

5. A high-speed private memory interface to ECC (Error Correction Circuitry) protected
memory.

The R3000 RISC (Reduced Instruction Set Computer) processor uses 32-bit data, address, and
instructions. The processor contains 32 general purpose registers, which are 32 bits wide. The
processor also contains an instruction set and interface support for three external coprocessors, each
with up to 32 registers. Two other functional areas on the R3000 processor are a cache control unit
and a fully associative 64-entry Translation Lookaside Buffer (TLB) for fast access to a 4-gigabyte
virtual address space.

The large instruction and data caches reduce memory bandwidth requirements, while increasing
processor performance. The R3200 CPU board provides two high-speed, direct-mapped caches: a
64-K instruction cache and a 64-K data cache. The caches collectively provide an aggregate
maximum instruction/data bandwidth of 200 megabyte per second over the CPU cache bus. The
cache RAMs have 20 ns access times. Both caches provide parity checking on tags and data. The
CPU board provides a separate, dedicated, high-speed bus (called the Private Memory Bus), for an
unobstructed access to the main memory.

4,0 EXECUTION ENVIRONMENT CONSIDERATIONS

Elements of a program’s execution environment influences its runtime efficiency. Specific influ-
ential factors include the file system (i.e., file access such as read and print, and the operating system
interface), the compiler, and automatic storage reclamation, also known as garbage collection.
Another factor is the ability of the compiler to optimize execution speed.

4.1 Programming Languages

This section describes the implementation features of Lisp necessary to understand the
benchmark programs.

4.1.1 Lisp implementation- Since the data type (ref. 2) of an object can be changed during
runtime, Lisp supports runtime type checking. This increases computational complexity. Type
information can be encoded in the pointer to the object or in the object itself.

The two types of object reference are immediate and pointer. An immediate object contains the
object within its object-reference field. Examples of these are fixnums, single-float, and characters.
A pointer object reference contains an address in its object-reference field. Some Lisp objects that
require pointers are bignums, arrays, lists, hash tables, and structures. Roughly speaking, immediate
object references are used for small objects, whereas pointer objects are used for large objects.

When the type is encoded in the pointer, and if there are not enough bits to describe the subtype
of an object in the pointer, the main data types such as atoms and cons’s are encoded in the pointer
and the subtype is encoded in the object. A cons is the object that points to the head and tail of a list.
Sometimes the pointer itself represents a type. In such cases, memory is partitioned into segments
and each contains a data type. A single data type can span several segments. This technique is called
the BiBOP (Big Bag Of Pages) scheme.

A quoted object evaluates to itself and is considered to be of type “constant.” Some systems
represent these constants as immediate data when the value can be determined at compile time,
others put constants in a read-only area, and pointers to them are computed at load time. Immediate

The function eq simply compares two pointers. Two objects are eq if they address the same
memory location. The function equal uses eq to compare symbols.

In some implementations, arrays contain only pointers to actual values stored in the array. Thus,
actual value references are indirect. Accessing an array element uses several index instructions, and
array indices are recalculated on every access and store operation. In the absence of tagged hard-
ware, type checking is done through software, and computing array indices takes a considerable
amount of time during execution.

Arithmetic in Lisp is handled by passing pointers to machine format numbers, rather than by
passing machine format numbers directly. Converting to and from pointer representation is called
boxing and unboxing, respectively. Referencing a number using a pointer is called number
CONSing. This representation, which is required to make numbers into Lisp objects, causes slow
execution. The speed of arithmetic in Lisp also depends on boxing and unboxing techniques and the
ability of the compiler to minimize these operations. Some ways of achieving speed are:

A. Represent all single-precision, fixed-point numbers (consisting of 31 bits of data) as imme-
diate machine format integers and perform range checks after arithmetic operations.

B. Allocate numbers in the machine format on two stacks: one, for fixed-point numbers, called
FXPDL (Fixed-point Push Down List); the other, for floating-point numbers, called FLPDL
(Floating-point Push Down Lisp). Arithmetic operations can use these stacks as temporary storage,
eliminating unnecessary number CONSing.

C. Pre-allocate a range of normally used fixed-point numbers on a stack, thereby reducing the
number CONSing procedure into a simple addition of adding the base index of this stack table to the
original number. Pre-CONSing of a certain range of small integers, called the small-number scheme,
reduces boxing of numbers in this range to adding the number to the base address of the table.

On microcoded machines, runtime type checking is done almost in parallel by the hardware. On
stock hardware implementations, code must be emitted to perform type checking. Therefore, on
stock hardware implementations of Lisp, type-specific arithmetic operations contribute to the speed
of arithmetic operations. For this purpose, some Lisp implementations have arithmetic functions that
operate directly on type-specific data. Unboxing all relevant numbers and performing as many
computations in machine representation format as possible is also advantageous. This is called open-
compiling or open-coding.

4.1.2 Ada- Ada is a programming language designed by the United States Department of
Defense. It has considerable expressive power for a wide application domain. The language is a
modern modular algorithmic language with the usual control structures, along with the additional
capability to define types and sub-programs. In addition, it has features for real-time programming
and exception handling. Both application-level and machine-level input-output are defined. Thus,
systems programming, which requires precise control over the representation of data and access to
system-dependent properties, is also possible in Ada.

Lisp programs can be translated into Ada rather directly. A list in Lisp is represented as a linked
list of records in Ada. The linked list is created using the new allocator. The property list that every
Lisp symbol carries is represented as a record component in Ada. This increases the complexity of
manipulating objects pointed to by the components of records. For floating-point and complex
arithmetic computations, an Ada basic mathematical function library has been developed (ref. 11).
The numeric benchmark programs—Whetstone, Linpack, Cfft2dm, Cholskym—and AutoclassII
require this library.

4.2 Compiler

Clearly, the compiler is a very important factor in determining the runtime behavior of a pro-
gram. However, since we had to accept the compilers available on the various machines, we can say
very little of importance about this. Interpretation of the effects of different compiler implementa-
tions are spread throughout section 8.

4.3 Garbage Collection

The fundamental data manipulated by Lisp are object references called pointers. The object
reference contains the address of the object (ref. 2) in memory. It is used to collect objects that are no
longer useful and to free the memory used by them. On tagged architecture machines (section 2.6.1),
tag bits indicate if a memory word is an object reference or data. On stock hardware, the tagged word
format is emulated through software. This requires decoding an object reference into tag and true
address, creating some overhead (ref. 14). Some overhead is also incurred in encoding these object
references.

The runtime effect of garbage collection (gc) depends on the memory size. On stock hardware
machines, Lisp normally starts with a default memory size that is expanded dynamically to a prede-
fined limit. The default setting usually can be altered, by memory management strategies provided
by the Lisp systems. The effect of gc on an individual benchmark is discussed in the section
dedicated to that benchmark (section 3).

5.0 COMPARISON OF LISP LANGUAGE IMPLEMENTATIONS

5.1 IBUKI Common Lisp

IBUKI Common Lisp is based on a kernel written in the C language. The high-level Common
Lisp functions and the IBUKI Common Lisp compiler are written in Common Lisp, using the primi-
tives in the kernel. Some amount of machine-dependent, assembly language code is present in some
IBUKI implementations for improved performance. These routines include parts of bignum multipli-
cation and division, and bit-table manipulation used by the gc. The IBUKI Common Lisp system
includes an optimizing Common Lisp compiler.

The IBUKI Common Lisp compiler has three phases. The first phase generates a c-file that
contains the C code for the Lisp source code, an h-file that contains declarations used by the c-file,
and a data-file that contains Lisp constants. The second phase invokes the native C compiler to
produce a code file from the c-file. Finally, the data-file is appended to the code file to obtain an
object file, which can be loaded. Hardware dependent optimizations, such as register allocations and
peephole optimizations, are left to the C compiler.

