1,367 research outputs found

    The design, analysis and evaluation of a humanoid robotic head

    Get PDF
    Where robots interact directly with humans on a ‘one-to-one’ basis, it is often quite important for them to be emotionally acceptable, hence the growing interesting in humanoid robots. In some applications it is important that these robots do not just resemble a human being in appearance, but also move like a human being too, to make them emotionally acceptable – hence the interest in biomimetic humanoid robotics. The research described in this thesis is concerned with the design, analysis and evaluation of a biomimetic humanoid robotic head. It is biomimetic in terms of physical design - which is based around a simulated cervical spine, and actuation, which is achieved using pneumatic air muscles (PAMS). The primary purpose of the research, however, and the main original contribution, was to create a humanoid robotic head capable of mimicking complex non-purely rotational human head movements. These include a sliding front-to-back, lateral movement, and a sliding, side-to-side lateral movement. A number of different approaches were considered and evaluated, before finalising the design. As there are no generally accepted metrics in the literature regarding the full range of human head movements, the best benchmarks for comparison are the angular ranges and speeds of humans in terms on pitch (nod), roll (tilt) and yaw (rotate) were used for comparison, and these they were considered desired ranges for the robot. These measured up well in comparison in terms of angular speed and some aspects of range of human necks. Additionally, the lateral movements were measured during the nod, tilt and rotate movements, and established the ability of the robot to perform the complex lateral movements seen in humans, thus proving the benefits of the cervical spine approach. Finally, the emotional acceptance of the robot movements was evaluated against another (commercially made) robot and a human. This was a blind test, in that the (human) evaluators had no way of knowing whether they were evaluation a human or a robot. The tests demonstrated that on scales of Fake/Natural, Machinelike/Humanlike and Unconcsious/Conscious the robot the robot scored similarly to the human

    Development of a 4-DoF Active Upper Limb Orthosis

    Get PDF
    In this paper, the designs and manufacturing process of a powered upper limb orthosis are presented. The orthosis is an exoskeleton worn on one arm by the user and fixed to the trunk. The orthosis’ architecture, design, and manufacturing process are presented and discussed. Estimations of the ranges of movement related to daily living activities are presented. The preliminary tests to verify the functionality of the design show encouraging results

    Robotic Exoskeleton Hand with Pneumatic Actuators

    Get PDF
    With modern developments of smart portable devices and miniaturization of technologies, society has been provided with computerized assistance for almost every daily activity but the physical aspects have been frequently ne-glected. It is currently possible to make robots that process information thru neural networks, that identify and mimic facial expressions and that replace manual labour in assembly plants, getting ever closer to skills associated to human beings. In spite of these technological advances being kept close to they remain separate of humans, replacing or providing assistance with other pe-ripheral tasks, not generally adopting a direct physical symbiotic user assis-tance path. In this dissertation a robotic exoskeleton hand will be described that al-lows for human-machine bidirectional interaction making it possible to provide physical activities with the electromechanical assistance similarly. This system is designed to mimic the human hands functionalities and biomechanical struc-ture, as well sensing and controlling systems. A partial prototype was also built, using components easily acquired in the market, as a proof of concept

    Sampled Data Control of a Compliant Actuated Joint Using On/Off Solenoid Valves

    Get PDF
    This paper proposes a new control system design method for a compliant actuated joint using on/off solenoid valves. Themathematical modelling and the system’s hardware are described in detail. The control design method is presented in ageneral manner so it could be applied for any other similar system. For the present system, the designed controller is implementedvia a digital computer and it is characterised by very good performance and simplicity. The success of the proposedmethod is validated via simulations and experiment

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations
    corecore