
And Now for Something Completely Different:
Running Lisp on GPUs

Tim Süß∗, Nils Döring†, André Brinkmann†
Department of Computer Science∗

Zentrum für Datenverarbeitung†

Johannes Gutenberg University Mainz
Mainz, Germany

{suesst, doeringn, brinkman}@uni-mainz.de

Lars Nagel
Department of Computer Science

Loughborough University
Loughborough, UK

L.Nagel@lboro.ac.uk

Abstract—The internal parallelism of compute resources in-
creases permanently, and graphics processing units (GPUs)
and other accelerators have been gaining importance in many
domains. Researchers from life science, bioinformatics or ar-
tificial intelligence, for example, use GPUs to accelerate their
computations. However, languages typically used in some of these
disciplines often do not benefit from the technical developments
because they cannot be executed natively on GPUs. Instead
existing programs must be rewritten in other, less dynamic
programming languages. On the other hand, the gap in program-
ming features between accelerators and common CPUs shrinks
permanently. Since accelerators are becoming more competitive
with regard to general computations, they will not be mere
special-purpose processors in the future. It is a valid assumption
that future GPU generations can be used in a similar or even
the same way as CPUs and that compilers or interpreters will
be needed for a wider range of computer languages.

We present CuLi, an interactive Lisp interpreter, that performs
all computations on a CUDA-capable GPU. The host system is
needed only for the input and the output. At the moment, Lisp
programs running on CPUs outperform Lisp programs on GPUs,
but we present trends indicating that this might change in the
future. Our study gives an outlook on the possibility of running
Lisp programs or other dynamic programming languages on
next-generation accelerators.

I. INTRODUCTION

In recent years, graphics processing units (GPUs) have been
gaining importance as the development of CPUs is reaching
physical limits. The performance of processors cannot be much
improved by increasing the processor frequency, and vendors
rather raise the number of cores or boost the performance by
integrated vector units such as SSE or AVX. GPUs, on the
other hand, achieve a significant performance speedup due to
their massive internal parallelism.

In the beginning, GPUs were only used for rendering images
displayed on the screen. Over time features were added that
allow users to push geometry descriptions into these devices
for which the data was transformed into three-dimensional
scenes and finally into pictures. These rendering pipelines
were extended by so-called shaders which gave programmers
more flexibility in manipulating data (usually geometry or
textures). However, programmers quickly used these shaders
not only for rendering images, but also as a new program-
ming interface to solve computational problems with a high

degree of parallelism. This General Purpose Computation on
Graphics Processing, or short: GPGPU computing, required
the difficult translation of general problems into languages
understood by graphics adapters. Solutions were sought that
allow programs for GPUs to be written in the same way
as programs for CPUs. In 2006 Nvidia introduced CUDA, a
parallel computing platform and library which works with C,
C++ and Fortran [29]. CUDA started with severe limitations
like the absence of recursions, but over the years many of them
were removed. In the future developing programs for GPUs
will probably not differ much from programming CPUs.

CUDA and other libraries like OpenCL enable developers
in many domains (such as machine learning or artificial intel-
ligence) to benefit from the massive parallelism in GPUs [5],
[16], [19], [15], [30].

In this paper we present CuLi, an CUDA implementation
of the functional programming language Lisp. Functional
languages avoid side-effects [12] and are therefore ideal for
exploiting parallel architectures. There are many functional
languages, dialects, and extensions designed for the parallel
execution of tasks [34], [2], [28], [1], [9], [11], but all these
languages use the CPU for their computations by generating
multiple threads or processes. None of them makes use of
GPUs (even when they suggest that they are designed for
heterogeneous platforms). Our implementation CuLi, on the
other hand, is a complete Lisp interpreter running on the GPU.
CuLi performs all computations on the GPU (device side).
Only the read and the print part of the read-eval-print loop
(REPL) are executed on the CPU (host side) which cannot
be avoided because the host side is responsible for the user
interface.

The main reasons for choosing Lisp are that it is a functional
language and that Lisp’s language core is small but extremely
powerful. Lisp statements entered are submitted to our Lisp in-
terpreter on the GPU where the statements are evaluated. The
result is then copied to the CPU where they are displayed. The
interpreter was written in C using the CUDA library. Aside
from this, no further libraries were used. Our system supports
familiar Lisp features like function and variable definitions,
arithmetic operations and macros. The interpreter allows an
interactive usage which requires that the successively created

environment on the GPU is persistent until the interpreter is
terminated.

The main contribution of this work is to show that it is
possible to run a complete and highly dynamical programming
language on the GPU. To the best of our knowledge, this is the
first interactive language on the GPU using the host side only
for input and output. This allows the usage of systems which
are equipped with a rather slow CPU, but a powerful GPU
(like the Nvidia Tegra platform) to perform massively parallel
tasks. It should be mentioned, however, that current GPUs
do not provide all the features required to outperform CPU
implementations of Lisp (e.g., hierarchical data structures with
good performance). For this reason, this is foremost meant as a
foundational work and feasibility study. We expect that GPUs
will be programmed in the same way as CPUs in the future
and that they will become the main compute resource due to
their high computational power.

II. RELATED WORK

Since NVIDIA announced CUDA in 2006, a lot of programs
have been ported to GPUs [29] and usually allowed researchers
and companies to compute faster. This huge success has
led to many adaptations of CUDA and the development of
alternatives. Some of them are extensions to already popu-
lar programming languages, others are native languages that
use GPUs to compute data in parallel. Moreover, there is
hardware-specific research on topics related to GPUs and on
how to efficiently adapt programs to GPUs.

