48 research outputs found

    Artificial intelligence - based ultrasound elastography for disease evaluation - a narrative review

    Get PDF
    Ultrasound elastography (USE) provides complementary information of tissue stiffness and elasticity to conventional ultrasound imaging. It is noninvasive and free of radiation, and has become a valuable tool to improve diagnostic performance with conventional ultrasound imaging. However, the diagnostic accuracy will be reduced due to high operator-dependence and intra- and inter-observer variability in visual observations of radiologists. Artificial intelligence (AI) has great potential to perform automatic medical image analysis tasks to provide a more objective, accurate and intelligent diagnosis. More recently, the enhanced diagnostic performance of AI applied to USE have been demonstrated for various disease evaluations. This review provides an overview of the basic concepts of USE and AI techniques for clinical radiologists and then introduces the applications of AI in USE imaging that focus on the following anatomical sites: liver, breast, thyroid and other organs for lesion detection and segmentation, machine learning (ML) - assisted classification and prognosis prediction. In addition, the existing challenges and future trends of AI in USE are also discussed

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018

    Get PDF
    This manuscript describes the use of ultrasound elastography, with the exception of liver applications, and represents an update of the 2013 EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) Guidelines and Recommendations on the clinical use of elastography

    The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications : Update 2018

    Get PDF
    Funding Information: Odd Helge Gilja: Advisory Board/Consultant fee from: AbbVie, Bracco, GE Healthcare, Samsung, and Takeda Paul S. Sidhu: Speaker honoraria, Bracco, Siemens, Samsung, Hiatchi, GE and Philips Christoph F. Dietrich: Speaker honoraria, Bracco, Hitachi, GE, Mindray, Supersonic, Pentax, Olympus, Fuji, Boston Scientific, AbbVie, Falk Foundation, Novartis, Roche; Advisory, Board Member, Hitachi, Mindray, Siemens; Research grant, GE, Mindray, SuperSonic Vito Cantisani: Speaker honoraria, Canon/Toshiba, Bracco, Samsung Dominique Amy: Speaker honoraria, Hitachi, Supersonic, EpiSonica Marco Brock: Speaker honoraria, Hitachi Fabrizio Calliada: Speaker honoraria, Bracco, Hitachi, Shenshen Mindray Dirk Andre Clevert: Speaker honoraria, Siemens, Samsung, GE, Bracco, Philips; Advisory Board, Siemens, Samsung, Bracco, Philips Jean-Michel Correas: Speaker honoraria, Hitachi-Aloka, Canon/Toshiba, Philips, Supersonic, Bracco, Guerbet; Research collaboration, Bracco Sonocap, Guerbet NsSafe and Secure protocols Mirko D’Onofrio: Speaker honoraria, Siemens, Bracco, Hitachi; Advisory Board Siemens, Bracco Andre Farrokh: Speaker honoraria, Hitachi Pietro Fusaroli: Speaker honoraria, Olympus Roald Flesland Havre: Speaker honoraria, GE Healthcare, Conference participation support from Pharmacosmos, Ultrasound equipment from Samsung Medison André Ignee: Speaker honoraria: Siemens, Canon/Toshiba, Hitachi, Boston Scientific, Bracco, Supersonic, Abbvie Christian Jenssen: Speaker honoraria, Bracco, Hitachi, Canon/Toshiba, Falk Foundation, Covidien; Research grant, Novartis Maija Radzina: Speaker honoraria, Bracco, Canon/Toshiba Luca Sconfienza: Travel grants from Bracco Imaging Italia Srl, Esaote SPA, Abiogen SPA, Fidia Middle East. Speaker honoraria from Fidia Middle East Ioan Sporea: Speaker honoraria, Philips, GE, Canon/Toshiba; Advisory Board Member, Siemens; Congress participation support, Siemens Mickael Tanter: Speaker honoraria, Supersonic; Co Founder and shareholder, Supersonic; Research collaboration, Supersonic Peter Vilmann: Speaker honoraria, Pentax, Norgine; Advisory Board, Boston Scientific; Consultancy MediGlobe The following members declared no conflicts of interest: Adrian Săftoiu, Michael Bachmann Nielsen, Flaviu Bob, Jörg Bojunga, Caroline Ewertsen, Michael Hocke, Andrea Klauser, Christian Kollmann, Kumar V Ramnarine, Carolina Solomon, Daniela Fodor, Horia Ștefănescu Publisher Copyright: © 2019 Georg Thieme Verlag KG Stuttgart New York.This manuscript describes the use of ultrasound elastography, with the exception of liver applications, and represents an update of the 2013 EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) Guidelines and Recommendations on the clinical use of elastography.Peer reviewe

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Unveiling the future of breast cancer assessment: a critical review on generative adversarial networks in elastography ultrasound

    Get PDF
    Elastography Ultrasound provides elasticity information of the tissues, which is crucial for understanding the density and texture, allowing for the diagnosis of different medical conditions such as fibrosis and cancer. In the current medical imaging scenario, elastograms for B-mode Ultrasound are restricted to well-equipped hospitals, making the modality unavailable for pocket ultrasound. To highlight the recent progress in elastogram synthesis, this article performs a critical review of generative adversarial network (GAN) methodology for elastogram generation from B-mode Ultrasound images. Along with a brief overview of cutting-edge medical image synthesis, the article highlights the contribution of the GAN framework in light of its impact and thoroughly analyzes the results to validate whether the existing challenges have been effectively addressed. Specifically, This article highlights that GANs can successfully generate accurate elastograms for deep-seated breast tumors (without having artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the results of the GAN framework are thoroughly analyzed by considering the quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally, essential unaddressed challenges that lie at the intersection of elastography and GANs are presented, and a few future directions are shared for the elastogram synthesis research
    corecore