253 research outputs found

    Text Mining Biomedical Literature for Genomic Knowledge Discovery

    Get PDF
    The last decade has been marked by unprecedented growth in both the production of biomedical data and the amount of published literature discussing it. Almost every known or postulated piece of information pertaining to genes, proteins, and their role in biological processes is reported somewhere in the vast amount of published biomedical literature. We believe the ability to rapidly survey and analyze this literature and extract pertinent information constitutes a necessary step toward both the design and the interpretation of any large-scale experiment. Moreover, automated literature mining offers a yet untapped opportunity to integrate many fragments of information gathered by researchers from multiple fields of expertise into a complete picture exposing the interrelated roles of various genes, proteins, and chemical reactions in cells and organisms. In this thesis, we show that functional keywords in biomedical literature, particularly Medline, represent very valuable information and can be used to discover new genomic knowledge. To validate our claim we present an investigation into text mining biomedical literature to assist microarray data analysis, yeast gene function classification, and biomedical literature categorization. We conduct following studies: 1. We test sets of genes to discover common functional keywords among them and use these keywords to cluster them into groups; 2. We show that it is possible to link genes to diseases by an expert human interpretation of the functional keywords for the genes- none of these diseases are as yet mentioned in public databases; 3. By clustering genes based on commonality of functional keywords it is possible to group genes into meaningful clusters that reveal more information about their functions, link to diseases and roles in metabolism pathways; 4. Using extracted functional keywords, we are able to demonstrate that for yeast genes, we can make a better functional grouping of genes in comparison to available public microarray and phylogenetic databases; 5. We show an application of our approach to literature classification. Using functional keywords as features, we are able to extract epidemiological abstracts automatically from Medline with higher sensitivity and accuracy than a human expert.Ph.D.Committee Chair: Shamkant B. Navathe; Committee Co-Chair: Brian J. Ciliax; Committee Member: Ashwin Ram; Committee Member: Edward Omiecinski; Committee Member: Ray Dingledine; Committee Member: Venu Dasig

    Click-words: learning to predict document keywords from a user perspective

    Get PDF
    Motivation: Recognizing words that are key to a document is important for ranking relevant scientific documents. Traditionally, important words in a document are either nominated subjectively by authors and indexers or selected objectively by some statistical measures. As an alternative, we propose to use documents' words popularity in user queries to identify click-words, a set of prominent words from the users' perspective. Although they often overlap, click-words differ significantly from other document keywords

    Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level.</p> <p>Results</p> <p>This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources.</p> <p>Conclusion</p> <p>This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.</p

    Text Mining and Gene Expression Analysis Towards Combined Interpretation of High Throughput Data

    Get PDF
    Microarrays can capture gene expression activity for thousands of genes simultaneously and thus make it possible to analyze cell physiology and disease processes on molecular level. The interpretation of microarray gene expression experiments profits from knowledge on the analyzed genes and proteins and the biochemical networks in which they play a role. The trend is towards the development of data analysis methods that integrate diverse data types. Currently, the most comprehensive biomedical knowledge source is a large repository of free text articles. Text mining makes it possible to automatically extract and use information from texts. This thesis addresses two key aspects, biomedical text mining and gene expression data analysis, with the focus on providing high-quality methods and data that contribute to the development of integrated analysis approaches. The work is structured in three parts. Each part begins by providing the relevant background, and each chapter describes the developed methods as well as applications and results. Part I deals with biomedical text mining: Chapter 2 summarizes the relevant background of text mining; it describes text mining fundamentals, important text mining tasks, applications and particularities of text mining in the biomedical domain, and evaluation issues. In Chapter 3, a method for generating high-quality gene and protein name dictionaries is described. The analysis of the generated dictionaries revealed important properties of individual nomenclatures and the used databases (Fundel and Zimmer, 2006). The dictionaries are publicly available via a Wiki, a web service, and several client applications (Szugat et al., 2005). In Chapter 4, methods for the dictionary-based recognition of gene and protein names in texts and their mapping onto unique database identifiers are described. These methods make it possible to extract information from texts and to integrate text-derived information with data from other sources. Three named entity identification systems have been set up, two of them building upon the previously existing tool ProMiner (Hanisch et al., 2003). All of them have shown very good performance in the BioCreAtIvE challenges (Fundel et al., 2005a; Hanisch et al., 2005; Fundel and Zimmer, 2007). In Chapter 5, a new method for relation extraction (Fundel et al., 2007) is presented. It was applied on the largest collection of biomedical literature abstracts, and thus a comprehensive network of human gene and protein relations has been generated. A classification approach (Küffner et al., 2006) can be used to specify relation types further; e. g., as activating, direct physical, or gene regulatory relation. Part II deals with gene expression data analysis: Gene expression data needs to be processed so that differentially expressed genes can be identified. Gene expression data processing consists of several sequential steps. Two important steps are normalization, which aims at removing systematic variances between measurements, and quantification of differential expression by p-value and fold change determination. Numerous methods exist for these tasks. Chapter 6 describes the relevant background of gene expression data analysis; it presents the biological and technical principles of microarrays and gives an overview of the most relevant data processing steps. Finally, it provides a short introduction to osteoarthritis, which is in the focus of the analyzed gene expression data sets. In Chapter 7, quality criteria for the selection of normalization methods are described, and a method for the identification of differentially expressed genes is proposed, which is appropriate for data with large intensity variances between spots representing the same gene (Fundel et al., 2005b). Furthermore, a system is described that selects an appropriate combination of feature selection method and classifier, and thus identifies genes which lead to good classification results and show consistent behavior in different sample subgroups (Davis et al., 2006). The analysis of several gene expression data sets dealing with osteoarthritis is described in Chapter 8. This chapter contains the biomedical analysis of relevant disease processes and distinct disease stages (Aigner et al., 2006a), and a comparison of various microarray platforms and osteoarthritis models. Part III deals with integrated approaches and thus provides the connection between parts I and II: Chapter 9 gives an overview of different types of integrated data analysis approaches, with a focus on approaches that integrate gene expression data with manually compiled data, large-scale networks, or text mining. In Chapter 10, a method for the identification of genes which are consistently regulated and have a coherent literature background (Küffner et al., 2005) is described. This method indicates how gene and protein name identification and gene expression data can be integrated to return clusters which contain genes that are relevant for the respective experiment together with literature information that supports interpretation. Finally, in Chapter 11 ideas on how the described methods can contribute to current research and possible future directions are presented

