
NASA Technical Memorandum 103907

.4 -_,

Analysis of a Benchmark Suite
to Evaluate Mixed Numeric and
Symbolic Processing

Bharathi Ragharan and David Galant

(NASA-TM-103907) ANALYSIS OF A

BENCHMARK SUITE TO EVALUATE MIXED

NUMERIC AND SYMBOLIC PROCESSING

(NASA) 56 p

N92-32886

Unclas

G3/62 0117757

.%
August 1992

=.

National Aeronautics and
Space Administration

https://ntrs.nasa.gov/search.jsp?R=19920023642 2020-03-17T11:22:32+00:00Z

i

°

i
i =

NASA Technical Memorandum 103907

Analysis of a Benchmark Suite
to Evaluate Mixed Numeric and
Symbolic Processing
Bharathi Ragharan and David Galant, Ames Research Center, Moffett Field, California

August1992

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

V

TABLE OF CONTENTS

Page

1.0 SUMMARY ... 1

2.0 INTRODUCTION 1

3.0 MACHINE DESCRIPTIONS .. 2

3.1 The Symbolics 3675 .. 2
3.2 DEC 8800 ... , ... 3

3.3 Compaq 386/20e .. 3
3.4 SUN-4 .. 3

3.5 IIM45000 ... 4

3.6 MIPS M/2000 ... 4

4.0 Execution Environment Considerations ... 5

4.1 Programming Languages ... 5

4.1.1 Lisp implementation ... 5
4.1.2 Ada '... .. 6

4.2 Compiler ... 7

4.3 Garbage Collection ,,;; ... 7

5.0 COMPARISON OF LISP LANGUAGE IMPLEMENTATIONS .. 7

5.1 IBUKI Common Lisp ... 7

5.2 Lucid Common Lisp 8

5.3 Allegro Common Lisp 10

6.0 DESCRIPTION OF THE BENCHMARK SUITE .. 10

6.1 The Numerical Benchmarks ... I0

6.1.1 Whetstone .. 10

6.1.2 Linpack .. 10
6.1.3 Cfft2dm ... 10

6.1.4 Cholskym .. 11

6.2 The Symbolic Benchmarks .. 11

6.2.1 Boyer ... 11

6.2.2 Browse .. 11

6.2.3 Traverse .. 12

6.2.4 Triangle ... 12
6.3 AutoclassII ... 12

6.4 JSC Real-Time Ada Programs 13

6.5 University of Michigan Real-Time Ada Programs .. 13

7.0 DESCRIPTION OF THE EVALUATION PROCESS ... 14

°,.

PRECEDING PAGE BLANK NOT FILMED m

, 1

TABLE OF CONTENTS (continued)

8.0 EVALUATION RESULTS AND ANALYSIS ... 14

8.1 Whetstone ... 14

8.1.1 Profiler analysis ... 14

8.1.2 Program execution .. 15

8.2 Linpack ... 16

8.2.1 Profiler analysis ... 16

8.2.2 Program execution .. 16
8.3 Cfft2dm .. 17

8.3.1 Profiler analysis ... 17

8.3.2 Program execution ... 17

8.4 Cholskym ... 18

8.4.1 Profiler analysis ... 18

8.4.2 Program execution .. 18

8.5 Boyer .. 19

8.5.1 Profiler analysis ... 19

8.5.2 Program execution .. 19

8.5.3 Effect of optimization ... 20
8.6 Browse ... 20

8.6.1 Profiler analysis ... 20

8.6.2 Program execution .. 20

8.6.3 Effect of optimization ... 21
8.7 Traverse .. 21

8.7.1 Profiler analysis ... 2 I

8.7.2 Program execution .. 21

8.7.3 Effect of optimization ... 22

8.8 Triangle .. 22

8.8.1 Profiler analysis ... 22

8.8.2 Program execution .. 23

8.8.3 Effect of optimization ... 23
8.9 AutoclasslI ... 23

8.9.1 Profiler analysis ... 23

8.9.2 Program execution .. 24

8.9.3 Effect of optimization ... 24

9.0 OTHER CONSIDERATIONS ... 25

9.1 Design of Benchmarks ... 25

9.2 Optimization ... 26

10.0 SUMMARY OF RESULTS ... 28

10.1 Ada Version Implementation of the Symbolic Set .. 28

10.2 Lisp Version Implementation of the Numeric Set ... 29

References ... 30

iv ,

1.0 SUMMARY

The suite of programs that formed the benchmark for a proposed advanced computer is described

and analyzed. The features of the processor and its operating system that are tested by the benchmark

are discussed. The computer codes and the supporting data for the analysis are given as appendices.

2.0 INTRODUCTION

This benchmark program suite, chosen to test the Symbolic VHSIC (Very High-Speed Integrated

Circuit) Multiprocessor System, provides a measure of the symbolic and numeric computational

capabilities of a system, especially in the absence of actual applications. This benchmark suite was

chosen to test system behavior resulting from a combination of language implementation, operating

system, and system hardware. It does not test the raw speed of the hardware nor any particular

component of the system. Note that the benchmark programs actually presented were tested on

uniprocessor systems and may not be strictly appropriate for efficient parallel processing.

The individual programs of the suite and their performance on various systems are discussed.

The tested hardware systems are Symbolics 3675, Vax 8800, Compaq 386, MIPS, Sun-4 and

IIM45000. Program descriptions and performance analyses are given, and the static and dynamic

counts of the functional level are discussed. Timing results obtained from each system are analyzed

to determine the effects of machine architecture and optimization levels on the behavior of the pro-

grams. The timing results are not intended as criteria for measuring the relative merits of the

hardware systems used. Conclusions regarding the selection of programs appropriate to test a given

system are given. Also, methods to incorporate an application into a benchmark program suite are

discussed.

The benchmark program suite consists of a Symbolic Set (ref. 1), using specifically Boyer,

Browse, traverse, and Triangle; a Numeric Set, consisting of Whetstone, Linpack, Cfft2dm, and

Cholskym; AutoclasslI; NASA/JSC Ada programs (ref. 6); and the University of Michigan Ada pro-

grams (ref. 7). Except for the last two programs, all programs are implemented in both Lisp and Ada.

Descriptions of these programs are provided in section 2. The Common Lisp version of the programs

are generic, in that they do not include specific type declarations or optimizations. The programs are

run in each hardware system's default (commercially available) execution environment (to study the

program behavior) as opposed to any specially provided custom or optimized environment. The

benchmark suite and associated programs can be obtained from the second author.

The authors would like to thank the following team members for their contributions to this effort:

Gloria J. Davis, James Gibson, Yuan-kwie Liu, Pushpa Majumdar, Ellen Ochoa, and Nancy Sliwa.

The Ada version of AutoclassII has been developed by Gloria J. Davis, and the Ada version of the

numeric set has been developed by James Gibson. We extend our thanks to Rodney Swab and

Charles Fry for reviewing and providing expert opinion and comments.

3.0 MACH_E DESCRIPTIONS

Descriptions are given to provide understanding of the machines, not for relative comparisons.

In generic Lisp machines, a certain number of bits in the address (format shown in table 3.1) are

reserved to represent data types. These bits are called tags and the machines are classified as tagged

architecture machines. Non-tagged architecture machines are called stock hardware machines.

Table 3.1. Tagged format

data-type obiect-reference

<-tag-> <---obiect--->

3.1 The Symbolics 3675

The Symbolics 3675 is a 36-bit tagged architecture Lisp machine running Symbolics Common

Lisp, herein referred to as S C-lisp, which is Common Lisp with some extensions. It uses a mi-

crocoded 36-bit TTL processor with a clock time of about 200 ns. The tagged format has three fields:

compact Lisp code, data type, and object reference. An object reference is defined as a conceptual

object, which is used to reference a Lisp object.

Table 3.2. The Symbolics tagged format

compact-Lisp code data-type object-reference

< tag > ... <---obiect--->

A compact Lisp code technique called CDR coding--a type of tagged, compact list

representationuis used for internal list representations. This technique reduces the memory

requirement for list construction by as much as half. Therefore, any non-tagged architecture requires

as much as twice the memory as a tagged architecture for list computation.

The data-type bits contain information about the type of the object. Type checking is supported

by the hardware and performed in parallel with the instruction execution.

The machine has a demand-paged word-addressable virtual memory, which makes its main

memory a large cache. Random access takes three machine cycles, and sequential access takes one

machine cycle. The compiler can specify sequential access, where appropriate, to speed up memory

access. Array referencing takes only a single instruction. Normally, one-dimensional array access

takes approximately ten machine cycles, and multidimensional array access takes three more cycles

per dimension. Array bounds are checked on every access.

A single-precision, floating-point number is represented as an immediate datum in a single-

machine word with type information in the tag field. If both operands of an arithmetic operator are

2

single-precisionandthefloating-pointacceleratoris installed,resultsarecomputedin acouple
of cycles.

Thearchitectureusesstacksto getoperands,to stashresults,to passargumentsto functions,
to returnvalues,andto makelocaldatareferences.Stackmanagementtasksarehandledby
processorhardware.Therearenogeneralpurposeregistersat themacroinstructionlevel. High-
speedstackgroupsprovideefficientexecutionof functioncallsandrecursion.Thestackaccesstime
is onecycle.

3.2 DEC 8800

The DEC 8800 is a 32-bit stock hardware machine. It consists of the console subsystem, a

primary CPU, a memory subsystem with one to eight memory arrays, a power system, and one to

two VAX bus interconnect adapters. The system is interconnected through a synchronous backplane

bus called the VAX 8700/8800 memory interconnect. This provides the system with a communica-

tion path between the CPU's, memory, and the adapters attached to the VAX bus interconnects. It

runs Lucid Common Lisp, Allegro Common Lisp, and Telesoft Ada under the VMS operating

system. The architecture supports a stack that occupies one half of the memory address space. Lisp,

which needs both a large stack and a large address space, uses this stack.

