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SUMMARY 
 
 

The last decade has been marked by unprecedented growth in both the production 

of biomedical data and the amount of published literature discussing it. Advances in 

computational and biological methods have remarkably changed the scale of biomedical 

research. Large-scale experimental methods, such as microarray, produce large quantities 

of data. When processed, the data can provide actual information about gene expression 

patterns, for instance, which genes are expressed in various tissues, and which ones are 

over/under expressed at the onset of a disease or during a specific phase of the cell 

development. Still, the ultimate goal of conducting large-scale biology is to translate this 

large amount of information into knowledge of the complex biological processes 

governing the human body and to utilize this knowledge to advance healthcare and 

medicine.  

Almost every known or postulated piece of information pertaining to genes, 

proteins, and their role in biological processes is reported somewhere in the vast amount 

of published biomedical literature. However, the advancement of genome sequencing 

techniques is accompanied by an overwhelming increase in the literature discussing the 

discovered genes. This combined abundance of genes and literature produces a major 

bottleneck for interpreting and planning genome-wide experiments. Thus, we believe the 

ability to rapidly survey and analyze this literature and extract pertinent information 

constitutes a necessary step toward both the design and the interpretation of any large-

scale experiment. Moreover, automated literature mining offers a yet untapped 

opportunity to integrate many fragments of information gathered by researchers from 
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multiple fields of expertise into a complete picture exposing the interrelated roles of 

various genes, proteins, and chemical reactions in cells and organisms. 

In the present work it is our thesis that functional keywords in biomedical 

literature, particularly Medline, represent very valuable information and can be used to 

discover “new” knowledge about genes. To test this thesis and to validate our claim we 

conduct following studies: 

1. We test sets of genes (26 genes compiled as a group by experts and 44 genes 

from the literature) to “discover” common functional keywords among them and use 

these keywords to cluster them into groups.  

We cluster genes that share functionally relevant keywords in MEDLINE 

abstracts. The keywords that describe the most prominent common functions of the genes 

within each group are extracted to assist hypothesis generation. Words with no indexing 

values are filtered by stop list. Functionally less relevant words are filtered out based on 

the threshold of the weighting schemes. The resulting weights of the keywords are used 

as feature vectors for clustering algorithms.  We develop an algorithm called BEA-

PARTITION based on Bond Energy Algorithm (BEA). In order to explore whether this 

algorithm could be useful for clustering genes derived from microarray experiments, we 

compare the performance of BEA-PARTITION, hierarchical clustering algorithm, self-

organizing map, and the k-means algorithm for clustering functionally-related genes. 

Genes are assigned into functionally relevant clusters based on shared keywords that 

suggest the principal biological functions of each cluster. 
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2. We show that it is possible to link genes to diseases by an expert human 

interpretation of the functional keywords for the genes- none of these diseases are as yet 

mentioned in public databases. 

For the gene osteopontin, the keyword list generated by our keyword extraction 

methodology shows that our methodology is able to identify keywords associated with 

newly discovered functions of the gene in hypertension , tumor metastasis, or in 

autoimmune demyelinating disease. While this information is not represented in other 

resources, such as the Gene Ontology (GO) Consortium, SwissProt, GenBank, and 

GeneCards till today.  

3. By clustering genes based on commonality of functional keywords it is possible 

to group genes into meaningful clusters that reveal more information about their 

functions, link to diseases and roles in metabolism pathways. 

Keywords shared among genes within each cluster are ranked according to a 

metric based on both the degree of significance (the sum of weight for each keyword) and 

the breadth of distribution (the sum of the number of genes within the cluster for which 

the keyword has a z-score greater than a selected threshold).  The respective keyword 

lists appeared to be highly informative about the general function of the original, pre-

selected clusters. For the 44 yeast microarray gene set, the shared keyword list reveals the 

possible relationship between four genes (Exg1, Cwp1, Mnn1, and Och1) and 

polysaccharide metabolism pathway.  

4. Using extracted functional keywords, we are able to demonstrate that for yeast 

genes, we can make a better functional grouping of genes in comparison to available 

public microarray and phylogenetic databases such as the one in Munich Information 
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Center for Protein Sequences Yeast Genome Database (MYGD) 

(http://mips.gsf.de/genre/proj/yeast/index.jsp).  

Analysis of the yeast genome provides many challenges to existing computational 

techniques. Data is now available on a genome-wide scale from sources such as the 

results of microarray experiments, and sequence characteristics, accompanied by a 

number of publications discussing gene-related discoveries. All these data sources 

provide researchers valuable data sources for gene function prediction. We present a 

comparative study of yeast gene function prediction using different data sources, namely 

microarray data, phylogenetic data, and literature text data. The results show that text 

data outperforms microarray data and phylogenetic data in gene function classification. 

There is no significant difference between the results derived from microarray data and 

phylogenetic data.  

5. We show an application of our approach to literature classification. Using 

functional keywords as features, we are able to extract epidemiological abstracts 

automatically from Medline with higher sensitivity and accuracy than a human expert. 

PubMed (Medline) is a large repository of publicly available scientific literature. 

Searching PubMed database on a specific topic presents a big challenge to the users. 

Typically, even after formulating complex requests against PubMed, the Positive 

Predictive Value (PPV) (also called precision) of the search is at most 5-10%. The 

researcher typically ends up scanning the retrieved records for relevance, which is very 

time consuming and error- prone. We first analyze epidemiology relevant literature of 

interest to CDC and define a set of useful keywords that rank above a certain threshold. 

We then apply the Support Vector Machines (SVM) approach for automatic retrieval of 



 xvii

PubMed articles related to Human genome epidemiological research at CDC using these 

highly informative keywords as the features in the vectors. We discuss various 

investigations into biomedical literature categorization and analyze the effect of various 

issues related to the choice of keywords, training sets, and parameters for the SVM 

technique. 
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CHAPTER 1 
 
MOTIVATION AND BACKGROUND 
 
 
1.1  Motivation and contribution of this thesis 

The last decade has been marked by unprecedented growth in both the production of 

biomedical data and the amount of published literature discussing it. Advances in 

computational and biological methods have remarkably changed the scale of biomedical 

research. Complete genomes can now be sequenced within months and even weeks 

(Myers, 1999; Venter et al., 2001), computational methods expedite the identification of 

tens of thousands of genes within the sequenced DNA (Burge and Karlin, 1998; Bafna 

and Huson, 2000; Korf et al., 2001), and automated tools are developed for analyzing 

properties of genes and proteins (Altschul et al., 1997; Horton and Nakai, 1997; 

Sonnhammer et al., 1998; Emanuelsson et al., 2000; Jaakkola et al., 2000). Modern 

techniques such as DNA microarrays allow simultaneous measurements for all 

genes/proteins expressed in a living system (Schena et al., 1995; Lockhart et al., 1996; 

DeRisi et al., 1997; Spellman et al., 1998). These large-scale experimental methods 

produce large quantities of data. When processed, the data can provide actual information 

about gene expression patterns, for instance, which genes are expressed in various 

tissues, and which ones are over/under expressed at the onset of a disease or during a 

specific phase of the cell development. Still, the ultimate goal of conducting large-scale 

biology (Bassett et al., 1999) is to translate these large amounts of information into 

knowledge of the complex biological processes governing the human body and to utilize 

this knowledge to advance healthcare and medicine (Shatkay and Feldman, 2003).  
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Almost every known or postulated piece of information pertaining to genes, proteins, 

and their role in biological processes is reported somewhere in the vast amount of 

published biomedical literature. However, the advancement of genome sequencing 

techniques is accompanied by an overwhelming increase in the literature discussing the 

discovered genes. This combined abundance of genes and literature produces a major 

bottleneck for interpreting and planning genome-wide experiments. Thus, we believe the 

ability to rapidly survey this literature constitutes a necessary step toward both the design 

and the interpretation of any large-scale experiment. Moreover, automated literature 

mining offers a yet untapped opportunity to integrate many fragments of information 

gathered by researchers from multiple fields of expertise into a complete picture exposing 

the interrelated roles of various genes, proteins, and chemical reactions in cells and 

organisms. 

In the present work it is our thesis that functional keywords in biomedical 

literature, particularly Medline, represent very valuable information and can be used to 

discover “new” knowledge about genes. To test this hypothesis and to validate our claim 

we conduct following studies: 

1. We test sets of genes (26 genes compiled as a group by experts and 44 genes 

from the literature) to “discover” common functional keywords among them and use 

these keywords to cluster them into groups.  

We cluster genes that share functionally relevant keywords in MEDLINE 

abstracts. The keywords that describe the most prominent common functions of the genes 

within each group are extracted to assist hypothesis generation. Words with no indexing 

values are filtered by stop list. Functionally less relevant words are filtered out based on 
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the threshold of the weighting schemes. The resulting weights of the keywords are used 

as feature vectors for clustering algorithms.  We develop an algorithm called BEA-

PARTITION based on Bond Energy Algorithm (BEA). In order to explore whether this 

algorithm could be useful for clustering genes derived from microarray experiments, we 

compare the performance of BEA-PARTITION, hierarchical clustering algorithm, self-

organizing map, and the k-means algorithm for clustering functionally-related genes. 

Genes are assigned into functionally relevant clusters based on shared keywords that 

suggest the principal biological functions of each cluster. 

2. We show that it is possible to link genes to diseases by an expert human 

interpretation of the functional keywords for the genes- none of these diseases are as yet 

mentioned in public databases. 

For the gene osteopontin, the keyword list generated by our keyword extraction 

methodology shows that our methodology is able to identify keywords associated with 

newly discovered functions of the gene in hypertension , tumor metastasis, or in 

autoimmune demyelinating disease. While this information is not represented in other 

resources, such as the Gene Ontology (GO) Consortium, SwissProt, GenBank, and 

GeneCards till today.  

3. By clustering genes based on commonality of functional keywords it is possible 

to group genes into meaningful clusters that reveal more information about their 

functions, link to diseases and roles in metabolism pathways. 

Keywords shared among genes within each cluster are ranked according to a 

metric based on both the degree of significance (the sum of weight for each keyword) and 

the breadth of distribution (the sum of the number of genes within the cluster for which 
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the keyword has a z-score greater than a selected threshold).  The respective keyword 

lists appeared to be highly informative about the general function of the original, pre-

selected clusters. For the 44 yeast microarray gene set, the shared keyword list reveals the 

possible relationship between four genes (Exg1, Cwp1, Mnn1, and Och1) and 

polysaccharide metabolism pathway.  

4. Using extracted functional keywords, we are able to demonstrate that for yeast 

genes, we can make a better functional grouping of genes in comparison to available 

public microarray and phylogenetic databases such as the one in Munich Information 

Center for Protein Sequences Yeast Genome Database (MYGD) 

(http://mips.gsf.de/genre/proj/yeast/index.jsp).  

Analysis of the yeast genome provides many challenges to existing computational 

techniques. Data is now available on a genome-wide scale from sources such as the 

results of microarray experiments, and sequence characteristics, accompanied by a 

number of publications discussing gene-related discoveries. All these data sources 

provide researchers valuable data sources for gene function prediction. We present a 

comparative study of yeast gene function prediction using different data sources, namely 

microarray data, phylogenetic data, and literature text data. The results show that text 

data outperforms microarray data and phylogenetic data in gene function classification. 

There is no significant difference between the results derived from microarray data and 

phylogenetic data.  

5. We show an application of our approach to literature classification. Using 

functional keywords as features, we are able to extract epidemiological abstracts 

automatically from Medline with higher sensitivity and accuracy than a human expert. 
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PubMed (Medline) is a large repository of publicly available scientific literature. 

Searching PubMed database on a specific topic presents a big challenge to the users. 

Typically, even after formulating complex requests against PubMed, the Positive 

Predictive Value (PPV) (also called precision) of the search is at most 5-10%. The 

researcher typically ends up scanning the retrieved records for relevance, which is very 

time consuming and error- prone. We first analyze epidemiology relevant literature of 

interest to CDC and define a set of useful keywords that rank above a certain threshold. 

We then apply the Support Vector Machines (SVM) approach for automatic retrieval of 

PubMed articles related to Human genome epidemiological research at CDC using these 

highly informative keywords as the features in the vectors. We discuss various 

investigations into biomedical literature categorization and analyze the effect of various 

issues related to the choice of keywords, training sets, and parameters for the SVM 

technique. 

Therefore, the research in this thesis concentrates on the area of genomic 

knowledge discovery. When a genome is sequenced, and we have the predicted locations 

of the genes within the genome, the next stage is to work out the possible functions of 

these genes. In this  thesis we test the hypothesis that extraction of functional keywords 

from Medline as a representative of the entire  biomedical literature, will provide very 

valuable information to discover “new” knowledge about genes. . The outcomes of this 

thesis are in three distinct areas. For each area, we list the important issues that we 

considered and problems we addressed 

1. Text mining biomedical literature to discover gene-to-gene relationships. 
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This is a challenging environment for computer science, where specific 

challenges include: 

• Many new techniques in biology, such as microarray, are providing data on a 

genome wide scale. This data is noisy. 

