63 research outputs found

    Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture

    Get PDF
    Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factors mentioned above is highly non-linear and ill-posed. Consequently, Artificial Neural Networks (ANNs) have been used to retrieve soil moisture from microwave data, but with limited success when dealing with data different to that from the training period. In this study, an ANN is tested for its ability to predict soil moisture at 1 km resolution on different dates following training at the same site for a specific date. A novel approach that utilizes information on the variability of soil moisture, in terms of its mean and standard deviation for a (sub) region of spatial dimension up to 40 km, is used to improve the current retrieval accuracy of the ANN method.A comparison between the ANN with and without the use of the variability information showed that this enhancement enables the ANN to achieve an average Root Mean Square Error (RMSE) of around 5.1% v/v when using the variability information, as compared to around 7.5% v/v without it. The accuracy of the soil moisture retrieval was further improved by the division of the target site into smaller regions down to 4 km in size, with the spatial variability of soil moisture calculated from within the smaller region used in the ANN. With the combination of an ANN architecture of a single hidden layer of 20 neurons and the dual-polarized brightness temperatures as input, the proposed use of variability and sub-region methodology achieves an average retrieval accuracy of 3.7% v/v. Although this accuracy is not the lowest as comparing to the research in this field, the main contribution is the ability of ANN in solving the problem of predicting “out-of-range” soil moisture values. However, the applicability of this method is highly dependent on the accuracy of the mean and standard deviation values within the sub-region, potentially limiting its routine application

    Integrating remote sensing information into a distributed hydrological model for improved water budget predictions in large - scale basins through data assimilation

    Get PDF
    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems

    Hydrologic data assimilation of multi-resolution microwave radiometer and radar measurements using ensemble smoothing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.Includes bibliographical references (leaves 197-208).Previously, the ensemble Kalman filter (EnKF) has been used to estimate soil moisture and related fluxes by merging noisy low frequency microwave observations with forecasts from a conventional though uncertain land surface model (LSM). Here it is argued that soil moisture estimation is a reanalysis-type problem and thus smoothingis more appropriate than filtering. An ensemble moving batch smoother, an extension of the EnKF in which the state vector is distributed in time, is used to merge synthetic ESTAR observations with modeled soil moisture. Results demonstrate that smoothing can improve over filtering. However, augmentation of the state vector increases the computational cost significantly, rendering this approach unsuitable for spatially distributed problems. The ensemble Kalman smoother (EnKS) is an inexpensive alternative as the costly computations are already performed in the EnKF which provides the initial guess. It is used to assimilate observed L-band radiobrightness temperatures during the Southern Great Plains Experiment 1997. Estimated surface and root zone soil moisture is evaluated using gravimetric measurements and flux tower observations. It is shown that the EnKS can be implemented as a fixed-lag smoother with the required lag determined by the memory in subsurface soil moisture. In a synthetic experiment over the Arkansas-Red river basin, "true" soil moisture from the TOPLATS model is used to generate synthetic Hydros observations which are subsequently merged with modeled soil moisture from the Noah LSM using the EnKS.(cont.) It is shown that the EnKS can be used in a large problem, with a spatially distributed state vector, and spatially-distributed multi-resolution observations. This EnKS-based framework is used to study the synergy between passive and active observations, which have different resolutions and error distributions.by Susan Catherin Dunne.Ph.D

    Application of a Hillslope-Scale Soil Moisture Data Assimilation System to Military Trafficability Assessment

