567 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem

    Get PDF
    We study the mixed capacitated general routing problem (MCGRP) in which a fleet of capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of the capacitated vehicle routing problem (CVRP), the capacitated arc routing problem (CARP), and the general routing problem. It is also of great practical interest since it is often a more accurate model for real-world cases than its widely studied specializations, particularly for so-called street routing applications. Examples are urban waste collection, snow removal, and newspaper delivery. We propose a new iterated local search metaheuristic for the problem that also includes vital mechanisms from adaptive large neighborhood search combined with further intensification through local search. The method utilizes selected, tailored, and novel local search and large neighborhood search operators, as well as a new local search strategy. Computational experiments show that the proposed metaheuristic is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results also on seven standard CARP data sets, and good results on four well-known CVRP benchmarks, including improvement of the best known upper bound for one instance

    Robust Solution of Salting Route Optimisation Using Evolutionary Algorithms

    Get PDF
    The precautionary salting of the road network is an important maintenance issue for countries with a marginal winter climate. On many nights, not all the road network will require treatment as the local geography will mean some road sections are warmer than others. Hence, there is a logic to optimising salting routes based on known road surface temperature distributions. In this paper, a robust solution of Salting Route Optimisation using a training dataset of daily predicted temperature distributions is proposed. Evolutionary Algorithms are used to produce salting routes which group together the colder sections of the road network. Financial savings can then be made by not treating the warmer routes on the more marginal of nights. Experimental results on real data also reveal that the proposed methodology reduced total distance traveled on the new routes by around 10conventional salting routes.</p

    A hybrid algorithm combining path scanning and biased random sampling for the Arc Routing Problem

    Get PDF
    The Arc Routing Problem is a kind of NP-hard routing problems where the demand is located in some of the arcs connecting nodes and should be completely served fulfilling certain constraints. This paper presents a hybrid algorithm which combines a classical heuristic with biased random sampling, to solve the Capacitated Arc Routing Problem (CARP). This new algorithm is compared with the classical Path scanning heuristic, reaching results which outperform it. As discussed in the paper, the methodology presented is flexible, can be easily parallelised and it does not require any complex fine-tuning process. Some preliminary tests show the potential of the proposed approach as well as its limitationsPostprint (published version

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio
    corecore