• Available clustering techniques typically provide little or no direct information 

about the nature of the functional links among genes within the derived clusters. 

• By using text mining , our goal is to discover the functional link among genes. 

2. Yeast (Saccharomyces cerevisiae) gene function prediction from different data 

sources. 

• The immense volume of data resulting from genomic sequencing and DNA 

microarray experiments, accompanied by the number of publications discussing 

gene-related discoveries provide researchers valuable data sources for gene 

function prediction.  

• Different data sources can be used to learn gene function.  

• There is no empirical comparison to determine the relative effectiveness or 

usefulness of different types of data in terms of gene function classification.  

• We wish to perform a comparative study of yeast gene function classification 

using different data sources. 

3. Automated Classification of Biomedical literature . 

• PubMed (Medline) is a large repository of publicly available scientific literature. 

Currently, new data is being added to it at the rate of over 1500 abstracts per 

week. The ability to efficiently review the available literature is essential for rapid 

progress of research in scientific community.  
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• The traditional literature database search involves the use of simple Boolean 

queries, formulated using certain frequently used functionally important keywords 

the researcher is familiar with, followed by manual scanning of the retrieved 

records for relevance, which is time consuming, incomplete and error prone.  

• There is a pressing need for the development of automated literature mining 

techniques that can help the researchers to effectively harvest the heap of the 

knowledge available in the scientific literature.  

• Design a system based on support vector machine to categorize the biomedical 

articles automatically. 

 

1.2  An overview of functional genomics (Clare, 2003) 

The determination of gene function from genomic information is what is known 

as functional genomics. The central dogma of biology is that DNA is transcribed into 

RNA and RNA is translated into proteins. Figure 1-1 shows the relationship between the 

three. When we speak of gene function we usually mean the function of the products of 

genes after transcription and translation, which are proteins. 

Proteins 

Proteins are the molecules which do almost all the work in the cell. They are extremely 

important molecules, involved in everything from immunity to muscle structure, 

transportation, hormones, metabolism, respiration, repair, and control of genes. 

Understanding the roles of proteins is the key to understanding how the whole cell 

operates. 
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Proteins are polymers consisting of chains of amino acids. There are 20 different 

amino acids, so proteins can be represented by strings of characters for computational  
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Figure 1-1: The central dogma of biology: information flows from DNA to RNA to 
proteins. 
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purposes. The structure and shape of the protein molecule (how the long chain of amino 

acids folds in 3-dimensional space) is relevant to the job the protein performs. Much 

work has been done on protein structure determination, as it gives clues to the protein’s 

function. 

Protein structure can be described at various levels. The primary structure is the 

amino acid sequence itself. The secondary structure and tertiary structure describe how 

the backbone of the protein is arranged in 3-dimensional space. The backbone of the 

protein makes hydrogen bonds with itself, causing it to fold up into arrangements known 

as alpha helices, beta sheets and random coils. Alpha helices are formed when the 

backbone twists into right-handed helices. Beta sheets are formed when the backbone 

folds back on itself to make pleats. Random coils are neither random, nor coils, but are 

connecting loops that join together the alpha and beta regions. The alpha, beta and coil 

components are what is known as secondary structure. The secondary structures then fold 

up to give a tertiary structure to the protein. This makes the protein compact and globular.  

Other properties of proteins are also useful when determining function. Areas of 

hydrophobicity and polarity determine the shape of a protein and sites of interaction. The 

sequence length and molecular weight, and even just the ratios of the various amino acids 

have a bearing on the function of the protein. Sharing common patterns with other protein 

sequences, or common domains, can mean that the proteins have related function or 

evolved from a common ancestor. Evolutionary history or phylogeny of a protein can be 

used to understand why a protein was necessary and what its possible roles used to be. 
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Genes and ORFs 

Genes are the units of heredity. They are sections of DNA which encode the 

information needed to make an organism and determine the attributes of that organism. 

Gene-finding programs are used to hypothesise where the genes lie in a DNA sequence. 

When an appropriate stretch of DNA (reasonable length, starting and ending with the 

right parts, etc.) is found, it is labeled as an Open Reading Frame or ORF - a putative 

gene. Most of the work in this thesis will use the word gene. 

DNA 

DNA is the molecular code of cells. It is a long chain molecule, consisting of a 

backbone of alternate sugar and phosphate groups, with a base attached to each sugar. 

There are 4 different bases which can be attached, and the sequence of the bases along 

the backbone makes the code. The bases are Adenine (A), Guanine (G), Cytosine (C), 

and Thymine (T). From a computer science /information processing perspective we 

would normally be dealing with DNA as a long string made up of the 4 letters A, G, C 

and T. The main purpose of DNA is to encode and replicate the information needed to 

make proteins. 

The 4 bases of DNA are used in different combinations to code for the all the 20 

amino acids that make proteins. A triplet of DNA bases is used to code for each amino 

acid. Figure 1-2 gives an example of this coding. As 43 = 64, not 20, there is some 

redundancy in this coding, and there are several different ways to code for some amino 

acids (though when there are several ways they tend to be closely related). Each triple of 

DNA is known as a codon. Apart from the codons which are used for amino acids, three 
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of the triples are used to encode “stop” codons, which tell the cellular machinery where to 

stop reading the code. 

 

 

 

 

Figure 1-2: The DNA sequence is translated into a sequence of amino acids. Three 
DNA bases translate to one amino acid. 

 

 

 

DNA is double stranded. It exists as two long chain molecules entwined together 

in the famous double helix. The two strands have complementary base pairing, so each C 

in one strand is paired with a G in the other and each A with a T. So when the size of 

DNA is quoted, it is usually in “base pairs”. To give some idea of the size of the data: the 

DNA in the human genome is approximately 3 * 109 base pairs (International human 

genome sequencing consortium, 2001), in the yeast genome S. cerevisiae it is 

approximately 13 * 106 base pairs (Goffeau et al., 1996), and in the bacterium M. 

tuberculosis it is approximately 4 * 106 base pairs (Cole et al., 1998). 

Not all DNA codes for proteins. In mammals only about 5-10% does so. This 

percentage is much higher in bacteria (e.g. 90% coding in M. tuberculosis, 50-60% 

coding in M. leprae). The reason for the large amount of non-coding DNA is somewhat 
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unclear, but it includes promoter and regulatory elements, highly repetitive DNA, and so-

called “junk” DNA. There are theories which suggest some “junk” is for padding, so that 

the DNA is folded up in the correct position, and others which say it is the remnants of 

DNA which used to be coding, but has now become defunct or miscopied. 

RNA 

DNA is translated to proteins via RNA. RNA is a nucleic acid, very similar to 

DNA but single stranded, and the 4 bases of RNA are A, G, C and U (Uracil replaces 

Thymine). RNA is used for several roles in the cell. Its primary role is to take a copy of 

one of the strands of DNA. This piece of RNA (known as messenger RNA) might then 

undergo splicing to remove introns, pieces of sequence which are non-coding, which 

interrupt the coding regions (exons) of a gene. Finally, the sequence of bases of RNA are 

then translated into amino acids to make the protein. Measurement of the RNA being 

produced (“expressed”) in a cell can be used to infer which proteins are being produced. 

The process of transcribing the gene’s DNA sequence into mRNA that severs as a 

template for protein production is known as gene expression. Thus, the tem “gene 

expression” is of particular importance. In a given tissue sample, certain genes may be 

over expressed, meaning the corresponding RNA production is higher than normal giving 

a higher probability of synthesis of the corresponding proteins. Similarly, certain genes 

may be underexpressed in a tissue sample. 

Gene function  

Even after a genome is fully sequenced, and the ORFs (or putative genes) have 

been located, we typically still do not know what many of them do. At the current time, 

approximately 40% of yeast ORFs have unknown function, and this figure is normal - in 
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fact yeast is one of the best studied organisms. The functions of genes are usually 

determined either by sequence similarity to already known sequences, or by “wet” 

biology. 

Functional genomics by biology 

Previously biologists would work on discovering the function of just a few genes 

of interest, but recently there has been an increase in work on a genome-wide scale. For 

example, now there are genome wide knockout experiments where the genes are 

disrupted or “knocked out” and the organism grown under different conditions to see 

what effect the gene has if it is missing (Ross-Macdonald, 1999). And there are 

experiments to look at the genome wide “expression” of cells, that is, analysis of which 

RNA is currently being produced in the cell. Expression data can then be used to infer 

which genes are switched on under different environmental conditions, and hence the 

biological role of the genes. Ways to measure the expression of genes in a cell include 

Northern blot analysis and SAGE. More recently, experiments are being done on a 

genome-wide scale with microarrays, a technique which can take a sample of the 

production of RNA in the cell at a point in time (DeRisi et al., 1997; Eisen et al., 1998; 

Zhang, 1999). Microarray technology has grown extremely popular and standard 

microarrays are being mass produced and widely used. Winzeler and Davis (1997) 

describes various of the biological methods for functional genomics that have been 

applied to yeast. This includes expression analysis, proteomics and large-scale deletion 

and mutational analysis. Oliver et al. (1998) surveys a similar collection of techniques, 

with the added inclusion of metabolomic analysis. Functional genomics is currently a 

major area of research, as can be seen for example by the special supplement to Nature 
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magazine, an “Insight” section devoted to functional genomics (Nature, 15th June 2000, 

405(6788)). 

Microarray expression analysis is one of the most popular methods of functional 

genomics. Analysis of expression data can be used to infer similar functions for genes 

which show similar expression patterns. Most expression analysis uses unsupervised 

clustering, but other methods have also been tried. Supervised learning by support vector 

machines has been used (Brown et al., 2000) to predict gene function. Rough sets have 

also been used to predict gene function from human expression data using the 

GeneOntology classification (Hvidsten et al., 2001) and the Rosetta toolkit. Rosetta 

generates if-then rules using rough set theory, and has been used in several medical 

applications (Komorowski & Øhrn, 1999). In the next two sections, we will discuss the 

microarray technology. 

 

1.3  Introduction to Microarrays 
 

All living cells contain chromosomes, large pieces of DNA containing hundreds 

or thousands of genes, each of which specifies the composition and structure of a single 

protein. Proteins are the workhorse molecules of the cell, responsible, for example, for 

cellular structure, producing energy, and for reproducing the human chromosomes. Every 

cell in an organism has the same set of chromosomes, but they can have very distinct 

properties. This is due to differences in the abundance, state, and distribution of cell 

proteins. The changes in protein abundance are in turn partly determined by changes in 

the levels of messenger RNAs (mRNAs), which are nucleic acid polymers that shuttle 

information from chromosomes to the cellular machines that synthesize new proteins. 
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The recently developed DNA microarray technology (1990) makes it possible to 

quickly, efficiently and accurately measure the relative representation of each mRNA and 

related gene expression data in the total cellular mRNA population. A DNA experiment 

consists of measurements of the relative representation of a large number of mRNA 

species (typically thousands or tens of thousands) in a set of related biological samples, 

e.g. time-points taken during a biological process or clinical samples taken from different 

patients. Each experimental sample is compared to a common reference sample and the 

result for each gene is the ratio of the relative abundance of the gene in the experimental 

sample compared to the reference. The results of such experiments are represented in a 

table, with each row representing a gene, each column a sample, and each cell the 

log(base 2)-transformed expression ratio of the appropriate gene in the appropriate 

sample. 

The whole microarray process is shown in Figure 1-2. The DNA samples (which 

may be several thousands) are fixed to a glass slide in a tiny well, each at a known 

position in the array. A target sample and a reference sample are labeled with red and 

green dyes, respectively, and each is hybridized on the slide. Using a fluorescent 

microscope and image analysis, the log(green/red) intensities of mRNA hybridizing at 

each site is measured. The result is a few thousand numbers, typically ranging from say -

4 to 4, one per (x,y) position on the glass slide,  measuring the expression level of each 

gene in the experimental sample relative to the reference sample in that position. Positive 

values indicate higher expression in the target versus the reference, and vice versa for 

negative values. 
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The data from a series of M such experiments may be represented as an N X M 

gene expression matrix, in which each of the N rows consists of an M-element expression 

vector for a single gene. Such a data set is usually very large.  

 

 

 

 

 

 

Figure 1-3. Microarray process. 
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1.4 Two types of Microarray 

These microarrays can be divided into two main types which differ in their 

construction: spotted microarrays and high density oligionucleotide arrays. 

