2,830 research outputs found

    Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data

    Get PDF
    BACKGROUND: In recent years, outcome prediction models using artificial neural network and multivariable logistic regression analysis have been developed in many areas of health care research. Both these methods have advantages and disadvantages. In this study we have compared the performance of artificial neural network and multivariable logistic regression models, in prediction of outcomes in head trauma and studied the reproducibility of the findings. METHODS: 1000 Logistic regression and ANN models based on initial clinical data related to the GCS, tracheal intubation status, age, systolic blood pressure, respiratory rate, pulse rate, injury severity score and the outcome of 1271 mainly head injured patients were compared in this study. For each of one thousand pairs of ANN and logistic models, the area under the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow (HL) statistics and accuracy rate were calculated and compared using paired T-tests. RESULTS: ANN significantly outperformed logistic models in both fields of discrimination and calibration but under performed in accuracy. In 77.8% of cases the area under the ROC curves and in 56.4% of cases the HL statistics for the neural network model were superior to that for the logistic model. In 68% of cases the accuracy of the logistic model was superior to the neural network model. CONCLUSIONS: ANN significantly outperformed the logistic models in both fields of discrimination and calibration but lagged behind in accuracy. This study clearly showed that any single comparison between these two models might not reliably represent the true end results. External validation of the designed models, using larger databases with different rates of outcomes is necessary to get an accurate measure of performance outside the development population

    Prediction of survival probabilities with Bayesian Decision Trees

    Get PDF
    Practitioners use Trauma and Injury Severity Score (TRISS) models for predicting the survival probability of an injured patient. The accuracy of TRISS predictions is acceptable for patients with up to three typical injuries, but unacceptable for patients with a larger number of injuries or with atypical injuries. Based on a regression model, the TRISS methodology does not provide the predictive density required for accurate assessment of risk. Moreover, the regression model is difficult to interpret. We therefore consider Bayesian inference for estimating the predictive distribution of survival. The inference is based on decision tree models which recursively split data along explanatory variables, and so practitioners can understand these models. We propose the Bayesian method for estimating the predictive density and show that it outperforms the TRISS method in terms of both goodness-of-fit and classification accuracy. The developed method has been made available for evaluation purposes as a stand-alone application

    A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery

    Get PDF
    Background: Low back pain is a common problem in many people. Neurosurgeons recommend posterior spinal fusion (PSF) surgery as one of the therapeutic strategies to the patients with low back pain. Due to the high risk of this type of surgery and the critical importance of making the right decision, accurate prediction of the surgical outcome is one of the main concerns for the neurosurgeons.Methods: In this study, 12 types of multi-layer perceptron (MLP) networks and 66 radial basis function (RBF) networks as the types of artificial neural network methods and a logistic regression (LR) model created and compared to predict the satisfaction with PSF surgery as one of the most well-known spinal surgeries.Results: The most important clinical and radiologic features as twenty-seven factors for 480 patients (150 males, 330 females; mean age 52.32 ± 8.39 years) were considered as the model inputs that included: age, sex, type of disorder, duration of symptoms, job, walking distance without pain (WDP), walking distance without sensory (WDS) disorders, visual analog scale (VAS) scores, Japanese Orthopaedic Association (JOA) score, diabetes, smoking, knee pain (KP), pelvic pain (PP), osteoporosis, spinal deformity and etc. The indexes such as receiver operating characteristic–area under curve (ROC-AUC), positive predictive value, negative predictive value and accuracy calculated to determine the best model. Postsurgical satisfaction was 77.5% at 6 months follow-up. The patients divided into the training, testing, and validation data sets.Conclusion: The findings showed that the MLP model performed better in comparison with RBF and LR models for prediction of PSF surgery.Keywords: Posterior spinal fusion surgery (PSF); Prediction, Surgical satisfaction; Multi-layer perceptron (MLP); Logistic regression (LR) (PDF) A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery. Available from: https://www.researchgate.net/publication/325679954_A_Predictive_Model_for_Assessment_of_Successful_Outcome_in_Posterior_Spinal_Fusion_Surgery [accessed Jul 11 2019].Peer reviewe

    Classification Performance of Neural Networks Versus Logistic Regression Models: Evidence From Healthcare Practice