3.3 Compaq 386/20e

The Compaq 386 is a personal computer built around the Intel 386 processor. The

Compaq 386/20e contains a 20 MHz Intel 386 processor, a 20 MHz Intel 80387 Floating-Point

coprocessor, and a 20 MHz Intel 82385 Cache Mcm..o_ry Controller with a 32-kilobyte cache of

high-speed static memory. The total system memory is 8 megabytes of dynamic RAM using a

proprietary 32-bit bus. Mass storage is a 110-megabyte hard disk drive with average access time of
less than 25-milliseconds. It runs Lucid Common Lisp and Alsys and DDCI Ada under the Unix

operating system.

3.4 SUN-4

The Sun-4 is a SPARC (Scalable Processor ARChitecture) (ref. 4) machine. It has an Integer

Unit (IU), an optional SPARC Floating-Point Unit (_U), a memory management unit (MMU), an

optional virtually addressed cache, an optional VME bus interface and several control registers

(ref. 4). Computations are register intensive, and memory access is through load and store instruc-

tions, via the cache. Computational instructions obtain their data from registers and immediate fields

in instructions and put their results in registers.

The SPARC architecture defines a set of 32-bit instructions, a set of registers, how the registers

work, and how traps and interrupts are handled. The instruction categories are memory reference,

multiprocessor, arithmetic/logic, tagged, special, and control transfer (ref. 13). Tagged instructions

provide support for languages that can benefit from operand tags. Tags are used to classify data and

pointersdifferently andto performlegaloperationson thedataandpointers.Theyassume30-bit,
left-justifiedsignedintegersandusetheleastsignificanttwo bitsof a word astag.

The Sun-4workstationthat usedto run theseprogramshastheFujitsu implementationof the
SPARCdesign.It runsAllegroCommonLisp undertheUnix operatingsystem.Thetagfield in the
instructionformatcontainsinformationaboutthedata-typeandfixed-pointnumbers,whichareboth
immediatedataandmachineformatintegers.Whenafloating-pointinstructionis decodedby the
integerchip, it signalsthefloating-pointcoprocessorto startexecutionimmediately.Integerand
floating-pointoperationswithout dependenciesexecuteconcurrently.This increasestheexecution
speed,but time is spentto dispatchto thefloating-pointcoprocessor.SPARCusesa32-bit byte-
addressingformat.Thechip usestwo majorbusesfor accessingthecache:a32-bit address-busanda
32-bit bi-directionaldatabusfor performanceimprovement.

3.5 IIM45000

The Integrated Inference Machine is a generic 40-bit (32 bits of data, 8 bits of tag) tagged-

architecture Lisp machine running Integrated Inference Machine Common Lisp with extensions

under DOS operating system. It has 40 megabytes of memory and is referred to as IIM.

3.6 MIPS M/2000

MIPS M/2000 (Microprocessor without Interlocking Pipeline Stages), referred to as MIPS, is a

32-bit RISC (ref. 12) computer system. It is a multiuser system which runs IBUKI Common Lisp

and Verdix Ada under the Unix operating system. It uses a 25 MHz clock R3000 processor based on

the MIPS RISC architecture. The execution environment of the R3000 is provided by the R3200

CPU board which allows the processor to operate at maximum efficiency.

The major functional components of the R3200 CPU are:

1. Full-custom R3000 CMOS VLSI processor.

2. Optional full-custom R3010 CMOS VLSI floating-point accelerator (FPA) coprocessor.
3. 64-K instruction cache and 64-K data cache.

4. A master-only interface to the system bus (VMEbus). The CPU is also a system controller and

an interrupt handler.

5. A high-speed private memory interface to ECC (Error Correction Circuitry) protected

memory.

The R3000 RISC (Reduced Instruction Set Computer) processor uses 32-bit data, address, and

instructions. The processor contains 32 general purpose registers, which are 32 bits wide. The

processor also contains an instruction set and interface support for three external coprocessors, each

with up to 32 registers. Two other functional areas on the R3000 processor are a cache control unit

and a fully associative 64-entry Translation Lookaside Buffer (TLB) for fast access to a 4-gigabyte

virtual address space.

4

Thelargeinstructionanddatacachesreducememorybandwidthrequirements,while increasing
processorperformance.TheR3200CPUboardprovidestwo high-speed,direct-mappedcaches:a
64-K instructioncacheanda64-K datacache.Thecachescollectivelyprovideanaggregate
maximuminstruction/databandwidthof 200megabytepersecondovertheCPUcachebus.The
cacheRAMs have20nsaccesstimes.Bothcachesprovideparity checkingon tagsanddata.The
CPUboardprovidesa separate,dedicated,high-speedbus(calledthePrivateMemoryBus),for an
unobstructedaccessto themainmemory.

4.0 EXECUTION ENVIRO_NT CONSIDERATIONS

Elements of a program's execution environment influences its runtime efficiency. Specific influ-

ential factors include the file system (i.e., file access such as read and print, and the operating system

interface), the compiler, and automatic storage reclamation, also known as garbage collection.

Another factor is the ability of the compiler to optimize execution speed.

4.1 Programming Languages

This section describes the implementation features of Lisp necessary to understand the

benchmark programs.

4.1.1 Lisp implementation- Since the data type (ref. 2) of an object can be changed during

runtime, Lisp supports runtime type checking. This increases computational complexity. Type

information can be encoded in the pointer to the object or in the object itself.

The two types of object reference are immediate and pointer. An immediate object contains the

object within its object-reference field. Examples Of these are fixnums, single-float, and characters.

A pointer object reference contains an address in its object-reference field. Some Lisp objects that

require pointers are bignums, arrays, lists, hash tables, and structures. Roughly speaking, immediate

object references are used for small objects, whereas pointer objects are used for large objects.

When the type is encoded in the pointer, and if there are not enough bits to describe the subtype

of an object in the pointer, the main data types such as atoms and cons's are encoded in the pointer

and the subtype is encoded in the object. A cons is the object that points to the head and tail of a list.

Sometimes the pointer itself represents a type. In such cases, memory is partitioned into segments

and each contains a data type. A single data type can span several segments. This technique is called

the BiBOP (Big Bag Of Pages) scheme.

A quoted object evaluates to itself and is considered to be of type "constant." Some systems

represent these constants as immediate data when the value can be determined at compile time,

others put constants in a read-only area, and pointers to them are computed at load time. Immediate

data are normally faster to reference than other kinds of data.

5

Thefunctioneq simply compares two pointers. Two objects are eq if they address the same

memory location. The function equal uses eq to compare symbols.

In some implementations, arrays contain only pointers to actual values stored in the array. Thus,

actual value references are indirect. Accessing an array element uses several index instructions, and

array indices are recalculated on every access and store operation. In the absence of tagged hard-

ware, type checking is done through software, and computing array indices takes a considerable

amount of time during execution.

Arithmetic in Lisp is handled by passing pointers to machine format numbers, rather than by

passing machine format numbers directly. Converting to and from pointer representation is called

boxing and unboxing, respectively. Referencing a number using a pointer is called number

CONSing. This representation, which is required to make numbers into Lisp objects, causes slow

execution. The speed of arithmetic in Lisp also depends on boxing and unboxing techniques and the

ability of the compiler to minimize these operations. Some ways of achieving speed are:

A. Represent all single-precision, fixed-point numbers (consisting of 31 bits of data) as imme-

diate machine format integers and perform range checks after arithmetic operations.

B. Allocate numbers in the machine format on two stacks: one, for fixed-point numbers, called

FXPDL (Fixed-point Push Down List); the other, for floating-point numbers, called FLPDL

(Floating-point Push Down Lisp). Arithmetic operations can use these stacks as temporary storage,

eliminating unnecessary number CONSing.

C. Pre-aiiocate a range of normally used fixed-point numbers on a stack, thereby reducing the

number CONSing procedure into a simple addition of adding the base index of this stack table to the

original number. Pre-CONSing of a certain range of small integers, called the small-number scheme,

reduces boxing of numbers in this range to adding the number to the base address of the table.

On microcoded machines, runtime type checking is done almost in parallel by the hardware. On

stock hardware implementations, code must be emitted to perform type checking. Therefore, on

stock hardware implementations of Lisp, type-specific arithmetic operations contribute to the speed

of arithmetic operations. For this purpose, some Lisp implementations have arithmetic functions that

operate directly on type-specific data. Unboxing all relevant numbers and performing as many

computations in machine representation format as possible is also advantageous. This is called open-

compiling or open-coding.

4.1.2 Ada- Ada is a programming language designed by the United States Department of

Defense. It has considerable expressive power for a wide application domain. The language is a

modem modular algorithmic language with the usual control structures, along with the additional

capability to define types and sub-programs. In addition, it has features for real-time programming

and exception handling. Both application-level and machine-level input-output are defined. Thus,

systems programming, which requires precise control over the representation of data and access to

system-dependent properties, is also possible in Ada.

6

Lisp programscanbetranslatedinto Ada ratherdirectly.A list in Lisp is representedasalinked
list of recordsin Ada.Thelinked list iscreatedusingthenew allocator. The property list that every

Lisp symbol carries is represented as a record component in Ada. This increases the complexity of

manipulating objects pointed to by the components of records. For floating-point and complex

arithmetic computations, an Ada basic mathematical function library has been developed (ref. 11).

The numeric benchmark programsmWhetstone, Linpack, Cfft2dm, Cholskymmand AutoclasslI

require this library.