1.4.1 Spotted microarray 

Spotted microarrays generally use cDNA (Complimentary DNA) probes but they 

can also be oligonucleotides and other DNA components (van Hal et al., 2000). cDNA is 

a single-stranded DNA molecule synthesised in the laboratory using mRNA as a template 

by using reverse transcriptase. Oligonucleotides are any polynucleotide whose molecules 

are made up of a relatively small number of nucleotides. In other words, these are 

synthesized DNA sequences of small length. These cDNA products are the product of the 

purified polymerase chain reaction (PCR) generated from cDNA libraries or clone 

collections (Schulze and Downward, 2001). They are generally gene fragments greater 

than several hundred base pairs long (Harrington et al., 2000). These probes are deposited 

onto a solid surface in defined locations by an xyz robot (Macgregor and Squire, 2002). 

There are two main methods to deposit the spots (van Hal et al., 2000): 

1. Active dispensers. This method is based around inkjet technology and uses 

either piezoelectric or solenoid valve delivery to drop the spot onto the solid 

surface. 

2. Passive dispensers. This method applies DNA solution with a pin that touches 

the solid surface. A higher density of spots can be achieved using this approach. 

The solid surface is normally a specially coated glass microscope slide but 

different surfaces such as nylon membranes, gold coated slides and other materials which 

form a 3 dimensional matrix have also been used (van Hal et al., 2000) . For a glass slide 
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different methods can be used to attach the cDNA including giving the glass slide a 

positively charged layer to bind the negatively charged DNA fragments or coating the 

glass surface in reactive groups and modifying the cDNA so that it can be covalently 

bonded to the glass surface (van Hal et al., 2000). Spots contain a minimum volume of 

about 50 pl of DNA solution (van Hal et al., 2000) and typical spot sizes range from 80-

150 µm in diameter (Macgregor and Squire, 2002). A maximum of 80 000 spots can be 

fitted onto a single glass slide (Macgregor and Squire, 2002).  

In spotted microarrays it is standard practice to compare the gene expression of 

two biological samples on one chip. The mRNA is prepared in such a way that the two 

different expression levels can be measured. This is mainly because of a lack of 

consistency in the construction of spotted microarrays that makes it unwise to compare 

data between them. 

1.4.2 Synthesised high density oligonucleotide microarrays 

These microarrays are constructed commercially to an extremely high density and 

accuracy using short oligonucleotides with a length of between 20 and 25 nucleotides as 

the probes (Schulze and Downward, 2001). Two firms construct these high density 

arrays, Affymetrix and Agilent Technologies (who have licensed the ink-jet technology 

to construct the microarrays from Rosetta Inpharmatics) (Schulze and Downward, 2001).  

These GeneChipsTM are produced by synthesising tens of thousands of short 

oligonucleotides in situ onto glass wafers, one nucleotide at a time, using a modification 

of semiconductor photolithography technology (Macgregor and Squire, 2002). Initially 

the solid surface is embedded with linker molecules that have a photo-labile protective 

group. A mask is placed over the slide and illuminated with light thus selectively 
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removing the exposed protective group. The microarray is then incubated with a solution 

containing a particular photo-protected nucleotide which will only couple with the 

exposed linker molecules. The excess molecules are then removed and another mask and 

exposure to light is used to de-protect other areas of the microarray. A solution 

containing a different photo-protected nucleotide is then exposed to the microarray and 

hence is coupled to the newly exposed areas. This process is repeated for all four 

nucleotides. The photo-protected groups are replaced with photo-sensitive groups and the 

process continues onto the next layer. In this way oligonucleotides of any code can be 

constructed (van Hal et al., 2000). This technique produces an extremely high density 

microarray. 

The GeneChipsTM have a number of strategies in their design to help minimise 

crosstalk. Crosstalk occurs when RNA from one gene binds with an oligonucleotide that 

represents another gene and so misrepresenting the amount of expression from both 

genes. The first strategy is that next to each oligonucleotide is a mismatched 

oligonucleotide which represents an identical copy of the oligonucleotide except that its 

central nucleotide is changed to a different nucleotide (e.g., GATTCG and GATGCG). 

The amount of gene expression associated with the mismatch provides a measure of the 

background crosstalk that can occur for that particular oligonucleotide and hence this can 

be used to more accurately produce the exact expression signal for the gene. The second 

strategy is to have between 15-20 different oligonucleotides/mismatch pairs for each gene 

on each chip (Harrington et al., 2000). These oligonucleotides are specially designed to 

uniquely represent the gene. When the gene expression from all these oligonucleotides is 

combined, an accurate measure of the expression is obtained. Additionally, as the large 
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number of oligonucleotides are scattered across the microarray, it means that if a part of 

the microarray is damaged (through for example dust or a scratch) then an estimate for 

the gene expression can still be made from the remaining oligonucleotides that represent 

that gene. 

Affymetrix produces a number of different microarrays each having a different 

composition of genes represented on the microarray. The most important ones for this 

project are the Human U133A and B GeneChipsTM each of which represents 19,000 

different genes, in combination they represent a total of 33,000 genes, which covers the 

vast majority of the human genome. There is also a more basic microarray that contains 

the 8,700 best annotated genes and these are called Human Focus arrays. Other species 

represented with microarrays include mouse, rabbit, rat, drosophila, Arabidopsis, C. 

elegins, yeast and E. coli. 

 

1.5 Roadmap of chapters in the thesis 

The organization of this thesis will be as follows: 

• Chapter 1 presents our thesis, the motivation behind it, the methodology we 

followed and the issues we considered in testing our nhypethesis and  introduces 

the functional genomic background which is essential to understand the impact of 

our present work. . 

• Chapter 2 surveys the data mining and machine learning methods that are 

applied to computational biology and bioinformatics.  

• In Chapter 3 we describe the issues of biomedical literature text analysis. 

Detailed keyword extraction process is performed and an optimum conditions for 
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keyword identification are presented. The keywords that describe the most 

prominent common functions of the genes are extracted to assist hypothesis 

generation. Functionally irrelevant words are filtered by a stop list.  

• Chapter 4 deals with using the results of the functional keyword extraction 

process and performing  gene clustering by functional key word association. The 

keywords are used as feature vectors for clustering algorithms (Bond Energy 

Algorithm). Genes are assigned into functionally relevant clusters based on shared 

keywords that suggest the principal biological functions of each cluster. 

• Chapter 5 tests the claim that biomedical literature and the functional keyword 

extraction can yield a superior functional grouping of genes compared to other 

publicly available sources such as microarray and phylogenetic databases. We 

investigate yeast (Saccharomyces cerevisiae) gene function prediction from 

different data sources. An empirical comparative study of yeast gene function 

classification is performed using different data sources, namely microarray data, 

and phylogenetic data, from Munich Information Center for Protein Sequences 

Yeast Genome Database (MYGD) (http://mips.gsf.de/genre/proj/yeast/index.jsp). 

Comparative analysis of above databases with literature text data, as well as 

results of  combining of these three data sources are reported. 

• In Chapter 6 we present an application to further support our original thesis. We 

design a  biomedical text categorization system based on support vector machines 

. This system is applied to categorize Human Genome Epidemiology (HuGE) 

relevant articles from PubMed database into the Center for Disease Control and 

Prevention’s (CDC) Human Genome Epidemiology Network, or HuGENet™ 
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(http://www.cdc.gov/genomics/hugenet/) published literature database. This work 

has been performed with another Ph.D. student in Biology, Ms. Nalini 

Polavarapu. 

• Finally Chapter 7 presents ideas for future work, possible future experiments, 

and summarizes the original contributions to knowledge that this thesis has made. 

 

1.6 Summary  

This chapter described the motivation behind the thesis, which stems from 

providing a systematic approach that will be generically useful in interpreting the result 

of microarray experiments. We discussed our basic thesis, the motivation  behind it and 

the detailed plan to test and validate our hypothesis as well as to investigate its 

applications.  We then presented the basic concepts in biology which are important for an 

understanding of the contribution of this thesis. We discussed the microarray techniques 

in detail so that the reader understands the nature and the high volume of data typically 

provided by a single microarray experiment. In the next chapter, we describe the previous 

related work on microarray data cluster analysis and text mining application in 

bioinformatics.  
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CHAPTER 2 
  
RELATED PREVIOUS WORK 
 
 
2.1 Microarray data clustering analysis approaches 

 
DNA microarray technology has made it possible to simultaneously monitor the 

expression levels of thousands of genes during important biological processes and across 

collections of related samples. Elucidating the patterns hidden in gene expression data 

offers a tremendous opportunity for an enhanced understanding of functional genomics. 

However, the large number of genes and the complexity of biological networks greatly 

increase the challenges of comprehending and interpreting the resulting mass of data, 

which often consists of millions of measurements. A first step toward addressing this 

challenge is the use of clustering techniques, which is essential in the data mining process 

to reveal structures within the data and identify interesting patterns in the underlying data. 

Cluster analysis seeks to partition a given data set into groups based on specified 

features so that the data points within a group are more similar to each other than the 

points in different groups. A very rich literature on cluster analysis has developed over 

the past three decades. Many conventional clustering algorithms have been adapted or 

directly applied to gene expression data, and also new algorithms have recently been 

proposed specifically aiming at gene expression data. These clustering algorithms have 

been proven useful for identifying biologically relevant groups of genes and samples. 

In this chapter, we present specific challenges pertinent to clustering techniques 

and introduce several representative approaches.  
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2.1.1 K-means 

The K-means algorithm (McQueen et al., 1967) is a typical partition-based 

clustering method. Given a pre-specified number K, the algorithm partitions the data set 

into K disjoint subsets (clusters) which optimize the following objective function: 
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Here, O is a data object in cluster Ci and µI is the centroid (mean of objects) of Ci. Thus, 

the objective function E tries to minimize the sum of the squared distances of objects 

from their cluster centers. 

The K-means algorithm is simple and fast. The time complexity of K-means is 

O(l * k * n), where l is the number of iterations and k is the number of clusters. However, 

the K-means algorithm has several drawbacks as a gene-based clustering algorithm. First, 

the number of gene clusters in a gene expression data set is usually unknown in advance. 

To detect the optimal number of clusters, users usually run the algorithms repeatedly with 

different values of k and compare the clustering results. For a large gene expression data 

set which contains thousands of genes, this extensive parameter fine-tuning process may 

not be practical. Second, gene expression data typically contain a large amount of noise; 

however, the K-means algorithm forces each gene into a cluster, which may cause the 

algorithm to be more sensitive to noise than other clustering algorithms described below 

(Sherlock, 2000; Smet et al., 2002). 
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2.1.2 Hierarchical clustering 

In contrast to partition-based clustering, which attempts to directly decompose the 

data set into a set of disjoint clusters, hierarchical clustering generates a hierarchical 

series of nested clusters which can be graphically represented by a tree, called 

dendrogram. The branches of a dendrogram not only record the formation of the clusters 

but also indicate the similarity between the clusters. By cutting the dendrogram at some 

arbitrary level, we can obtain a specified number of clusters. By reordering the objects 

such that the branches of the corresponding dendrogram do not cross, the data set can be 

arranged with similar objects placed together. 

Hierarchical clustering algorithms can be further divided into agglomerative 

approaches and divisive approaches based on how the hierarchical dendrogram is formed. 

Agglomerative algorithms (bottom-up approach) initially regard each data object as an 

individual cluster, and at each step, merge the closest pair of clusters until all the groups 

are merged into one cluster. Divisive algorithms (top-down approach) starts with one 

cluster containing all the data objects, and at each step split a cluster until only singleton 

clusters of individual objects remain. For agglomerative approaches, different measures 

of cluster proximity, such as single link, complete link and minimum-variance (Kaufman 

and Rousseeuw, 1990; Dubes and Jain, 1988), are used to derive various merge 

strategies. For divisive approaches, the essential problem is to decide how to split clusters 

at each step. Some are based on heuristic methods such as the deterministic annealing 

algorithm, while many others are based on the graph theoretical methods (Alon et al., 

1999). 
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Eisen et al. (1998) applied an agglomerative algorithm called UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) and adopted a method to 

graphically represent the clustered data set. In this method, each cell of the gene 

expression matrix is colored on the basis of the measured fluorescence ratio, and the rows 

of the matrix are re-ordered based on the hierarchical dendrogram structure and a 

consistent node-ordering rule. After clustering, the original gene expression matrix is 

represented by a colored table (a cluster image) where large contiguous patches of color 

represent groups of genes that share similar expression patterns over multiple conditions 

(Figure 2-1). 