IBUKI Common Lisp does not support immediate data. Every object is represented as a cell in
the heap area. Each cell consists of several 32-bit words. The first word is common to all data types.
Half the word is the type indicator and the other half is used as a mark bit for the gc. A CONS cell
consists of three words, and a fixnum cell consists of two words. Array headers and compiled func-
tion headers are represented as fixnum cells. Array elements and compiled code are placed elsewhere
in the memory. Array elements are represented in one of six ways, depending on the type of the
array. General array elements are cell pointers: 32-bit integers for fixnums; 32-bit floating-point
numbers for short-floats; 64-bits for long-floats; 1-bit for bit and bit-vector; and, 8-bit code for
strings.

Stacks are used for function calls, arguments, and value passing. A C language Control Stack
called C stack is used for type-specified operations to improve performance. The C stack can be
accessed more efficiently than other stacks, such as the value stack, which is the “main stack” of
IBUKI Common Lisp. On the C stack, arguments and values passed, values of lexical variables
allocated, and temporary values saved may be represented as immediate data, sometimes referred to
as raw data, instead of as pointers to heap allocated cells. Some of the built-in Common Lisp arith-
metic functions, such as +, -, 1+, 1-, *, floor, mod, /, and expt can operate on raw data. This
improves the performance of arithmetic computations.

Certain Lisp objects, such as fixnums and characters, may be represented by their value. Cells of
small fixnums and cells of characters are pre-allocated in fixed locations. Symbol print names and
string bodies are usually allocated in relocatable pages (explained below) and moved to the heap
when an object file is created. The size of the cell is determined by the implementation type of the
object. For objects of some of the implementation types, such as array, the cell is simply a header of
the object. The body is allocated separately from the cell and is managed differently. Memory space
occupied by the body of such an object is called a block.

Memory space is divided into two parts that occupy contiguous space in the memory: the heap
area and the relocatable area. The heap is divided into pages, where each page holds cells of the
same type (BiBOP technique). Cells allocated in the heap are not gc. Blocks allocated in the heap are
called contiguous blocks. Thus each page in the heap is either a page for cells of a specific type, or a
contiguous block. Blocks allocated in the relocatable area are called relocatable blocks.

5.2 Lucid Common Lisp

The Lucid Common Lisp design for a general-purpose processor is based on emulation of fea-
tures of special-purpose Lisp processors. Some of interest are a tagged pointer encoding scheme, a
function-to-function calling protocol permitting dynamic redefinition, and packing of frequently

€

@

used data, in particular CDR-coding—a kind of tagged, compact list representation. A general-
purpose processor often has the following machine features: RISC-like (ref. 12) instruction sets,
numerous general-purpose registers usable for address indexing, byte-aligned addressing on a
memory bus of at least 32 bits, a large address space, and a large real memory available for Lisp
process’s working set (greater than 4 megabytes). Lucid has additional constraints, in that the
compiled code is made read-only and position-independent, and virtually all of the Lisp system
should be written in Lisp itself.

This compiled code read-only constraint is imposed to gain maximal sharing of memory
segments in a time-shared system. It also improves paging performance, and it provides a clear
separation of the memory segments that the gc must scan. Another positive consequence of this
constraint is the clear separation of a compiled function into a sequence of executable machine
instructions and a sequence of linkage cells to data and other environment. That the Lisp system is
written in Lisp ensures that porting this system to a new hardware architecture is reduced to only
porting machine and operating system specifics of the Lisp system.

Because Lisp depends on runtime typing, data encoding is an important issue. Lucid Common
Lisp uses a tagged-pointer scheme for data encoding to address very large virtual memories, accel-
erate some of the small integer arithmetic, and list pointer chasing operations. Thus every address
that is a pointer is divided into two parts, a tag and a true address. The tag bits specify whether the
true address part is an immediate datum, or a virtual memory address. Some small integers, charac-
ters, and internal state markers for gc are encoded this way because the information contained in a
single datum is less than the number of bits allocated in the pointer for the address part. A pointer is
four bytes, while a CONS cell requires eight bytes. CONS cells are the smallest objects allocated.
Thus, at least seven out of every eight byte-level addresses are unused, freeing three address bits to
represent primary tags.

Two of the eight possible primary tags are used to represent immediate even and odd fixnums.
These fixnums are 30 bits long. The lower order bit of the numeric value coincides with the higher
order bit of the 3-bit tag. This alignment enables a level of performance for many Lisp programs
equal to that of conventional languages.

An array contains one word of header information, some sub-type information and an element
length count. The header information is useful for runtime typing and permits the gc to scan memory
segments linearly, parsing them into various Lisp data types.

If the arguments to primitive Lisp functions are located in general-purpose registers, then the
component selection of a compound object such as a CONS cell, and simple fixnum arithmetic
operations are accomplished, in one or at most two reduced instruction set-like instruction cycles. A
FLPDL (section 2.3.1) is used for floating-point operations. Similar simple sequence of instructions
accomplish element selection for objects with indexable entries like vectors and strings. The two
most common type tests performed in code selection are CONSP and FIXNUMP. These types are
among the primary tags. The operations on these data are highly optimized.

In Lisp, function definitions and some globally defined data can be changed during runtime. This
gives Lisp its dynamic modularity. A symbol’s (ref. 2) function value cell contains its current

function definition. The mapping from the symbolic name of a function to the start address of its
code is always available and every function call to the symbol has to go indirectly through this cell.
Some recursive function calls are optimized. Such recursive function calls jump directly to the start
of the compiled code rather than through the symbol’s function value cell.

A CDR-coding technique that uses two bits facilitates compact storage of linked cells. In this
method, the four combinations are used to designate normal, next, and nil. Memory consumption for
list construction is reduced by at least half using this technique.

5.3 Allegro Common Lisp

Typing is done via the BiBOP scheme with 512-byte pages. Pointers of different types are allo-
cated to different pages. There may be many pages for each type. All numbers are boxed. CONS
cells are eight bytes. Because CDRs are more frequently referred than CARs, the CDR is stored first,
which permits a CDR operation to be done with less indirect addressing.

6.0 DESCRIPTION OF THE BENCHMARK SUITE

6.1 The Numerical Benchmarks

6.1.1 Whetstone— This synthetic program is designed to measure the performance of a system
executing a scientific program. The mix of operations are integer arithmetic, floating-point
arithmetic, array referencing, branching statements, function and subroutine calls, and standard
mathematical functions. The main program encompasses a set of eleven modules, each with its own
iteration count number to control the number of times it is executed. The counters can be varied to
produce different mixes of instructions. The Ada version used in this study was published in
Ada Letters (ref. 5).

6.1.2 Linpack- The Linpack benchmark solves an N x N system of linear equations by
Gaussian elimination with partial pivoting. The matrix consists of random numbers in the interval
(0,1), and the right-hand side is chosen to make the vector [1, 1,...1, 117 the solution. The program
has three phases: initialization of the matrix and the right-hand side vector, copying the matrix to the
appropriate working space, and multiple decomposition-solution phase for two differently sized
matrices. The original program, written in Fortran, was obtained from the NAS project at NASA
Ames and translated into Common Lisp and Ada (ref. 8).

This program measures the performance of a system executing regular access to memory in nu-
meric computation, which includes integer and some floating-point arithmetic. The problem size is

N = 100, and the arrays are 200 x 200 and 201 X 200.
6.1.3 Cfft2dm— Cfft2dm is a two-dimensional Fast (Discrete) Fourier Transform. This is a

typical intermediate step in solving an elliptical partial differential equation on a rectangular grid.
The program initializes the array to be transformed with single-precision and complex floating-point

10

numbers. The array is transformed in place, and then inverse transformed in place again. In theory,
the final result is the initial array. The original program was obtained from the NAS project at NASA
Ames (ref. 8) and the Fortran code was translated into Common Lisp and Ada.