4.2 Compiler

Clearly, the compiler is a very important factor in determining the runtime behavior of a pro-

gram. However, since we had to accept the compilers available on the various machines, we can say

very little of importance about this. Interpretation of the effects of different compiler implementa-

tions are spread throughout section 8.

4.3 Garbage Collection

The fundamental data manipulated by Lisp are object references called pointers. The object

reference contains the address of the object (ref. 2) in memory. It is used to collect objects that are no

longer useful and to free the memory used by them. On tagged architecture machines (section 2.6.1),

tag bits indicate if a memory word is an object reference or data. On stock hardware, the tagged word

format is emulated through software. This requires decoding an object reference into tag and true

address, creating some overhead (ref. 14). Some overhead is also incurred in encoding these object
references.

The runtime effect of garbage collection (gc) depends on the memory size. On stock hardware

machines, Lisp normally starts with a default memory size that is expanded dynamically to a prede-

fined limit. The default setting usually can be altered, by memory management strategies provided

by the Lisp systems. The effect of gc on an individual benchmark is discussed in the section

dedicated to that benchmark (section 3).

5.0 COMPARISON OF LISP LANGUAGE IMPLEMENTATIONS

5.1 IBUKI Common Lisp

IBUKI Common Lisp is based on a kernel written in the C language. The high-level Common

Lisp functions and the IBUKI Common Lisp compiler are written in Common Lisp, using the primi-

tives in the kernel. Some amount of machine-dependent, assembly language code is present in some

IBUKI implementations for improved performance: These routines include parts of bignum multipli-

cation and division, and bit-table manipulation used by the gc. The IBUKI Common Lisp system

includes an optimizing Common Lisp compiler.

TheIBUKI CommonLisp compilerhasthreephases.Thefirst phasegeneratesac-file that
containstheC codefor theLisp sourcecode,anh-file thatcontainsdeclarationsusedby thec-file,
andadata-filethatcontainsLisp constants.ThesecondphaseinvokesthenativeC compilerto
produceacodefile from thec-file. Finally, thedata-fileis appendedto thecodefile to obtainan
objectfile, whichcanbe loaded.Hardwaredependentoptimizations,suchasregisterallocationsand
peepholeoptimizations,areleft to theC compiler.

IBUKI CommonLisp doesnotsupportimmediatedata.Everyobjectis representedasacell in
theheaparea.Eachcell consistsof several32-bit words.The first word is commonto all datatypes.
Half theword is thetypeindicatorandtheotherhalf is usedasa markbit for thegc. A CONScell
consistsof threewords,andafixnum cell consistsof two words.Array headersandcompiledfunc-
tion headersarerepresentedasfixnum cells.Array elementsandcompiledcodeareplacedelsewhere
in thememory.Array elementsarerepresentedin oneof sixways,dependingon thetypeof the
array.Generalarrayelementsarecell pointers:32-bit integersfor fixnums;32-bit floating-point
numbersfor short-floats;64-bitsfor long-floats;1-bitfor bit andbit-vector;and,8-bit codefor
strings.

Stacksareusedfor functioncalls,arguments,andvaluepassing.A C languageControl Stack
calledC stackis usedfor type-specifiedoperationsto improveperformance.TheC stackcanbe
accessedmoreefficiently thanotherstacks,suchasthevaluestack,which is the"main stack"of
IBUKI CommonLisp. OntheC stack,argumentsandvaluespassed,valuesof lexical variables
allocated,andtemporaryvaluessavedmaybe representedasimmediatedata,sometimesreferredto
asraw data, instead of as pointers to heap allocated ceils. Some of the built-in Common Lisp arith-

metic functions, such as +, -, 1+, 1-, *, floor, mod,/, and expt can operate on raw data. This

improves the performance of arithmetic computations.

Certain Lisp objects, such as fixnums and characters, may be represented by their value. Cells of

small fixnums and cells of characters are pre-allocated in fixed locations. Symbol print names and

string bodies are usually allocated in relocatabte pages (explained below) and moved to the heap

when an object file is created. The size of the cell is determined by the implementation type of the

object. For objects of some of the implementation types, such as array, the cell is simply a header of

the object. The body is allocated separately from the cell and is managed differently. Memory space

occupied by the body of such an object is called a block.

Memory space is divided into two parts that occupy contiguous space in the memory: the heap

area and the relocatable area. The heap is divided into pages, where each page holds cells of the

same type (BiBOP technique). Cells allocated in the heap are not gc. Blocks allocated in the heap are

called contiguous blocks. Thus each page in the heap is either a page for cells of a specific type, or a

contiguous block. Blocks allocated in the relocatable area are called relocatable blocks.

5.2 Lucid Common Lisp

The Lucid Common Lisp design for a general-purpose processor is based on emulation of fea-

tures of special-purpose Lisp processors. Some of interest are a tagged pointer encoding scheme, a

function-to-function calling protocol permitting dynamic redefinition, and packing of frequently

useddata,in particularCDR-coding--a kind of tagged,compactlist representation.A general-
purposeprocessoroftenhasthefollowing machinefeatures:RISC-like(ref. 12)instructionsets,
numerousgeneral-purposeregistersusablefor addressindexing,byte-alignedaddressingona
memorybusof atleast32bits, a largeaddressspace,andalargerealmemoryavailablefor Lisp
process'sworkingset(greaterthan4 megabytes).Lucid hasadditionalconstraints,in that the
compiledcodeis maderead-onlyandposition-independent,andvirtually all of theLisp system
shouldbewritten in Lisp itself.

Thiscompiledcoderead-onlyconstraintis imposedto gainmaximalsharingof memory
segmentsin atime-sharedsystem.It alsoimprovespagingperformance,andit providesaclear
separationof thememorysegmentsthattheg_-i_u_an. Anotherpositiveconsequenceof this
constraintis theclearseparationof acompiledfunctioninto asequenceof executablemachine
instructionsandasequenceof linkagecellsto dataandotherenvironment.ThattheLisp systemis
written in Lisp ensuresthatportingthissystemto anewhardwarearchitectureis reducedto only
portingmachineandoperatingsystemspecificsof theLisp system.

BecauseLisp dependson runtimetyping,dataencodingis an importantissue.Lucid Common
Lisp usesatagged-pointerschemefor dataencodingto addressvery largevirtual memories,accel-
eratesomeof thesmall integerarithmetic,andlist pointerchasingoperations.Thuseveryaddress
thatis apointer is dividedinto two parts,a tagandatrueaddress.Thetagbits specifywhetherthe
trueaddresspart is animmediatedatum,or avirtual memoryaddress.Somesmall integers,charac-
ters,andinternalstatemarkersfor gcareencodedthiswaybecausetheinformationcontainedin a
singledatumis lessthanthenumberof bits allocatedin thepointer for theaddresspart.A pointeris
four bytes,while aCONScell requireseightbytes.CONScells arethesmallestobjectsallocated.
Thus,atleastsevenoutof everyeightbyte-leveladdressesareunused,freeingthreeaddressbits to
representprimary tags.

Two of theeightpossibleprimarytagsareusedto representimmediateevenandodd fixnums.
Thesefixnumsare30bits long.Thelowerorderbit of thenumericvaluecoincideswith thehigher
orderbit of the 3-bit tag.Thisalignmentenablesa levelof performancefor manyLisp programs
equalto thatof conventionallanguages.

An arraycontainsoneword of headerinformation,somesub-typeinformationandanelement
lengthcount.Theheaderinformationis usefulfor runtimetyping andpermitsthegcto scanmemory
segmentslinearly,parsingtheminto variousLisp datatypes.

If theargumentsto primitive Lisp functionsarelocatedin general-purposeregisters,thenthe
componentselectionof acompoundobjectsuchasaCONSceil, andsimplefixnum arithmetic
operationsareaccomplished,in oneor at mosttwo reducedinstructionset-likeinstructioncycles.A
FLPDL (section2.3.l) is usedfor floating-pointoperations.Similar simplesequenceof instructions
accomplishelementselectionfor objectswith indexableentrieslike vectorsandstrings.Thetwo
mostcommontypetestsperformedin codeselectionareCONSPandFIXNUMP. Thesetypesare
amongtheprimarytags.Theoperationson thesedataarehighly optimized.

In Lisp, function definitionsandsomegloballydefineddatacanbechangedduring runtime.This
givesLisp its dynamicmodularity.A symbol's(ref, 2) functionvaluecell containsits current

9

functiondefinition.Themappingfrom thesymbolicnameof afunctionto thestartaddressof its
codeis alwaysavailableandevery functioncall to thesymbolhasto goindirectly through this cell.

Some recursive function calls are optimized. Such recursive function calls jump directly to the start

of the compiled code rather than through the symbol's function value cell.

A CDR-coding technique that uses two bits facilitates compact storage of linked cells. In this

method, the four combinations are used to designate normal, next, and nil. Memory consumption for

list construction is reduced by at least half using this technique.

5.3 Allegro Common Lisp

Typing is done via the BiBOP scheme with 512-byte pages. Pointers of different types are allo-

cated to different pages. There may be many pages for each type. All numbers are boxed. CONS

cells are eight bytes. Because CDRs are more frequently referred than CARs, the CDR is stored first,

which permits a CDR operation to be done with less indirect addressing.

6.0 DESCRIPTION OF THE BENCHMARK SUITE

6.1 The Numerical Benchmarks

6.1.1 Whetstone- This synthetic program is designed to measure the performance of a system

executing a scientific program. The mix of operations are integer arithmetic, floating-point

arithmetic, array referencing, branching statements, function and subroutine calls, and standard

mathematical functions. The main program encompasses a set of eleven modules, each with its own

iteration count number to control the number of times it is executed. The counters can be varied to

produce different mixes of instructions. The Ada version used in this study was published in

Ada Letters (ref. 5).