A. Language Extensions

CUDA [29] is an extension of the C language and relatively
easy to learn for C programmers. CUDA provides an API
offering device functions for administrating the GPU, transfer-
ring data between host and device and synchronizing device
with host. To generate machine code for the GPU, NVIDIA
provides a compiler tool set that takes C code and builds
kernels and functions for the device. Using C and CUDA,
it is possible to achieve a very fine-grained access and use of
the GPU.

OpenCL [10] (Open Compute Language) is a standardized
programming interface to implement software for heteroge-
neous systems. It provides a subset of the C++-14 standard and
can be compiled to various platforms to provide parallelized
code. OpenCL is a competing standard to NVIDIA’s CUDA.
While CUDA is limited to NVIDIA GPUs, OpenCL can be
used to generate code for NVIDIA and AMD GPUs, as well as
for mainframe CPUs and desktop CPUs and even for FPGAs
(Field Programmable Gate Arrays). OpenCL is therefore more
versatile than NVIDIA CUDA which is virtually the standard
for GPU programming.

PyCUDA [18] extends the Python programming language
so that Python programs can use CUDA-enabled GPUs. It
exposes the CUDA API to the programmer who can develop
kernels in CUDA code to improve the performance of the com-
putation. The PyCUDA framework takes these code blocks,
gathers information about the hardware currently installed in

the computer and optimizes the kernel it generates for this
hardware. It provides a cache to store these kernels so that
they can be executed at any time without recompiling them.

Petersen et al. introduce a method for Haskell that exploits
the potential of SIMD compute units [26], and Mainland
et al. show how Haskell SIMD operations can be used in
streams [21]. However, these approaches do not use the device
with the highest degree of parallelism, the GPU.

There are others who let the GPU perform computations
in functional languages [23], [3]. Some projects even bring
interpreted languages to the GPU. JavaScript on the GPU is a
project that ports the language JavaScript to GPUs [24], and
the ParallelJS framework allows the execution of JavaScript
code on CUDA-capable accelerators [35]. Both implementa-
tions have in common that they perform the computation on
the GPU, but interpret the input on the CPU. Prior to this
work, there has been no project or framework that enables
users to run Lisp code directly on accelerators. This may
have historical reasons because the first CUDA version did
not support recursion, a requirement for Lisp, and many
developers are not aware that this has changed with CUDA
version 2.0. There are different Lisp wrappers projects that
allow for executing CUDA functions in Lisp programs or that
can translate Lisp codes to CUDA codes [33], [25].

Another approach to using the GPU is taken by Loo.py [17].
In contrast to exposing the CUDA API to the programmer,
Loo.py requires the programmer to define code areas that are
to be run in parallel and automatically builds the code for the
GPU. Loo.py uses the polyhedral model and annotations by
the programmer to optimize the code and parallelize it on the
GPU. For this it provides a markup language to define areas for
parallelization and data dependencies. With this information
and the information about the hardware, the extension can
build optimized kernels.

A similar approach is taken by compiler-based language
extensions like OpenACC [8] and OpenMP [6]. Both provide
compiler extensions, so-called pragmas, that declare parts of
the code to be built for parallel execution. These pragmas
are defined by the standards of OpenMP and OpenACC and
implemented by different compilers (leading to diverging and
competing standards).

With these pragma constructs it is possible to declare parts
of the code to run in parallel and have the compiler build
kernels for the devices chosen at compilation time. The code
itself rarely has to be changed. This helps to port code from
one device to another and to get sequential code to run in
parallel. Although the performance is reasonable for a fast
transition, hand-tuned or hand-written code usually performs
much better.

B. Native programming languages

The programming language Rust [14] was introduced to
replace C++ as a fast and secure programming language and
is being developed to be a system programming language
focussing on the integration of heterogeneous systems into
one language. Due to the use of the LLVM (Low-level Virtual

Machine) project for building and compiling code, it can
generate kernels for different devices, including GPUs, and
therefore presents a native way to generate code for the GPU.
In contrast to language extensions like CUDA or OpenCL,
Rust provides a consistent programming environment.

For simplifying GPU programming, the programming lan-
guage Chestnut [31] was designed. In contrast to Rust, this
language focuses mainly on the GPU-side of the computation.
While Rust has a very low-level view of the GPU and requires
the programmer to think about data layout and location,
Chestnut provides a sequential view of the program and builds
the parallel kernel from that. The Chestnut compiler builds
an AST (Abstract Syntax Tree) from the user’s program and
compiles it to C++ and CUDA code that will finally be
compiled to machine code.

Relatively similar to CuLi, Domain Specific Languages
(DSLs) like Ebb [4], [27], [13], [7] that work on both, CPU
and GPU, provide the programmer with a domain-specific API
for simplified access to the GPU. In contrast to CuLi they only
offer a limited set of functions and are therefore bound to their
domain.

All these programming languages are examples for more
or less hiding the differences of CPU and GPU code which
makes programming easier and reduces the effort of writing
code for GPUs.

C. Hardware-specific adaptations

There are many examples of languages that provide built-in
methods for exploiting the parallel nature of modern multi-
core processors [34], [2], [28], [1], [9], [11]. Next to this
obvious parallelism, CPUs provide vector units (e. g. SSE or
AVX) that extend the processor’s internal parallelism [20].

Since the computation model of GPUs is very different
to the one of CPUs, certain parallel programming tasks are
more difficult. The foremost problem is the lack of support
for inter-block synchronization and communication. This is
due to the hardware and low-level design of GPUs. Hence,
one of the things needed in multi-threaded environments is
proper synchronization which helps to exchange data and
signals between threads and to prevent race conditions. CUDA
provides basic functions to synchronize threads within blocks
but not throughout multiple blocks. Synchronization based on
an atomic spin-lock [36], [32] provides a possible way to have
all threads, regardless in which block they reside, to wait for
one signal and, while waiting, stop other computation.