This program measures the performance of a system executing single-precision and complex
single-precision, floating-point numbers and matrix computations.

6.1.4 Cholskym- Cholskym is typical of the kernel calculations of Computational Fluid
Dynamics codes in the aerospace industry. It is the solution of a large number of independent sets of
linear equations with banded and symmetric matrices and multiple right-hand sides. Only the upper
band is stored (by diagonals). As it is implemented, it favors machines with vector pipes running
Fortran.

The program consists of an initialization phase, which assigns elements of the matrices and the
right-hand sides from uniformly distributed random numbers in (0, 1). Then, a loop is executed that
copies the matrices to working storage and that solves the systems of equations. The program prints
an error value and the number of floating-point operations that are used to confirm proper execution
of the program (ref. 8).

This program measures the performance of a system executing single-precision and floating-
point arithmetic operations, in which the precision of the floating-point representation matters
immensely.

6.2 The Symbolic Benchmarks

6.2.1 Boyer- The Boyer benchmark is a theorem-proving program. It tries to prove that a
particular logical statement is a tautology (true by virtue of its logical form alone). The first part of
the program, Boyer-setup, uses a list of axioms to set up property lists of symbols. The second part
of the program, Boyer-test, rewrites the logical statement into a canonical form, which is a nested
“[F” statement, using the property list of each symbol. The axioms are used as production rules. To
prove that the logical statement is a tautology, a simple tautology checker is invoked.

Boyer performs a large number of list-structure manipulations, a moderate number of function
calls, and the property list operation GET. A property list is implemented as a memory cell, contain-
ing a list with an even number of elements. Hence, the above operations measure the performance of
list implementation.

6.2.2 Browse— The Browse benchmark is designed to perform a mixture of operations in
proportions very similar to those in real expert systems. The basic operation is to search a data base
of objects, identifying all those objects that satisfy some predicate. The data base of objects is imple-
mented as property lists. The objects contain patterns called “descriptors.” The predicate is that a set
of search patterns matches the descriptors. A simple pattern matcher is defined to this end. Exhaus-
tive matching is done by matching all search patterns against all descriptors, regardless of the results
of any individual matches.

11

There are many list-structure-manipulating operations to test the performance of list implementa-
tion in Lisp. A random number generator, which performs operations similar to many done in com-
pilers, Al systems, and other large systems, is defined. The object type used in computation is
“character.” Therefore, type checking reduces to tag extraction and pointer comparison in parallel, or
address comparison in the BiBOP scheme. The primary computations that Browse performs are
accessing property lists and their elements, comparing characters and CONSing symbols. Accessing
property lists is address computation and character comparison. CONSing, which requires memory
allocation, is used in this program. This triggers gc. Browse is a strictly sequential search program,
designed with tail recursion, which may be collapsed by compilers into iteration for fast execution.

6.2.3 Traverse- The Traverse benchmark is designed to measure the performance to be
expected from the defstruct facility. This allows the user to create and use aggregate data types with
named elements. To do the measurements, a directed graph of nodes is built and traversed. Each
node is a defstruct with ten slots (components): a backpointer to parents, pointers to sons, a serial
number of the nodes, a mark field, and six other slots to hold any information needed. The program
is structured into two sections: initialization and Traverse.

This program is an example of what might be termed as “pointer chasing.” Several levels of
indirection are involved in accessing the value of an object embedded in a defstruct construct that
represents structures. The initialization, which creates structures, requires memory allocation.
Random linkage of these structures is done by rearranging pointers. Object access in a random
distribution of pointers is disorderly. A compiler can rebuild the list and make the random distribu-
tion straightforward again.

6.2.4 Triangle- The general purpose of this program is an exhaustive search represented as a
tree of possible moves, where each node of the tree signifies a decision about the next move. The
possible moves can be represented as if then rules, which allow the program to be implemented in
rule-based shells and toolkits. Because the moves are implemented as elements of one-dimensional
arrays, the Triangle benchmark mainly tests one-dimensional array references. This benchmark has
been developed as a differentiator between one-dimensional and two-dimensional array references.
The performance of one-dimensional array references are measured.

The main operations this program performs are as follows: access the first array location speci-
fied by an index and get the value (this value is the index of the second array); get the value at this
index; check if this value equals to 1 or 0. On large systems, this program does not trigger gc and a
dynamic memory allocation is not required.

6.3 AutoclassII

Autoclassll is a classification program that uses Bayesian least squares estimation theory to
determine data classes. Its general principles are given in reference 9.

This is a real application program that uses data from the spectra of stars. This particular data
base is set up to execute floating-point operations. It provides a measure of array referencing and
floating-point arithmetic operations in real applications.

12

6.4 JSC Real-Time Ada Programs

The JSC Real-Time Ada programs are designed to measure the execution time for those features
of the Ada language important for the implementation of real-time programs. The features measured
are tasking, exceptions, and branching statements (if and case). The programs measure the amount of
time to execute individual language statements, or groups of statements under various conditions.
This approach is called microscopic benchmarking or feature measurement.

The programs use the dual-loop method for measuring a language feature. The feature to be mea-
sured is placed inside a Ioop, known as the test loop, and executed many times. The total execution
time of the test loop is measured by reading the real-time clock immediately before and after the
loop. To account for the loop overhead, a control loop that is identical to the test loop, except for the
feature to be measured, is timed for the same number of repetitions as the test loop. The time for the
feature is then calculated by subtracting the control loop time from the test loop time and dividing
this number by the number of repetitions. The loops must be designed carefully, so that the only
difference between the control and test loops is the feature to be measured. Also, care must be taken

to ensure that an optimizing compiler does not modify either loop, thereby distorting the comparison.

To ensure proper measurement of the language features, the order in which the program units are
compiled is important. To defeat possible loop optimization, which would introduce errors into the
measured timings, the benchmarking_global_support package body, which contains a set of proce-
dures named similarly to stable_call_to_a_remote_procedure, must be compiled last. One or more of
these procedures is always called as a part of the control and test loops. If the bodies of these proce-
dures are compiled last, an optimizing compiler will be unable to place the executable code inline
within the loop and will distort the basis for feature measurement. The features of the language that
are measured by the program fall into several categories. Several different tests are performed in

each of the following categories:

Time to read the real-time clock.

Time to create, activate, and terminate a task.
Time to perform a rendezvous.

Time to raise and handle an exception.

Time to execute a branch instruction.

“nRWN =

The program was obtained from the Johnson Space Center’s Avionics Division. A few changes
were made in the program as received from Johnson Space Center (ref. 6). The macroscopic tests
were eliminated, and only the microscopic tests were used in the SVMS version.

6.5 University of Michigan Real-Time Ada Programs

The purpose of the University of Michigan (UM) Real-Time Ada programs is to measure the
execution time for elements of the Ada language. These features include procedure calls, allocation
of memory and variables, rendezvous, tasking, delays, exceptions, and time calculations. Each pro-
gram measures the performance of one distinct language feature under various conditions. Several
techniques are used to minimize interference from external or operating system functions and to

13

defeat compiler optimization that would affect the measured results. The original set of benchmarks
consisted of about 325 separate tests. Because many of these overlap with the JSC Real-Time Ada
programs, a small subset consisting of 18 tests was selected.

The features of the language that are measured by the programs fall into several categories
(ref. 7). A variety of different tests are performed in the categories shown below:

1. Clock function analysis.

2. Procedure calls.

3. Dynamic variable allocation.
4. Time arithmetic.

7.0 DESCRIPTION OF THE EVALUATION PROCESS

Each of the benchmark programs were compiled on each machine using the default settings of
the compiler present. The programs were then executed and timed. For the Lisp programs, the
compiled code was executed from a clean environment; that is, from a newly started Lisp environ-
ment to avoid any side effects from earlier activity in the environment. A sub-study was to investi-
gate the effects of optimization and increased memory allocation on the runtime of the Lisp numeric
benchmarks on stock hardware using the Lucid Lisp compiler on the DEC 8800. This compiler does
respect type declarations.

