30 research outputs found

    Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data

    Get PDF
    BACKGROUND: In recent years, outcome prediction models using artificial neural network and multivariable logistic regression analysis have been developed in many areas of health care research. Both these methods have advantages and disadvantages. In this study we have compared the performance of artificial neural network and multivariable logistic regression models, in prediction of outcomes in head trauma and studied the reproducibility of the findings. METHODS: 1000 Logistic regression and ANN models based on initial clinical data related to the GCS, tracheal intubation status, age, systolic blood pressure, respiratory rate, pulse rate, injury severity score and the outcome of 1271 mainly head injured patients were compared in this study. For each of one thousand pairs of ANN and logistic models, the area under the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow (HL) statistics and accuracy rate were calculated and compared using paired T-tests. RESULTS: ANN significantly outperformed logistic models in both fields of discrimination and calibration but under performed in accuracy. In 77.8% of cases the area under the ROC curves and in 56.4% of cases the HL statistics for the neural network model were superior to that for the logistic model. In 68% of cases the accuracy of the logistic model was superior to the neural network model. CONCLUSIONS: ANN significantly outperformed the logistic models in both fields of discrimination and calibration but lagged behind in accuracy. This study clearly showed that any single comparison between these two models might not reliably represent the true end results. External validation of the designed models, using larger databases with different rates of outcomes is necessary to get an accurate measure of performance outside the development population

    Classification of Wheat Seeds Using Neural Network Backpropagation Algorithm

    Get PDF
    There are various types of wheat scattered in the world. Usually it takes a long time to recognize the type of wheat seed by manual method because wheat germ has a physical appearance that looks the same as others. One method that can be used is an Artificial Neural Network. In this study, the data used were secondary data which consisted of data from the variable physical characteristics of wheat germ. The types of wheat seeds that are classified are 3. The Artificial Neural Network architecture used in this study is 5. By comparing the 5 Artificial Neural Network architectures, it is concluded that the architecture consisting of 3 layers and 4 layers is more precise in the classification of wheat germ types. The accuracy obtained by the 2 Artificial Neural Network architectures is 90% and 90%, respectively

    A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery

    Get PDF
    Background: Low back pain is a common problem in many people. Neurosurgeons recommend posterior spinal fusion (PSF) surgery as one of the therapeutic strategies to the patients with low back pain. Due to the high risk of this type of surgery and the critical importance of making the right decision, accurate prediction of the surgical outcome is one of the main concerns for the neurosurgeons.Methods: In this study, 12 types of multi-layer perceptron (MLP) networks and 66 radial basis function (RBF) networks as the types of artificial neural network methods and a logistic regression (LR) model created and compared to predict the satisfaction with PSF surgery as one of the most well-known spinal surgeries.Results: The most important clinical and radiologic features as twenty-seven factors for 480 patients (150 males, 330 females; mean age 52.32 ± 8.39 years) were considered as the model inputs that included: age, sex, type of disorder, duration of symptoms, job, walking distance without pain (WDP), walking distance without sensory (WDS) disorders, visual analog scale (VAS) scores, Japanese Orthopaedic Association (JOA) score, diabetes, smoking, knee pain (KP), pelvic pain (PP), osteoporosis, spinal deformity and etc. The indexes such as receiver operating characteristic–area under curve (ROC-AUC), positive predictive value, negative predictive value and accuracy calculated to determine the best model. Postsurgical satisfaction was 77.5% at 6 months follow-up. The patients divided into the training, testing, and validation data sets.Conclusion: The findings showed that the MLP model performed better in comparison with RBF and LR models for prediction of PSF surgery.Keywords: Posterior spinal fusion surgery (PSF); Prediction, Surgical satisfaction; Multi-layer perceptron (MLP); Logistic regression (LR) (PDF) A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery. Available from: https://www.researchgate.net/publication/325679954_A_Predictive_Model_for_Assessment_of_Successful_Outcome_in_Posterior_Spinal_Fusion_Surgery [accessed Jul 11 2019].Peer reviewe

    Pharmacogenomics of drug efficacy in the interferon treatment of chronic hepatitis C using classification algorithms

    Get PDF
    Chronic hepatitis C (CHC) patients often stop pursuing interferon-alfa and ribavirin (IFN-alfa/RBV) treatment because of the high cost and associated adverse effects. It is highly desirable, both clinically and economically, to establish tools to distinguish responders from nonresponders and to predict possible outcomes of the IFN-alfa/RBV treatments. Single nucleotide polymorphisms (SNPs) can be used to understand the relationship between genetic inheritance and IFN-alfa/RBV therapeutic response. The aim in this study was to establish a predictive model based on a pharmacogenomic approach. Our study population comprised Taiwanese patients with CHC who were recruited from multiple sites in Taiwan. The genotyping data was generated in the high-throughput genomics lab of Vita Genomics, Inc. With the wrapper-based feature selection approach, we employed multilayer feedforward neural network (MFNN) and logistic regression as a basis for comparisons. Our data revealed that the MFNN models were superior to the logistic regression model. The MFNN approach provides an efficient way to develop a tool for distinguishing responders from nonresponders prior to treatments. Our preliminary results demonstrated that the MFNN algorithm is effective for deriving models for pharmacogenomics studies and for providing the link from clinical factors such as SNPs to the responsiveness of IFN-alfa/RBV in clinical association studies in pharmacogenomics