    Automated Natural-Language Processing for Integration and Functional Annotation of Complex Biological Systems.

    Full text link
    This dissertation discusses the use of automated natural language processing (NLP) for characterization of biomolecular events in signal transduction pathway databases. I also discuss the use of a dynamic map engine for efficiently navigating large biomedical document collections and functionally annotating high-throughput genomic data. An application is presented where NLP software, beginning with genomic expression data, automatically identifies and joins disparate experimental observations supporting biochemical interaction relationships between candidate genes in the Wnt signaling pathway. I discuss the need for accurate named entity resolution to the biological sequence databases and how sequence-based approaches can unambiguously link automatically-extracted assertions to their respective biomolecules in a high-speed manner. I then demonstrate a search engine, BioSearch-2D, which renders the contents of large biomedical document collections into a single, dynamic map. With this engine, the prostate cancer epigenetics literature is analyzed and I demonstrate that the summarization map closely matches that provided by expert human review articles. Examples include displays which prominently feature genes such as the androgen receptor and glutathione S-transferase P1 together with the National Library of Medicine’s Medical Subject Heading (MeSH) descriptions which match the roles described for those genes in the human review articles. In a second application of BioSearch-2D, I demonstrate the engine’s application as a context-specific functional annotation system for cancer-related gene signatures. Our engine matches the annotation produced by a Gene Ontology-based annotation engine for 6 cancer-related gene signatures. Additionally, it assigns highly-significant MeSH terms as annotation for the gene list which are not produced by the GO-based engine. I find that the BioSearch-2D display facilitates both the exploration of large document collections in the biomedical literature as well as provides users with an accurate annotation engine for ad-hoc gene sets. In the future, the use of both large-scale biomedical literature summarization engines and automated protein-protein interaction discovery software could greatly assist manual and expensive data curation efforts involving describing complex biological processes or disease states.Ph.D.BioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58394/1/csantos_1.pd

    Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases

    Get PDF
    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks

    Full text link
    Abstract Background The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. Results The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. Conclusions The GenoMesh algorithm and web program provide the first genome-wide, MeSH-based literature mining system that effectively predicts implicit gene-gene interaction relationships and networks in a genome-wide scope.http://deepblue.lib.umich.edu/bitstream/2027.42/112478/1/12918_2013_Article_1166.pd

    Latent Semantic Indexing of PubMed abstracts for identification of transcription factor candidates from microarray derived gene sets

    Get PDF
    Background Identification of transcription factors (TFs) responsible for modulation of differentially expressed genes is a key step in deducing gene regulatory pathways. Most current methods identify TFs by searching for presence of DNA binding motifs in the promoter regions of co-regulated genes. However, this strategy may not always be useful as presence of a motif does not necessarily imply a regulatory role. Conversely, motif presence may not be required for a TF to regulate a set of genes. Therefore, it is imperative to include functional (biochemical and molecular) associations, such as those found in the biomedical literature, into algorithms for identification of putative regulatory TFs that might be explicitly or implicitly linked to the genes under investigation. Results In this study, we present a Latent Semantic Indexing (LSI) based text mining approach for identification and ranking of putative regulatory TFs from microarray derived differentially expressed genes (DEGs). Two LSI models were built using different term weighting schemes to devise pair-wise similarities between 21,027 mouse genes annotated in the Entrez Gene repository. Amongst these genes, 433 were designated TFs in the TRANSFAC database. The LSI derived TF-to-gene similarities were used to calculate TF literature enrichment p-values and rank the TFs for a given set of genes. We evaluated our approach using five different publicly available microarray datasets focusing on TFs Rel, Stat6, Ddit3, Stat5 and Nfic. In addition, for each of the datasets, we constructed gold standard TFs known to be functionally relevant to the study in question. Receiver Operating Characteristics (ROC) curves showed that the log-entropy LSI model outperformed the tf-normal LSI model and a benchmark co-occurrence based method for four out of five datasets, as well as motif searching approaches, in identifying putative TFs. Conclusions Our results suggest that our LSI based text mining approach can complement existing approaches used in systems biology research to decipher gene regulatory networks by providing putative lists of ranked TFs that might be explicitly or implicitly associated with sets of DEGs derived from microarray experiments. In addition, unlike motif searching approaches, LSI based approaches can reveal TFs that may indirectly regulate genes
    corecore