Additionally, a profiler program was written in Lisp to profile the Lisp programs. A profiler is a
program that provides a trace of another program’s execution pattern. It reads a program, tabulates
the static count of the functions used, and writes a profiled program with statements inserted at
appropriate places to monitor program execution. The profiled program can then be compiled and
executed to obtain dynamic counts of the execution pattern and operation types actually executed.
Static and dynamic counts are useful for applying optimization techniques. The profiler developed
for the results presented in this report was designed to monitor user defined functions and the two
commonly used loop controls, the cond and if special forms.

8.0 EVALUATION RESULTS AND ANALYSIS

8.1 Whetstone

8.1.1 Profiler analysis— The profiler dynamic count reveals that the major computations are
array referencing and floating-point operations. There are approximately a half million array refer-
ences, one million floating-point operations, and a quarter-million integer operations. The main
module spends time in integer computation and subroutine calls (150,000). Two subroutines do array
referencing and floating-point operations, and a third performs only floating-point operations.

14

In Lisp, array referencing is accomplished by pointers to the actual value. Index bound checking
and recalculation, and access to floating point numbers, are very time consuming. The type
declarations and inline coding of functions speed up execution.

8.1.2 Program execution— Timing results are shown in table 8.1. The primary effects on behav-
ior are number representation, type checking, array referencing, and the function calling scheme
(ref. 1) (section 2.3); a secondary factor is gc because floating-point operations create intermediate
objects and thus garbage. A large memory reduces gc. A floating-point coprocessor also improves
performance.

Representation of numbers as immediate data eliminates boxing and unboxing thereby reducing
the number of instructions to execute numeric operations. Data type checking using the tagged
instruction format requires fewer instructions when type checking is done by hardware in parallel
than are required when type checking is emulated through software. Indirect array referencing and
array bounds checking on every access takes several instructions. Program execution is accelerated
on systems where only one instruction is required for array accessing.

Table 8.1. Timings (in seconds) of the Lisp version of Whetstone

Machine Symbolics | MIPS R2000 Compaq M SUN4 DEC8800

name 386/20e

Language S C-Lisp IBUKI C-Lisp | Lucid C-Lisp | C-Lisp | Allegro C-Lisp | Allegro C-Lisp | Lucid C-Lisp

Whetstone | e 17.54 72.00 78.87 3055 71.00 35.83
r 17.29 34.00 70.01 14.80 30.48 71.00 34.84

¢ = elapsed real time in seconds. r = machine run time (cpu) in seconds.

Execution of the Ada version of Whetstone is summarized in table 8.2. The significant
contributing factors are the Ada compiler and the processor.

The Verdix Ada compiler was able to produce code that can run efficiently on the MIPS. The
behavior on the DEC 8800 is comparable with MIPS. Ada on the Symbolics did not produce
efficient code. It is difficult to quantify the code generated by Alsys and DDCI compilers on
Compaq 386. A better way to understand their behavior would be to use these compilers on other
systems to study the execution. The 1386 processor and 1387 floating-point coprocessor on the
Compagq 386 have a considerable effect. Using a structured language like Ada, a program with a mix
of scientific operations can execute well on stock hardware. The Symbolics Ada compiler does not
produce efficient code so that the relative performance is not really comparable.

Table 8.2. Timings (in seconds) of the Ada versions of Whetstone

Machine name Symbolics MIPS R2000 Compagq 386/20e DEC 8800
Language Symbolics Ada Verdix Ada Alsys Ada DDCI Ada Telesoft Ada
Whetstone 53.60 2.67 14.28 19.4 3.90

15

8.2 Linpack

8.2.1 Profiler analysis— This program executes three and a half million array referencing opera-
tions. Three million operations are in one iteration block; the remainder are distributed throughout
the program.

8.2.2 Program execution— The timing results for the linpack’s execution are shown in table 8.3.
The factors that influence the execution are integer computation and array operations that require
Memory access.

-

This benchmark shows that Lisp programs that perform array referencing and floating-point v
operations execute differently on stock hardware and on Lisp machines, because of indirect array
referencing and boxing and unboxing of numbers. Executing this program provides a measure of
these factors of a system.

Table 8.3. Timings (in seconds) of the Lisp version of Linpack

Machine Symbolics | MIPS R2000 Compag 4151 SUN4 DEC8800

name 386/20e

Language S C-Lisp |IBUKIC-Lisp |LUCID C-Lisp |C-Lisp |Allegro C-Lisp | AllegroC-Lisp {LUCID C-Lisp

Linpack |e 138.07 460.00 827.30 398.5 549.00 657.26
130.00 448.52 809.12] 80.00 384.2 549.00 657.70

e = elapsed real time in seconds. r = machine run time (cpu) in seconds.

The execution of the Ada version of the program depends on the compiler and the processor
(table 8.4). The Verdix Ada running on the MIPS executes this mix of operations effectively. The
Symbolics Ada compiler is not very effective. The strong typing in Ada language contributes to
efficient execution of array referencing operations on stock hardware machines.

Compaq 386/20e DEC 8800

Machine Name Symbohcs MIPS R2000
Language Symbolics Ada | Verdix Ada Alsys Ada DDCl Ada | Telesoft Ada
Program linpack 299.6 29.0 71.5 80.0 50.0

Table 8.5. Timings (in seconds) of the Lisp version of meack
with optimization’ ..~

Optimization Machine Elapsed CPU time | GC time Speed up

o Time .
Generic__ DEC &800 657.0 657 170 1.0 ~
With declarations Lucid 157.0 157 47 4.2
With declarations Common 81.0 81 0.0 8.0}
and memory expansion Lisp

16

LR

8.3 Cfft2dm

8.3.1 Profiler analysis— The program spends considerable time in two tail-recursive functions,
which execute addition and subtraction of complex arithmetic operations. This conforms with the
program analysis. A function is tail-recursive if the value returned by the function is the value of the
recursive call within the function.

8.3.2 Program execution— In this program, the majority of computations require memory
allocation because temporary objects are created during computation. These temporary objects
immediately become garbage when the old value is no longer needed. A significant amount of time
is spent in gc to free memory. Therefore the behavior of the program is affected by the amount of
memory and the gc algorithm in a system.

Excluding gc time, the program executes similarly on all the systems (table 8.6). The results can
be explained from an analysis of the gc times. The IIM has a large memory and a very efficient gc
algorithm. The time spent for gc is 50 sec on the SUN-4, 593 sec on the DEC 8800 running Lucid
Common Lisp, and 69 sec running Allegro Common Lisp. On the Compaq 386, there were many
gcs. On the Symbolics, 57 seconds are spent doing page faults, page breaks, and other routines and
gc was not measured.

Including gc time, the program executes very differently (table 8.6). The behavior of Lisp

programs that require dynamic memory allocation while executing complex single-precision,
floating-point arithmetic depends on the size of the memory and the gc strategy.

This program can be used to obtain a combined measure of both gc and complex single-
precision, floating-point arithmetic computations of a system.

Table 8.6. Timings (in seconds) of the Lisp version of Cfft2dm

Machine Symbolics |MIPS R2000 | Compaq M SUN4 DEC8800

name 386/20e

Language S C-Lisp JIBUKI C-Lisp |Lucid C-Lisp | C-Lisp | Allegro C-Lisp | Allegro CLisp | Lucid C-Lisp

Cfft2dm |e 358.40 211.00 991.45 315.6 589.07 890.81
r 305.40 210.00 972.01 44.00 310.6 538.00 857.34

e = elapsed real time in seconds. r = machine run time (cpu) in seconds.