Alon et al. (1999) split the genes through a divisive approach, called the 

deterministic-annealing algorithm (DAA) (Rose et al., 1990; Rose, 1998). First, two 

initial cluster centroids Cj, j = 1, 2, were randomly defined. The expression pattern of 

gene k was represented by a vector kgr , and the probability of gene k belonging to cluster 

j was assigned according to a two-component Gaussian model:  
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Figure 2-1. Hierarchical clustering of gene expression matrices. 
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The cluster centroids were recalculated by  

 

∑ ∑=
k k kjkjkj gPgPgC )(/)( rrr

 (2-3)  

 

An iterative process (the EM algorithm) was then applied to solve jP  and jC . For β = 0, 

there was only one cluster, C1 = C2. When β was increased in small steps until a 

threshold was reached, two distinct, converged centroids emerged. The whole data set 

was recursively split until each cluster contained only one gene. 

Hierarchical clustering not only groups together genes with similar expression 

pattern but also provides a natural way to graphically represent the data set. The graphic 

representation allows users a thorough inspection of the whole data set and affords an 

initial impression of the distribution of data. Eisen’s method is much favored by many 

biologists and has become the most widely-used tool in gene expression data analysis 

(Eisen et al., 1998; Allon et al., 1999; Iyer et al., 1999; Perou et al., 1999; Alizadeh et al., 

2000). However, the conventional agglomerative approach suffers from a lack of 

robustness (Tamayo et al., 1999), i.e., a small perturbation of the data set may greatly 

change the structure of the hierarchical dendrogram. Another drawback of the 

hierarchical approach is its high computational complexity. To construct a “complete” 

dendrogam (where each leaf node corresponds to one data object, and the root node 
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corresponds to the whole data set), the clustering process should take 
2

2 nn −  merging (or 

splitting) steps. The time complexity for a typical agglomerative hierarchical algorithm is 

)log( 2 nnO  (Jain et al., 1999). Furthermore, for both agglomerative and divisive 

approaches, the hierarchical clustering prevents the refinement of the previous clustering. 

If a “bad” decision is made in the initial steps, it can never be corrected in the following 

steps. 

2.1.3 Other clustering techniques in microarray data analysis (Valafar, 2002) 

Sasik et al. (2001) have presented the Percolation Clustering approach to 

clustering of gene expression patterns based on the mutual connectivity of the patterns. 

Unlike SOM or k-means which force gene expression data into a fixed number of 

predetermined clustering structures, this approach is to reveal the natural tendency of the 

data to cluster, in analogy to the physical phenomenon of percolation. 

GA/KNN is another algorithm described by Li, et al. (2001) “This approach 

combines a Genetic Algorithm (GA) and the k-Nearest Neighbor (KNN) method to 

identify genes that can jointly discriminate between different classes of samples. The 

GA/KNN is a supervised stochastic pattern recognition method. It is capable of selecting 

a subset of predictive genes from a set of large noisy data for sample classification” (Li et 

al., 2001). We will discuss genetic algorithm next. 

Genetic Algorithm: Holland (1975) invented the genetic algorithm (GA) in 1975. 

GA is essentially an optimization technique that was inspired by mutation (in nature) that 

gives rise to biological evolution. In GA, the coordinates of points in the problem space 

are organized as a sequence, much like sequences of genes. The process of searching for 

a maximum or a minimum is accomplished by mutating the sequence, and hence arriving 
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at a new coordinate. At each new coordinate, the function is evaluated, and if the new 

point is determined to be more optimal than those previously observed, the new point is 

stored as the new extrema (minimum or maximum). GA has been used in a variety of 

applications in sequencing. For instance, in DNA fragment assembly, the work of 

Parsons et al (1995), Cedeno and Vemuri (1993), Fickett and Cinkosky (1993) can be 

mentioned. Zhang and Wong (1997) applied GA to multiple molecular sequence 

alignment. Most varieties of GA differ in the way the sequences are mutated, and hence 

search the problem space in different patterns. As an example of a variety, Valafar’s 

distributed global optimization (DGO) algorithm can be mentioned (Valafar et al., 1996). 

Hybrid systems also exist in which, for instance, a neural network is built using a GA 

algorithm as the learning algorithm. For example, Valafar (1996) used the DGO as the 

learning algorithm of a multilayer, feed-forward neural network to develop a system that 

could automatically identify the chemical structure of a group of complex carbohydrates 

and some glycoproteins from their 1HNMR spectra (Valafar et al., 1996; Valafar et al., 

1998) 

Artificial Neural Network: Artificial neural networks (ANNs) belong to the adaptive 

class of techniques in machine learning. ANNs have been used as solutions to various 

types of problems (e.g. pattern recognition, prediction, estimation, etc.). However, 

ANNs’ success as an intelligent pattern recognition methodology has been advertised 

most prominently. ANNs were inspired by the brain (a biological neural network). Most 

models of ANNs are organized in the form of a number of processing units (also called 

artificial neurons, or simply neurons (McCulloch and Pitts, 1943)), and a number of 

weighted connections (artificial synapses) between the neurons. The process of building 
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an ANN (similar to its biological inspiration) involves a learning episode (also called 

training). During the learning episode, the network observes a sequence of recorded data, 

and adjusts the strength of its synapses according to a learning algorithm and based on 

the observed data. The process of adjusting the synaptic strengths in order to be able to 

accomplish a certain task (much like the brain) is called “learning”. Learning algorithms 

are generally divided into two types, supervised and unsupervised. Supervised algorithms 

require labeled training data. In other words, they require more a priori knowledge about 

the training set. The most important, and attractive, feature of ANNs is their capability of 

learning (generalizing) from example (extracting knowledge from data). ANNs can do 

this without any prespecified rules that define intelligence or represent an expert’s 

knowledge. This feature makes the ANN an attractive choice for gene expression analysis 

and sequencing. ANNs were the first group of machine learning algorithms to be used on 

a biological pattern recognition problem (Selaru et al., 2002). 

Due to their power and flexibility, ANNs have even been used as tools for 

selection of relevant variable, which can in turn greatly increase the expert’s knowledge 

and understanding of the problem. For instance, Selaru et al. (2002) used ANNs to 

distinguish among subtypes of neoplastic colorectal lesions. They then used the trained 

ANN to identify the relevant genes that are used to make this distinction. Specifically, the 

authors evaluated the ability of ANNs in distinguishing between complementary DNA 

(cDNA) microarray data (8064 clones) of two types of colorectal lesions (sporadic 

colorectal adenomas and cancers or SAC, and inflammatory bowel disease-associated or 

IBD-associated dysplasias and cancers). Salura and colleagues (2002) report the failure of 

hierarchical clustering to make the above distinction, even when all 8064 clones were 
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used. ANNs not only correctly identified all twelve samples of the test set (3 IBDNs and 

9 SACs), but also helped identify the subset of genes that were important to make this 

diagnostic distinction: “Using an iterative process based on the computer programs 

GeneFinder, Cluster, and MATLAB, we reduced the number of clones used for diagnosis 

from 8064 to 97.” Using the 97 clones, even the cluster analysis was then able to make 

the correct distinction between the two types of lesions. The authors conclude: “Our 

results suggest that ANNs have the potential to discriminate among subtly different 

clinical entities, such as IBDNs and SACs, as well as to identify gene subsets having the 

power to make these diagnostic distinctions.”  

There is a very large body of research that has resulted in a large number of ANN 

designs. For a more comprehensive review of the various ANN types, see (Rumelhart and 

McClelland, 1988; Rojas, 1996). In this chapter, we discuss only two types that has been 

used in sequencing. 

Layered, feed-forward neural networks: This is a class of ANNs whose 

neurons are organized in layers. The layers are normally fully connected, meaning that 

each element (neuron) of a layer is connected to each element of the next layer. However, 

self-organizing varieties also exist in which a network starts either with a minimal 

number of synaptic connections between the layers and adds to the number as training 

progresses (constructive), or starts as a fully connected network and prunes connections 

based on the data observed in training (destructive) (Rumelhart and McClelland, 1988; 

Rojas, 1996).  

Backpropagation (Rumelhart and McClelland, 1988; Rojas, 1996) is a learning 

algorithm that, in its original version, belongs to the gradient descent optimization 
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methods (Hassoun, 1995). It is the most popular learning algorithm that has been used to 

train layered ANNs. A large number of varieties of the algorithm have been developed 

that use a number of various optimization techniques (Rojas, 1996). The combination of 

backpropagation learning algorithm and the feed-forward, layered networks provides the 

most popular type of ANNs. These ANNs have been applied to virtually all pattern 

recognition problems, and are typically the first networks tried on a new problem. The 

reason for this is the simplicity of the algorithm, and the vast body of research that has 

studied these networks. As such, in sequencing many researchers have also used this type 

of network as a first line of attack. Examples can be mentioned in (Wu, 1995; Wu et al., 

1996). Wu (1995) developed a system called gene classification artificial neural system 

(GenCANS), which is based on a three layered, feed-forward backpropagation network. 

GenCANS was designed to “classify new (unknown) sequences into predefined (known) 

classes. It involves two steps, sequence encoding and neural network classification, to 

map molecular sequences (input) into gene families (output)”. The same type of network 

has been used to perform rapid searches for sequences of proteins (Wu et al., 1996)  

Other examples can be mentioned in Snyder and Stormo’s work in designing a 

system called GeneParser (Snyder and Stormo, 1995). Here authors experimented with 

two variations of a single layer network (one fully connected, and one partially connected 

with an activation bios added to some inputs), as well as a partially connected two-layer 

network. The authors use dynamic programming as the learning algorithm in order to 

train the system for protein sequencing. 

As mentioned before, the advantage of these networks is in their simplicity of 

implementation and understanding of the underlying mathematics. Because of the large 
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body of research conducted on these networks, there are a large number of public domain 

software packages available that implement virtually all the different varieties of the 

network. 

Although these networks are theoretically capable of separating a problem space 

into appropriate classes irrespective of the complexity of the separation boundaries, one 

of the “classical” disadvantages of these networks is that a certain amount of a priori 

knowledge is required in order to build a useful network. A crucial factor in training a 

useful network is its size (number of layers, size of layers, and number of synaptic 

connections). In many cases, it takes a large number of simulations before a close-to-

optimum size of the network is found. If the network is designed to be larger than this 

optimum size, it will memorize (also called over-fit) the data rather than generalizing and 

extracting knowledge. If the network is chosen to be smaller than the optimum size, the 

network will never learn the entire task at hand. An attractive alternative to these 

networks are self-organizing networks which automatically, or semi-automatically, 

determine the optimal size from the data at hand. 

Self-organizing map: The Self-Organizing Map (SOM) was developed by Kohonen 

(1984), on the basis of a single layered neural network. SOM is an unsupervised artificial 

neural network. It maps high-dimensional data into a two-dimensional representation 

space, and similar data may be found in neighboring regions The data objects are 

presented at the input, and the output nods are organized with a simple neighborhood 

structure such as a two dimensional p * q grid (Figure 2-2). Each node of the neural 

network (typically called a “cell” of the p by q grid) is associated with a reference vector, 

and each data point (input data) is “mapped” to the node with the “closest” reference  
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Input layer of N nodes represents number of input data 

 

Figure 2-2. Schematic representation of a self-organizing map method 
 

 

 

vector. In the process of running the algorithm, each data object acts as a training sample 

which directs the movement of the reference vectors towards the denser areas of the input 

vector space, so that those reference vectors are trained to fit the distributions of the input 

data set. When the training is complete, clusters are identified by mapping all data points 

to the output neurons.  

The Self-Organizing Map Algorithm may be described by the following steps: 

I. The set of input data is described by a real vector x(t)  where t is the index of 

the data. Each node i in the map contains a model vector mi(t), which has the 

same number of elements as the input vector x(t).  

II. The SOM algorithm performs a regression process. The initial values of the 

components of the model vector, mi(t), may be selected at random.  
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III. Any input data is thought to be mapped into the location, the mi(t) of which 

matches best with x(t) in some metric (e.g. Euclidean distance). The self-

organizing algorithm creates the ordered mapping as a repetition of the following 

basic tasks:  

1. An input vector x(t) is compared with all the model vectors mi(t). The 

best-matching unit (node) on the map, i.e., the node where the model vector is 

most similar to the input vector in some metric (e.g. Euclidean) is identified. This 

best matching unit is often called the winner.  

2. The model vectors of the winner and a number of its neighboring nodes 

in the array are changed towards the input vector according to the learning 

principle. The basic ideal in the SOM learning process is that, for each sample 

input vector x(t), the winner and the nodes in its neighborhood are changed closer 

to x(t) in the input data space. During the learning process, individual changes 

may be contradictory, but the net outcome in the process is that ordered values for 

the mi(t) emerge over the array. If the number of available input samples is 

restricted, the samples must be presented repeatedly to the SOM algorithm. 

