945 research outputs found

    Behaviour modelling with data obtained from the Internet and contributions to cluster validation

    Get PDF
    [EN]This PhD thesis makes contributions in modelling behaviours found in different types of data acquired from the Internet and in the field of clustering evaluation. Two different types of Internet data were processed, on the one hand, internet traffic with the objective of attack detection and on the other hand, web surfing activity with the objective of web personalization, both data being of sequential nature. To this aim, machine learning techniques were applied, mostly unsupervised techniques. Moreover, contributions were made in cluster evaluation, in order to make easier the selection of the best partition in clustering problems. With regard to network attack detection, first, gureKDDCup database was generated which adds payload data to KDDCup99 connection attributes because it is essential to detect non-flood attacks. Then, by modelling this data a network Intrusion Detection System (nIDS) was proposed where context-independent payload processing was done obtaining satisfying detection rates. In the web mining context web surfing activity was modelled for web personalization. In this context, generic and non-invasive systems to extract knowledge were proposed just using the information stored in webserver log files. Contributions were done in two senses: in problem detection and in link suggestion. In the first application a meaningful list of navigation attributes was proposed for each user session to group and detect different navigation profiles. In the latter, a general and non-invasive link suggestion system was proposed which was evaluated with satisfactory results in a link prediction context. With regard to the analysis of Cluster Validity Indices (CVI), the most extensive CVI comparison found up to a moment was carried out using a partition similarity measure based evaluation methodology. Moreover, we analysed the behaviour of CVIs in a real web mining application with elevated number of clusters in which they tend to be unstable. We proposed a procedure which automatically selects the best partition analysing the slope of different CVI values.[EU]Doktorego-tesi honek internetetik eskuratutako datu mota ezberdinetan aurkitutako portaeren modelugintzan eta multzokatzeen ebaluazioan egiten ditu bere ekarpenak. Zehazki, bi mota ezberdinetako interneteko datuak prozesatu dira: batetik, interneteko trafikoa, erasoak hautemateko helburuarekin; eta bestetik, web nabigazioen jarduera, weba pertsonalizatzeko helburuarekin; bi datu motak izaera sekuentzialekoak direlarik. Helburu hauek lortzeko, ikasketa automatikoko teknikak aplikatu dira, nagusiki gainbegiratu-gabeko teknikak. Testuinguru honetan, multzokatzeen partizio onenaren aukeraketak dakartzan arazoak gutxitzeko multzokatzeen ebaluazioan ere ekarpenak egin dira. Sareko erasoen hautemateari dagokionez, lehenik gureKDDCup datubasea eratu da KDDCup99-ko konexio atributuei payload-ak (sareko paketeen datu eremuak) gehituz, izan ere, ez-flood erasoak (pakete gutxi erabiltzen dituzten erasoak) hautemateko ezinbestekoak baitira. Ondoren, datu hauek modelatuz testuinguruarekiko independenteak diren payload prozesaketak oinarri dituen sareko erasoak hautemateko sistema (network Intrusion Detection System (nIDS)) bat proposatu da maila oneko eraso hautemate-tasak lortuz. Web meatzaritzaren testuinguruan, weba pertsonalizatzeko helburuarekin web nabigazioen jarduera modelatu da. Honetarako, web zerbizarietako lorratz fitxategietan metatutako informazioa soilik erabiliz ezagutza erabilgarria erauziko duen sistema orokor eta ez-inbasiboak proposatu dira. Ekarpenak bi zentzutan eginaz: arazoen hautematean eta esteken iradokitzean. Lehen aplikazioan sesioen nabigazioa adierazteko atributu esanguratsuen zerrenda bat proposatu da, gero nabigazioak multzokatu eta nabigazio profil ezberdinak hautemateko. Bigarren aplikazioan, estekak iradokitzeko sistema orokor eta ez-inbasibo bat proposatu da, eta berau, estekak aurresateko testuinguruan ebaluatu da emaitza onak lortuz. Multzokatzeak balioztatzeko indizeen (Cluster Validity Indices (CVI)) azterketari dagokionez, gaurdaino aurkitu den CVI-en konparaketa zabalena burutu da partizioen antzekotasun neurrian oinarritutako ebaluazio metodologia erabiliz. Gainera, CVI-en portaera aztertu da egiazko web meatzaritza aplikazio batean normalean baino multzo kopuru handiagoak dituena, non CVI-ek ezegonkorrak izateko joera baitute. Arazo honi aurre eginaz, CVI ezberdinek partizio ezberdinetarako lortzen dituzten balioen maldak aztertuz automatikoki partiziorik onena hautatzen duen prozedura proposatu da.[ES]Esta tesis doctoral hace contribuciones en el modelado de comportamientos encontrados en diferentes tipos de datos adquiridos desde internet y en el campo de la evaluación del clustering. Dos tipos de datos de internet han sido procesados: en primer lugar el tráfico de internet con el objetivo de detectar ataques; y en segundo lugar la actividad generada por los usuarios web con el objetivo de personalizar la web; siendo los dos tipos de datos de naturaleza secuencial. Para este fin, se han aplicado técnicas de aprendizaje automático, principalmente técnicas no-supervisadas. Además, se han hecho aportaciones en la evaluación de particiones de clusters para facilitar la selección de la mejor partición de clusters. Respecto a la detección de ataques en la red, primero, se generó la base de datos gureKDDCup que añade el payload (la parte de contenido de los paquetes de la red) a los atributos de la conexión de KDDCup99 porque el payload es esencial para la detección de ataques no-flood (ataques que utilizan pocos paquetes). Después, se propuso un sistema de detección de intrusos (network Intrusion Detection System (IDS)) modelando los datos de gureKDDCup donde se propusieron varios preprocesos del payload independientes del contexto obteniendo resultados satisfactorios. En el contexto de la minerı́a web, se ha modelado la actividad de la navegación web para la personalización web. En este contexto se propondrán sistemas genéricos y no-invasivos para la extracción del conocimiento, utilizando únicamente la información almacenada en los ficheros log de los servidores web. Se han hecho aportaciones en dos sentidos: en la detección de problemas y en la sugerencia de links. En la primera aplicación, se propuso una lista de atributos significativos para representar las sesiones de navegación web para después agruparlos y detectar diferentes perfiles de navegación. En la segunda aplicación, se propuso un sistema general y no-invasivo para sugerir links y se evaluó en el contexto de predicción de links con resultados satisfactorios. Respecto al análisis de ı́ndices de validación de clusters (Cluster Validity Indices (CVI)), se ha realizado la más amplia comparación encontrada hasta el momento que utiliza la metodologı́a de evaluación basada en medidas de similitud de particiones. Además, se ha analizado el comportamiento de los CVIs en una aplicación real de minerı́a web con un número elevado de clusters, contexto en el que los CVIs tienden a ser inestables, ası́ que se propuso un procedimiento para la selección automática de la mejor partición en base a la pendiente de los valores de diferentes CVIs.Grant of the Basque Government (ref.: BFI08.226); Grant of Ministry of Economy and Competitiveness of the Spanish Government (ref.: BES-2011-045989); Research stay grant of Spanish Ministry of Economy and Competitiveness (ref.: EEBB-I-14-08862); University of the Basque Country UPV/EHU (BAILab, grant UFI11/45); Department of Education, Universities and Research of the Basque Government (grant IT-395-10); Ministry of Economy and Competitiveness of the Spanish Government and by the European Regional Development Fund - ERDF (eGovernAbility, grant TIN2014-52665-C2-1-R)