The behavior of the Ada version of this proérérﬁ is similar to that of the Whetstone and Linpack
Ada versions. The program performed well in Verdix Ada running on the MIPS and poorly in
Symbolics Ada (table 8.7).

17

Table 8.7. Timings (in seconds) of the Ada version of Cfft2dm

Machine Name Symbolics MIPS R2000 Compaq 386/20e DEC 8800
Language Symbolics Ada | Verdix Ada Alsys Ada DDCI Ada Telesoft Ada
Program 320.7 8.67 45.26 64.0 25.60
Cfft2dm

Table 3.8. Timings (in seconds) of the Lisp version of Cfft2dm with optimization.

Optimization Machine Elapsed Time CPU time GC time Speed up
Generic DEC 8800 614.3 264.0 592.8 1.0
With memory expansion Lucid 371.0 297.0 74.0 1.7
With declarations Common 276.0 205 71.0 22
and memory expansion Lisp

8.4 Cholskym

8.4.1 Profiler analysis— There are approximately ninety thousand random number computations
that mainly involve integer computation. In addition, there are two million array references and two
million floating-point additions, subtractions, and multiplications of array elements. Therefore, the
program spends most of its time doing array referencing and floating-point computation.

8.4.2 Program execution—- The factor that determines the execution of the initialization phase of
the program is the random number generator function used in the program. This is reflected in the
execution of the initialization phase of the program (table 8.9). The random number generator uses a
32-bit integer format. When run on some of the stock hardware, Lisp uses a 29-bit integer format.
Hence, these random numbers are bignums on these machines and their generation requires
CONSing. On machines with 32-bit integer format, these are fixnums or single-floats.

The major factors that affect the execution of the loop are number representation, type checking,
arithmetic, and array referencing operations. On stock hardware machines, different Lisp implemen-
tations behave similarly. The combined effect of these factors have similar impact on the execution.
On the Lisp machines such as the IIM and Symbolics, microcoded arithmetic operations (which take
more instructions than built-in arithmetic functions described in section 2.3.1) seem to offset the
favorable execution factors like array referencing.

The loop is a clean test of floating-point computation, so this program can be used as a good

measure of the floating-point performance of a system, because there is no user defined function
calling overhead.

18

Table 8.9. Timings (in seconds) of the Lisp version of Cholskym

Machine name Symbolics | MIPS R2000 Compaq [IM SUN4 DEC8800

386/20e
Language S C-Lisp | IBUKI C-Lisp | Lucid C-Lisp | C-Lisp | Allegro C-Lisp | AllegroCLisp | Lucid C-Lisp
Cholskym e 271.0 113.0 434.8 126.0 145.1 136.43
loop r 269.0 112.0 419.8] 1948 82.0 137.8 126.00
Cholskym e 118.0 70.0 152.5 2319 400.0 418.54
initialization T 99.0 70.0 150.8 30.0 212.1 412.0 389.44

¢ = elapsed real time in seconds. r = machine run time (cpu) in seconds.

For Ada, an optimizing compiler, strong typir‘xig_z_ﬁﬁa fast hardware configuration are the major
contributing factors of execution. Clearly, for floating-point computations, Lisp is inefficient com-
pared with Ada, and the difference in performance is enormous (table 8.10).

Table 8.10. Timings (in seconds) of the Ada version of Cholskym

Machine Name Symbolics MIPS R2000 Compagq 386/20e DEC 8800
Language Symbolics Ada | Verdix Ada Alsys Ada DDCI Ada Telesoft Ada
Program cholskym $50.0 56.75 d27.90 d32.0 s 12.20

5 25.05 s 26.0

d = double precision. s = single precision

Table 8.11. Timings (in seconds) of the Lisp version of Cholskym with optimization

Optimization Machine Elapsed Time CPU time | GCtime | Speed Up
Generic DEC 8800 634.0 459.5 102.6 1.0
With declarations Lucid 107.0 91.0 16.1 5.1
With declarations and memory expansion Common Lisp | 104.0 88.13 0.0 5.1
8.5 Boyer

8.5.1 Profiler analysis— The dynamic counts indicate that Boyer spends time executing recur-
sive function calls and CONSing symbols and lists. Lists in Lisp are recursive in nature. Dynamic

counts confirm the program’s main goal: to test the list implementation. These tail-recursive function

8.5.2 Program execution— This program executes similarly on the SUN-4, IIM, MIPS,
DEC 8800, and more slowly on the Compaq 386 and Symbolics (table 8.12).

The function equal is used to compare a symbol and a constant. Atoms and CONS are the only
types this program uses. This reduces type checking considerably in the BIBOP scheme. A large
amount of CONSing is done, which is typical of list operations in Lisp. Because this requires
constant allocation of new memory cells, a large memory changes the behavior of this program,
because garbage collection may not be required during execution. Because this program has a
number of tail-recursive function calls, a Lisp implementation that performs tail-recursion
optimization improves execution.

19

Tablg 8.12. Timings (in seconds) of the Lisp version of Boyer

Machine Symbolics MIPS R2000 Compaq 1M SUN-4 DEC8800

name 386/20e 7

Language Symbolics C-Lisp | IBUKI C-Lisp | Lucid C-Lisp | C-Lisp | Allegro C-Lisp | AllegroCLisp | Lucid CLisp

Boyer |e 31.0 13.0 27.3 754 8.70 10.75
r 25.49 7.4 11.31 6.0 5918 8.30 9.88

¢ = clapsed real time in seconds. r = machine run time (cpu) in seconds.

The behavior of the Ada version of Boyer depends on creating and searching large linked lists.
The timing results are given in table 8.13. Because the list of axioms is large and requires a large
memory, this program did not execute on the Compaq 386 because of memory constraints. Program
restructuring is required to run on the Compagq 386. Further, CONSing also requires memory alloca-
tion. Memory allocation is done continuously during the execution of the program. This indicates
that systems with a large memory are required to run programs with large linked-list operations.
Therefore, Ada may not be efficient for performing list operations similar to Lisp list operations.

Table 8.13. Timings (in seconds) of the Ada version

of Boyer
Machine Name Symbolics MIPS R2000 DEC 8800
Language Symbolics Ada Verdix Ada Telesoft Ada
Program Boyer 808.6 23.0 57.0

8.5.3 Effect of optimization- Memory expansion speeds up execution by a factor of 2.7. Mem-
ory size has a great impact on the type of operations Boyer performs, for example, CONSing and
function calls. Because symbols are the only type of objects used in computation, type declarations
have no effect. The timing results are shown in table 8.14.

Table 8.14. Timings (in seconds) of Lisp version of Boyer with optimization

Optimization Machine Elapsed time | CPU time GC time Speed up

Generic DEC 8800 10.75 9.9 2.6 1.0

memory expansion _ucid C-Lisp 4.9 48 0.0 2.7
8.6 Browse

8.6.1 Profiler analysis— Dynamic counts indicate that this program spends most of the time
executing one block of code, testing for the atomic property, performing about two hundred thousand
character comparisons, and CONSing. The program has one tail-recursive call and many recursive
function calls. This confirms the program analysis.

8.6.2 Program execution- An efficient compiler, a large memory allocation, a fast memory
referencing scheme, and optimization of recursive function calls are the major influences on the

execution of this program. Character comparison and type checking also influence the execution.

20

A

Table 8.15. Timings (in seconds) of the Lisp version of Browse

Machine Symbolics MIPS R2000 Compag 1M SUN4 DEC8800

name 386/20e

Language Symbolics C-Lisp | IBUKI C-Lisp |Lucid C-Lisp |C-Lisp | AllegroC-Lisp | Allegro C-Lisp | Lucid C-Lisp
program (e 18.52 13.00 22.53 6.24 2438 12.53
Browse r 11.71 7.6 14.63 6.8 6.12 21.00 11.15

¢ = elapsed real time in seconds. r = machine run time (cpu) in seconds.