6.1.2 Linpack- The Linpack benchmark solves an N x N system of linear equations by

Gaussian elimination with partial pivoting. The matrix consists of random numbers in the interval

(0,1), and the right-hand side is chosen to make the vector [1, 1 1, 1] T the solution. The program

has three phases: initialization of the matrix and the right-hand side vector, copying the matrix to the

appropriate working space, and multiple decomposition-solution phase for two differently sized

matrices. The original program, written in Fortran, was obtained from the NAS project at NASA

Ames and translated into Common Lisp and Ada (ref. 8).

This program measures the performance of a system executing regular access to memory in nu-

meric computation, which includes integer and some floating-point arithmetic. The problem size is

N 100, and the arrays are 200 x 200 and 201 x 200.

6.1.3 Cfft2dm- Cfft2dm is a two-dimensional Fast (Discrete) Fourier Transform. This is a

typical intermediate step in solving an elliptical partial differential equation on a rectangular grid.

The program initializes the array to be transformed with single-precision and complex floating-point

I0

numbers.Thearrayis transformedin place,andtheninversetransformedin placeagain.In theory,
thefinal resultis the initial array.Theoriginalprogramwasobtainedfrom theNAS projectat NASA
Ames(ref. 8) andtheFortrancodewastranslatedinto CommonLisp andAda.

This programmeasurestheperformanceof asystemexecutingsingle-precisionandcomplex
single-precision,floating-pointnumbersandmatrixcomputations.

6.1.4 Cholskym- Cholskymistypical of thekernelcalculationsof ComputationalFluid
Dynamicscodesin theaerospaceindustry.It is thesolutionof a largenumberof independentsetsof
linearequationswith bandedandsymmetricmatricesandmultiple right-handsides.Only theupper
bandis stored(by diagonals).As it is implemented,it favorsmachineswith vectorpipesrunning
Fortran.

Theprogramconsistsof aninitializationphase,whichassignselementsof thematricesandthe
right-handsidesfrom uniformly distributedrandomnumbersin (0, 1).Then,a loop is executedthat
copiesthematricesto workingstorageandthatsolvesthesystemsof equations.Theprogramprints
anerrorvalueandthenumberof floating-pointoperationsthatareusedto confirmproperexecution
of theprogram(ref. 8).

Thisprogrammeasurestheperformanceof asystemexecutingsingle-precisionandfloating-
point arithmeticoperations,in which theprecisionof thefloating-pointrepresentationmatters
immensely.

6.2 The Symbolic Benchmarks

6.2.1 Boyer- The Boyer benchmark is a theorem-proving program. It tries to prove that a

particular logical statement is a tautology (true by virtue of its logical form alone). The first part of

the program, Boyer-setup, uses a list of axioms to set up property lists of symbols. The second part

of the program, Boyer-test, rewrites the logical statement into a canonical form, which is a nested

"IF" statement, using the property list of each symbol. The axioms are used as production rules. To

prove that the logical statement is a tautology, a simple tautology checker is invoked.

Boyer performs a large number of list-structure-manipulations, a moderate number of function

calls, and the property list operation GET. A property list is implemented as a memory cell, contain-

ing a list with an even number of elements. Hence, the above operations measure the performance of

list implementation.

6.2.2 Browse-- The Browse benchmark is designed to perform a mixture of operations in

proportions very similar to those in real expert systems. The basic operation is to search a data base

of objects, identifying all those objects that satisfy some predicate. The data base of objects is imple-

mented as property lists. The objects contain patterns called "descriptors." The predicate is that a set

of search patterns matches the descriptors. A simple pattern matcher is defined to this end. Exhaus-

tive matching is done by matching all search patterns against all descriptors, regardless of the results

of any individual matches.

11

Therearemanylist-structure-manipulatingoperationsto testtheperformanceof list implementa-
tion in Lisp. A randomnumbergenerator,whichperformsoperationssimilar to manydonein com-
pilers,AI systems,andotherlargesystems,is defined.Theobjecttypeusedin computationis
"character."Therefore,typecheckingreducesto tagextractionandpointercomparisonin parallel,or
addresscomparisonin theBiBOP scheme.TheprimarycomputationsthatBrowseperformsare
accessingpropertylists andtheir elements,comparingcharactersandCONSingsymbols.Accessing
propertylists is addresscomputationandcharactercomparison.CONSing,whichrequiresmemory
allocation,is usedin this program.This triggersgc.Browseis astrictly sequentialsearchprogram,
designedwith tail recursion,whichmaybecollapsedby compilersinto iterationfor fastexecution.

6.2.3 Traverse- TheTraversebenchmarkis designedto measuretheperformanceto be
expectedfrom thedefstruct facility. This allows the user to create and use aggregate data types with

named elements. To do the measurements, a directed graph of nodes is built and traversed. Each

node is a defstruct with ten slots (components): a backpointer to parents, pointers to sons, a serial

number of the nodes, a mark field, and six other slots to hold any information needed. The program

is structured into two sections: initialization and Traverse.

This program is an example of what might be termed as "pointer chasing." Several levels of

indirection are involved in accessing the value of an object embedded in a defstruct construct that

represents structures. The initialization, which creates structures, requires memory allocation.

Random linkage of these structures is done by rearranging pointers. Object access in a random

distribution of pointers is disorderly. A compiler can rebuild the list and make the random distribu-

tion straightforward again.

6.2.4 Triangle- The general purpose of this program is an exhaustive search represented as a

tree of possible moves, where each node of the tree signifies a decision about the next move. The

possible moves can be represented as/f then rules, which allow the program to be implemented in

rule-based shells and toolkits. Because the moves are implemented as elements of one-dimensional

arrays, the Triangle benchmark mainly tests one-dimensional array references. This benchmark has

been developed as a differentiator between one-dimensional and two-dimensional array references.

The performance of one-dimensional array references are measured.

The main operations this program performs are as follows: access the first array location speci-

fied by an index and get the value (this value is the index of the second array); get the value at this

index; check if this value equals to 1 or 0. On large systems, this program does not trigger gc and a

dynamic memory allocation is not required.

6.3 AutoclassII

AutoclasslI is a classification program that uses Bayesian least squares estimation theory to

determine data classes. Its general principles are given in reference 9.

This is a real application program that uses data from the spectra of stars. This particular data

base is set up to execute floating-point operations. It provides a measure of array referencing and

floating-point arithmetic operations in real applications.

12

6.4 JSC Real-Time Ada Programs

The JSC Real-Time Ada programs are designed to measure the execution time for those features

of the Ada language important for the implementation of real-time programs. The features measured

are tasking, exceptions, and branching statements (if and case). The programs measure the amount of

time to execute individual language statements, or groups of statements under various conditions.

This approach is called microscopic benchmarking or feature measurement.

The programs use the dual-loop method for measuring a language feature. The feature to be mea-

sured is placed inside a loop, known as the test loop, and executed many times. The total execution

time of the test loop is measured by reading the real-time clock immediately before and after the

loop. To account for the loop overhead, a control loop that is identical to the test loop, except for the

feature to be measured, is timed for the same number of repetitions as the test loop. The time for the

feature is then calculated by subtracting the control loop time from the test loop time and dividing

this number by the number of repetitions. The loops must be designed carefully, so that the only

difference between the control and test loops is the feature to be measured. Also, care must be taken

to ensure that an optimizing compiler does not modify either loop, thereby distorting the comparison.

To ensure proper measurement of the language features, the order in which the program units are

compiled is important. To defeat possible loop optimization, which would introduce errors into the

measured timings, the benchmarking_global_support package body, which contains a set of proce-

dures named similarly to stable_call_to_a_remote_procedure, must be compiled last. One or more of

these procedures is always called as a part of the control and test loops. If the bodies of these proce-

dures are compiled last, an optimizing compiler will be unable to place the executable code inline

within the loop and will distort the basis for feature measurement. The features of the language that

are measured by the program fall into several categories. Several different tests are performed in

each of the following categories:

1. Time to read the real-time clock.

2. Time to create, activate, and terminate a task.

3. Time to perform a rendezvous.
4. Time to raise and handle an exception.

5. Time to execute a branch instruction.

The program was obtained from the Johnson Space Center's Avionics Division. A few changes

were made in the program as received from Johnson Space Center (ref. 6). The macroscopic tests

were eliminated, and only the microscopic tests were used in the SVMS version.

6.5 University of Michigan Real-Time Ada Programs

The purpose of the University of Michigan (UM) Real-Time Ada programs is to measure the

execution time for elements of the Ada language. These features include procedure calls, allocation

of memory and variables, rendezvous, tasking, delays, exceptions, and time calculations. Each pro-

gram measures the performance of one distinct language feature under various conditions. Several

techniques are used to minimize interference from external or operating system functions and to

13

defeat compiler optimization that would affect the measured results. The original set of benchmarks

consisted of about 325 separate tests. Because many of these overlap with the JSC Real-Time Ada

programs, a small subset consisting of 18 tests was selected.

The features of the language that are measured by the programs fall into several categories

(ref. 7). A variety of different tests are performed in the categories shown below:

1. Clock function analysis.

2. Procedure calls.

3. Dynamic variable allocation.
4. Time arithmetic.

7.0 DESCRIPTION OF THE EVALUATION PROCESS

Each of the benchmark programs were compiled on each machine using the default settings of

the compiler present. The programs were then executed and timed. For the Lisp programs, the

compiled code was executed from a clean environment; that is, from a newly started Lisp environ-

ment to avoid any side effects from earlier activity in the environment. A sub-study was to investi-

gate the effects of optimization and increased memory allocation on the runtime of the Lisp numeric

benchmarks on stock hardware using the Lucid Lisp compiler on the DEC 8800. This compiler does

respect type declarations.