Adaptation of model vectors in the learning process may take place according to 

the following equations:  

mi(t+1) = mi(t) + α(t)[x(t) – mi(t)]for each i ∈ Nc(t), 

mi(t+1) = mi(t) otherwise, 

where, t is the discrete-time index of the variables, the factor α(t) ∈ [0,1] is a 

scalar that defines the relative size of the learning step, and Nc(t) specifies the 

neighborhood around the winner in the map array. At the beginning of the 
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learning process the radius of the neighborhood is fairly large, but it is made to 

shrink during learning. This ensures that the global order is obtained already at the 

beginning, whereas towards the end, as the radius gets smaller, the local 

corrections of the model vectors in the map will be more specific. The factor α(t) 

also decreases during learning.  

One of the remarkable features of SOM is that it generates an intuitively-

appealing map of a high-dimensional data set in 2D or 3D space and places similar 

clusters near each other, while K-means clustering captures local features of the data but 

fails to provide an organization scheme. The node training process of SOM provides a 

relatively more robust approach than K-means to the clustering of highly noisy data 

(Tamayo et al., 1999; Herrero et al., 2001). However, SOM requires users to input the 

number of clusters and the grid structure of the node map. These two parameters are 

preserved through the training process; hence, improperly-specified parameters will 

prevent the recovering of the natural cluster structure. Furthermore, if the data set is 

abundant with irrelevant data points, such as genes with invariant patterns, SOM will 

produce an output in which this type of data will populate the vast majority of clusters 

(Herrero et al., 2001). In this case, SOM is not effective because most of the interesting 

patterns may be merged into only one or two clusters and cannot be identified. 
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2.2 Limitation of microarray data clustering analysis approaches 
 

DNA microarray data cluster analysis approaches described in section 2.1 applied 

clustering methods directly to the expression data, in order to find clusters of genes 

demonstrating similar expression patterns. The assumption motivating such search for co-

expressed genes is that simultaneously expressed genes often share a common function. 

However, there are several reasons that cluster analysis of DNA expression data alone 

cannot fully address this core issue: 

1. Genes that are functionally related may demonstrate strong anti-

correlation in their expression levels, (a gene may be strongly 

suppressed to allow another to be expressed), thus clustered into 

separate groups, blurring the relationship between them; 

2. Simultaneously expressed genes do not always share a function;  
3. Genes that are expressed at different times may serve complementing 

roles of one unifying function; 
4. Even when similar expression levels correspond to similar functions, 

the function and the relationships between genes in the same cluster 

data cannot be determined from the cluster data alone.  
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2.3 Text mining biomedical literature  

The past decade has seen a tremendous growth in the amount of experimental and 

computational biomedical data, specifically in the areas of genomics and proteomics. 

This growth is accompanied by an accelerated increase in the number of biomedical 

publications discussing the findings. In the last few years, there has been a lot of interest 

within the scientific community in literature-mining tools to help sort through this 

abundance of literature and find the nuggets of information most relevant and useful for 

specific analysis tasks. 

2.3.1 Text mining biomedical literature for discovering gene-to-gene relationships 

During the last few years, there was a surge of interest in using the biomedical 

literature, (e.g., Andrade and Valencia, 19980; Leek, 1997; Fukuda et al., 1998; Craven 

and Kumlien, 1999; Rindflesch et al., 2000; Shatkay et al., 2000; Friedman et al., 2001; 

Jenssen et al., 2001; Yandell and Majoros, 2002; Hanisch et al., 2003), ranging from 

relatively modest tasks such as finding reported gene location on chromosomes (Leek, 

1997) to more ambitious attempts to construct putative gene networks based on gene-

name co-occurrence within articles (Jenssen et al., 2001). Since the literature covers all 

aspects of biology, chemistry, and medicine, there is almost no limit to the types of 

information that may be recovered through careful and exhaustive mining. Some possible 

applications for such efforts include the reconstruction and prediction of pathways, 

establishing connections between genes and disease, finding the relationships between 

genes and specific biological functions, and much more. It is important to note that a 

single mining strategy is unlikely to address this wide spectrum of goals and needs 

(Shatkay et al., 2000). 
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The automated handling of text is an active research area, spanning several 

disciplines. These include the following: information retrieval, which mostly deals with 

finding documents that satisfy a particular information need within a large database of 

documents (Sahami, 1998; Salton, 1989, Witten et al., 1999); natural language 

processing (NLP), a broad discipline concerned with all aspects of automatically 

processing both written and spoken language (Charniak, 1993; Allen, 1995; Russell and 

Norvig, 1995); information extraction (IE), a subfield of NLP, centered around finding 

explicit entities and facts in unstructured text (Cowie and Lehnert, 1996; Cardie, 1997). 

For instance, identifying all the positions in the text that mention a protein or a kinase 

(entity extraction), or finding all phosphorylation relationships to populate a table of 

phospohrylated proteins along with the responsible kinase (relationship extraction) are 

both IE tasks. Finally, text mining (Hearst, 1999), the combined, automated process of 

analyzing unstructured, natural language text in order to discover information and 

knowledge that are typically difficult to retrieve. 

A number of groups are developing algorithms that link information from medical 

literature with gene names. Andrade and Valencia (1998) introduced a statistical profiling 

strategy that accepts user-supplied abstracts related to a protein of interest and returns an 

ordered set of keywords that occur in those abstracts more often than would be expected 

by chance. We have extended the approach in terms of investigation into background 

datasets, stop lists and use of other ranking measures like TFIDF instead of the Z-score 

used in the original work (Chapter 3). With the goal of automating the functional 

annotation of new proteins, Andrade et al. (1999) presented an interactive suite of 

programs called “Genequiz”, which searches and organizes information from many 
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sequence and text databases. Andrade and Bork (2000) and Perez-Iratxeta et al. (2002) 

developed a program that links the OMIM database of human inherited diseases to 

keywords derived from MEDLINE. A variety of nonstatistical approaches have also been 

used to organize genes.  The web tool PubGene finds links between pairs of genes based 

on their co-occurrence in MEDLINE abstracts (Jenssen and Vinterbo 2000; Jenssen et al., 

2001).  Another approach (Masys et al. 2001), the basis of the HAPI web tool, organizes 

gene names according to predefined hierarchical classification systems of enzymes and 

diseases, and includes hyperlinks to specific MEDLINE citations responsible for the 

individual classifications.  Still another approach (Tanabe et al. 1999), used by the 

MedMiner system, automatically retrieves functional information (both keywords and 

gene names related to a user-defined function) from the GeneCards database, and 

configures it for a PubMed search.  The algorithm presents the results by the specific 

sentence containing the information rather than by the title, speeding review of the results 

if the user prefers to extract relevant sentences rather than scan through the whole 

abstract text. A similar method of presenting the statistically most significant sentences 

was used by Andrade and Valencia (1998). 

The above approaches provide useful information that organizes or relates genes, 

but a major shortcoming is they either do not address specific functions of the genes or 

are constrained by functions predefined in other databases, which can be biased, 

incomplete, or out-of-date.    

We believe that MEDLINE abstracts contain much additional, valuable 

information, which is comprehensive, up-to-date and unbiased in the sense that many 

authors contribute the information rather than one or several database administrators and 
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curators.  Much functional information describing the genes' corresponding proteins, their 

cellular location, elemental functions, binding partners, biochemical pathways, etc., is 

encoded in keywords or phrases in the titles, subheadings, and abstract text.  We propose 

to use several different data mining techniques to retrieve and organize this text-based 

information and present keywords as well as proper visual displays to the user that will 

reveal functional connections among various gene products. This approach will be more 

likely to discover novel relationships between genes since it links them by shared 

functional keywords rather than just reporting known interactions based on published 

reports; thus, genes that never co-occur in the same publication could still be linked by 

their shared keywords.  On the contrary, unrelated genes will not be considered to be 

related just because they happen to be mentioned in the same article. Furthermore, 

instead of just indicating that there is a link between genes, our approach - clusters the 

genes together and describe the specific functions they share, which should enable the 

user to comprehend more efficiently the role(s) of these genes in the context of the 

known experimental conditions and subsequently allow them to form more meaningful 

hypotheses for investigation.   

2.3.2 Classification of  biomedical literature 

Text Classification, or the task of automatically assigning semantic categories to 

natural language text, has become one of the key methods for organizing online 

information, such as PubMed, the large repository of publicly available scientific 

literature. Currently, new data is being added to it at the rate of over 1500 abstracts per 

week. Most biomedical researchers want to access PubMed with specific goals based on 
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the areas of interest. The ability to efficiently review the available literature is essential 

for rapid progress of research in scientific community.  

There are two main approaches to text classification. One is the knowledge 

engineering approach (Hayes and Weinstein, 1990; Hayes, 1992) where the user 

manually defines a set of rules to encode expert knowledge regarding the correct 

classification of documents into given categories. The other approach is based on 

machine learning (Lehnert, 1994; Lewis and Hayes, 1994; Lewis and Ringuette, 1994; 

Yang and Chute, 1994; Lewis, 1995; Vapnik, 1995; Larkey and Croft, 1996; Lewis et al., 

1996; Dumais et al., 1998; Joachims, 1998; Cohen and Singer, 1999; Yang and Liu, 

1999; Riloff and Sebastiani, 2002) where a general inductive process automatically builds 

a text classifier by training over a set of pre-classified documents. 

An example of the knowledge engineering approach is the CONSTRUE system 

(Hayes and Weinstein, 1990; Hayes, 1992) built by the Carnegie Group for Reuters. A 

typical rule in the CONSTRUE system consists of a condition defined as a disjunction of 

conjunctive clauses (a DNF formula) followed by the resulting category. For example, 

the following rule in CONSTRUE identifies articles that should be categorized as 

relevant to wheat: 
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 The main drawback of this approach is known as the knowledge acquisition 

bottleneck. The rules must be manually defined by a knowledge engineer interviewing a 

domain expert. If the set of categories is modified, these two professionals must intervene 

again. Hayes et al. (1992, 1990) reported a 90% breakeven between precision and recall 

on a small subset of the Reuters test collection (723 documents). However, it took a 

tremendous effort (several man years) to develop a system, and the test set was not 

significant to validate the results. It is not clear that these superb results scale up in a 

larger system. 

The machine learning (ML) approach is based on the existence of a training set of 

documents, already classified into a predefined set of categories. A diagram of a typical 

ML-based categorization system is shown in Figure 2-3.  

 
 
 
 
 
 
 

 
Figure 2-3 Diagram of a typical ML-based categorization system. 
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2.3.3  Support Vector Machine 
 

One supervised machine learning approach, Support Vector Machine (SVM), has 

been widely used in text classification.  

The classification process involves training and testing data which consists of 

some data instances. Each instance in the training set consists one "target value" (class 

label) and several "attributes” (features). SVM produces a model from the training set 

that predicts the target value of data instances in the testing set. SVM operates by finding 

a hyperplane in the space of possible inputs. This hyperplane will attempt to split the 

positive examples from the negative examples. The split will be chosen to have the 

largest distance from the hyperplane to the nearest of the positive and negative examples 

(Figure 2-4). The data vectors, which lie on the boundary of the hyperplane, are called 

support vectors. Intuitively, this makes the classification correct for testing data that is 

near, but not identical to the training data. SVM achieves the classification results by 

mapping non-linearly separable training vectors in input space to linearly separable 

higher dimensional feature space. The SVM finds a separating hyperplane with maximal 

margin in that higher dimensional space (Figure 2-5). In Figure 2-4,       is a mapping 

function. 

 

 

 

 

 

φ
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Figure 2-4 Hyperplane and support vectors (Burges, 1998) 

 

 

 

 

 

Figure 2-5 The mapping of non-linearly separable training vectors in input space to 
linearly separable higher dimensional feature space (Burges, 1998) 
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SVM is a kernel-based learning approach. The kernel-based methods define the 

class of possible patterns by introducing a notion of similarity between data. Kernel 

function is the way to define the similarity between data items. Some widely used kernels 

are: 

Linear kernel:  

      (2-4) 

Polynomial kernel: 

   (2-5) 

Radial basis function 

  (2-6) 

Sigmoid: 

    (2-7) 

Here, γ, r, and d are kernel parameters. 

 In this thesis, we will use SVM for incorporation of Human Genome 

Epidemiology (HuGE) relevant articles from PubMed database into the Center for 

Disease Control and Prevention’s (CDC) Human Genome Epidemiology Network, or 

HuGENet™ (http://www.cdc.gov/genomics/hugenet/) published literature database 

(Chapter 6). 
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2.4 Mining text for association rules 

The goal of the association rule techniques is to detect relationships or 

associations between specific values of categorical variables in large data sets. This is a 

common task in  data mining  as well as  in text mining. These powerful exploratory 

techniques have a wide range of applications in many areas of business practice and also 

research - from the analysis of consumer preferences or human resource management, to 

the history of language. These techniques enable analysts and researchers to uncover 

hidden patterns in large data sets, such as "customers who order product A often also 

order product B or C" or "employees who said positive things about initiative X also 

frequently complain about issue Y but are happy with issue Z." The implementation of the 

so-called a-priori algorithm (Agrawal and Swami, 1993; Agrawal and Srikant, 1994; Han 

and Lakshmanan, 2001) allows you to process rapidly huge data sets for such 

associations, based on predefined "threshold" values for detection.  