The performance of the Lisp version of Browse is better than that of the Ada version (table 8.16).
Character comparisons and extensive search operations proceed through linked lists. This program
requires dynamic memory allocation and generates garbage. Without gc, a large memory is needed
to execute Browse. On the Compaq 386, because of memory constraints, this program did not run.
These results indicate that a gc algorithm is necessary in Ada, and Lisp is a better choice for
executing these types of operations.

Table 8.16. Timings (in seconds) of the Ada ver-
sion of Browse

[Machine Name Symbolics | MIPS R2000 DEC 8800
anguage Symbolics Ada | Verdix Ada Telesoft Ada
ogram Browse 856.4 56.0 66.0

8.6.3 Effect of optimization— The effect of type declaration is insignificant. However, with
memory expansion, the performance improves considerably, because of decreased gc. Therefore, a
Jarge memory is an advantage for performing pattern matching and exhaustive sequential search
operations. Timing results are given in table 8.17.

Table 8.17. Timings (in seconds) of Lisp version of Browse with optimization

Optimization Machine Elapsed time | CPUtime | GCtime | Speed Up

Generic DEC 8800 12.5 11.6 3.9 1.0
With declarations Lucid 12.0 11.2 3.9 1.0
With declarations and memory expansion | Common Lisp 8.6 7.6 0.0 1.5

8.7 Traverse
8.7.1 Profiler analysis— This program executes more than three million tail-recursive function
calls, performs logical comparisons, and switches the logical sense of the object’s value embedded in
the structure.

8.7.2 Program execution— The factors responsible for the performance are accessing defstruct
objects in random distribution and handling of tail-recursive function calls. Though memory access
in the SUN-4 is very effective, this is not reflected in the performance of this program (table 8.18). It
follows that Allegro Common Lisp does not handle defstruct constructs very well. This is also true

21

for DEC 8800 running Allegro Common Lisp; furthermore, this program executes better on the
DEC 8800 running Lucid Common Lisp. Symbolics does not optimize tail-recursion calls.

The analysis of the timing results shows that a measure of defstruct construct implementation can
be obtained using this program.

Table 8.18. Timings (in seconds) of the Lisp version of Traverse

Machine Symbolics MIPS R2000 Compaq ™M SUN4 DEC 8800

name o 386/20e

Language Symbolics C-Lisp | IBUKI C-Lisp | LucidC-Lisp | C-Lisp | Allegro C-Lisp | Allegro C-Lisp |Lucid C-Lisp
program |e 40.05 24.00 22.53 32.12 97.8 219
Traverse |r 39.70 24.30 22.53| 16.00 30.96 97.8 21.9

e = elapsed real time in seconds. r = machine run time in seconds.

The compiler and the hardware architecture strongly influence execution of the Ada version
(table 8.19). The record type in Ada, which is equivalent to the defstruct construct in Lisp, is used to
create the nodes of the graph. The operations are accessing the components of records and testing
and setting their values. The Ada version executes these operations well. Symbolics Ada is not very
effective. A program in Ada or Lisp, executing structure operations, can perform well on both stock
hardware and on fast systems.

Table 8.19. Timings (in seconds) of the Ada version of Traverse

Machine Name Symbolics MIPS R2000 Compaq 386/20¢ DEC 8800
Language Symbolics Ada | Verdix Ada Alsys Ada DDCI Ada Telesoft Ada
Program traverse 153.0 30.0 21.47 - 37.0

8.7.3 Effect of optimization— Memory expansion has no effect, since Traverse does not
generate garbage to be collected. There are some fixnum operations, and type declaration of these
fixnum provides some performance improvement. The timing results are summarized in table 8.20.

Table 8.20. Timings (in seconds) of the Lisp version of Traverse with optimization

Optimization Machine CPU time GC time Speed Up

Generic DEC 8800 22 0.0 1.0
With declarations Lucid 19 0.0 1.1
With declarations and memory expansion Common Lisp 19 0.0 1.1

8.8 Triangle

8.8.1 Profiler analysis— One main function is called recursiVely about six million times. This
function performs array referencing, and comparing and changing the array values. This code is
fairly straightforward.

22

Ll

8.8.2 Program execution— The factors that influence the performance are array referencing and
type checking. The timing results obtained (table 8.21) are mainly due to the efficiency of array

indexing and access. Additionally, on stock hardware, type checking through software takes time.

A Lisp program doing one-dimensional array access can execute well if the system, stock hard-
ware, or Lisp machine has efficient array referencing and compiler array operation code generation.

Table 8.21. Timings (in seconds) of the Lisp version of Triangle

Machine Symbolics MIPS R2000 Compagq M SUN4 DEC8800

name 386/20e

Language Symbolics C-Lisp | IBUKI C-Lisp } Lucid C-Lisp C-Lisp} AllegroCLisp | Allegro CLisp] Lucid C-Lisp
program | e 125.63 159.00 331.48] 65.20 77.00 252.93 234.6
Trangle | r 125.63 158.21 331.48 75.3 247.00 234 .4

e = elapsed real time in seconds. r = machine run time (cpu) in seconds.

Contributing factors for the Ada version are the compiler and the system hardware (table 8.22).
The Ada version of the program executes better than the Lisp version because of strong typing in
Ada.

Table 8.22. Timings (in seconds) of the Ada version of Triangle

[Machine Name Symbolics MIPS R2000] Compag 386/20e DEC 8800
Language Symbolics Ada | Verdix Ada Alsys Ada DDCI Ada | Telesoft Ada
Program triangle 425.2 86.0 84.0 102.0 92.0 |

8.8.3 Effect of optimization- Triangle performs integer comparisons and array references.
Arrays are declared as simple vectors and integers as fixnums. For arithmetic operations, type decla-
rations are essential to speed up execution. The dynamic bytes CONSed remain constant. There is no
temporary creation or destruction of objects to cause gc. Timing results are given in the table 8.23.

Table 8.23. Timings (in seconds) of the Lisp version of Triangle with optimization

Optimization Machine Elapsed time CPU time GC time Speed Up

Generic DEC 8800 234.6 234 0.0 1.0
With declarations Lucid 524 52 0.0 4.5
With declarations and memory expansion Common Lisp 524 52 0.0 4.5

8.9 AutoclassIl

8.9.1 Profiler analysis— The program spends most of its time in array referencing and executing
floating-point operations, while collecting and computing weights. The profiler results show that the
number of computations are directly proportional to the product of the number of cycles, partitions,
variable types, and data elements. The results referred to are for 1 and 2 cycles with 531 cases of
data, and for 2 cycles with 50 cases of data. Each case has 103 elements of data. In the function
collect-weights for one-cycle-one-partition and one data element, the block of code executes

23

95 times, because there are 95 floating-point elements out of 103 in each case of data. Hence, this
program provides the count for array references and floating-point operations, for a given execution
set up. The functions MAX+, log-gamma, log-gamma-dataum-prob, sigms-sq, and safe-exp can be
coded inline for faster execution, because some time is spent in these functions.

8.9.2 Program execution— The factors that affect the execution speed of floating-point
arithmetic in Lisp are type checking, the number representation scheme, presence of a floating-point
coprocessor, gc strategy, and memory. This program generates a considerable amount of garbage,
due to number CONSing. A moderate amount of time is spent in gc. A good gc algorithm and a large
memory will decrease the gc time. The indirect Lisp array referencing, emulated through software,
affects the program execution.

For Lisp programs performing a large number of array referencing and floating-point operations,
essential features are immediate number representation, fast array accessing, good gc algorithm, and
large memory.