Additionally, a profiler program was written in Lisp to profile the Lisp programs. A profiler is a

program that provides a trace of another program's execution pattern. It reads a program, tabulates

the static count of the functions used, and writes a profiled program with statements inserted at

appropriate places to monitor program execution. The profiled program can then be compiled and

executed to obtain dynamic counts of the execution pattern and operation types actually executed.

Static and dynamic counts are useful for applying optimization techniques. The profiler developed

for the results presented in this report was designed to monitor user defined functions and the two

commonly used loop controls, the cond and if special forms.

8.0 EVALUATION RESULTS AND ANALYSIS

8.1 Whetstone

8.1.1 Profiler analysis- The profiler dynamic count reveals that the major computations are

array referencing and floating-point operations. There are approximately a half million array refer-

ences, one million floating-point operations, and a quarter-million integer operations. The main

module spends time in integer computation and subroutine calls (150,000). Two subroutines do array

referencing and floating-point operations, and a third performs only floating-point operations.

14

In Lisp,arrayreferencingis accomplishedby pointersto theactualvalue.Indexboundchecking
andrecalculation,andaccessto floatingpoint numbers,areverytimeconsuming.Thetype
declarationsandinline codingof functionsspeedupexecution.

8.1.2 Program execution- Timing results are shown in table 8.1. The primary effects on behav-

ior are number representation, type checking, array referencing, and the function calling scheme

(ref. 1) (section 2.3); a secondary factor is gc because floating-point operations create intermediate

objects and thus garbage. A large memory reduces gc. A floating-point coprocessor also improves

performlmce.

Representation of numbers as immediate data eliminates boxing and unboxing thereby reducing

the number of instructions to execute numeric operations. Data type checking using the tagged

instruction format requires fewer instructions when type checking is done by hardware in parallel

than are required when type checking is emulated through software. Indirect array referencing and

array bounds checking on every access takes several instructions. Program execution is accelerated

on systems where only one instruction is required for array accessing.

Machine

name

Language

Whetstone e

r

Table 8.1. Timings in seconds) of the Lisp version of Whetstone

Symbolics MIPS R2000 Compaq I IIM SUN4 DEC8800
386/20e I

S C-Lisp IBUKI C-Lisp Lucid C-Lisp I C-Lisp Allegro C-Lisp Allegro C-Lisp Lucid C-Lisp

17.54 72.00 78.87 30.55 71.00 35.83

17.29 34.00 70.01 14.80 30.48 71.00 34.84

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

Execution of the Ada version of Whetstone is summarized in table 8.2. The significant

contributing factors are the Ada compiler and the processor.

The Verdix Ada compiler was able to produce code that can run efficiently on the MIPS. The

behavior on the DEC 8800 is comparable with MIPS. Ada on the Symbolics did not produce

efficient code. It is difficult to quantify the code generated by Alsys and DDCI compilers on

Compaq 386. A better way to understand their behavior would be to use these compilers on other

systems to study the execution. The i386 processor and i387 floating-point coprocessor on the

Compaq 386 have a considerable effect. Using a structured language like Ada, a program with a mix

of scientific operations can execute well on stock hardware. The Symbolics Ada compiler does not

produce efficient code so that the relative performance is not really comparable.

Table 8.2. Timings (in seconds) of the Ada versions of Whetstone

Machine name Symbolics MIPS R2000

Language Symbolics Ada Verdix Ada

Whetstone 53.60 2.67

Compaq 386/20e

Alsys Ada DDCI Ada

14.28 19.4

DEC 8800

Telesoft Ada

3.90

15

8.2 Linpack

8.2.1 Profiler analysis- This program executes three and a half million array referencing opera-

tions. Three million operations are in one iteration block; the remainder are distributed throughout

the program.

8.2.2 Program execution- The timing results for the linpack's execution are shown in table 8.3.

The factors that influence the execution are integer computation and array operations that require

memory access.

This benchmark shows that Lisp programs that perform array referencing and floating-point

operations execute differently on stock hardware and on Lisp machines, because of indirect array

referencing and boxing and unboxing of numbers. Executing this program provides a measure of

these factors of a system.

Machine

name

Language S C-Lisp

Linpack er I 138.07130.00

Table 8.3. Timings

Symbolics MIPS R2000

IBUKI C-Lisp
460.00

448.52

in seconds) of the Lisp version of Linpack

Compaq IIM SUN4 DEC8800
386/20e

LUCID C-Lisp C-Lisp Allegro C-Lisp AIle_roC-Lisp LUCID C-Lisp

827.30 398.5 549.00 657.26

809.12 80.00 384.2 549.00 657.70

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

The execution of the Ada version of the program depends on the compiler and the processor

(table 8.4). The Verdix Ada running on the MIPS executes this mix of operations effectively. The

Symbolics Ada compiler is not very effective. The strong typing in Ada language contributes to

efficient execution of array referencing operations on stock hardware machines.

Table 8.4. Timings 0n seconds)gf theAd_yersion of Linpack

_lachine Name Symbolics MIPS R2000 Compaq 386/20e DEC 8800

.,anguage S),mbolics Ada Verdix Ada Alsys Ada DDCI Ada Telesoft Ada

?rogram linpack 299.6 29.0 71.5 80.0 50.0

Table 8.5. Timings (in seconds) of the Lisp version of Linpack

Optimization

Generic

With declarations

With declarations

and memory expansion

with optimization :: _:-: : i :

Machine

DEC 8800

Lucid

Elapsed

Time

657.()

157.0

81.0

CPU time GC time

657 170

157 47

81 0.0Common

Lisp

Speed up

1.0

4.2

8.0

16

8.3 Cfft2dm

8.3.1 Profiler analysis- The program spends Considerable time in two tail-recursive functions,

which execute addition and subtraction of complex arithmetic operations. This conforms with the

program analysis. A function is tail-recursive if the value returned by the function is the value of the
recursive call within the function.

8.3.2 Program execution- In this program, the majority of computations require memory

allocation because temporary objects are created during computation. These temporary objects

immediately become garbage when the old value is no longer needed. A significant amount of time

is spent in gc to free memory. Therefore the behavior of the program is affected by the amount of

memory and the gc algorithm in a system.

Excluding gc time, the program executes similarly on all the systems (table 8.6). The results can

be explained from an analysis of the gc times. The IIM has a large memory and a very efficient gc

algorithm. The time spent for gc is 50 sec on the SUN-4, 593 sec on the DEC 8800 running Lucid

Common Lisp, and 69 sec running Allegro Common Lisp. On the Compaq 386, there were many

gcs. On the Symbolics, 57 seconds are spent doing page faults, page breaks, and other routines and

gc was not measured.

Including gc time, the program executes very differently (table 8.6). The behavior of Lisp

programs that require dynamic memory allocation while executing complex single-precision,

floating-point arithmetic depends on the size of the memory and the gc strategy.

This program can be used to obtain a combined measure of both gc and complex single-

precision, floating-point arithmetic computations of a system.

Machine Symbolics

name

Table 8.6. Timings (in seconds) of the Lisp version of Cfft2dm

MIPS R2000 IIM SUN4 DEC8800

Language S C-Lisp

Cfft2dm e 358.40

r 305.40

[BUKI C-Lisp

211.00

210.00

Compaq

386/20e

Lucid C-Lisp

991.45

972.01

C-Lisp Allegro C-Lisp

315.6

44.00 310.6

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

Allegro CLisp Lucid C-Lisp

589.07 890.81

538.00 857.34

The behavior of the Ada version of this program is similar to that of the Whetstone and Linpack

Ada versions. The program performed well in Verdix Ada running on the MIPS and poorly in

Symbolics Ada (table 8.7).

17

Table 8.7. Timings (in seconds) of the Ada version of Cfft2dm

Machine Name Symbolics MIPS R2000 Compaq 386/20e DEC 8800

Language Symbolics Ada Verdix Ada Alsys Ada DDCI Ada Telesoft Ada

Program 320.7 8.67 45.26 64.0 25.60

Cfft2dm

Table 3.8, Timings (in seconds) of the Lisp version of Cfft2dm with optimization.
Optimization Machine Elapsed Time CPU time GC time Sp_eed up

Generic DEC 8800 614.3 264.0 592.8 1.0

With memory expansion Lucid 371.0 297.0 74.0 1.7
With declarations Common 276.0 205 71.0 2.2

and memory expansion Lisp

8.4 Cholskym

8.4.1 Profiler analysis- There are approximately ninety thousand random number computations

that mainly involve integer computation. In addition, there are two million array references and two

million floating-point additions, subtractions, and multiplications of array elements. Therefore, the

program spends most of its time doing array referencing and floating-point computation.

8.4.2 Program execution- The factor that determines the execution of the initialization phase of

the program is the random number generator function used in the program. This is reflected in the

execution of the initialization phase of the program (table 8.9). The random number generator uses a

32-bit integer format. When run on some of the stock hardware, Lisp uses a 29-bit integer format.

Hence, these random numbers are bignums on these machines and their generation requires

CONSing. On machines with 32-bit integer format, these are fixnums or single-floats.

The major factors that affect the execution of the loop are number representation, type checking,

arithmetic, and array referencing operations. On stock hardware machines, different Lisp implemen-

tations behave similarly. The combined effect of these factors have similar impact on the execution.

On the Lisp machines such as the IIM and Symbolics, microcoded arithmetic operations (which take
more instructions than built-in arithmetic functions described in section 2.3.1) seem to offset the

favorable execution factors like array referencing.

The loop is a clean test of floating-point computation, so this program can be used as a good

measure of the floating-point performance of a system, because there is no user defined function

calling overhead.

18

Machine name I

Language

Cholskym

loop

Cholskym
initialization

Table 8.9.

