98,007 research outputs found

    On the factors causing processing difficulty of multiple-scene displays

    Get PDF
    Multiplex viewing of static or dynamic scenes is an increasing feature of screen media. Most existing multiplex experiments have examined detection across increasing scene numbers, but currently no systematic evaluation of the factors that might produce difficulty in processing multiplexes exists. Across five experiments we provide such an evaluation. Experiment 1 characterises difficulty in change detection when the number of scenes is increased. Experiment 2 reveals that the increased difficulty across multiple-scene displays is caused by the total amount of visual information accounts for differences in change detection times, regardless of whether this information is presented across multiple scenes, or contained in one scene. Experiment 3 shows that whether quadrants of a display were drawn from the same, or different scenes did not affect change detection performance. Experiment 4 demonstrates that knowing which scene the change will occur in means participants can perform at monoplex level. Finally, Experiment 5 finds that changes of central interest in multiplexed scenes are detected far easier than marginal interest changes to such an extent that a centrally interesting object removal in nine screens is detected more rapidly than a marginally interesting object removal in four screens. Processing multiple-screen displays therefore seems dependent on the amount of information, and the importance of that information to the task, rather than simply the number of scenes in the display. We discuss the theoretical and applied implications of these findings

    Pirate stealth or inattentional blindness?:the effects of target relevance and sustained attention on security monitoring for experienced and naĂŻve operators

    Get PDF
    Closed Circuit Television (CCTV) operators are responsible for maintaining security in various applied settings. However, research has largely ignored human factors that may contribute to CCTV operator error. One important source of error is inattentional blindness--the failure to detect unexpected but clearly visible stimuli when attending to a scene. We compared inattentional blindness rates for experienced (84 infantry personnel) and naĂŻve (87 civilians) operators in a CCTV monitoring task. The task-relevance of the unexpected stimulus and the length of the monitoring period were manipulated between participants. Inattentional blindness rates were measured using typical post-event questionnaires, and participants' real-time descriptions of the monitored event. Based on the post-event measure, 66% of the participants failed to detect salient, ongoing stimuli appearing in the spatial field of their attentional focus. The unexpected task-irrelevant stimulus was significantly more likely to go undetected (79%) than the unexpected task-relevant stimulus (55%). Prior task experience did not inoculate operators against inattentional blindness effects. Participants' real-time descriptions revealed similar patterns, ruling out inattentional amnesia accounts

    The Effect of Movement Rate and Complexity on Functional Magnetic Resonance Signal Change During Pedaling

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to record human brain activity during slow (30 RPM), fast (60 RPM), passive (30 RPM), and variable rate pedaling. Ten healthy adults participated. After identifying regions of interest, the intensity and volume of brain activation in each region was calculated and compared across conditions (p \u3c .05). Results showed that the primary sensory and motor cortices (S1, M1), supplementary motor area (SMA), and cerebellum (Cb) were active during pedaling. The intensity of activity in these areas increased with increasing pedaling rate and complexity. The Cb was the only brain region that showed significantly lower activity during passive as compared with active pedaling. We conclude that M1, S1, SMA, and Cb have a role in modifying continuous, bilateral, multijoint lower extremity movements. Much of this brain activity may be driven by sensory signals from the moving limbs

    I don't want to miss a thing : learning dynamics and effects of feedback type and monetary incentive in a paired associate deterministic learning task

    Get PDF
    Effective functioning in a complex environment requires adjusting of behavior according to changing situational demands. To do so, organisms must learn new, more adaptive behaviors by extracting the necessary information from externally provided feedback. Not surprisingly, feedback-guided learning has been extensively studied using multiple research paradigms. The purpose of the present study was to test the newly designed Paired Associate Deterministic Learning task (PADL), in which participants were presented with either positive or negative deterministic feedback. Moreover, we manipulated the level of motivation in the learning process by comparing blocks with strictly cognitive, informative feedback to blocks where participants were additionally motivated by anticipated monetary reward or loss. Our results proved the PADL to be a useful tool not only for studying the learning process in a deterministic environment, but also, due to the varying task conditions, for assessing differences in learning patterns. Particularly, we show that the learning process itself is influenced by manipulating both the type of feedback information and the motivational significance associated with the expected monetary reward

    Perceptual Grouping and Distance Estimates in Typical and Atypical Development: Comparing Performance across Perception, Drawing and Construction Tasks

    Get PDF
    Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD; Experiment 1) and in individuals with Williams syndrome (WS; Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Professional Driver Training and Driver Stress: Effects on Simulated Driving Performance

    Get PDF
    Book chapter from Traffic and Transport Psychology, edited by G. Underwood, published by Elsevier, 2005
    • …
    corecore