    Get PDF
    Machine learning encompasses statistical approaches such as logistic regression (LR) through to more computationally complex models such as neural networks (NN). The aim of this study is to review current published evidence for performance from studies directly comparing logistic regression, and neural network classification approaches in medicine. A literature review was carried out to identify primary research studies which provided information regarding comparative area under the curve (AUC) values for the overall performance of both LR and NN for a defined clinical healthcare-related problem. Following an initial search, articles were reviewed to remove those that did not meet the criteria and performance metrics were extracted from the included articles. Teh initial search revealed 114 articles; 21 studies were included in the study. In 13/21 (62%) of cases, NN had a greater AUC compared to LR, but in most the difference was small and unlikely to be of clinical significance; (unweighted mean difference in AUC 0.03 (95% CI 0-0.06) in favour of NN versus LR. In the majority of cases examined across a range of clinical settings, LR models provide reasonable performance that is only marginally improved using more complex methods such as NN. In many circumstances, the use of a relatively simple LR model is likely to be adequate for real-world needs but in specific circumstances in which large amounts of data are available, and where even small increases in performance would provide significant management value, the application of advanced analytic tools such as NNs may be indicated

    Risk Scores for Predicting Mortality in Flail Chest

    Get PDF
    The objective of this thesis was to develop two risk scores which could predict the individual risk of in-hospital mortality for patients with flail chest using data from the Ontario Trauma Registry. The first study describes the univariate analyses conducted to identify mortality predictors. The second study details the logistic regression analysis that generated a risk score. Finally, the third study describes the decision tree analysis that produced the second risk score. The two risk scores were then compared. In summary, these three studies show that a minority of flail chest patients are currently undergoing operative repair and that a risk score may be a useful adjunct for surgeons to determine the individual risk of in-hospital mortality in patients requiring operative repair for flail chest

    A neural network for prediction of risk of nosocomial infection at intensive care units: a didactic preliminary model

    Get PDF
    OBJECTIVE: To propose a preliminary artificial intelligence model, based on artificial neural networks, for predicting the risk of nosocomial infection at intensive care units. METHODS: An artificial neural network is designed that employs supervised learning. The generation of the datasets was based on data derived from the Japanese Nosocomial Infection Surveillance system. It is studied how the Java Neural Network Simulator learns to categorize these patients to predict their risk of nosocomial infection. The simulations are performed with several backpropagation learning algorithms and with several groups of parameters, comparing their results through the sum of the squared errors and mean errors per pattern. RESULTS: The backpropagation with momentum algorithm showed better performance than the backpropagation algorithm. The performance improved with the xor. README file parameter values compared to the default parameters. There were no failures in the categorization of the patients into their risk of nosocomial infection. CONCLUSION: While this model is still based on a synthetic dataset, the excellent performance observed with a small number of patterns suggests that using higher numbers of variables and network layers to analyze larger volumes of data can create powerful artificial neural networks, potentially capable of precisely anticipating nosocomial infection at intensive care units. Using a real database during the simulations has the potential to realize the predictive ability of this model

    Deep Learning Mixture-of-Experts Approach for Cytotoxic Edema Assessment in Infants and Children

    Full text link
    This paper presents a deep learning framework for image classification aimed at increasing predictive performance for Cytotoxic Edema (CE) diagnosis in infants and children. The proposed framework includes two 3D network architectures optimized to learn from two types of clinical MRI data , a trace Diffusion Weighted Image (DWI) and the calculated Apparent Diffusion Coefficient map (ADC). This work proposes a robust and novel solution based on volumetric analysis of 3D images (using pixels from time slices) and 3D convolutional neural network (CNN) models. While simple in architecture, the proposed framework shows significant quantitative results on the domain problem. We use a dataset curated from a Childrens Hospital Colorado (CHCO) patient registry to report a predictive performance F1 score of 0.91 at distinguishing CE patients from children with severe neurologic injury without CE. In addition, we perform analysis of our systems output to determine the association of CE with Abusive Head Trauma (AHT) , a type of traumatic brain injury (TBI) associated with abuse , and overall functional outcome and in hospital mortality of infants and young children. We used two clinical variables, AHT diagnosis and Functional Status Scale (FSS) score, to arrive at the conclusion that CE is highly correlated with overall outcome and that further study is needed to determine whether CE is a biomarker of AHT. With that, this paper introduces a simple yet powerful deep learning based solution for automated CE classification. This solution also enables an indepth analysis of progression of CE and its correlation to AHT and overall neurologic outcome, which in turn has the potential to empower experts to diagnose and mitigate AHT during early stages of a childs life.Comment: 7 figure