Table 8.24. Timings (in seconds) of the Lisp version of AutoclassII

Machine name Symbolics Compaqg M SUN4 DEC8800
386/20¢
Language S C-Lisp Lucid C-Lisp IC-Lisp | Allegro C-Lisp | Allegro C-Lisp LucidC-Lisp
c2,n50 e 48.14 252.72 168.346 340.59 234.84
r 47.81 23590 29.10 162.684 204.44 1229.82
cl,n531 e 203.96 2895.67 847.58 1750.8 1939.38
r . 203.23 2844.13] 131.3 843.16 1616.4 2017.37
c2,n531 e 31593 4805.91 1402.84 29224 3192.27
r 305.93 4719.041 203.0 1396.80 2612.8 3320.89

¢ =cycle. n=number of data elements

The Ada version of AutoclasslIl is a good program to measure the floating-point performance of
stock hardware. The factors that affect the execution are the compiler and the hardware. Strong
typing in Ada allows the program to perform better than the Lisp version (table 8.25). On the MIPS,
floating-point operations are fast. The DEC 8800 floating-point accelerator is relatively slow. The
Compagq 386 is a smaller system compared with the others.

Table 8.25. Timings (in seconds) of the Ada version of AutoclassII

[Machine name Symbolics MIPS R2000 Compaq386/20e DECS8800
Language Symbolics Ada Verdix Ada Alsys Ada DDCI Ada | Telesoft Ada

kc 2,n 50 630.00 36.00 95.57 102.0 75.65
c 1,n531 3867.00 210.00 536.00 -- 497.20
c 2, n 531 -~ 340.00 839.98 -~ 657.55

¢ = cycles. n=number of data elements

8.9.3 Effect of optimization— As the program was written, the only major effect was memory
expansion because of decreased gc. In general, a real application program executing a large number

24

of floating-point operations needs data type declarations, immediate floating-point representation,
and a large memory for fast execution. The timing results are provided in table 8.26.

Table 8.26. Timings (in seconds) of the Lisp version of AutoclassII with optimization

Optimization Machine Flapsed Time JCPU time GC time [Speed Up

Generic DEC 8800 3194 3320 1826 1.0
[With declarations Lucid 3539 3569 2129 1.0
[With declarations and memory expansion Common Lisp 1793 1661 216 2.0

9.0 OTHER CONSIDERATIONS

Besides factors discussed in earlier sections, two other considerations are important. First, the
actual design of the benchmark programs, and second, optimization, both in program coding and
compiler optimizations.

9.1 Design of Benchmarks

Benchmark programs provide the only means to conduct objective evaluation of systems. These
programs can be developed, or they can be selected from existing programs. Benchmark programs
can be implemented to reflect different approaches to solve a problem. To select appropriate
programs, knowledge about the system implementation is required.

Selecting a known application or an existing program as a benchmark requires a description and
analysis of the program, a profile of the program to determine its features, and a careful elimination
of features not desired, without sacrificing the effect. The AutoclassII is an example of an applica-
tion used as a benchmark. Several types of programs, based on a particular need, can be developed to
test an implementation.

A well-defined statement of the problem to test an implementation can be used. In that case, the
problem needs to be short, not very complex, and capable of running on several systems. It can be
implemented as a program in different ways and should be profiled to determine the implementation
features it actually tests. The result is analyzed to fine tune as appropriate. Profiling a program is an
effective way of determining the features it tests.

The Symbolic Triangle program and the Boyer program (discussed in sec. 3) belong to this
category. The Triangle program can be implemented either as an array referencing program, in rule-
based shells and tool kits such as KEE (Knowledge Engineering Environment), or in Lisp and Prolog
as a rule-based deductive system. The general problem is a well-defined exhaustive search. The
general problem of the Boyer program is also well defined, and the implementation it tests is
CONSing and function calls.

For a comprehensive coverage of the important computational functions, large programs that
have the combination of characteristics of the problem are useful. To develop these programs, all the

25

required characteristics to be tested are selected and combined into a program. The program is pro-
filed to get the distribution and is modified as required. The Whetstone program is a combination of
several scientific computational features.

A composite program having a set of features is desirable when a combined effect of the features
is required. A combination of different problems can be used to implement different features, or a
single problem can also be selected and implemented to reflect different features. However, no
composite program can capture all implementation features.

A set of programs, each measuring specific features of the implementation is necessary, for
applications planning, where a detailed knowledge of the performance of individual features is
required. This involves isolation of features to be measured, achieving measurement, accuracy, and
repeatability. A more accurate measurement means eliminating underlying operating system inter-
face from time slice, paging, etc. The University of Michigan and the JSC Ada programs are
examples of this type of programs (refs. 6 and 7).

9.2 Optimization

The compiler plays a major role in optimizing a Lisp program to decrease execution time. Addi-
tionally, several lisp coding guidelines can be applied to improve the runtime speed of lisp programs.
The standard for Common Lisp does not require optimization. Thus, optimization could not be used
to compare the various versions of Lisp used. Instead, a study of the effect of optimization was
performed on a DEC 8800 running Lucid Common Lisp. Some guidelines for lisp coding for
runtime speed optimization are:

1. Use optimization declarations to emphasize speed.

An optimization declaration controls the type and amount of optimization a compiler
can perform. The variables are:

* the speed at which compiled code runs,

» the level of space the compiled code needs,

» the speed at which the code is compiled, and

» the level of safety (error checking) retained during compilation.

The default values for optimization that define the execution environment and their effects are
shown in table 9.1. The integer value of these variables represents the level of optimization.

26

Table 9.1. Default settings of system implementations

Common Lisp

Compilation
Speed

Space

Speed

Safety

Effects

Symbolics

unknown

Compiler ignores these declarations

Lucid

Allows use of optimizations that may decrease
compilation speed.

Imposes no size constraint on the compiled code.
Turns off all the restrictions that affect speed.

Indicates that functions with fixed number of arguments
are checked on entry for correct number of arguments.

Allegro

Automatic

Defined by the combination of other three factors.
Turns off in-line coding of safe access functions, which
may decrease the size of compiled code.

Does not turn off any restrictions that affect speed to
preserve robustness of the compiled code.

Enables argument count and interrupt checking.

IBUKI

Not defined.
Imposes no constraint on the size of the compiled
code, which means that the compiled code may be

larger and faster.

Tums off optimization switch of the C compiler that
affects speed.

No run time error checking.

2. Specify data types of arguments and returned values of Lisp expressions.

A declaration is a statement that supplies information about a Lisp program to the

Lisp environment. These advise the compiler so it may produce faster, efficient code.

This particularly applies to type declarations, which specify the data types of the values

of Lisp expressions, and it eliminates type checking.

3. Use explicit type declarations for floating-point and fixnum operations to increase speed.

variables are not gc.

27

Type declarations added to arithmetic operations can make the operations signifi-
cantly faster by reducing type checking and type dispatching overhead of a function call.
For fixnum type arguments and values, the compiler can directly code applications of
arithmetic operators, making fixnum arithmetic fast. The local variables that are declared
as floating-point type are allocated in a special block on the stack or in registers. These

4. Use simple arrays and simple vectors to increase array access efficiency.
The element type and the number of dimensions of the array should be declared.
5. Code simple functions in-line.

This is a request to the compiler to generate machine language code for a function to
eliminate function calling overhead. R

6. Use macros, loop unrolling, and tail-recursive functions.

A tail-recursive function is a function that calls itself as the last operation. The body
of a tail-recursive function can be converted into iteration; this eliminates the need to pre-
serve the execution environment of previous calls. Also, if the iteration is straightforward,
the body of the block is replaced with several copies of the body. This is called loop
unrolling, and reduces the overhead of looping.

10.0 SUMMARY OF RESULTS

Knowing what is being measured requires a thorough examination of the program. Such knowl-
edge can be obtained from running the program through the profiler to obtain static and dynamic
counts of functions used, determining the operations it mainly executes, and analyzing execution
time. Applying optimizing techniques enables study of what is required to improve the performance.