This mechanism can also be used to exchange messages
between arbitrary threads. They access global memory [36]
while waiting for a signal, telling them that new data has
arrived.

Both of these use cases suffer from rather poor performance
of the spin-locks used. Although NVIDIA has improved the
performance of atomic access to memory, it is rather energy-
consuming and inefficient to have all threads actively waiting
for the same memory area to change and while doing so, have
all processors of the GPU waiting busily for this to happen.

III. IMPLEMENTATION

The Lisp programming language has a long history. John
McCarthy introduced this language in 1960 [22]. Since then
Lisp has become an important language in artificial intelli-
gence (AI). However, until now there was no way for using
Lisp directly and interactively on GPUs, although AI is one
of the area where those devices are widely used.

In this section we describe details of our Lisp implementa-
tion CuLi. This implementation provides all features of Lisp,
even built-in functions for parallel computations.

A. CuLi

CuLi is implemented in pure ANSI C and the NVIDIA
CUDA C extension. Since CUDA lacks a string library, we
implemented our own with functions to parse strings. These
functions are also used in the CPU tests for comparison
reasons.

To implement dynamic multi-threading, CuLi uses the
threads provided by CUDA for the GPUs (for the CPU version
we use pthreads). Beside the CUDA and the standard C
libraries no others are used.

CuLi is a dialect of the LISP programming languages.
It uses a fully parenthesized prefix notation where the first
symbol determines the function to apply. For example (* 2
(+ 4 3) 6) first sums up the values 4 and 3 and multiplies
the result with 2 and 6.

a) Nodes: The most basic structure of CuLi is the node,
implemented as a C struct (see Figure 1). Such a node
stores values, functions and links to other nodes. After a value
has been assigned to a node, it becomes immutable. This
is necessary for parallel execution, because it prohibits side-
effects.

Fig. 1: Structure of a basic node.

b) Node types: Each node contains a type describ-
ing its content. It can either have one of the primitive
types N_NIL, N_TRUE, N_INT, N_FLOAT, N_STRING,
N_SYMBOL and N_FUNCTION or one of the complex types
N_LIST, N_EXPRESSION.
N_NIL nodes contain the value nil that determines a

false value. In Lisp empty lists and false conditions evaluate
to nil. Since N_NIL nodes already define their value there is
no need for checking the value at run time. The opposite of
N_NIL is N_TRUE. Non-empty lists and fulfilled conditions
evaluate to true which is equivalent to N_TRUE.

Numeric values are indicated by the types N_INT or
N_FLOAT.

Strings are represented by the type N_STRING. They are
stored in a constant pointer (const char *) within a node.

Symbols, denoted by the type N_SYMBOL, are basically the
same as strings. These two types are differentiated during the
evaluation of an input. Symbols are replaced (even recursively)
while they are processed.

Finally the last primitive type is N_FUNCTION which
applies to built-in functions that are stored in the global
environment (like +, -, defun and cdr). Environments are
similar to namespaces in other languages. Other user-defined
functions, that are defined by the defun built-in function, are
stored as expressions. Functions are stored as function pointers
and they expect a list of nodes containing the parameters
and a pointer to the environment that should be used for its
execution. This provides the Lisp-typical feature that functions
can behave differently to the same parameters in different
environments.

Fig. 2: An example of a list, with a symbol and two integers.

An N_LIST contains the starting and end point of a linked
list of nodes. For example (+ 1 2) will be parsed into a list
that has a symbol node for + as its first child (see Figure 2).
That node points to an integer node with the value of 1 and
that points to another integer node with a value of 2. The
list finally points to that last node, to mark the end of the list.
Since lists are accessed in Lisp with variations of the functions
car and cdr linked lists are the natural data structure to use.

If a list starts with a symbol as the first child, this list will
be evaluated as an expression, as shown in 3. The symbol will
be searched in the environment of the evaluation and replaced
with the function or value associated with the symbol. Since
the evaluation of a symbol is dependent on the position in the
syntax tree, it will be evaluated with different environments.
Therefore the same symbol can be evaluated differently in
different positions.

Fig. 3: Example of an expression with a built-in function and
two integers. This is the intermediate step within evaluation
of Figure 2

Another type of lists are forms (N_FORM) which are user-
defined functions that are stored in the global environment

by the keyword defun. In contrast to expressions, forms
additionally store a list of parameters. These parameters are
symbols used to store arguments in the local environment
during evaluation. If a form is evaluated, it adds the given
arguments to the local environment and evaluates the stored
subtree with this environment. This ensures the existence of
the required parameters in the subtree.

Fig. 4: A tree built from lists. This tree was built by the input
(+ (* 5 6 (...)) 1 2). The last_child-pointers
are not shown for clarity.

Every correct CuLi input consists of at least one list. This
list can contain arbitrary elements and therefore lists that itself
may contain lists. This builds the tree that will be executed.
Figure 4 shows a part of a tree of lists that are built by CuLi.

c) Memory: Nodes are stored in a large array that is
created at the beginning of the program. This array has a fixed
length set during the compilation of CuLi. The length limits
the number of nodes that can be used during a run of CuLi.
Whenever a function asks for a new node to store a value,
the sequentially next free node of this array will be returned.
When the nodes are not needed anymore, they are marked as
free.

B. Execution flow

To understand how expressions are processed, it is necessary
to understand how variables, symbols and environments are
handled. This is also crucial for the understanding of parallel
execution. The basic element for expression processing is the
environment structure.

