1,152 research outputs found

    Loo.py: transformation-based code generation for GPUs and CPUs

    Full text link
    Today's highly heterogeneous computing landscape places a burden on programmers wanting to achieve high performance on a reasonably broad cross-section of machines. To do so, computations need to be expressed in many different but mathematically equivalent ways, with, in the worst case, one variant per target machine. Loo.py, a programming system embedded in Python, meets this challenge by defining a data model for array-style computations and a library of transformations that operate on this model. Offering transformations such as loop tiling, vectorization, storage management, unrolling, instruction-level parallelism, change of data layout, and many more, it provides a convenient way to capture, parametrize, and re-unify the growth among code variants. Optional, deep integration with numpy and PyOpenCL provides a convenient computing environment where the transition from prototype to high-performance implementation can occur in a gradual, machine-assisted form

    Master of Science

    Get PDF
    thesisThe advent of the era of cheap and pervasive many-core and multicore parallel sys-tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specic details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs. This system uniquely uses a complete scripting language to describe composable compiler transformations that can be written, shared and reused by nonexpert application and library developers. CUDA-CHiLL is built on the polyhedral program transformation and code generation framework CHiLL, which is capable of robust composition of transformations while preserving the correctness of the program at each step. Through its use of powerful abstractions and a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies and ignore the error prone details and low level constructs of GPGPU programming. The high level framework can be used inside an orthogonal auto-tuning system that can quickly evaluate the space of possible implementations. Although specicl to CUDA at the moment, many of the abstractions would hold for any GPGPU framework, particularly Open CL. The contributions of this thesis include a programming language approach to providing transformation abstraction and composition, a unifying framework for general and GPU specicl transformations, and demonstration of the framework on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe
    • …
    corecore