2,425 research outputs found

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also ∣Tt∖Tt−1∣| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(log⁥mlog⁥r)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(log⁥m)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant Ï”>0\epsilon>0, there is no O(n1−ϔ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    05031 Abstracts Collection -- Algorithms for Optimization with Incomplete Information

    Get PDF
    From 16.01.05 to 21.01.05, the Dagstuhl Seminar 05031 ``Algorithms for Optimization with Incomplete Information\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version

    Full text link
    We consider a dynamic vehicle routing problem with time windows and stochastic customers (DS-VRPTW), such that customers may request for services as vehicles have already started their tours. To solve this problem, the goal is to provide a decision rule for choosing, at each time step, the next action to perform in light of known requests and probabilistic knowledge on requests likelihood. We introduce a new decision rule, called Global Stochastic Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing decision rules, such as MSA. In particular, we show that GSA fully integrates nonanticipativity constraints so that it leads to better decisions in our stochastic context. We describe a new heuristic approach for efficiently approximating our GSA rule. We introduce a new waiting strategy. Experiments on dynamic and stochastic benchmarks, which include instances of different degrees of dynamism, show that not only our approach is competitive with state-of-the-art methods, but also enables to compute meaningful offline solutions to fully dynamic problems where absolutely no a priori customer request is provided.Comment: Extended version of the same-name study submitted for publication in conference CPAIOR201

    Performance Analysis of Modified SRPT in Multiple-Processor Multitask Scheduling

    Full text link
    In this paper we study the multiple-processor multitask scheduling problem in both deterministic and stochastic models. We consider and analyze Modified Shortest Remaining Processing Time (M-SRPT) scheduling algorithm, a simple modification of SRPT, which always schedules jobs according to SRPT whenever possible, while processes tasks in an arbitrary order. The M-SRPT algorithm is proved to achieve a competitive ratio of Θ(log⁥α+ÎČ)\Theta(\log \alpha +\beta) for minimizing response time, where α\alpha denotes the ratio between maximum job workload and minimum job workload, ÎČ\beta represents the ratio between maximum non-preemptive task workload and minimum job workload. In addition, the competitive ratio achieved is shown to be optimal (up to a constant factor), when there are constant number of machines. We further consider the problem under Poisson arrival and general workload distribution (\ie, M/GI/NM/GI/N system), and show that M-SRPT achieves asymptotic optimal mean response time when the traffic intensity ρ\rho approaches 11, if job size distribution has finite support. Beyond finite job workload, the asymptotic optimality of M-SRPT also holds for infinite job size distributions with certain probabilistic assumptions, for example, M/M/NM/M/N system with finite task workload

    Comparison of different approaches to multistage lot sizing with uncertain demand

    Get PDF
    We study a new variant of the classical lot sizing problem with uncertain demand where neither the planning horizon nor demands are known exactly. This situation arises in practice when customer demands arriving over time are confirmed rather lately during the transportation process. In terms of planning, this setting necessitates a rolling horizon procedure where the overall multistage problem is dissolved into a series of coupled snapshot problems under uncertainty. Depending on the available data and risk disposition, different approaches from online optimization, stochastic programming, and robust optimization are viable to model and solve the snapshot problems. We evaluate the impact of the selected methodology on the overall solution quality using a methodology-agnostic framework for multistage decision-making under uncertainty. We provide computational results on lot sizing within a rolling horizon regarding different types of uncertainty, solution approaches, and the value of available information about upcoming demands

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry
    • 

    corecore