The complete processing of an input is done in the following
steps illustrated in Figure 5: (a) The input string is passed to
the parser. (b) The parser generates a tree of nodes, the parse
tree. (c) The evaluation traverses the parse tree, evaluates it and
generates the result tree. (d) The printer traverses the result tree
and generates the output string.

The subsequent paragraphs explain these steps in more
detail.

a) Environment: Expressions are processed in trees like
the one described in Figure 4. An environment in CuLi is built
like a tree. The structure of the environment is displayed in
Figure 6 and 7.

An environment contains a linked list of environment nodes
and a link to a parent environment. The only exception is the
global environment that has no link to other environments.
Each environment node itself contains a symbol for compari-
son and the node that the symbol points to. Since each list and

Fig. 5: Execution flow.

Fig. 6: Structure of the environment and the elements of it.

each expression has an environment that, through its parent
environment, points to the global environment, values that are
stored in the global environment are accessible through each
environment in the tree.

Fig. 7: Tree of multiple environments linking to each other.

If an expression defines a symbol, the symbol is normally
stored in the local environment of this expression. It is only
accessible for this expression and the expressions nested within
(i.e. which are defined later). Previous symbol definitions
are unaffected. Using this mechanism it is possible to create
locally scoped variables. It is also possible to have locally
different values for the same symbol. Local variables are
defined by the built-in function let. This function adds a
new symbol and the corresponding value to the environment of
the current expression. In contrast, the built-in function setq
updates the nearest existing symbol that matches. Hence, it
can change a local variable as well as a global one, if there is
no other variable with the same symbol in the current subtree.
Thus, this function might cause side-effects and must be used
carefully in parallel computations.

b) Parsing: The parser builds the parse tree, a tree of
nodes describing the input string. For this it reads the string
character by character. An opening parenthesis builds a new
list and generates a new environment for this new list. This
new list will be the current list until the parser reaches a
matching closing parenthesis. All nodes generated within these
two are added to the new list. When the new list is finished by
the closing parenthesis, its parent list becomes the current list.

This builds the parse tree. A possible parse tree is displayed
in Figure 4.

The parser walks the string until it sees a whitespace charac-
ter, or an opening or closing parenthesis. These characters are
markers for the parser. The substring between the last marker
and the current marker is the input to generate a new node.

If the substring starts with quotation marks, the new node
will be an N_STRING node with the substring as value.
The quotation marks are not carried into the value. N_NIL
and N_TRUE nodes are built from the substring nil and T,
respectively. If the substring starts with a digit or a character
indicating a number (+-.E), the new node will either be an
N_FLOAT node or an N_INT node. The N_FLOAT node will
be generated if a dot (.) is found in the substring. If none of
the above applies the new node will be of type N_SYMBOL.
The substring will be stored as value in the new node.

c) Evaluation: The parse tree is traversed recursively by
the evaluation stage of the execution flow.

If the current node is an N_LIST, the first element will be
evaluated in order to decide whether the list is an expression
or a form. If it is either of them, the list will be evaluated as an
expression or form, respectively. Otherwise, all other elements
are evaluated, and the resulting list will be returned.

If the current node type is an N_SYMBOL, the evaluation
tries to match the symbol within the current environment.
The first occurrence in the environment tree will be used
to exchange the symbol. This facilitates a late binding of
symbols. The matched symbol decides whether to handle the
list as an expression or a form.

If there is no matching symbol, the symbol is not replaced.
If the current node is an expression, its children will be

passed to the function pointer stored in the expression node.
They are not evaluated first since built-in functions might use
them without evaluation (e. g. the setq function).

If the current node is a form, a new environment is created
to store the parameter values for the user-defined function.
The arguments are evaluated to be used as parameter. After-
wards the user-defined form will be evaluated within the new
environment.

If the node type is none of the previously mentioned ones
it must be a primitive and can be returned unchanged.

d) Printing: During the evaluation phase a node tree is
generated that only consists of primitives. The tree’s nodes are
passed in postfix order to the printer that generates the output
string. For each node it appends the corresponding string
representation to the output string. Although CUDA kernels
(NVidia GPUs with compute capability >= 2.0) are able
to print from the device code directly to the standard output
of the host, the output generated will only be transferred to

the host by calling cudaDeviceSynchronize or blocking
calls to cudaMemcpy. Since CuLi does not use them within
evaluation or for communication, it sends the output string
back to the host the same way it uses for the input and have
the host print it directly.

C. GPU implementation

CuLi runs the complete interpreter code on the GPU. This
includes all steps displayed in Figure 5, except input and
output. While the evaluation is performed by the GPU’s kernel,
the host is responsible for input and output.

a) Host code: Input and output are both located in the
host code. The host code is running in a loop and provides
a command-line prompt which fetches, sanitizes and uploads
the input to the GPU. The host uploads the input to the GPU if
the number of opening and closing parentheses is equal. The
GPU signals the host when the computation has finished, and
the host prints the output on the screen and waits for another
user input.

b) Host-GPU Communication: To be able to send the
input from the host to the GPU, both share a common C struct
(see Figure 8). The elements of this structure are generated
by the cudaHostAlloc API call. This call allocates the
variables on both, the host and the GPU and links them.
Using the parameter cudaHostAllocMapped ensures an
automatic update on both sides when values alter. With this
parameter set, neither the host nor the GPU has to call
cudaMemcpy to initiate the copying of data.

Fig. 8: The command buffer used to exchange input and output
between the CPU and the GPU and to synchronize the host
and the device.

The values of the struct members dev_active and
dev_sync are used for sending signals between host and
device. The dev_active signal is used to terminate the GPU
kernel. When the dev_active flag is set to 0 by the host
code, the kernel on the GPU ends itself.

