3,728 research outputs found

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    Push Recovery for Humanoid Robots using Linearized Double Inverted Pendulum

    Get PDF
    Biped robots have come a long way in imitating a human being\u27s anatomy and posture. Standing balance and push recovery are some of the biggest challenges for such robots. This work presents a novel simplified model for a humanoid robot to recover from external disturbances. The proposed Linearized Double Inverted Pendulum, models the dynamics of a complex humanoid robot that can use ankle and hip recovery strategies while taking full advantage of the advances in controls theory research. To support this, an LQR based control architecture is also presented in this work. The joint torque signals are generated along with ankle torque constraints to ensure the Center of Pressure stays within the support polygon. Simulation results show that the presented model can successfully recover from external disturbances while using minimal effort when compared to other widely used simplified models. It optimally uses the the torso weight to generate angular momentum about the pelvis of the robot to counter-balance the effects of external disturbances. The proposed method was validated on simulated `TigerBot-VII\u27, a humanoid robot

    Experimental Robot Model Adjustments Based on Force-Torque Sensor Information

    Get PDF
    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force-torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamicsThe research leading to these results received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller

    Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking

    Get PDF
    In many simple walking models foot placement dictates the center of pressure location and ground reaction force components, whereas humans can modulate these aspects after foot contact. Because of the differences, it is unclear to what extend predictions made by models are valid for human walking. Yet, both model simulations and human experimental data have previously indicated that the center of mass (COM) velocity plays an important role in regulating stable walking.\ud \ud Here, perturbed human walking was studied for the relation of the horizontal COM velocity at heel strike and toe-off with the foot placement location relative to the COM, the forthcoming center of pressure location relative to the COM, and the ground reaction forces. Ten healthy subjects received various magnitude mediolateral and anteroposterior pelvis perturbations at toe-off, during 0.63 and 1.25 m s−1 treadmill walking.\ud \ud At heel strike after the perturbation, recovery from mediolateral perturbations involved mediolateral foot placement adjustments proportional to the mediolateral COM velocity. In contrast, for anteroposterior perturbations no significant anteroposterior foot placement adjustment occurred at this heel strike. However, in both directions the COM velocity at heel strike related linearly to the center of pressure location at the subsequent toe-off. This relation was affected by the walking speed and was, for the slow speed, in line with a COM velocity based control strategy previously applied by others in a linear inverted pendulum model. Finally, changes in gait phase durations suggest that the timing of actions could play an important role during the perturbation recovery

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    The Relationship between Force Platform Measures and Total Body Center of Mass

    Get PDF
    The ability of a person to maintain stable posture is essential for activities of daily living. Research in this field has evolved to include sensitive assessment technology including force platforms and 3-dimensional kinematic motion analysis systems. Although many studies have investigated postural stability under the auspice of posturography and the use of force platforms, relatively few have incorporated kinematic motion analysis techniques. Furthermore, of the studies that have utilized a multivariate research model, none have sought to identify the relationship between force platform measures including both the variation of movement of the x- and y-coordinates of the center of pressure (COP), and the 3-dimensional coordinates of the total body center of mass (COM). This study used a descriptive design to evaluate the relationship between force platform measures and the kinematic measures dealing with the total body COM in 14 healthy participants (height = 1.70 ± 0.09 m, mass = 67.7 ± 9.9 kg; age = 24.9 ± 3.8 yrs). Intraclass correlations (ICC) and standard error of measurements (SEM) were determined for common variables of interest used in standard posturography models. The results suggest that the variation of the excursion of the COP coordinates best represent the variation of the total body COM in the x- and y-directions. There was a force platform measure that correlated significantly with the vertical component of total body COM in only 3 of the 8 conditions. The ICC values obtained when analyzing individual conditions revealed that the variation in the force measurements were much more reliable than those representing the variation in movement of the COP, suggesting a need for the development of higher order methods of modeling 3-dimensional COM information from force platforms
    corecore