    Get PDF
    Soil moisture is an important environmental variable that impacts military operations and weapons systems. Accurate and timely forecasts of soil moisture at appropriate spatial scales, therefore, are important for mission planning. We present an application of a soil moisture data assimilation system to military trafficability assessment. The data assimilation system combines hillslope-scale (e.g., 10s to 100s of m) estimates of soil moisture from a hydrologic model with synthetic L-band microwave radar observations broadly consistent with the planned NASA Soil Moisture Active–Passive (SMAP) mission. Soil moisture outputs from the data assimilation system are input to a simple index-based model for vehicle trafficability. Since the data assimilation system uses the ensemble Kalman Filter, the risks of impaired trafficability due to uncertainties in the observations and model inputs can be quantified. Assimilating the remote sensing observations leads to significantly different predictions of trafficability conditions and associated risk of impaired trafficability, compared to an approach that propagates forward uncertainties in model inputs without assimilation. Specifically, assimilating the observations is associated with an increase in the risk of “slow go” conditions in approximately two-thirds of the watershed, and an increase in the risk of “no go” conditions in approximately 40% of the watershed. Despite the simplicity of the trafficability assessment tool, results suggest that ensemble-based data assimilation can potentially improve trafficability assessment by constraining predictions to observations and facilitating quantitative assessment of the risk of impaired trafficability

    Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing

    No full text
    International audienceMicrowave remote sensing offers emerging capabilities to monitor global hydrological processes. Instruments like the two dedicated soil moisture missions SMOS and HYDROS or the Advanced Scatterometer onboard METOP will provide a flow of coarse resolution microwave data, suited for macro-scale applications. Only recently, the scatterometer onboard of the European Remote Sensing Satellite, which is the precursor instrument of the Advanced Scatterometer, has been used successfully to derive soil moisture information at global scale with a spatial resolution of 50 km. Concepts of how to integrate macro-scale soil moisture data in hydrologic models are however still vague. In fact, the coarse resolution of the data provided by microwave radiometers and scatterometers is often considered to impede hydrological applications. Nevertheless, even if most hydrologic models are run at much finer scales, radiometers and scatterometers allow monitoring of atmosphere-induced changes in regional soil moisture patterns. This may prove to be valuable information for modelling hydrological processes in large river basins (>10 000 km2. In this paper, ERS scatterometer derived soil moisture products are compared to measured runoff of the Zambezi River in south-eastern Africa for several years (1992?2000). This comparison serves as one of the first demonstrations that there is hydrologic relevant information in coarse resolution satellite data. The observed high correlations between basin-averaged soil moisture and runoff time series (R2>0.85) demonstrate that the seasonal change from low runoff during the dry season to high runoff during the wet season is well captured by the ERS scatterometer. It can be expected that the high correlations are to a certain degree predetermined by the pronounced inter-annual cycle observed in the discharge behaviour of the Zambezi. To quantify this effect, time series of anomalies have been compared. This analysis showed that differences in runoff from year to year could, to some extent, be explained by soil moisture anomalies

    Hydrologic Remote Sensing and Land Surface Data Assimilation

    Get PDF
    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface?atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation

    An artificial neural network approach for soil moisture retrieval using passive microwave data

    Get PDF
    Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms only accounts for the near surface soil layers, generally the top 5cm. Passive microwave data at L-band (1.4 GHz, 21cm wavelength) measurements are shown to be a very effective observation for surface soil moisture retrieval. The first space-borne L-band mission dedicated to observing soil moisture, the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, was launched on 2nd November 2009.Artificial Neural Network (ANN) methods have been used to empirically ascertain the complex statistical relationship between soil moisture and brightness temperature in the presence of vegetation cover. The current problem faced by this method is its inability to predict soil moisture values that are 'out-of-range' of the training data.In this research, an optimization model is developed for the Backpropagation Neural Network model. This optimization model utilizes the combination of the mean and standard deviation of the soil moisture values, together with the prediction process at different pre-determined, equal size regions to cope with the spatial and temporal variation of soil moisture values. This optimized model coupled with an ANN of optimum architecture, in terms of inputs and the number of neurons in the hidden layers, is developed to predict scale-to-scale and downscaling of soil moisture values. The dependency on the accuracy of the mean and standard deviation values of soil moisture data is also studied in this research by simulating the soil moisture values using a multiple regression model. This model obtains very encouraging results for these research problems.The data used to develop and evaluate the model in this research has been obtained from the National Airborne Field Experiments in 2005
    • 

    corecore