Symbolics

S C-Lisp

e 271.0

r 269.0

Timings (in seconds) of the Lisp version of Cholskym

e 118.0

r 99.0

MIPS R2000

IBUKI C-Lisp

113.0

112.0

70.0

70.0

Compaq
386/20e

Lucid C-Lisp

434.8

419.8

152.5

150.8

IIM SUN4

C-Lisp Altegro C-Lisp

126.0

194.8 82.0

30.0

231.9 400.0

212.1 412.0

DEC8800

AllegroCLisp Lucid C-Lisp

145.1 136.43

137.8 126.00

418.54

389.44

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

For Ada, an optimizing compiler, strong typing-and a fast hardware Configuration are the major

contributing factors of execution. Clearly, for floating-point computations, Lisp is inefficient com-

pared with Ada, and the difference in performance is enormous (table 8.10).

Table 8.10. Timings (in seconds) of the Ada version of Cholskym

Machine Name Symbolics MIPS R2000 I Compaq 386/20e

Language Symbolics Ada Verdix Ada l Alsys Ada DDCI Ada

Program cholskym s 50.0 s 6.75 l d 27.90 d 32.0

I s 25.05 s 26.0

d = double precision, s = single precision

DEC 8800

Telesoft Ada

s 12.20

Table 8.11. Timings (in seconds) of the Lisp version of Cholskym with optimization

Optimization Machine Elapsed Time CPU time GC time Speed Up
Generic DEC 8800 634.0 459.5 102.6 1.0

With declarations Lucid 107.0 91.0 16.1 5.1

With declarations and memory expansion Common Lisp 104.0 88.13 0.0 5.1

8.5 Boyer

8.5.1 Profiler analysis- The dynamic counts indicate that Boyer spends time executing recur-

sive function calls and CONSing symbols and lists. Lists in Lisp are recursive in nature. Dynamic

counts confirm the program's main goal: to test the list implementation. These tail-recursive function

calls can be transformed into iterations for faster e_xec_ution.

8.5.2 Program execution- This program executes similarly on the SUN-4, IIM, MIPS,

DEC 8800, and more slowly on the Compaq 386 and Symbolics (table 8.12).

The function equal is used to compare a symbol and a constant. Atoms and CONS are the only

types this program uses. This reduces type checking considerably in the BiBOP scheme. A large

amount of CONSing is done, which is typical of list operations in Lisp. Because this requires

constant allocation of new memory cells, a large memory changes the behavior of this program,

because garbage collection may not be required during execution. Because this program has a

number of tail-recursive function calls, a Lisp implementation that performs tail-recursion

optimization improves execution.

19

Table 8.12. Timings

Machine Symbolics MIPS R2000

name

Language Symbolics C-Lisp IBUKI C-Lisp

Boyer e 31.0 13.0
r 25.49 7.4

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

Compaq IIM

386/20e

Lucid C-Lisp C-Lisp

27.3

11.31 6.0

in seconds) of the Lisp version of Boyer

SUN-4 DEC8800

Allegro C-Lisp AllegroCLisp Lucid CLisp

7.54 8.70 10.75

5.918 8.30 9.88

The behavior of the Ada version of Boyer depends on creating and searching large linked lists.

The timing results are given in table 8.13. Because the list of axioms is large and requires a large

memory, this program did not execute on the Compaq 386 because of memory constraints. Program

restructuring is required to run on the Compaq 386. Further, CONSing also requires memory alloca-

tion. Memory allocation is done continuously during the execution of the program. This indicates

that systems with a large memory are required to run programs with large linked-list operations.

Therefore, Ada may not be efficient for performing list operations similar to Lisp list operations.

Table 8.13. Timings (in seconds) of the Ada version

of Boyer

Machine Name

Language

Program Boyer

Symbolics MIPS R2000 DEC 8800

Symbolics Ada Verdix Ada Telesoft Ada

808.6 23.0 57.0

tr

8.5.3 Effect of optimization- Memory expansion speeds up execution by a factor of 2.7. Mem-

ory size has a great impact on the type of operations Boyer performs, for example, CONSing and

function calls. Because symbols are the only type of objects used in computation, type declarations

have no effect. The timing results are shown in table 8.14.

Table 8.14.

Optimization

Generic

Timings (in seconds) of Lisp version of Boyer with optimization

Machine Elapsed time CPU time GC time Speed uj_

DEC 8800 10.75 9.9 2.6 1.0

memory expansion Lucid C-Lisp 4.9 4.8 0.0 2.7

8.6 Browse

8.6.1 Profiler analysis- Dynamic counts indicate that this program spends most of the time

executing one block of code, testing for the atomic property, performing about two hundred thousand

character comparisons, and CONSing. The program has one tail-recursive call and many recursive

function calls. This confirms the program analysis.

8.6.2 Program execuiion- An efficient compiler, a large memory allocation, a fast memory

referencing scheme, and optimization of recursive function calls are the major influences on the

execution of this program. Character comparison and type checking also influence the execution.

20

Machine

name

Language

program e
Browse r

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

Table 8.15. Timings (in seconds) of the Lisp version of Browse

Symbolics MIPS R2000 Compaq IIIM [SUN4 DEC8800

386/20e [1

Symbolics C-Lisp IBUK !C-Lisp Lucid C-Lisp C-Lisp AllegroC-Lisp Allegro C-Lisp LucidC-Lisp

18.52 13.00 22.53 6.24 24.38 12.53

11.71 7.6 14.63 6.8 6.12 21.00 11.15

The performance of the Lisp version of Browse is better than that of the Ada version (table 8.16).

Character comparisons and extensive search operations proceed through linked lists. This program

requires dynamic memory allocation and generates garbage. Without gc, a large memory is needed

to execute Browse. On the Compaq 386, because of memory constraints, this program did not run.

These results indicate that a gc algorithm is necessary in Ada, and Lisp is a better choice for

executing these types of operations.

Table 8.16.

Machine Name

Language

Program Browse

Timings (in seconds) of the Ada ver-
sion of Browse

S_mbolics MIPS R2000 DEC 8800

Symbolics Ada Verdix Ada Telesoft Ada

856.4 56.0 66.0

8.6.3 Effect of optimization- The effect of type declaration is insignificant. However, with

memory expansion, the performance improves considerably, because of decreased gc. Therefore, a

large memory is an advantage for performing pattern matching and exhaustive sequential search

operations. Timing results are given in table 8.17.

Table 8.17. Timings (in seconds) of L_p version of Browse with optimization

Optimization Machine
Generic DEC 8800

With declarations Lucid

With declarations and memory expansion

Elapsed time CPU time
12.5 11.6

12.0 I1.2

Common Lisp 8.6 7.6

GC time Speed Up
3.9 1.0

3.9 1.0

0.0 1.5:

8.7 Traverse

8.7.1 Profiler analysis- This program executes more than three million tail-recursive function

calls, performs logical comparisons, and switches the logical sense of the object's value embedded in

the structure

8.7.2 Program execution- The factors responsible for the performance are accessing defstruct

objects in random distribution and handling of tail-recursive function calls. Though memory access

in the SUN-4 is very effective, this is not reflected in the performance of this program (table 8.18). It

follows that Allegro Common Lisp does not handle defstruct constructs very well. This is also true

21

for DEC8800runningAllegro CommonLisp; furthermore,thisprogramexecutesbetteron the
DEC8800runningLucid CommonLisp. Symbolicsdoesnotoptimizetail-recursioncalls.

Theanalysisof thetiming resultsshowsthata measureof defstruct construct implementation can

be obtained using this program.

Machine Symbolics MIPS R2000 Compaq

name 386/20e

Language Symbolics C-Lisp IBUKI C-Lisp LucidC-Lisp

program e 40.05 24.00 22.53
Traverse r 39.70 24.30 22.53

e = elapsed real time in seconds, r = machine run time in seconds.

Table 8.18. Timings (in seconds) of the Lisp version of Traverse

IIM SUN4 DEC 8800

C-Lisp Allegro C-Lisp Allegro C-Lisp Lucid C-Lisp

32.12 97.8 21.9

16.00 30.96 97.8 21.9

P

The compiler and the hardware architecture strongly influence execution of the Ada version

(table 8.19). The record type in Ada, which is equivalent to the defstruct construct in Lisp, is used to

create the nodes of the graph. The operations are accessing the components of records and testing

and setting their values. The Ada version executes these operations well. Symbolics Ada is not very

effective. A program in Ada or Lisp, executing structure operations, can perform well on both stock

hardware and on fast systems.

Table 8.19. Timings (in seconds) of the Ada version of Traverse

Machine Name Symbolics MIPS R2000 Compaq 386/20e DEC 8800

Language Symbolics Ada Verdix Ada Alsys Ada DDCI Ada Telesoft Ada

Program traverse 153.0 30.0 21.47 .'- 37.0

8.7.3 Effect of optimization- Memory expansion has no effect, since Traverse does not

generate garbage to be collected. There are some fixnum operations, and type declaration of these

fixnum provides some performance improvement. The timing results are summarized in table 8.20.

Table 8.20. Timings (in seconds) of the Lisp version of Traverse with optimization

Optimization Machine CPU time GC time Speed Up
Generic DEC 8800 22 0.0 1.0

With declarations Lucid 19 0.0 1. I

With declarations and memory expansion Common Lisp 19 0.0 1.1

8.8 Triangle

8.8.1 Profiler analysis- One main function is called recursively about six million times. This

function performs array referencing, and comparing and changing the array values. This code is

fairly straightforward.

22

8.8.2 Program execution- The factors that influence the performance are array referencing and

type checking. The timing results obtained (table 812I) are mainly due to the efficiency of array

indexing and access. Additionally, on stock hardware, type checking through software takes time.