    Predicting ICU survival: A meta-level approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of separate Intensive Care Unit (ICU) status scoring systems vis-à-vis prediction of outcome is not satisfactory. Computer-based predictive modeling techniques may yield good results but their performance has seldom been extensively compared to that of other mature or emerging predictive models. The objective of the present study was twofold: to propose a prototype meta-level predicting approach concerning Intensive Care Unit (ICU) survival and to evaluate the effectiveness of typical mining models in this context.</p> <p>Methods</p> <p>Data on 158 men and 46 women, were used retrospectively (75% of the patients survived). We used Glasgow Coma Scale (GCS), Acute Physiology And Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA) and Injury Severity Score (ISS) values to structure a decision tree (DTM), a neural network (NNM) and a logistic regression (LRM) model and we evaluated the assessment indicators implementing Receiver Operating Characteristics (ROC) plot analysis.</p> <p>Results</p> <p>Our findings indicate that regarding the assessment of indicators' capacity there are specific discrete limits that should be taken into account. The Az score ± SE was 0.8773± 0.0376 for the DTM, 0.8061± 0.0427 for the NNM and 0.8204± 0.0376 for the LRM, suggesting that the proposed DTM achieved a near optimal Az score.</p> <p>Conclusion</p> <p>The predicting processes of ICU survival may go "one step forward", by using classic composite assessment indicators as variables.</p

    Prognosis after traumatic brain injury

    Get PDF
    Dit proefschrift beschrijft een aantal studies op het gebied van prognose na matig ernstig of ernstig traumatisch hersenletsel (THL). In hoofdstuk 1 wordt het klinische probleem van traumatisch hersenletsel besproken. Traumatisch hersenletsel wordt gedefinieerd als elk hersenletsel dat is ontstaan door een oorzaak van buitenaf, zoals een ongeval, een val of een schotwond. THL vormt een belangrijk volksgezondheidsprobleem in de Westerse wereld; het is een van de meest voorkomende doodsoorzaken bij jong volwassenen en het kan het leven en het functioneren van jonge mensen enorm beïnvloeden. De nadruk van dit proefschrift ligt op de ontwikkeling en validatie van prognostische modellen; statistische modellen waarin individuele patiëntkenmerken worden gecombineerd om de kans op een bepaalde uitkomst of ziekte status te kunnen voorspellen. De doelstellingen betroffen: (1) het beschrijven van methodologische ontwikkelingen ten aanzien van eerder ontwikkelde prognostische modellen voor THL patiënten; (2) de ontwikkeling en validatie van nieuwe prognostische modellen die de lange termijn gevolgen voorspellen voor patiënten met matig ernstig of ernstig traumatisch hersenletsel en (3) het voorspellen van de behoefte van een THL patiënt aan behandeling in een gespecialiseerd traumacentrum om zo de triage criteria (al dan niet transporteren naar een gespecialiseerd trauma centrum) te kunnen verbeteren.This thesis describes studies on prognosis after severe or moderate traumatic brain injury (TBI). In Chapter 1, the clinical problem of TBI is discussed. TBI is generally defined as an injury to the brain caused by an external physical force, such as a traffic accident, a fall or a gunshot. TBI is an important public health care problem in the western world. It is one of the most common causes of death in young adults and it can affect people’s lives enormously. The focus of this thesis is on developing and validating prognostic models: statistical models that combine individual patient characteristics to predict the probability of a particular outcome or disease state. The objectives of this thesis were: (1) to study methodological developments in prognostic modeling in TBI; (2) to develop and validate prognostic models that predict long- term outcome for patients with severe or moderate TBI an (3) to predict the need of specialized intensive care to aid a more efficient triage of patients

    Data Science Methods for Nursing-Relevant Patient Outcomes and Clinical Processes The 2019 Literature Year in Review

    Get PDF
    Data science continues to be recognized and used within healthcare due to the increased availability of large data sets and advanced analytics. It can be challenging for nurse leaders to remain apprised of this rapidly changing landscape. In this article, we describe our findings from a scoping literature review of papers published in 2019 that use data science to explore, explain, and/or predict 15 phenomena of interest to nurses. Fourteen of the 15 phenomena were associated with at least one paper published in 2019. We identified the use of many contemporary data science methods (eg, natural language processing, neural networks) for many of the outcomes. We found many studies exploring Readmissions and Pressure Injuries. The topics of Artificial Intelligence/Machine Learning Acceptance, Burnout, Patient Safety, and Unit Culture were poorly represented. We hope that the studies described in this article help readers: (1) understand the breadth and depth of data science\u27s ability to improve clinical processes and patient outcomes that are relevant to nurses and (2) identify gaps in the literature that are in need of exploratio
    • …
    corecore