2.4.1 How association rules work.  

The usefulness of this technique to address unique data mining problems is best 

illustrated by a simple example. Suppose you are collecting data at the check-out cash 

registers at a large book store. Each customer transaction is logged in a database, and 

consists of the titles of the books purchased by the respective customer, perhaps 

additional magazine titles and other gift items that were purchased, and so on. Hence, 

each record in the database will represent one customer (transaction), and may consist of 

a single book purchased by that customer, or it may consist of many (perhaps hundreds 

of) different items that were purchased, arranged in an arbitrary order depending on the 

order in which the different items (books, magazines, and so on) came down the 
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conveyor belt at the cash register. The purpose of the analysis is to find associations 

between the items that were purchased, i.e., to derive association rules that identify the 

items and co-occurrences of different items that appear with the greatest (co-)frequencies. 

For example, you want to learn which books are likely to be purchased by a customer 

who you know already purchased (or is about to purchase) a particular book. This type of 

information could then quickly be used to suggest to the customer those additional titles. 

You may already be "familiar" with the results of these types of analyses, if you are a 

customer of various on-line (Web-based) retail businesses; many times when making a 

purchase on-line, the vendor will suggest similar items (to the ones purchased by you) at 

the time of "check-out", based on some rules such as "customers who buy book title A are 

also likely to purchase book title B," and so on. 

2.4.2 Mining text for association 
 

Experiments of association extraction have been carried out by Feldman et al. 

(1996), and Rajman and Besancon (1997) with the KDT (Knowledge Discovery in Texts) 

system on the Reuter corpus. The Reuter corpus is a set of 22,173 documents that 

appeared on the Reuter newswire in 1987. The documents were assembled and manually 

indexed by Reuters Ltd. and Carnegie Group Inc.  in 1987. The documents were indexed 

with 135 categories in the Economics domain. The mining was performed on the indexed 

documents only. 

All known algorithms for generating association rules operate in two phases. Give 

a set of keywords A = {w1, w2, …, wm} and a collection of indexed documents T = {t1, t2, 

…, tn}, the extraction of associations satisfying given support and confidence constraints 

σ and γ is performed: 
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- by first  generating all the keyword sets with support at least equal to σ. The 

generated keyword sets are called the frequent sets (or σ-covers); 

- then by generating all the association rules that can be derived from the 

produced frequent sets and that satisfy the confidence constraint γ. 

Generating the frequent sets: The set of candidate σ-covers (frequent sets) is built 

incrementally, by starting from singleton σ-covers and progressively adding elements to a 

σ-cover as long as it satisfies the confidence constraint. The frequent set generation is the 

most computationally expensive step (exponential in the worse case). Heuristic and 

incremental approaches are currently investigated. A basic algorithm fro generating 

frequent sets is indicated in Figure 2-6. 

 

 

 

 
 

 
 
Figure 2-6 Generating the frequent sets 
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Generating the association. Once the maximal frequent sets have been produced, the 

generation of the association is quite easy. A basic algorithm is presented in Figure 2-7. 

 
 
 
 
 
 
 

 
 
Figure 2-7 Generating the associations 
 

 

To apply association rule to biomedical literature, we will start off by treating the 

keywords for each gene as “items”. We will then apply rules in association rule mining in 

text to discover rules where the l.h.s. of the rule may be a gene name and the r.h.s. will be 

a list of functional keywords with support at least equal to the support σ. The association 

rules can be derived from the produced frequent sets that satisfy the confidence constraint 

γ. The end result will be to generate a list of “highly associated” keywords for each gene, 

without bringing in the Z-score or TFIDF based ranking scheme.  This will constitute an 

alternative way of constructing functional keyword lists for genes based on the 

parameters σ and γ. Then by linking the keywords across the genes, we may potentially 

find the “new” relationship between genes. 
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2.5 Summary  

In this chapter, we survey the main data clustering techniques that have been 

applied to microarray data analysis. We point out the limitations of these available 

approaches. Our aim is to help scientists switch from some random, un-guided search to a 

more guided, intelligent search by applying machine learning and statistical techniques to 

improve the relative effectiveness of the search. Furthermore, automated biomedical 

literature classification using supervised machine learning approaches, such as support 

vector machines, can assist researchers to quickly separate the articles they are interested 

in from the huge literature databases. In the next chapter, we will discuss some issues 

related to biomedical text analysis. 
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CHAPTER 3 

ISSUES FOR ANALYSIS OF BIOMEDICAL TEXT 
 
 
 

One of the rich resources of on-line information is the scientific literature. The 

MEDLINE database, for example, provides bibliographic information and abstracts for 

more than 12 million articles that have been published in biomedical journals 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed). However, all the 

information contained in the database is stored as text. The rapid growth of these 

collections makes it increasingly difficult for humans to access the required information 

in a convenient and effective manner (Andrade and Bork, 2000). Clearly, there is a 

necessity of developing methods for automatic extraction of relevant information (such as 

keywords associated with genes) from the literature, which is written in natural language. 

A number of groups are developing algorithms that link information from medical 

literature with gene names. Andrade and Bork (2000) developed a program that links the 

OMIM database of human inherited diseases to keywords derived from MEDLINE with 

their statistical profiling algorithm. A variety of nonstatistical approaches have also been 

used to organize genes.  The web tool, PubGene, finds links between pairs of genes based 

on their co-occurrence in MEDLINE abstracts (Jenssen et al., 2001).  Another approach 

(Masys et al., 2001), the basis of the HAPI web tool, organizes gene names according to 

predefined hierarchical classification systems of enzymes and diseases, and includes 

hyperlinks to specific MEDLINE citations responsible for the individual classifications.  

Still another approach (Tanabe et al., 1999), used by the MedMiner system, automatically 
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retrieves functional information (both keywords and gene names related to a user-defined 

function) from the GeneCards database, and configures it for a PubMed search.  The 

algorithm presents the results by the specific sentence containing the information rather 

than by the title, speeding review of the results if the user prefers to extract relevant 

sentences rather than scan through the whole abstract text 

Keyword extraction is an important step to link genes with biomedical literature. 

Ideally, high quality keyword lists for gene identification should be able to distinguish 

certain individual genes from others. Various weighting schemes have been developed to 

determine the importance of a word to a document. Andrade and Valencia (1998) 

introduced a statistical profiling approach (the “z-score” method), which accepts user-

supplied abstracts related to a protein of interest and returns an ordered set of keywords 

that occur in those abstracts more often than would be expected by chance, and it has 

been used by Blaschke et al. (2001) and us (Chapter 3 and Chapter 4). Term frequency–

inverse document frequency (TFIDF) (Salton and Buckley, 1988), one of the most widely 

used weighting schemes in the information retrieval research area, has also been applied 

to analyze biomedical literature to identify functionally coherent gene groups 

(Raychaudhuri et al., 2002). Term frequency (TF) is used as part of TFIDF weighting 

scheme to measure the frequency of occurrence of the words in a document. In our case, 

the collection of abstracts related to a single gene is a “document”. However, term 

frequency factors alone cannot ensure high quality keyword lists. Specifically, when the 

high frequency words are not concentrated in a few particular genes, but instead are 

prevalent in all the genes, the keyword lists cannot be used to identify the specific genes. 

Inverse Document Frequency (IDF) is introduced as a multiplier to favor words 
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concentrated in a few genes rather than all the genes. IDF varies inversely with the 

number of genes n with which a word is associated in a collection of N genes. 

In this chapter, we first expand, extend, and optimize the z-score method by 

testing new background sets, a new stemming algorithm, and a new, extensive stop list 

customized for use with the biological literature. This extended method was used to 

create a repository of functional keywords from MEDLINE abstracts for genes. We also 

compare our results with information found in public databases. We then compare the 

performance of the z-score method with TFIDF for the purpose of extracting the 

functional keywords for each tested gene set by evaluating the precision and recall 

values.  

 

3.1 Creating a Relational Database of Medline abstracts 

The entire PubMed from 1965-2000 is obtained from the National Library of 

Medicine (http://www.nlm.nih.gov). The original abstracts are in XML format. These 

abstracts are processed and stored in an ORACLE database in order to use SQL to query 

the database.  

There are four tables in the databases. The create table statements are: 
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create table JOURNAL( 
Journal_ID NUMBER(10,0) primary key, 
ISSN  VARCHAR2(25), 
Volume  VARCHAR2(25), 
Issue  VARCHAR2(25), 
Year  NUMBER(4,0), 
Month  VARCHAR2(5) 
); 
 
create table AUTHOR( 
Author_ID  NUMBER(10,0) primary key, 
Last_Name  VARCHAR2(30), 
First_Name  VARCHAR2(25), 
Middle_Name  VARCHAR2(25) 
); 
 
create table CITATIONS( 
Medline_ID  NUMBER(10,0) primary key, 
PMID   NUMBER(12,0), 
Title   VARCHAR2(500), 
Journal_ID  NUMBER(10,0), 
Abstract  VARCHAR2(4000), 
foreign key (Journal_ID) references JOURNAL(Journal_ID) 
); 
 
 
create table CIT_AUTHORS( 
Medline_ID  NUMBER(10,0) NOT NULL, 
Author_ID  NUMBER(10,0)  NOT NULL, 
constraint CIT_AUTHORS_PK PRIMARY KEY (Medline_ID, Author_ID), 
foreign key (Medline_ID) references CITATIONS(Medline_ID), 
foreign key (Author_ID) references AUTHOR(Author_ID) 
); 
 
 

 Using these four tables, a parser is developed to parse XML abstracts into 

appropriate tokens which represent values for individual attributes in the above tables. 

All subsequent analysis has been performed against this populated database of over 5.5 

million abstracts. 
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3.2 Keyword extraction from biomedical literature 

We use the z-score method and TFIDF to extract keywords from MEDLINE. 

These methods estimate the significance of words by comparing the frequency of words 

in a test (gene-related) set of abstracts with their frequency in a background set of 

abstracts. 

3.2.1 Background Sets 

The first step is building the dictionary of all the words used in the abstracts based 

on the background distribution of the same words in the documents/families/pseudo-

families. The goal is to identify keywords that “stand out” in comparison to their average 

occurrence in the background set of documents. The background sets of documents are 

used to build a hash table of words and their respective statistics for comparison with the 

corresponding words in the test sets. 

The background set used by Andrade and Valencia (1998) consists of abstracts 

associated with 71 protein families in the 1993 release of the PDBSELECT database. By 

the year 2000 this database had grown to 1155 protein families, 760 of which have >4 

members. We use abstracts associated with the PDB-1155 and PDB-760 protein families, 

which have an average of 41 and 57 abstracts per family, respectively. A third 

background set is created consisting of 50,000 randomly selected MEDLINE abstracts 

sorted into 1000 pseudo-families of 50 abstracts each.  Finally, we build a large random 

background set (approximately 112,000 pseudo-families of 50 abstracts each), which 

incorporates abstracts in the entire MEDLINE collection up to year 2000.  
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3.2.2 Test Sets 

For each gene analyzed, word frequencies are calculated from a group of 

MEDLINE abstracts retrieved by an SQL search against the relational database version of 

Medline, in the TITLE field, for the specific gene name or any known aliases.  The 

resulting set of abstracts iss processed to generate a specific keyword list.   

We use three test sets in our comparisons.  

3.2.2.1 The first group of genes (test set #1) are calcyclin (C), cathepsin H (H), 

cathepsin S (S), glutamine-oxaloacetate transaminase (GOT), nexin-1 (N), osteopontin 

(OPN), and uridine kinase (UK).  

3.2.2.2 To test if our system can extract new information from the medical 

literature, we design a second query set for OPN using abstracts only from the year 2001 

(test set #2), with the hope of extracting relevant keywords for several novel functional 

links between OPN and diseases, such as hypertension (Hartner et al., 2001), autoimmune 

demyelinating diseases (Chabas et al., 2001) and tumor metastasis (Furger et al., 2001). 

3.2.2.3 The third group of genes is used to evaluate the keyword identification 

algorithms by precision-recall and error-minimization tests as described below. We 

evaluate the accuracy of the keyword-selection algorithms by comparing their output 

with the set of keywords selected by three knowledgeable investigators from the same set 

of abstracts. For each of 10 genes with diverse biological functions (adenylate cyclase, 

androgen receptor, calmodulin, caspase-3, dopamine D2 receptor, GluR2 AMPA receptor 

subunit, glutamic acid decarboxylase-65, histone H4, L-type calcium channel, and 

tyrosine hydroxylase), we retrieve a set of abstracts by a simple search for the gene name 

in the citation TITLE field (limited to the 10 most recent citations for each set).  These 10 
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sets of 10 abstracts each are processed for keyword selection by the two weighting 

schemes. These abstracts are also hand-processed by three medical researchers (Karen 

Borges, Brian J. Ciliax, and Ray Dingledine), who select keywords that are reflective of 

the biological functions described in each abstract. 