A Lisp program doing one-dimensional array access can execute well if the system, stock hard-

ware, or Lisp machine has efficient array referencing and compiler array operation code generation.

Table 8.21.

Machine Symbolics
name

Language Symbolics C-Lisp

program e i 25.63
Triangle r 125.63

Timings (in seconds) of the Lisp version of Triangle

MIPS R2000 Compaq IIM SUN4 DEC8800
386/20e

IBUKI C-Lisp Lucid C-Lisp C-Lisp AllegroCLisp Allegro CLisp Lucid C-Lisp

159.00 331.48 65.20 77.0(252.92 234.6

158.21 331.48 75.3 247.0(234.4

e = elapsed real time in seconds, r = machine run time (cpu) in seconds.

Contributing factors for the Ada version are the compiler and the system hardware (table 8.22).

The Ada version of the program executes better than the Lisp version because of strong typing in

Ada.

Table 8.22. Timings (in seconds) of the Ada version of Triangle

Vlachine Name Symbolics MIPS R2000 Compaq 386/20e DEC 8800

..anguage Symbolics Ada Verdix Ada Alsys Ada I DDCI Ada Telesoft Ada

_rogram triangle 425.2 86.0 84.0 I 102.0 92.0

8.8.3 Effect of optimization- Triangle performs integer comparisons and array references.

Arrays are declared as simple vectors and integers as fixnums. For arithmetic operations, type decla-

rations are essential to speed up execution. The dynamic bytes CONSed remain constant. There is no

temporary creation or destruction of objects to cause gc. Timing results are given in the table 8.23.

Table 8.23. Timings (in seconds) of the Lisp version of Triangle with optimization

3ptimization Machine Elapsed time

234.6

_¢ith declarations and memory expansion Common Lisp

CPU time GC time Speed Up

1.03eneric DEC 8800 234 0.0

_Vith declarations Lucid 52.4 52 0.0 4.5

52.4 52 0.0 4.5

8.9 AutoclassII

8.9.1 Profiler analysis- The program spends most of its time in array referencing and executing

floating-point operations, while collecting and computing weights. The profiler results show that the

number of computations are directly proportional to the product of the number of cycles, partitions,

variable types, and data elements. The results referred to are for 1 and 2 cycles with 531 cases of

data, and for 2 cycles with 50 cases of data. Each c_se has 103 elements of data. In the function

collect-weights for one-cycle-one-partition and one data element, the block of code executes

23

95 times,becausethereare95 floating-pointelementsoutof 103in eachcaseof data.Hence,this
programprovidesthecountfor arrayreferencesandfloating-pointoperations,for agivenexecution
setup.The functionsMAX+, log-gamma, log-gamma-dataum-prob, sigms-sq, and safe-exp can be

coded inline for faster execution, because some time is spent in these functions.

8.9.2 Program execution- The factors that affect the execution speed of floating-point

arithmetic in Lisp are type checking, the number representation scheme, presence of a floating-point

coprocessor, gc strategy, and memory. This program generates a considerable amount of garbage,

due to number CONSing. A moderate amount of time is spent in gc. A good gc algorithm and a large

memory will decrease the gc time. The indirect Lisp array referencing, emulated through software,

affects the program execution.

For Lisp programs performing a large number of array referencing and floating-point operations,

essential features are immediate number representation, fast array accessing, good gc algorithm, and

large memory.

Table 8.24.

Machine name

Language

c2, n50 e

r

c l,n 531 e

r

c2, n 531 e

r

Timings (in seconds) of the Lisp version of AutoclassII

Symbolics

S C-Lisp

48.14

47.81
T,

Compaq IIM SUN4
386/20e

Lucid C-Lisp C-Lisp Allegro C-Lisp

252.72 I 168.346

235.90 29.10 162.684

131.3

203.0

203.96 2895.67

203.23: 2844.13

315.93 4805.91

305.93 4719.04

DEC8800

Allegro C-Lisp

340.59

294.44

LucidC-Lisp

234.84

229.82

847.58 1750.8 1939.38

843.16 1616.4 2017.37

1402.84 2922.4 3192.27

1396.80 2612.8 3320.89

c = cycle, n = number of data elements

The Ada version of AutoclasslI is a good program to measure the floating-point performance of

stock hardware. The factors that affect the execution are the compiler and the hardware. Strong

typing in Ada allows the program to perform better than the Lisp version (table 8.25). On the MIPS,

floating-point operations are fast. The DEC 8800 floating-point accelerator is relatively slow. The

Compaq 386 is a smaller system compared with the others.

Table 8.25. Timings

Machine name S_,mbolics

Language S_,mbolics Ada

: 2, n 50 630.00

: 1, n 531 3867.00

."2, n 531 ---

c = cycles, n = number of data elements

in seconds) of the Ada version of AutoclassH

| MIPS R2000 Compaq386/20e

Verdix Ada Alsys Ada DDCI Ada

36.00 95.57 102.0

DEC8800

Telesoff Ada

75.65

210.00! 536.00 -- 497.20

340.00 _ 839.98 -- 657.55

t

8.9.3 Effect of optimization- As the program was written, the only major effect was memory

expansion because of decreased gc. In general, a real application program executing a large number

24

of floating-pointoperationsneeds datatypedeclarations,immediatefloating-pointrepresentation,
anda largememoryfor fastexecution.Thetiming resultsareprovidedin table8.26.

Table 8.26. Timings (in seconds) of the Lisp version of AutoclassH with optimization

Optimization Machine [Elapsed Time CPU time GC time Speed Up

Genetic DEC 8800 3194 3320 1826 1.0

With declarations Lucid 3539 3569 2129 1.0

With declarations and memory expansion Common Lisp 1793 1661 216 2.0

9.0 OTHER CONSIDERATIONS

Besides factors discussed in earlier sections, two other considerations are important. First, the

actual design of the benchmark programs, and second, optimization, both in program coding and

compiler optimizations.

9.1 Design of Benchmarks

Benchmark programs provide the only means to conduct objective evaluation of systems. These

programs can be developed, or they can be selected from existing programs. Benchmark programs

can be implemented to reflect different approaches to solve a problem. To select appropriate

programs, knowledge about the system implementation is required.

Selecting a known application or an existing program as a benchmark requires a description and

analysis of the program, a profile of the program to determine its features, and a careful elimination

of features not desired, without sacrificing the effect. The AutoclassII is an example of an applica-

tion used as a benchmark. Several types of programs, based on a particular need, can be developed to

test an implementation.

A well-defined statement of the problem to test an implementation can be used. In that case, the

problem needs to be short, not very complex, and capable of running on several systems. It can be

implemented as a program in different ways and should be profiled to determine the implementation

features it actually tests. The result is analyzed to fine tune as appropriate. Profiling a program is an

effective way of determining the features it tests.

The Symbolic Triangle program and the Boyer program (discussed in sec. 3) belong to this

category. The Triangle program can be implemented either as an array referencing program, in rule-
based shells and tool kits such as KEE (Knowledge Engineering Environment), or in Lisp and Prolog

as a rule-based deductive system. The general problem is a well-defined exhaustive search. The

general problem of the Boyer program is also well defined, and the implementation it tests is

CONSing and function calls.

For a comprehensive coverage of the important computational functions, large programs that

have the combination of characteristics of the problem are useful. To develop these programs, all the

25

requiredcharacteristicsto betestedareselectedandcombinedintoa program.Theprogramis pro-
filed to getthedistribution and is modified as required. The Whetstone program is a combination of

several scientific computational features.

A composite program having a set of features is desirable when a combined effect of the features

is required. A combination of different problems can be used to implement different features, or a

single problem can also be selected and implemented to reflect different features. However, no

composite program can capture all implementation features.

A set of programs, each measuring specific features of the implementation is necessary, for

applications planning, where a detailed knowledge of the performance of individual features is

required. This involves isolation of features to be measured, achieving measurement, accuracy, and

repeatability. A more accurate measurement means eliminating underlying operating system inter-

face from time slice, paging, etc. The University of Michigan and the JSC Ada programs are

examples of this type of programs (refs. 6 and 7).

9.2 Optimization

The compiler plays a major role in optimizing a Lisp program to decrease execution time. Addi-

tionaUy, several lisp coding guidelines can be applied to improve the runtime speed of lisp programs.

The standard for Common Lisp does not require optimization. Thus, optimization could not be used

to compare the various versions of Lisp used. Instead, a study of the effect of optimization was

performed on a DEC 8800 running Lucid Common Lisp. Some guidelines for lisp coding for

runtime speed optimization are:

1. Use optimization declarations to emphasize speed.

An optimization declaration controls the type and amount of optimization a compiler

can perform. The variables are:

• the speed at which compiled code runs,

• the level of Space the compiled code needs,

• the speed at which the code is compiled, and

• the level of safety (error checking) retained during compilation.

The default values for optimization that define the execution environment and their effects are

shown in table 9.1. The integer value of these variables represents the level of optimization.

D

26

Common Lisp

Symbolics

Lucid

Allegro

IBUKI

Table 9.1. Default settings of system implementations

Compilation Space Speed Safety Effects

Speed

unknown 1 3 1 Compiler ignores these declarations

O_ Allows use of optimizations that may decrease

compilation speed.

Imposes no size constraint on the compiled code.

Turns off all the restrictions that affect speed.

1 Indicates that functions with fixed number of arguments

are checked on entry for correct number of arguments.

Automatic Defined by the combination of other three factors.

Turns off in-line coding of safe access functions, which

may decrease the size of compiled code.

Does not turn off any restrictions that affect speed to

preserve robustness of the compiled code.

1 Enables argument count and interrupt checking.

Not defined.

Imposes no constraint on the size of the compiled

code, which means that the compiled code may be

larger and faster.