    Raising the ClaSS of Streaming Time Series Segmentation

    Full text link
    Ubiquitous sensors today emit high frequency streams of numerical measurements that reflect properties of human, animal, industrial, commercial, and natural processes. Shifts in such processes, e.g. caused by external events or internal state changes, manifest as changes in the recorded signals. The task of streaming time series segmentation (STSS) is to partition the stream into consecutive variable-sized segments that correspond to states of the observed processes or entities. The partition operation itself must in performance be able to cope with the input frequency of the signals. We introduce ClaSS, a novel, efficient, and highly accurate algorithm for STSS. ClaSS assesses the homogeneity of potential partitions using self-supervised time series classification and applies statistical tests to detect significant change points (CPs). In our experimental evaluation using two large benchmarks and six real-world data archives, we found ClaSS to be significantly more precise than eight state-of-the-art competitors. Its space and time complexity is independent of segment sizes and linear only in the sliding window size. We also provide ClaSS as a window operator with an average throughput of 538 data points per second for the Apache Flink streaming engine

    Using High-Order Prior Belief Predictions in Hierarchical Temporal Memory for Streaming Anomaly Detection

    Get PDF
    Autonomous streaming anomaly detection can have a significant impact in any domain where continuous, real-time data is common. Often in these domains, datasets are too large or complex to hand label. Algorithms that require expensive global training procedures and large training datasets impose strict demands on data and are accordingly not fit to scale to real-time applications that are noisy and dynamic. Unsupervised algorithms that learn continuously like humans therefore boast increased applicability to these real-world scenarios. Hierarchical Temporal Memory (HTM) is a biologically constrained theory of machine intelligence inspired by the structure, activity, organization and interaction of pyramidal neurons in the neocortex of the primate brain. At the core of HTM are spatio-temporal learning algorithms that store, learn, recall and predict temporal sequences in an unsupervised and continuous fashion to meet the demands of real-time tasks. Unlike traditional machine learning and deep learning encompassed by the act of complex functional approximation, HTM with the surrounding proposed framework does not require any offline training procedures, any massive stores of training data, any data labels, it does not catastrophically forget previously learned information and it need only make one pass through the temporal data. Proposed in this thesis is an algorithmic framework built upon HTM for intelligent streaming anomaly detection. Unseen in earlier streaming anomaly detection work, the proposed framework uses high-order prior belief predictions in time in the effort to increase the fault tolerance and complex temporal anomaly detection capabilities of the underlying time-series model. Experimental results suggest that the framework when built upon HTM redefines state-of-the-art performance in a popular streaming anomaly benchmark. Comparative results with and without the framework on several third-party datasets collected from real-world scenarios also show a clear performance benefit. In principle, the proposed framework can be applied to any time-series modeling algorithm capable of producing high-order predictions