The variable dev_sync is used at both sides, the host and
the device. If this value is set to 0, the GPU must wait for
an input from the host. When a new input the string will be
copied to command_buffer and buffer_length is set
to the input length. The host then sets the dev_sync to 1
and waits until the GPU sets it back to 0. In the meantime the
GPU evaluates the input and copies the result and its length
into the command structure. It then sets dev_sync = 0 and
waits for the next input (see Figure 9). The host reacts to the
synchronization flag and prints the output back to the user.

c) Device code: CuLi uses a CUDA kernel with a one-
dimensional grid of thread blocks, each addressable by a single
integer. The grid has at least as many blocks as it needs to

Fig. 9: Communication between the host code and the device
code. Grey areas denotes active periods and white areas
waiting periods.

saturate all streaming multiprocessors (SMs) of the device
used. Since each block has 32 threads (exactly the size of
a warp), the grid size is a multiple of 32. Each thread has an
address within the grid, determined by the block address and
its position within this block.

The GPU kernel is directly started after the host code. The
master thread of the kernel (thread and block id 0) sets up the
global environment used by all worker threads. Afterwards it
waits for a new input.

Fig. 10: The postbox used for the communication between the
master thread and the worker threads.

Each thread has its own, exclusive postbox which is stored
in an array in global memory (see Figure 10). Initially the
variables in all postboxes are set to active=1, work=0, and
synchronization=0. The master thread sets the active
flag of all threads to 0 when it terminates. This causes the
worker threads to break their loop and end themselves.

To ensure that all values are written correctly, atomic
memory functions are used to access, read and modify the
values of the postboxes. This also prevents CUDA’s transparent
caching of variables and ensures that values are only read
directly from global memory. This implies a performance
penalty [32] since atomic memory accesses are slower than
direct ones.

D. Multi-threaded execution

In a CuLi program a parallel section is indicated by the
newly defined |||-expression. Such an expression is struc-
tured as follows: the first parameter after ||| is an integer
that defines the number of threads, the second parameter is
the function to be executed in parallel, and the remaining
parameters are the arguments of that function. When the eval-
uation step of REPL encounters this expression, it distributes
the work among multiple workers and waits for their results.

Fig. 11: Communication between master thread and worker
thread. Grey denotes active periods, white waiting periods.

a) Work distribution: When the master thread encounters
the |||-function it distributes the given function and variables
to the given number of workers. A typical call could look
like the following: (||| 3 + (1 2 3) (4 5 6)). The
master thread will distribute the work among three workers.
First it creates a new expression for each worker thread, which
links to the function for +. Next, it takes the n-th element of
both lists as function arguments, where n is the worker id, and
adds them to the previously generated expression as children.
In our example, the first worker’s expression is (+ 1 4),
the second one’s is (+ 2 5), and the third one’s is (+ 3
6). These expressions are stored in the io variable of the
workers’ postboxes. Next the work and sync flags are set
to 1 (see Figure 11). Finally, after the work distribution, the
master thread waits for all workers to signalize the completion
of their tasks.

b) Parallel execution: Each worker thread evaluates only
its own subtree, provided in its postbox. The root of this
subtree is linked to the environment of the |||-expression
which itself has a path to the global environment. Therefore
each worker has access to the environments preceding its own
but not to the environments of other workers. This ensures
a local scope for all workers. Values stored in a worker’s
environment do not affect other workers.

The evaluation is done as described before. The result of
the evaluation replaces the subtree in the io variable of the
workers postbox, once the worker has finished its evaluation.

The master thread waits until each worker has set its sync
flag to 0. Then it generates a new N_LIST node and appends
the workers’ results in the same order as the work was
distributed. The resulting list is handed over to the expression
that has called the |||-expression or it is printed if it is the
root expression.

c) Synchronization: Once the sync flag is set, the
worker is able to start working. If CuLi used only one thread
per block, this would be sufficient to synchronize the master
and the workers. If more than one thread is used per block,
this is not sufficient anymore. CUDA always bundles 32
threads to a warp. These threads execute the same code. As a
consequence this can lead to situations where some threads of
a warp are stuck in busy-waiting loops indefinitely while the

remaining threads are waiting for them to finish. In brief, this
prohibits to have less than 32 workers or a number of workers
unequal to a multiple of 32.

To cope with this burden, CuLi uses an additional synchro-
nization flag for each block that signals a complete block
if there are changes to workers in it (see Alg. 1 line 6).
When this flag is set all threads in a block end their busy-
waiting and check if there is work for them. Threads with work
evaluate their subtrees while the others wait until they finished.
Afterwards all threads re-enter the busy-waiting loop. The
CUDA function __threadfence_block ensures that all
threads of a block enter the busy-waiting loop simultaneously
(see Alg. 1 line 5).

d) Warp divergence: Warp divergence is a concept in
CUDA programming that has no equivalent in CPUs. In this
work the GPUs do not execute single threads but warps of 32
threads (to fill the warp completely) and all threads execute the
same instructions in parallel. Since not alway all threads are
needed for a computation CuLi perform conditional branches.
Due to the hardware architecture, all threads of a warp execute
the first branch and discard the results if they are not set active.
Those branches impact the performance but the thread finish
one after another or join on a barrier. However, if one thread
of a warp enters an long-last loop all other warp threads wait
for this one, i.e. in case of an endless loop the computation
cannot terminate.

For multi-threading and synchronization, CuLi uses a busy-
waiting, i.e. a long-lasting loop, that waits for the change of
one value as reaction to changes in the program flow, this can
end-up in a livelock. Threads in a waiting loop could hinder
other threads from changing the condition that interrupts the
loop. If that happens, the code is stuck in an infinite loop.