In this study to evaluate the performance of Ada and Lisp programs, it is evident that Lisp is not
the right choice for numeric computation, and Ada is not the right choice for performing Lisp list-
like operations.

For programs written in Lisp, the important aspects for effective performance are a large memory
and the declaration of types, which is especially true for numeric operations. Immediate representa-
tion of numeric data and a fast array referencing scheme are also essential. By incorporating these
features, a Lisp program can be made to execute efficiently on stock hardware. Lisp is not a good
choice for extensive scientific computations.

10.1 Ada Version Implementation of the Symbolic Set

Programs written in Ada, which involve large linked-list operations executing in a dynamic
environment, perform poorly and may fail to execute. Boyer requires the creation of a large linked-
list of records that requires memory allocation. The CONSing performed also requires memory
allocation. Almost always, the problem of gc arises with CONSing. Implementing gc increases the
complexity of the computation. This program did not run on the Compaq 386 because available
memory was insufficient for representing the large linked list. The program can be restructured to
run on a Compagq 386 by breaking the large linked list into several small ones and relinking them.

28

This will not solve the problem entirely when the majority of computation involves memory
allocation, and a system can crash because of insufficient memory. A large number of linked list
operations and CONSing demand a large memory. In this program, although there are character
comparison operations, it amounts to testing the memory size using the new allocator. Therefore,
this program is not a good measuring tool of any Ada features.

Browse, which is similar to the Boyer category, uses small linked lists of records. It performs a
large number of CONSes while searching through these linked lists in the exhaustive pattern match-
ing. A considerable amount of garbage is generated. This program also did not execute on the
Compagq 386 because of insufficient memory. A gc routine needs to be written to execute on the
Compaq 386. This is a difficult task, so Ada is not a practical choice for performing exhaustive
pattern matching using Lisp list-like operations. A relative performance measure of memory alloca-
tion and a search of the linked list of records can be obtained by running this program on systems
with a large memory.

Triangle executes one-dimensional array references and recursive function calls. Recursive func-
tion calls require a large, high-speed stack for efficient execution. The stack operations are system
dependent. This program provides a measure of the combined effects of these operations.

Traverse initially allocates memory for creating an initial linked list of records, generates garbage
while creating a randomly distributed linked list out of the initial list, and uses recursive function
calls to Traverse through this randomly distributed list where it accesses the components of records.
As recursive function calls involve stack operations that are system dependent, it is difficult to
quantify the performance of any one feature of Ada. However, a measure of the combined effect of
accessing records in a random distribution and recursive function calls can be obtained by timing the
traversal section only.

Ada programs of the numeric set provide a good measure of their respective features in an imple-
mentation.
10.2 Lisp Version Implementation of the Numeric Set

The optimization results of the Numeric Set benchmark programs (tables 8.3, 8.5, 8.8, and 8.11)
lead to the conclusions:

1. A compiler that heeds declarations saves significant time by speeding up calculations through
elimination of type checking, and also significantly reduces gc time as well. This is because many

intermediate calculations are done in the stack, rather than as general objects in dynamic memory.

2. Declarations improve complex number arithmetic relatively little because of the creation of
temporary results in dynamic storage.

3. Expanding the memory has a profound effect on the overall execution, more so than including
declarations.

29

When the programs Whetstone, Linpack, and Cholesky are run with memory expanded before
execution, they do not perform (or spend time doing) gc. If run with expanded memory and all the
type declarations, Linpack, Cholesky, and Whetstone can provide a measure of the respective
features they are designed to test in a Lisp implementation. Despite memory expansion and declara-
tions, the Cfft2dm program still consumes time doing gc. This, with creation of temporary results
from complex arithmetic operations, among other Lisp system overhead, makes an exclusive
measure of complex number arithmetic nearly impossible. However, Cfft2dm still provides an
overall measure of these arithmetic operations in a Lisp implementation.

REFERENCES

1. Gabriel, R. P.: Performance and Evaluation of Lisp Systems. MIT Press 1985.
2. Steel, G. L., Jr.. Common Lisp: The Language. Digital Press, 1984, pp. 11-53.

3. Moon, D. A.: Architecture of the Symbolics 3600. IEEE 12th Intl.Symp.on Computer Architec-
ture, June 1985, pp. 76-83.

4. Garner, Robert B.; et al.: The Scalable Processor Architecture(SPARC). Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, CA 94043.

5. Harbaugh, Sam; and Forakis, John A.: Timing Studies Using a Synthetic Whetstone Benchmark.
Ada Letters, Vol. IV, No. 2, Sep/Oct 1984.

6. Dimorier, Keith L.: ADA Software Benchmarking. CSDL-R-2067, NASA, May 1988.
7. Clapp, R. M; et al.: Toward Real-Time Performance Benchmarks for Ada. RSD-TR-12-86,
University of Michigan, Department of Electrical Engineering and Computer Science, Center

for Research on Integrated Manufacturing.

8. Baily, D. H.; and Barton, J. T.: The NAS Kernel Benchmark Program. NASA TM-86711,
August 1985, NASA Ames Research Center, Moffett Field, CA 94035.

9. Cheeseman, P.; et al.: An Approximation to Bayesian Classification. Information Sciences
Division, NASA Ames Research Center, Moffett Field, CA 94035.

10. Kleiman, S. R.; and Williams, D.: SunOS on SPARC. Sun Microsystems, Inc., 2550 Garcia
Avenue, Mountain View, CA 94043,

11. Galant, David C.: Basic Mathematical Function Libraries for Scientific Computation.
NASA TM-102256, NASA Ames Research Center, Moffett Field, CA 94035.

12. Katevenis, M.: Reduced Instruction Set Computer architectures for VLSI. Ph.D dissertation,
Computer Science Div., University of California, Berkeley, 1983.

30

13. Agrawal, Anant; et al.: SPARC: An ASIC Solution for High Performance MIcroprocessor. Sun
Microsystems, Mountain View CA.

14. Sobalvarro, Patric G.: A lifetime-Based Garbage Collector for Lisp Systems on General Purpose

Computers. B.S. Thesis, Electrical Engineering and Computer Science MIT, Supervisor
Robert H. Halstead, Jr.

31

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
August 1992

Public reporting burden for this collsction of information is estimated to average 1 hour per response, including the tima for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and raviewing the colfection of information. Send comments regarding this burden estimate cr any cther aspect of this
coltection of infarmation, Including suggestions for reducing this burden, to Washington Headguarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE

Symbolic Processing

Analysis of a Benchmark Suite to Evaluate Mixed Numeric and

6. AUTHOR(S)

Bharathi Ragharan and David Galant

5. FUNDING NUMBERS

506-59-31

Ames Research Center

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Moffett Field, CA 94035-1000

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-92023

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-103907

11. SUPPLEMENTARY NOTES

Point of Contact: David Galant, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000;
(415) 604-4851

Subject Category 62

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified — Unlimited

12b. DISTRIBUTION CODE

T
13. ABSTRACT (Maximum 200 words)

The suite of programs that formed the benchmark for a proposed advanced computer is described and analyzed.
The features of the processor and its operating system that are tested by the benchmark are discussed. The computer
codes and the supporting data for the analysis are given as appendices.

14. SUBJECT TERMS

OF REPORT
Unclassified

e ==Y T =TT =VT
17. SECURITY CLASSIFICATION

T T =TT
18. SECURITY CLASSIFICATION

OF THIS PAGE
Unclassified

Benchmarking computer systems, Computer systems performance evaluation, Lisp
machine evaluation, Benchmark analysis

15. NUMBER OF PAGES
36

T —————
16. PRICE CODE

A03

T~ T TS T3
18. SECURITY CLASSIFICATION

OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