    Sensitivity based Neural Networks Explanations

    Get PDF
    Although neural networks can achieve very high predictive performance on various different tasks such as image recognition or natural language processing, they are often considered as opaque "black boxes". The difficulty of interpreting the predictions of a neural network often prevents its use in fields where explainability is important, such as the financial industry where regulators and auditors often insist on this aspect. In this paper, we present a way to assess the relative input features importance of a neural network based on the sensitivity of the model output with respect to its input. This method has the advantage of being fast to compute, it can provide both global and local levels of explanations and is applicable for many types of neural network architectures. We illustrate the performance of this method on both synthetic and real data and compare it with other interpretation techniques. This method is implemented into an open-source Python package that allows its users to easily generate and visualize explanations for their neural networks

    A neural network for prediction of risk of nosocomial infection at intensive care units: a didactic preliminary model

    Get PDF
    OBJECTIVE: To propose a preliminary artificial intelligence model, based on artificial neural networks, for predicting the risk of nosocomial infection at intensive care units. METHODS: An artificial neural network is designed that employs supervised learning. The generation of the datasets was based on data derived from the Japanese Nosocomial Infection Surveillance system. It is studied how the Java Neural Network Simulator learns to categorize these patients to predict their risk of nosocomial infection. The simulations are performed with several backpropagation learning algorithms and with several groups of parameters, comparing their results through the sum of the squared errors and mean errors per pattern. RESULTS: The backpropagation with momentum algorithm showed better performance than the backpropagation algorithm. The performance improved with the xor. README file parameter values compared to the default parameters. There were no failures in the categorization of the patients into their risk of nosocomial infection. CONCLUSION: While this model is still based on a synthetic dataset, the excellent performance observed with a small number of patterns suggests that using higher numbers of variables and network layers to analyze larger volumes of data can create powerful artificial neural networks, potentially capable of precisely anticipating nosocomial infection at intensive care units. Using a real database during the simulations has the potential to realize the predictive ability of this model

    Disease-Free Survival after Hepatic Resection in Hepatocellular Carcinoma Patients: A Prediction Approach Using Artificial Neural Network

    Get PDF
    Background: A database for hepatocellular carcinoma (HCC) patients who had received hepatic resection was used to develop prediction models for 1-, 3- and 5-year disease-free survival based on a set of clinical parameters for this patient group. Methods: The three prediction models included an artificial neural network (ANN) model, a logistic regression (LR) model, and a decision tree (DT) model. Data for 427, 354 and 297 HCC patients with histories of 1-, 3- and 5-year disease-free survival after hepatic resection, respectively, were extracted from the HCC patient database. From each of the three groups, 80 % of the cases (342, 283 and 238 cases of 1-, 3- and 5-year disease-free survival, respectively) were selected to provide training data for the prediction models. The remaining 20 % of cases in each group (85, 71 and 59 cases in the three respective groups) were assigned to validation groups for performance comparisons of the three models. Area under receiver operating characteristics curve (AUROC) was used as the performance index for evaluating the three models. Conclusions: The ANN model outperformed the LR and DT models in terms of prediction accuracy. This study demonstrated the feasibility of using ANNs in medical decision support systems for predicting disease-free survival based on clinical databases in HCC patients who have received hepatic resection

    Time Series Forecasting of HIV/AIDS in the Philippines Using Deep Learning: Does COVID-19 Epidemic Matter?

    Full text link
    With a 676% growth rate in HIV incidence between 2010 and 2021, the HIV/AIDS epidemic in the Philippines is the one that is spreading the quickest in the western Pacific. Although the full effects of COVID-19 on HIV services and development are still unknown, it is predicted that such disruptions could lead to a significant increase in HIV casualties. Therefore, the nation needs some modeling and forecasting techniques to foresee the spread pattern and enhance the governments prevention, treatment, testing, and care program. In this study, the researcher uses Multilayer Perceptron Neural Network to forecast time series during the period when the COVID-19 pandemic strikes the nation, using statistics taken from the HIV/AIDS and ART Registry of the Philippines. After training, validation, and testing of data, the study finds that the predicted cumulative cases in the nation by 2030 will reach 145,273. Additionally, there is very little difference between observed and anticipated HIV epidemic levels, as evidenced by reduced RMSE, MAE, and MAPE values as well as a greater coefficient of determination. Further research revealed that the Philippines seems far from achieving Sustainable Development Goal 3 of Project 2030 due to an increase in the nations rate of new HIV infections. Despite the detrimental effects of COVID-19 spread on HIV/AIDS efforts nationwide, the Philippine government, under the Marcos administration, must continue to adhere to the United Nations 90-90-90 targets by enhancing its ART program and ensuring that all vital health services are readily accessible and available.Comment: 14 pages, 9 figures, Published with International Journal of Emerging Technology and Advanced Engineering (IJETAE
    corecore