CuLi has one master thread and a lot of workers. Since grids
in CUDA have to be symmetrical, i.e. each block in the grid
has the same size and therefore the same amount of threads,
the block with index 0, the block of the master thread, has the
same amount of threads as any other block. To ensure that the
master thread can work freely, the other threads of this block
have to be disabled (see Figure 12). With this solution it is
possible to generally have more than one thread per block,
although it wastes nearly one complete block.

Fig. 12: The solution to the warp divergence of the master
threads block as it is used by CuLi.

The other part of CuLi suffering from warp divergence is
the distribution of work by the built-in function |||. Due to
this function an arbitrary number of jobs can be created that
will be distributed onto the active workers. This is no problem
as long as the number of jobs is a multiple of 32 (all threads
of one warp get a synchronization signal). However, if only

one of the threads is not assigned a job, that thread will stay
in its waiting loop. Since the |||-expression terminates only
after all workers have returned their results this will also lead
to a livelock.

Fig. 13: The solution to the warp divergence of the worker
blocks as it is used by CuLi. The solid boxes show activated
blocks, the solid arrows show active threads, dotted arrows
and boxes show inactive threads and blocks.

To solve this issue CuLi uses an additional synchronization
flag for each block to solve this problem (see Alg. 1 line 6).
Every thread of a block checks this synchronization flag in
each loop. The |||-expression activates that flag for parallel
execution each time it assigns a job to every worker in that
block or if there are no more jobs to distribute (illustrated
in Figure 13). Afterwards each thread checks if it has some
assigned work (Alg. 1 line 6). After all threads have reached a
barrier the first thread of each block resets the synchronization
flag (Alg. 1 line 12) before all threads enter the busy-waiting
loop again.

Algorithm 1 Evaluation loop executed by all workers.

1: Required local: threadID, blockThreadID
2: Required shared: blockSyncFlag, availableWorkArray

3: procedure WORKERLOOP
4: while running do . evaluation loop
5: threadBlockBarrier() . sync all threads in block
6: while blockSyncFlag = 0 do . no work
7: doNothing() . wait for sync flag

8: if availableWorkArray[threadID] = 1 then
9: evaluateTask() . evaluate

10: availableWorkArray[threadID] ← 0

11: threadBlockBarrier() . sync all threads in block
12: if blockThreadID = 0 then
13: blockSyncPtr ← 1 . reset sync flag

The current implementation allows for executing and modi-
fying Lisp programs at runtime on the GPU. A negative point
of our implementation is the fact that the size of the possible
inputs is currently limited. This limitation is reasoned by the
organization of the nodes used for storing objects. A missing
feature to mention is the unavailability of program internal
file I/O in the current version. This feature can be realized by
using the buffer for exchanging messages between host and
device for this purpose and will be added in future versions.

IV. EVALUATION

We evaluated CuLi on systems equipped with different
GPUs and CPUs. The only system that has no GPU is
equipped with four AMD 6272 CPUs (64 cores, 1.8 GHz and
128 GiB DDR3 RAM). All other nodes are equipped with an
Intel Xeon E5-2620 CPU (6 core + hyperthreads, 2.00 GHz,
and 16 GiB DDR3 RAM). For our GPU tests we use Tesla
GPUs as well as consumer GeForce GPUs, namely: Tesla
C2075, Tesla K20, Tesla M40, GeForce GTX480, GeForce
GTX680 and GeForce GTX1080. Scientific Linux 6.4 was
installed on all systems.

CuLi’s upload of input strings was not bounded by the
bandwidth limits of PCIe as the strings are rather short (17
to 8207 characters per transfer, around 8 KB in size). In our
test all threads compute the 5th Fibonacci number recursively.
Although this test is rather small, it provides a sufficient
amount of operations and recursions. Another important fact
is that the size of the tests is sufficient for showing the trends
in GPU evolution.

In order to compare the performance of these systems,
different scenarios were tested and run multiple times. In
our evaluation we considered the base latency (set up and
shutdown time), the runtime on the devices, and the kernel
proportions (timings of different execution phases).

a) Base latency: The base latency describes the pure
setup time of CuLi, i. e. the time for preparing the built-in
functions and setting up the REPL. The different timings are
shown in Figure 14. Interestingly, the newer the GPU, the
higher the base latency. The latency of the GTX 680 is about
six times lower than the latency of the GTX1080 or the Tesla
M40.

TeslaC2075

TeslaK20

TeslaM40

GTX480

GTX680

GTX1080

Intel E5-2620

AMD 6272

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Baseline latency

milli seconds

Fig. 14: Base latency for all devices. This includes the time
needed for the start and graceful stop of CuLi.

The CPUs outperform the GPUs significantly. Both systems
are more than thirty times faster than the fastest GPU.

b) Runtime on the devices: When the amount of pro-
cessed data increases, the execution time increases, too. Fig-
ure 15 illustrates the dependency between the size of the input
and the execution time. The number of threads represent the
input size since the input is distributed among the threads. The
GPUs were clearly outperformed by the CPUs by a factor of
at least ten.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0,01

0,1

1

10

100

Runtimes

TeslaC2075 TeslaK20 TeslaM40 GTX480

GTX680 GTX1080 Intel E5-2620 AMD 6272

threads

m
ill

i s
e

co
n

d
s

Fig. 15: Runtime for all devices. The time scale is logarithmic.

Although the execution times on the GPUs are higher than
on the CPUs, the increase of the run times behaves very
similar. All devices show a plateau for 1 to 64 elements. For
longer vectors there is a linear growth in runtime.