Turns off optimization switch of the C compiler that

affects speed.

0 No run time error checking.

2. Specify data types of arguments and returned values of Lisp expressions.

°

A declaration is a statement that supplies information about a Lisp program to the

Lisp environment. These advise the compiler so it may produce faster, efficient code.

This particularly applies to type declarations, which specify the data types of the values

of Lisp expressions, and it eliminates type checking.

Use explicit type declarations for floating-point and fixnum operations to increase speed.

Type declarations added to arithmetic operations can make the operations signifi-

cantly faster by reducing type checking and type dispatching overhead of a function call.

For fixnum type arguments and values, the compiler can directly code applications of

arithmetic operators, making fixnum arithmetic fast. The local variables that are declared

as floating-point type are allocated in a special block on the stack or in registers. These

variables are not gc.

27

4. Usesimplearraysandsimplevectorsto increasearrayaccessefficiency.

Theelementtypeandthenumberof dimensionsof thearrayshouldbedeclared.

5. Codesimplefunctionsin-line.

This is arequestto thecompilerto generatemachinelanguagecodefor a functionto
eliminatefunctioncalling overhead.

6. Usemacros,loopunrolling,andtail-recursivefunctions.

A tail-recursivefunction is afunctionthatcallsitself asthe lastoperation.Thebody
of atail-recursivefunctioncanbeconvertedinto iteration;thiseliminatestheneedto pre-
servetheexecutionenvironmentof previouscalls.Also, if the iteration is straightforward,
thebody of theblock is replacedwith severalcopiesof thebody.This is calledloop
unrolling, andreducestheoverheadof looping.

V

10.0 SUMMARY OF RESULTS

Knowing what is being measured requires a thorough examination of the program. Such knowl-

edge can be obtained from running the program through the profiler to obtain static and dynamic

counts of functions used, determining the operations it mainly executes, and analyzing execution

time. Applying optimizing techniques enables study of what is required to improve the performance.

In this study to evaluate the performance of Ada and Lisp programs, it is evident that Lisp is not

the fight choice for numeric computation, and Ada is not the fight choice for performing Lisp list-

like operations.

For programs written in Lisp, the important aspects for effective performance are a large memory

and the declaration of types, which is especially true for numeric operations. Immediate representa-

tion of numeric data and a fast array referencing scheme are also essential. By incorporating these

features, a Lisp program can be made to execute efficiently on stock hardware. Lisp is not a good

choice for extensive scientific computations.

10.1 Ada Version Implementation of the Symbolic Set

Programs written in Ada, which involve large linked-list operations executing in a dynamic

environment, perform poorly and may fail to execute. Boyer requires the creation of a large linked-

list of records that requires memory allocation. The CONSing performed also requires memory

allocation. Almost always, the problem of gc arises with CONSing. Implementing gc increases the

complexity of the computation. This program did not run on the Compaq 386 because available

memory was insufficient for representing the large linked list. The program can be restructured to

run on a Compaq 386 by breaking the large linked list into several small ones and relinking them.

28

This will notsolvetheproblementirelywhenthemajorityof computationinvolvesmemory
allocation,andasystemcancrashbecauseof insufficientmemory.A largenumberof linked list
operationsandCONSingdemandalargememory.In thisprogram,althoughtherearecharacter
comparisonoperations,it amountsto testingthememorysizeusingthenew allocator. Therefore,

this program is not a good measuring tool of any Ada features.

Browse, which is similar to the Boyer category, uses small linked lists of records. It performs a

large number of CONSes while searching through these linked lists in the exhaustive pattern match-

ing. A considerable amount of garbage is generated. This program also did not execute on the

Compaq 386 because of insufficient memory. A gc routine needs to be written to execute on the

Compaq 386. This is a difficult task, so Ada is not a practical choice for performing exhaustive

pattern matching using Lisp list-like operations. A relative performance measure of memory alloca-

tion and a search of the linked list of records can be obtained by running this program on systems

with a large memory.

Triangle executes one-dimensional array references and recursive function calls. Recursive func-

tion calls require a large, high-speed stack for efficient execution. The stack operations are system

dependent. This program provides a measure of the combined effects of these operations.

Traverse initially allocates memory for creating an initial linked list of records, generates garbage

while creating a randomly distributed linked list out of the initial list, and uses recursive function

calls to Traverse through this randomly distributed list where it accesses the components of records.

As recursive function calls involve stack operations that are system dependent, it is difficult to

quantify the performance of any one feature of Ada. However, a measure of the combined effect of

accessing records in a random distribution and recursive function calls can be obtained by timing the

traversal section only.

Ada programs of the numeric set provide a good measure of their respective features in an imple-

mentation.

10.2 Lisp Version Implementation of the Numeric Set

The optimization results of the Numeric Set benchmark programs (tables 8.3, 8.5, 8.8, and 8.11)
lead to the conclusions:

1. A compiier that heeds declarations saves significant time by speeding up calculations through

elimination of type checking, and also significantly reduces gc time as well. This is because many

intermediate calculations are done in the stack, rather than as general objects in dynamic memory.

2. Declarations improve complex number arithmetic relatively little because of the creation of

temporary results in dynamic storage.

3. Expanding the memory has a profound effect on the overall execution, more so than including

declarations.

29

When theprogramsWhetstone,Linpack,andCholeskyarerunwith memoryexpandedbefore
execution,theydonot perform(or spendtimedoing)gc. If runwith expandedmemoryandall the
typedeclarations,Linpack,Cholesky,andWhetstonecanprovideameasureof therespective
featuresthey aredesignedto testin aLisp implementation.Despitememoryexpansionanddeclara-
tions, theCfft2dm programstill consumestimedoinggc.This,with creationof temporaryresults
from complexarithmeticoperations,amongotherLisp systemoverhead,makesanexclusive
measureof complexnumberarithmeticnearlyimpossible.However,Cfft2dm still providesan
overallmeasureof thesearithmeticoperationsin aLisp implementation.

REFERENCES

1. Gabriel, R. P.: Performance and Evaluation of Lisp Systems. MIT Press 1985.

2. Steel, G. L., Jr.: Common Lisp: The Language. Digital Press, 1984, pp. 11-53.

3. Moon, D. A.: Architecture of the Symbolics 3600. IEEE 12th Intl.Symp.on Computer Architec-

ture, June 1985, pp. 76-83.

4. Garner, Robert B.; et al.: The Scalable Processor Architecture(SPARC). Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, CA 94043.

5. Harbaugh, Sam; and Forakis, John A.: Timing Studies Using a Synthetic Whetstone Benchmark.

Ada Letters, Vol. IV, No. 2, Sep/Oct 1984.

6. Dimorier, Keith L.: ADA Software Benchmarking. CSDL-R-2067, NASA, May 1988.

7. Clapp, R. M.; et al.: Toward Real-Time Performance Benchmarks for Ada. RSD-TR-12-86,

University of Michigan, Department of Electrical Engineering and Computer Science, Center

for Research on Integrated Manufacturing.

8. Baily, D. H.; and Barton, J. T.: The NAS Kernel Benchmark Program. NASA TM-86711,

August 1985, NASA Ames Research Center, Moffett Field, CA 94035.

9. Cheeseman, P.; et al.: An Approximation to Bayesian Classification. Information Sciences

Division, NASA Ames Research Center, Moffett Field, CA 94035.

10. Kleiman, S. R.; and Williams, D.: SunOS on SPARC. Sun Microsystems, Inc., 2550 Garcia

Avenue, Mountain View, CA 94043.

11. Galant, David C.: Basic Mathematical Function Libraries for Scientific Computation.

NASA TM-102256, NASA Ames Research Center, Moffett Field, CA 94035.

12. Katevenis, M.: Reduced Instruction Set Computer architectures for VLSI. Ph.D dissertation,

Computer Science Div., University of California, Berkeley, 1983.

9

30

13. Agrawal,Anant;et al.: SPARC:An ASIC Solutionfor High PerformanceMicroprocessor.Sun
Microsystems,MountainView CA.

14. Sobalvarro,PatricG.: A lifetime-BasedGarbageCollectorfor Lisp SystemsonGeneralPurpose
Computers.B.S.Thesis,ElectricalEngineeringandComputerScienceMIT, Supervisor
RobertH. Halstead,Jr.

31

Form Approved

REPORT DOCUMENTATION PAGE oM8No.o7o4-o188

Public reportingburden for thiscollection of informationiS estimated to average 1 hour per response, inctuding the time for reviewinginstructions, searchingexistingdata sources,
gathering and maintainingthe data needed and comptetingand reviewingthe collection of information, Send comments regardingthis burdenestimateor any other aspect of this
collection 0f|nformation, Tncluding suggestions for reducing this burden, 1o WashingtonHeadquarters Services,Directorate for informationOperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget,Paperwork ReductionProject(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Analysis of a Benchmark Suite to Evaluate Mixed Numeric and

Symbolic Processing

AUTHOR(S)

Bharathi Ragharan and David Galant

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

506-59-31

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-92023

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-103907

11. SUPPLEMENTARY NOTES

Point of Contact: David Galant, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000;

(415) 604-4851

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Max�mum 200 words)

The suite of programs that formed the benchmark for a proposed advanced computer is described and analyzed.

The features of the processor and its operating system that are tested by the benchmark are discussed. The computer

codes and the supporting data for the analysis are given as appendices.

14. SUBJECT TERMS

Benchmarking computer systems, Computer systems performance evaluation, Lisp

machine evaluation, Benchmark analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

36
16. PRICE CODE

A03

20, LIMITATION OF ABSTRAC]

Standard Form 298 (Rev. 2-89)
Prellcr_bed by ANSI Std. Z39-18

9