    Data-driven Disease Surveillance

    Get PDF
    The recent and still ongoing pandemic of SARS-CoV-2 has shown that an infectious disease outbreak can have serious consequences on public health and economy. In this situation, public health officials constantly aim to control and reduce the number of infections in order to avoid overburdening health care system. Besides minimizing personal contact through political measures, a fundamental approach to contain the spread of diseases is to isolate infected individuals. The effectiveness of the latter approach strongly depends on a timely detection of the outbreak as the tracking of individuals can quickly become infeasible when the number of cases increases. Hence, a key factor in the containment of an infectious disease is the early detection of a potential larger outbreak, commonly known as outbreak detection. For this purpose, epidemiologists rely on a variety of statistical surveillance methods in order to maintain an overview of the current situation of infections by either monitoring confirmed cases or cases with early symptoms. Mainly based on statistical hypothesis testing, these methods automatically raise an alarm if an unexpected increase in the number of infections is observed. The practical usefulness of such methods highly depends on the trade-off between the ability to detect outbreaks and the chances of raising a false alarm. However, this hypothesis-based approach to disease surveillance has several limitations. On the one hand, it is a hand-crafted approach which requires domain knowledge to set up the statistical methods, especially if early symptoms are monitored. On the other hand, outbreaks of emerging infectious diseases with different symptom patterns are likely to be missed by such a surveillance system. In this thesis, we focus on data-driven disease surveillance and address these challenges in the following ways. To support epidemiologists in the process of defining reliable disease patterns for monitoring cases with early symptoms, we present a novel approach to discover such patterns in historic data. With respect to supervised learning, we propose a fusion classifier which can combine the output of multiple statistical methods using the univariate time series of infection counts as the only source of information. In addition, we develop algorithms based on unsupervised learning which frame the task of outbreak detection as a general anomaly detection task. This even includes the surveillance of emerging infectious diseases. Therefore, we contribute a novel framework and propose a new approach based on sum-product networks to monitor multiple disease patterns simultaneously. Our results show that data-driven approaches are ideal to assist epidemiologists by processing large amounts of data that cannot fully be understood and analyzed by humans. Most significantly, the incorporation of additional information into the surveillance through machine learning techniques shows reliable and promising results

    Statistical methods applied to the search of sterile neutrinos

    Get PDF
    The frequentist statistical methods applied to search for short-baseline neutrino oscillations induced by a sterile neutrino with mass at the eV scale are reviewed and compared. The comparison is performed under limit setting and signal discovery scenarios, considering both when an oscillation would enhance the neutrino interaction rate in the detector and when it would reduce it. The sensitivity of the experiments and the confidence regions extracted for specific data sets change considerably according to which test statistic is used and the assumptions on its probability distribution. A standardized analysis approach based on the most general kind of hypothesis test is proposed

    The 8th International Conference on Time Series and Forecasting

    Get PDF
    The aim of ITISE 2022 is to create a friendly environment that could lead to the establishment or strengthening of scientific collaborations and exchanges among attendees. Therefore, ITISE 2022 is soliciting high-quality original research papers (including significant works-in-progress) on any aspect time series analysis and forecasting, in order to motivating the generation and use of new knowledge, computational techniques and methods on forecasting in a wide range of fields

    APIC: A method for automated pattern identification and classification

    Get PDF
    Machine Learning (ML) is a transformative technology at the forefront of many modern research endeavours. The technology is generating a tremendous amount of attention from researchers and practitioners, providing new approaches to solving complex classification and regression tasks. While concepts such as Deep Learning have existed for many years, the computational power for realising the utility of these algorithms in real-world applications has only recently become available. This dissertation investigated the efficacy of a novel, general method for deploying ML in a variety of complex tasks, where best feature selection, data-set labelling, model definition and training processes were determined automatically. Models were developed in an iterative fashion, evaluated using both training and validation data sets. The proposed method was evaluated using three distinct case studies, describing complex classification tasks often requiring significant input from human experts. The results achieved demonstrate that the proposed method compares with, and often outperforms, less general, comparable methods designed specifically for each task. Feature selection, data-set annotation, model design and training processes were optimised by the method, where less complex, comparatively accurate classifiers with lower dependency on computational power and human expert intervention were produced. In chapter 4, the proposed method demonstrated improved efficacy over comparable systems, automatically identifying and classifying complex application protocols traversing IP networks. In chapter 5, the proposed method was able to discriminate between normal and anomalous traffic, maintaining accuracy in excess of 99%, while reducing false alarms to a mere 0.08%. Finally, in chapter 6, the proposed method discovered more optimal classifiers than those implemented by comparable methods, with classification scores rivalling those achieved by state-of-the-art systems. The findings of this research concluded that developing a fully automated, general method, exhibiting efficacy in a wide variety of complex classification tasks with minimal expert intervention, was possible. The method and various artefacts produced in each case study of this dissertation are thus significant contributions to the field of ML
    corecore