All GPUs achieve similar runtimes. In this scenario the
GTX480 is the fastest GPU followed GTX1080. This result
can be explained by the good string parsing performance of
Fermi GPUs (Tesla C2075, GTX480). Figure 16b shows the
timings required for parsing.

Parsing on Fermi based GPUs outperforms the newer GPUs.
This can be explained by architecture changes in the modern
GPUs. The two most important changes are the reduction of
the L2 Cache size (from 768 KiB to 512 KiB) and the nar-
rowing of the memory interface from 384 bit to 256 bit. These
changes reduce the throughput for single threads. However, the
evaluation of the other operations (Figure 16c) and printing
(Figure 16d) show a clear trend that here the performance of
GPUs draws nearer to the one of CPUs.

c) Kernel proportions: Each command execution con-
sists of the tree phases on the GPU: parsing, evaluating, and
printing. The accumulated time of these phases corresponds to
the execution time on the GPU. The following figures show
the proportions of the different steps during an execution. The
figures are separated by the device evaluated. In general, all
devices behave similarly. Only the GPU based on the Fermi
architecture differs in the parsing phase.

Figure 17 shows the differences in the kernel runtimes on
the older GPUs in our tests. While parsing can require more
than 50% of the runtime in GPUs newer than Fermi, the
parsing on older GPUs never exceeds 11%.

On the system using the AMD CPU, parsing and printing
is almost negligible (see Figure 18). Here the runtime is also
dominated by the evaluation phase.

Nevertheless, the illustrations in Figure 16 show that, beside
the parsing speed, the performance of GPUs get closer to
the performance of CPUs. The only exceptions are the Fermi
based GPUs during the parsing phase. Especially the trend of
the evaluation phase shows that the newer the GPU, the lower
the computation time (see Figure 16c). If this trend continues,
GPUs and CPUs will achieve the same performance in a few
generations.

Te
sla

C20
75

Te
sla

K20

Te
sla

M
40

GTX48
0

GTX68
0

GTX10
80

In
te

l E
5-

26
20

AM
D 6

27
2

0

5

10

15

20

25

30

35

40

Execution-Time

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

m
ill

i s
e

co
n

d
s

(a)

Te
sla

C20
75

Te
sla

K20

Te
sla

M
40

GTX48
0

GTX68
0

GTX10
80

In
te

l E
5-

26
20

AM
D 6

27
2

0
2
4
6
8

10
12
14
16
18

Parsing Time

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
m

ill
i s

e
co

n
d

s

(b)

Te
sla

C20
75

Te
sla

K20

Te
sla

M
40

GTX48
0

GTX68
0

GTX10
80

In
te

l E
5-

26
20

AM
D 6

27
2

0

0,5

1

1,5

2

2,5

3

Evaluation Time

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

m
ill

i s
e

co
n

d
s

(c)

Te
sla

C20
75

Te
sla

K20

Te
sla

M
40

GTX48
0

GTX68
0

GTX10
80

In
te

l E
5-

26
20

AM
D 6

27
2

0

5

10

15

20

Printing Time

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

m
ill

i s
e

co
n

d
s

(d)

Fig. 16: Different aspects of the kernel execution on GPUs
and CPUs. The different colors illustrate the number of used
threads.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%

100,00%

Proportional Runtime Tesla M40

parse eval print

threads

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%

100,00%

Proportional Runtime GTX 1080

parse eval print

threads

(a) The proportions of the kernel runtimes on nearly all GPUs look
the same.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%

100,00%

Proportional Runtime Telsa C2075

parse eval print

threads

(b) Only the GPUs based on the Fermi architecture behave differently.

Fig. 17: Comparison of the different phases of the kernel
runtime on two GPUs.

V. CONCLUSION

In this work we have introduced CuLi, a Lisp implementa-
tion running completely on GPU. CuLi interactively executes
Lisp commands. Thus it allows dynamic GPU programming.
There is no need for compiling the code to a binary program.
Instead Lisp expressions are sent to the GPU where a run-
evaluate-print-loop evaluates the given user input.

Since Lisp is a functional programming language, it is a
good candidate for using parallel compute resources. This
programming paradigm supports program code parallelization
since it denies side-effects.

The current GPU version is outperformed by the CPU
version. This is largely due to the offset of the baseline latency
of starting the CUDA context. Our tests indicate that GPUs

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%

100,00%

Proportional Runtime AMD 6272

parse eval print

threads

Fig. 18: Proportions of the kernel runtime on AMD CPU (64
Threads).

will outperform multi-processor computers because they use
memory accessible to all threads at the same speed. CuLi’s
performance highly depends on the single-thread performance
of the hardware, due to the dominant part of the execution
flow, the parsing of the input. Since GPUs are not primarily
built for single thread performance, this seriously limits the
potential performance of CuLi. Parsing takes a great share
of the runtime of every interpreted language and CuLi is
no exception. Improvements in this area will have the most
impact on the overall performance of CuLi. Our tests show
that CuLi profits from new hardware generations. If the trend
continues, the performance gap between CPU and GPU will
become smaller with every new GPU generation. When the
performance of the single hardware threads on CPU and GPU
is equal, it will be possible to harvest the massive parallel
potential of GPUs. One important observation that strengthens
our assumptions are the efforts made to increase the integer-8
(i.e. character) performance of GPUs. Driven by the machine
learning community, GPU vendors increase these capabilities
on GPUs which (most probably) also have a positive impact
on string parsing.

New versions of NVidia GPUs provide a new threading
model that is closer to the model provided on CPUs. The
next versions of CuLi will exploit this new feature and
gain advantages by this. Another profitable feature is the
configurable cache of these devices which can help to reduce
the parsing penalties.