3.2.3 Stemming 

Word stemming is used to truncate suffixes and trailing numerals so that words 

having the same root (e.g., activate, activates, activation, and active, all have the same 

root of “activ”) are collapsed to the same word for frequency counting. Two stemming 

algorithms are compared, one used by Andrade and Valencia (1998), and one devised by 

Porter (1980). A third condition, in which the words are not stemmed, is used as a 

control.  

3.2.4 Stop-word Lists 

Stop-word lists are typically used to filter out non-scientific English words that 

carry low domain-specific information content. We test two stop-word lists initially: a 

simple list of 319 common English words (http://www.dcs.gla.ac.uk/idom/ir_resources/ 

linguistic_utils/stop_words), and an online dictionary of 22,205 words (http://ftp.std.com/ 

obi/Dictionary/dict). Our initial tests lead us to add methodological words that are 

unrelated to gene or protein function to the online dictionary, and to remove selected 

words. This results in a stop-word list customized for biological applications. This stop-

list, abbreviated PD+ (pocket dictionary plus), is evolving as we delete more biological or 

functional words and add methodology words. We also analyze keywords without 

applying a stop-word list, which served as the control condition. 
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3.3 Keyword Assessment 

3.3.1 Z-score method  

Statistical formulae from Andrade and Valencia (1998) for word frequencies and 

z-scores are used without modification. The weight of word a for gene g is represented by 

the z-score, and is defined as  

a

aa
ga

g

FF
Z

σ
−

=       (3-1) 

where a
gF equals the document frequency of word a in test set (gene) g and, as defined by 

Andrade and Valencia (1998), aF and aσ  are the average frequency (frequency per 

document) and standard deviation, respectively, of word a in the background set.  For the 

random background set, the document frequencies of word a across pseudo-families of 50 

randomly-selected abstracts each are used to calculate these latter metrics instead of the 

proportions of proteins in individual families for which word a appears in at least one 

representative abstract (Andrade and Valencia, 1998).   In other words, the original work 

of Andrade and Valencia (1998) treats abstracts related to a protein family as one 

document – they had 955 families. In our random background set, 50 abstracts make up a 

pseudo-family and are treated as one document for computing z-score values. 

3.3.2 TFIDF method 

The standard TFIDF function is used (Salton and Buckley, 1988). TFIDF combines 

term frequency (TF), which measures the number of times a word occurs in the gene’s set 

of abstracts (reflecting the importance of the word to the gene), and inverse document 
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frequency (IDF), which measures the information content of a word – its rarity across all 

the documents/families in the background set. The inverse document frequency (IDF) is 

calculated as: 

a
a

df
Nidf log=

      (3-2) 

where aidf  denotes the inverse document frequency of word a in the background set; 

adf denotes the number of families (or pseudo-families) in which word a occurs; and N is 

the total number of documents/families/ pseudo-families in the background set. 

TFIDF is defined as: 

aa
g

a
g idftftfidf ×=     (3-3) 

a
gtfidf denotes the weight of the word a to the gene g; a

gtf the number of times word a 

occurs in gene g. 

To distribute the word weights over the [0, 1] interval, the weights resulting from 

TFIDF are often normalized by cosine normalization, given by 
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where |W| denotes the number of words in the abstracts of gene g. 
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3.3.3 Normalized z-score method 

In order to compare with TFIDF, the z-scores of the words are also normalized 

(normalized z-score method) as: 

∑ =
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g
Z

Z
weight

    (3-5) 

The weight of a word is assigned the value “New”, if the word occurs in the test set but 

not in the background set, since no background statistics are available from which to 

calculate the z-score or tfidf values. 

 
3.4 Precision-Recall and Error-Minimization  

Using the keyword lists generated from the first test set, investigator-derived lists 

are used as the standard against which the algorithm-derived lists are evaluated by 

Precision and Recall measurements. Precision (P) and Recall (R) are the standard metrics 

for retrieval effectiveness in information retrieval. They are calculated as follows: 

P = tp / (tp + fp) 

R = tp / (tp + fn), 

Where:  

tp = words in the algorithm-derived list also found in the investigator-derived list; 

fp = words in the algorithm-derived list not found in the investigator-derived list; 

fn = words in the investigator-derived list not found in the algorithm-derived list. 

The optimum combination of the parameters (different background sets, 
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stemming algorithms, and stop lists) plus the z-score threshold for accepting a word is 

determined by minimizing the joint error minimization function: E= V * (1 – P) + (1 – R) 

(Hvidsten et al., 2001), which combines the role of precision and recall simultaneously. If 

V > 1, the cost of false positives is weighted more heavily than the cost of false 

negatives. We select V = 4 empirically to limit the number of irrelevant words when 

classifying gene function. 

 

3.5 Keyword lists 

An example of a keyword list (test set #1) for the gene name “OPN” is shown in 

Table 3-1 (Only the top 100 words were shown).  To find out the relevance of the 

keywords for a gene, one expert (Brian J. Ciliax) inspected a word list for osteopontin 

(OPN, test Set #1) to select keywords with z-scores above 2.0  and filter out general or 

methodological words (essentially all non-functional words related to methodology, e.g. 

cDNA, polyclonal, chromatography, escherichia, coli, histology, lysates, Sepharose, 

clone, biotinylated, recombinant, nmr, hybridization, densitometric, luciferase, 

polyacrylamide, immunogold, immunostaining, immunohistochemistry). The relevance 

of keywords for OPN function is determined by searching the query set of abstracts for 

their occurrence and reading the abstracts. Virtually every keyword is found to have at 

least one highly relevant meaning in the context of the OPN literature (Table 3-2).   
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Table 3-1. Keyword list for gene Osteopontin 

     Word                    z-score       Word                                              z-score 

integrin 48.3 
transwell 22.5 
ctgf 19.5 
fluorimetry 19.5 
histotroph 19.5 
tcf 19.5 
trophectoderm 19.5 
vsm 19.5 
vibrissa 15.9 
adpkd 13.8 
atn 13.8 
catagen 13.8 
chitosan 13.8 
diphenylene 13.8 
enterokinase 13.8 
iodonium 13.8 
ishikawa 13.8 
mdh 13.8 
nexin 13.8 
nondialysis 13.8 
ptf 13.8 
pulpitis 13.8 
renoprotective 13.8 
vth 13.8 
interstitium 13.2 
lsab 11.2 
matrigel 11.2 
postovulation 11.2 
pulmonal 11.2 
telogen 11.2 
upar 11.2 
upa 10.8 
stone 10.6 
atheromatous 10.4 
urolithiasis 10.4 
erk 10.3 
tartrate 10.3 
hoxa 9.7 
igan 9.7 
lucigenin 9.7 
lymphoproliferation 9.7 
nephritic 9.7 
osteoclastogenesis 9.7 
talin 9.7 
tympanosclerosis 9.7 
mesangial 9.2 
mmp 8.9  

polyelectrolytes 8.7 
postovulatory 8.7 
reaggregate 8.7 
glomeruli 8.6 
upregulation 8.5 
normoxia 8.3 
proteinaceous 8.1 
metastasis 8.0 
lithogenic 7.9 
losartan 7.9 
ranets 7.9 
uremia 7.9 
hyperglycemic 7.7 
mapk 7.6 
kappab 7.6 
normoxic 7.6 
antineutrophil 7.3 
crevicular 7.3 
doca 7.3 
mek 7.3 
neurotomy 7.3 
periglomerular 7.3 
mcp 7.3 
fibrotic 7.2 
autoregulatory 6.8 
gcf 6.8 
gonadotropes 6.8 
jnk 6.8 
muc 6.8 
spatio 6.8 
hgf 6.8 
migratory 6.7 
thrombin 6.7 
chemokine 6.5 
antagonises 6.4 
deoxynucleotidyl 6.4 
hypercholesterolaemia 6.4 
hyperphosphatemia 6.4 
oro 6.4 
kidneys 6.4 
ethylene 6.3 
autoimmunity 6.2 
henle 6.1 
morphogenic 6.1 
propidium 6.1 
smad 6.1 
spongiosa 6.1  
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Table 3-2. OPN facts extracted by manual inspection of 100 MEDLINE abstracts 

1. 2ar) is described whose abundance is greatly increased by the tumor 
promoter 12-O-tetradecanoylphorbol 13-acetate both in JB6 
epidermal cells in vitro and in epidermis in vivo. 

2. 2ar, a tumor promoter-inducible protein secreted by mouse JB6 
epidermal cells, is the murine homolog of rat osteopontin, 

3. several clonal lines of preneoplastic JB6 cells derived from Balb/c 
mouse epidermal cultures upon treatment with 12-O-
tetradecanoyl phorbol-13-acetate (TPA), become irreversibly 
oncogenic and concomitantly synthesize OPN at elevated levels 

4. TGF beta promotes the production of osteopontin in the osteoblastic 
osteosarcoma cells 

5. induction of 2ar in epidermal or fibroblast cell lines by tumor 
promoters, growth factors, and transformation with H-ras 

6. Osteopontin mRNA is regulated by the osteotropic hormones 
dexamethasone and 1,25(OH)2D3. 

7. hPTH(1-34) suppresses the production of the novel extracellular 
matrix protein, OP, in osteoblasts 

8. stretch-induced upregulation of osteopontin mRNA expression is 
mediated, in part, via production of ANG II 

9. Studies with several fibroblast and epithelial-derived cell lines in 
culture indicate that secretion of osteopontin can be 
dramatically increased when these cells are treated with 
phorbol esters, growth factors and hormones. However, 
osteopontin does not appear to be expressed by mesenchymal 
cells, fibroblasts, epidermal cells or by most epithelial 
cells in vivo. 

10. The expression level of osteopontin (OPN) mRNA was found to be 
increased in a macrophage cell line in the presence of 
recombinant tumor necrosis factor-alpha (TNF-alpha) 

11. the hormonal form of vitamin D regulates the biosynthesis of 
osteopontin 

12. a potential calcium binding loop and two potential heparin binding 
sites 

13. A thrombin-cleaved NH(2)-terminal fragment of osteopontin containing 
the RGD sequence has recently been shown to also be a ligand 
for alpha(9)beta(1). 

14. among the alphav integrins, only the alphavbeta3 is able to support 
cellular adhesion to osteopontin. 

15. The results show that the Arg-Gly-Asp sequence also confers cell-
binding properties on bone-specific sialoprotein. 

16. Elevated expression of osteopontin (OPN), a secreted adhesive 
phosphoglycoprotein, is frequently associated with many 
transformed cell lines of epithelial and stromal origin. 
Moreover,  

17. oncogenically transformed tsB77 cells may exploit the lack of OPN-
receptor interactions for their invasive behavior 

18. OPN and alphavbeta3 integrin, were also predominantly observed in 
the microvasculature of glioblastomas associated with VEGF 
expression. 

19. OPN has been associated with malignant transformation as well as 
being ligand to the CD44 receptor. 

only the 69-kDa OPN, not its 62-kDa form, undergoes receptor- 
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Table 3-2 (continued) 
 
   mediated localization on the cell surface, although tsB77 cells       
   synthesize OPN receptors (alpha(v)beta3 integrins) at both  
   permissive and nonpermissive temperatures. 
20. OPN stimulates pp60c-src kinase activity associated with the alpha v 

beta 3 integrin and that the association requires the 
cytoplasmic tail of the alpha v chain 

21. osteopontin (OP), a matrix protein that mainly interacts with the 
alphav integrin family, increased time-dependently by TNF-
alpha stimulation at gene and protein levels 

22. Osteopontin (OPN) is a negatively charged, highly acidic 
glycosylated phosphoprotein that contains an GRGDS amino acid 
sequence, characteristic of proteins that bind to integrin 
receptors 

23. Osteopontin (OPN) is a secreted glycoprotein with mineral- and cell-
binding properties that can regulate cell activities through 
integrin receptors. 

24. Osteopontin (OPN) is a soluble secreted phosphoprotein that binds 
with high affinity to several different integrins. 

25. Osteopontin (OPN) is an acidic 70-kDa glycoprotein that is cleaved 
by proteases to yield 45-kDa and 24-kDa fragments. The 70-kDa 
and 45-kDa proteins contain a Gly-Arg-Gly-Asp-Ser (GRGDS) 
sequence that binds to cell surface integrins (primarily 
alpha(v)beta(3) heterodimer) to promote cell-cell attachment 
and cell spreading. 

