11 research outputs found

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Riley-2: A flexible platform for codesign and dynamic reconfigurable computing research

    Full text link

    Timing verification of dynamically reconfigurable logic for the xilinx virtex FPGA series

    Get PDF

    A Configuration System Architecture Supporting Bit-Stream Compression for FPGAs

    Full text link
    This paper presents an investigation and design of an enhanced on-chip configuration memory system that can reduce the time to (re)configure an FPGA. The proposed system accepts configuration data in a compressed form and performs decompression internally, The resulting FPCA can be (re)configured in time proportional to the size of the compressed bit-stream. The compression technique exploits the redundancy present in typical configuration data. An analysis of configurations corresponding to a set of benchmark circuits reveals that data that controls the same types of configurable elements have a common byte that occurs at a significantly higher frequency. This common byte is simply broadcast to all instances of that element. This step is followed by byte updates if required. The new configuration system has modest hardware requirements and was observed to reduce reconfiguration time for the benchmark set by two-thirds on average

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Design synthesis for dynamically reconfigurable logic systems

    Get PDF
    Dynamic reconfiguration of logic circuits has been a research problem for over four decades. While applications using logic reconfiguration in practical scenarios have been demonstrated, the design of these systems has proved to be a difficult process demanding the skills of an experienced reconfigurable logic design expert. This thesis proposes an automatic synthesis method which relieves designers of some of the difficulties associated with designing partially dynamically reconfigurable systems. A new design abstraction model for reconfigurable systems is proposed in order to support design exploration using the presented method. Given an input behavioural model, a technology server and a set of design constraints, the method will generate a reconfigurable design solution in the form of a 3D floorplan and a configuration schedule. The approach makes use of genetic algorithms. It facilitates global optimisation to accommodate multiple design objectives common in reconfigurable system design, while making realistic estimates of configuration overheads and of the potential for resource sharing between configurations. A set of custom evolutionary operators has been developed to cope with a multiple-objective search space. Furthermore, the application of a simulation technique verifying the lll results of such an automatic exploration is outlined in the thesis. The qualities of the proposed method are evaluated using a set of benchmark designs taking data from a real reconfigurable logic technology. Finally, some extensions to the proposed method and possible research directions are discussed

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    Compilation tools for run-time reconfigurable designs

    No full text
    This paper describes a framework and tools for automating the production of designs which can be partially reconfigured at run time. The tools include: (i) a partial evaluator, which produces configuration files for a given design, where the number of configurations can be minimised by a process known as compile-time sequencing; (ii) an incremental configuration calculator, which takes the output of the partial evaluator and generates an initial configuration file and incremental configuration files that partially update preceding configurations; (iii) a tool which further optimises designs for FPGAs supporting simultaneous configuration of multiple cells. While many of our techniques are independent of the design language and device used, our tools currently target Xilinx 6200 devices. Simultaneous configuration, for example, can be used to reduce the time for reficonguring an adder to a subtractor from time linear with respect to its size to constant time at best and logarithmic time at worst
    corecore