AVAILABILITY

CuLi and test applications will be published on the web
server of the Johannes Gutenberg University Mainz under
https://version.zdv.uni-mainz.de.

REFERENCES

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. Steele Jr., and S. Sam Tobin-Hochstadt.
The fortress language specification version 1.0, mar 2008.
http://research.sun.com/projects/plrg/fortress.pdf.

[2] M. Aswad, P. W. Trinder, and H. Loidl. Architecture aware parallel
programming in glasgow parallel haskell (GPH). In Proceedings of
the International Conference on Computational Science, ICCS 2012,
Omaha, Nebraska, USA, 4-6 June, 2012, pages 1807–1816, 2012.

[3] L. Bergstrom and J. Reppy. Nested data-parallelism on the gpu. In
Proceedings of the 17th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’12, pages 247–258, New York, NY,
USA, 2012. ACM.

[4] G. L. Bernstein, C. Shah, C. Lemire, Z. DeVito, M. Fisher, P. Levis,
and P. Hanrahan. Ebb: A DSL for Physical Simulation on CPUs and
GPUs. CoRR, pages 1–12, 2015.

[5] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew.
Deep learning with cots hpc systems. In S. Dasgupta and D. Mcallester,
editors, Proceedings of the 30th International Conference on Machine
Learning (ICML-13), volume 28, pages 1337–1345. JMLR Workshop
and Conference Proceedings, May 2013.

[6] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-
memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, Jan. 1998.

[7] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: A domain specific language for building portable
mesh-based PDE solvers. 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
1–12, 2011.

[8] R. Farber. Parallel Programming with OpenACC. Morgan Kaufmann
Publishers Inc., 1st edition, 2016.

[9] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: A
heterogeneous parallel language. In Proceedings of the 2007 Workshop
on Declarative Aspects of Multicore Programming, DAMP ’07, pages
37–44, New York, NY, USA, 2007. ACM.

[10] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa. Hetero-
geneous Computing with OpenCL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2011.

[11] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, Oct.
1985.

[12] K. Hammond and G. Michelson, editors. Research Directions in Parallel
Functional Programming. Springer-Verlag, London, UK, UK, 2000.

[13] P. Hanrahan and J. Lawson. A Language for Shading and Lighting
Calculations. Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, 24(4):289–298, 1990.

[14] E. Holk, M. Pathirage, A. Chauhan, A. Lumsdaine, and N. D. Matsakis.
GPU programming in rust: Implementing high-level abstractions in a
systems-level language. Proceedings - IEEE 27th International Parallel
and Distributed Processing Symposium Workshops and PhD Forum,
IPDPSW 2013, (Section III):315–324, 2013.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 448–456, 2015.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[17] A. Klöckner. Loo.py: transformation-based code generation for GPUs
and CPUs. pages 1–6, 2014.

[18] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time
code generation. Parallel Computing, 38(3):157–174, 2012.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012., pages 1106–1114, 2012.

[20] B. Lippmeier, M. M. Chakravarty, G. Keller, R. Leshchinskiy, and
S. Peyton Jones. Work efficient higher-order vectorisation. In Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12, pages 259–270, New York, NY, USA, 2012.
ACM.

[21] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting vector
instructions with generalized stream fusion. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, pages 37–48, New York, NY, USA, 2013. ACM.

[22] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Commun. ACM, 3(4):184–195, Apr.
1960.

[23] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier.
Optimising purely functional gpu programs. SIGPLAN Not., 48(9):49–
60, Sept. 2013.

[24] J. Nicholls. JavaScript on the GPU, 2012.
https://www.slideshare.net/jarrednicholls/javascript-on-the-gpu.

[25] M. Pelletier. hillisp – CUDA parallel Lisp, 2018.
https://github.com/michelp/hillisp.

[26] L. Petersen, D. Orchard, and N. Glew. Automatic simd vectorization
for haskell. SIGPLAN Not., 48(9):25–36, Sept. 2013.

[27] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling algorithms from schedules for easy optimization
of image processing pipelines. ACM Transactions on Graphics, 31(4):1–
12, 2012.

[28] S. Ryu. Parsing fortress syntax. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, PPPJ
’09, pages 76–84, New York, NY, USA, 2009. ACM.

[29] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional, 1st
edition, 2010.

[30] D. Strnad and N. Guid. Parallel alpha-beta algorithm on the gpu. In
Information Technology Interfaces (ITI), Proceedings of the ITI 2011
33rd International Conference on, pages 571–576, June 2011.

[31] A. Stromme, R. Carlson, and T. Newhall. Chestnut. Proceedings of the
2012 International Workshop on Programming Models and Applications
for Multicores and Manycores - PMAM ’12, pages 156–167, 2012.

[32] J. A. Stuart and J. D. Owens. Efficient Synchronization Primitives for
GPUs. October, page 13, 2011.

[33] M. Takagi. Cl-cuda – Library to use NVIDIA CUDA in Common Lisp
programs, 2018. https://github.com/takagi/cl-cuda.

[34] P. W. Trinder, K. Hammond, J. S. Mattson, Jr., A. S. Partridge, and S. L.
Peyton Jones. Gum: A portable parallel implementation of haskell. In
Proceedings of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation, PLDI ’96, pages 79–88, New
York, NY, USA, 1996. ACM.

[35] J. Wang, N. Rubin, and S. Yalamanchili. Paralleljs: An execution
framework for javascript on heterogeneous systems. In Proceedings
of Workshop on General Purpose Processing Using GPUs, GPGPU-7,
pages 72:72–72:80, New York, NY, USA, 2014. ACM.

[36] S. Xiao and W. C. Feng. Inter-block GPU communication via fast
barrier synchronization. Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, 2010.