26. phosphorylated and nonphosphorylated forms of osteopontin have 
different physiological properties, which may regulate the 
functional roles of this extracellular matrix protein 

27. Bone sialoprotein (BSP) and osteopontin (OPN) are secreted 
glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-
binding motif and are expressed predominantly in bone. 

28. Osteopontin is a predominant integrin binding protein of bone and 
its expression has been shown to be induced by mechanical 
stimuli within osteoblasts  

29. the fragmentation of SPPI is important in bone formation and 
remodeling 

30. Rat bone cells in culture produce several forms of SPPI that differ 
in post-translational modifications such as phosphorylation 
and sulphation. 

31. Secreted OPN is then available as ligand for alpha(v)beta(3) 
integrin heterodimer on trophectoderm and uterus to 1) 
stimulate changes in morphology of conceptus trophectoderm and 
2) induce adhesion between luminal epithelium and 
trophectoderm essential for implantation and placentation. 

32. The expression of BSP and OPN in tumor cells provides a selective 
advantage for survival via initial binding to alpha(V)beta(3) 
integrin (both) or CD44 (OPN) on the cell surface, followed by 
sequestration of Factor H to the cell surface and inhibition 
of complement-mediated cell lysis. 

33. the 44-kDa bone phosphoprotein (44K BPP, also called sialoprotein I 
or osteopontin)  

34. The cDNA sequence indicated the presence of a Gly-Arg-Gly-Asp-Ser-
(GRGDS) amino acid sequence identical to a cell binding 
sequence in fibronectin, 

the difference between the 69-kDa and 62-kDa isoforms of OPN resides in 
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Table 3-2 (continued) 
 
their sialic acid content, and sialylation of OPN is crucial for its 
receptor-mediated binding on tsB77 cells 
35. The extracellular matrix protein osteopontin (OPN) interacts with a 

number of integrins, namely alphavbeta1, alphavbeta3, 
alphavbeta5, alpha9beta1, alpha8beta1, and alpha4beta1. 

36. the integrin attachment sequence (RDG) 
37. the linear sequence SVVYGLR directly binds to alpha(9)beta(1) and is 

responsible for alpha(9)beta(1)-mediated cell adhesion to the 
NH(2)-terminal fragment of osteopontin. 

38. thrombin cleavage regulates the adhesive properties of OPN and that 
alpha5beta1 integrin can interact with thrombin-cleaved 
osteopontin when in a high activation state. 

39. vitronectin receptor, which has known specificity for osteopontin, 
40. attachment is inhibited by RGD-containing peptides. 
41. Sppl amino acid sequence contains the GRGDS cell-binding sequence 

which is known to be important for cell attachment to several 
adhesive proteins found in extracellular matrices. 

42. Because of the presence of the GRGDS cell-binding sequence in Sppl, 
it is probable that abnormally high expression of this soluble 
protein by tumor cells has important consequences for 
interactions between tumor cells and the host tissue matrix. 

43. osteoclasts when resorbing bone are anchored by osteopontin bound 
both to the mineral of bone matrix and to a vitronectin 
receptor on the osteoclast plasma membrane. 

44. Osteopontin (OP) is a recently discovered bone matrix protein which 
was shown to promote the attachment of osteoblastic rat 
osteosarcoma ROS 17/2.8 cells to their substrate. 

45. Osteopontin is a macrophage adhesive protein that is expressed by 
renal tubules in tubulointerstitial disease. 

46.  the hippocampus and the striatum following global forebrain 
ischemia upregulate OPN mRNA 

47.  The transient induction of OPN mRNA after global ischemia occurred 
earlier in the striatum than in the hippocampus. It was 
pronounced in the dorsomedial striatum close to the lateral 
ventricle and in the CA1 subfield and the subiculum of the 
hippocampus before microglial cells became more reactive. 

48.  accumulation of the non-collagenous matrix bone-associated 
proteins, osteopontin, osteocalcin, and osteonectin, has been 
demonstrated in atheromatous plaques. 

49.  calcification is associated with increased expression of 
osteopontin by smooth muscle cells 

50. circle development of diabetic atherosclerosis associated with 
arterial wall hypoxia 

51.  osteopontin (OPN) has been shown to participate in the pathological 
calcification 

52.  osteopontin has recently been implicated in the development of 
atherosclerosis 

53.  Osteopontin is a good marker for the injury-induced SMC phenotypic 
state in vivo and in vitro. 

54.  Bone sialoprotein (BSP) and osteopontin (OPN, ETA-1) are expressed 
by trophoblasts and are strongly up-regulated by many tumors. 

55.  enhanced secretion of 2ar/pp69/osteopontin by transformation of a 
wide variety of mammalian fibroblasts and epithelial cells is 
often correlated with tumorigenicity. 
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Table 3-2 (continued) 
 
56. Increased levels of OPN exist in blood from the lungs, breasts, and 

gastrointestinal tracts of cancer patients with metastases.  
57.  oncogenically transformed cells secrete different molecular forms 

of osteopontin (OPN), a sialic acid-rich, adhesive, 
phosphoglycoprotein, than OPNs secreted by their 
nontransformed counterparts 

58.  OPN are non-collageneous bone matrix proteins expressed by some 
epithelial tumor cells in exceptional cases. 

59.  Osteopontin (OPN) has been associated with enhanced malignancy in 
breast cancer 

60.  Osteopontin (OPN) is a secreted, adhesive protein that is highly 
expressed in JB6 cells with TPA treatment, and its expression 
persists for at least 4 days, which is the time required for 
subsequent expression of transformed phenotype. 

61.  osteopontin is identical to a transformation- associated 
phosphoprotein whose level of expression by cultured cells and 
abundance in human sera has been correlated with 
tumorigenicity 

62.   OPN was involved in the stromal formation of myxoid or hyaline 
tissues in pleomorphic adenomas. In summary, pleomorphic 
adenomas expressed the bone matrix proteins OSN and OPN. 

63.  suggest a role for osteopontin in carcinogenesis. 
64.  OPN exists as an integral component of a hyaluronan-CD44-ERM 

attachment complex that is involved in the migration of 
embryonic fibroblasts, activated macrophages, and metastatic 
cells. 

65.  Osteopontin (OPN) induces endothelial cell migration and 
upregulates endothelial cell migration induced by VEGF. 

66.  Osteopontin induces cellular chemotaxis but not homotypic 
aggregation 

67.  the chemotactic activity of osteopontin (OPN) on the precursor of 
osteoclasts. 

68.  osteopontin is involved in the accumulation of macrophages within 
the peritubular and periglomerular interstitium in the 
obstructed renal cortex 

69.  expression of OPN was identified in the retina and OPN-like 
immunoreactivity was present in a number of ganglion cells. 

70.  osteopontin gene is turned on relatively late in calvarial 
development 

71.  Alkaline phosphatase (AP), osteopontin (OP), and osteocalcin (OC) 
are expressed during osteoblastic differentiation 

72.  Osteopontin (OPN) is one of the major non-collagenous proteins in 
root cementum and other mineralized tissues. 

73.  synthesized by some odontoblasts and secreted into predentin, prior 
to the onset of mineralization. 

74.  Osteoclasts express the alphavbeta3 integrin, which is one of the 
receptors for osteopontin. 

75.  bone phosphoprotein (44K BPP, also called sialoprotein I or 
oestopontin 

76. Bone sialoprotein (BSP) and osteopontin (OPN) are prominent, 
mineral-associated proteins in the extracellular matrix of 
bone that have been implicated in the metastatic activity of 
cancer cells.  
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Table 3-2 (continued) 
 
OPN is an important factor triggering bone remodeling caused by 
mechanical stress 
77. OPN, rather than HUA, is the major ligand for CD44 on bone cells in 

the remodelling phase of healing of fractures. 
78.  Osteopontin is one of the major noncollagenous bone matrix proteins 

produced by osteoblasts and osteoclasts, bone cells that are 
uniquely responsible for the remodeling of mineralized 
tissues. 

79.  Secreted phosphoprotein 1 (Spp-1; osteopontin) is one of the 
abundant noncollagenous proteins in bone matrix and is 
produced by osteoblasts. 

80.  synthesized by osteoblasts and osteocytes 
81.  the sulphation of SPPI is closely associated with mineralization 

and that it can be used as a sensitive and specific marker for 
the osteoblastic phenotype. 

82.  expression of myocardial osteopontin, an extracellular matrix 
protein, coincides with the development of heart failure and 
is inhibited by captopril, suggesting a role for angiotensin 
II 

83.  increased OPN expression plays an important role in regulating 
post-MI LV remodeling, at least in part, by promoting collagen 
synthesis and accumulation 

84.  Osteopontin (OPN), an extracellular matrix protein, is expressed in 
the myocardium with hypertrophy and failure. 

85.  These results suggest that p42/44 MAPK is a critical component of
the ROS-sensitive signaling pathways activated by ANG II in 
CMEC and plays a key role in the regulation of osteopontin 
gene expression. 

86.  The cytokine osteopontin (Eta-1), was found to be a protein ligand 
of CD44. 

87.  Expression of the cytokine osteopontin (OPN) is elevated in 
granulomas caused by Mycobacterium tuberculosis. 

88.  OPN secreted by exudate macrophages might be an important regulator 
in the calcification of tympanosclerosis 

89.  Osteopontin (OPN) is a glycosylated phosphoprotein found in all 
body fluids and in the proteinaceous matrix of mineralized 
tissues. 

90.  osteopontin (OPN) is a protein involved in normal and pathological 
calcifications 

91.  osteopontin augments the host response against a mycobacterial 
infection 

92.  Osteopontin (OPN) is a sialic acid-rich, adhesive, extracellular 
matrix (ECM) protein with Arg-Gly-Asp cell-binding sequence 
that interacts with several integrins, including 
alpha(v)beta(3). 

93.  These findings identify Eta-1 as a key cytokine that sets the stage 
for efficient type-1 immune responses through differential 
regulation of macrophage IL-12 and IL-10 cytokine expression. 

94.   
95. a possible role in renal injury and regeneration 
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Table 3-2 (continued) 
 
96.  Macrophages present in the human glomerular crescent express 

osteopontin protein and mRNA at a high level. 
97.  OPN expressed by tubular epithelium played a pivotal role in 

mediating peritubular monocyte infiltration consequent to 
glomerular disease 

98.  OPN gene and protein expression is induced in both proximal and 
distal tubular cells during rat toxic acute renal failure. 

99.  OPN mediates early interstitial macrophage influx and interstitial 
fibrosis in unilateral ureteral obstruction. 

100.  osteopontin (OPN) and calprotectin (CPT) are present in the 
matrix of urinary calcium stones, and that OPN mRNA is 
expressed in the renal distal tubular cells. 

101.  Osteopontin (OPN) is a secreted phosphoprotein that is 
constitutively expressed in the normal kidney and is induced 
by various experimental and pathologic conditions. 

102.  Osteopontin (OPN) is one of the most important components in 
calcium stone matrix, 

103.  osteopontin expression in glomerular crescents in a rat model of 
anti-glomerular basement membrane glomerulonephritis. 

104.   Osteopontin mRNA is most abundant in bone but is also found in 
considerable amounts in kidney. 

105.  the 69-kDa major phosphoprotein, secreted by normal rat kidney 
(NRK) cells, is osteopontin, 

106.  The stones showed staining in two distinct zones: a core area 
was stained with randomly aggregated OPN and CPT, and 
peripheral layers were stained in concentric circles. 

107.  Urinary concentrations of OPN assessed using the enzyme-linked 
immunosorbant assay were significantly lower for stone-formers 

108.   A distinct co-localization of perimembranous OPN and cell-
surface CD44 was observed in fetal fibroblasts, periodontal 
ligament cells, activated macrophages, and metastatic breast 
cancer cells. 

109.   mammary epithelial cells express OPN at elevated levels, 
110.  2ar (OPN) codes for mouse osteopontin, an RGDS-containing, 

phosphorylated, sialic acid-rich Ca++-binding protein 
originally isolated from bone  

111.  an essential role of OPN in mammary gland differentiation and 
that the molecular mechanism(s) of its action, at least in 
part, involves down-regulation of MMP-2. 

112.  expression only in the brain stem with higher level in the pons 
and the medulla than in the midbrain. 

113.  mouse secreted phosphoprotein 1 (Spp-1, also known as 2ar, 
osteopontin, bone sialoprotein 1, 44-kDa bone phosphotein, 
tumor-secreted protein) 

114.  OPN mRNA was restricted to likely neurons in the olfactory bulb 
and the brain stem; it was not detected in the telencephalon 
and the diencephalon. 

115.  Osteopontin (OPN), a noncollagenous bone extracellular matrix, 
is a secreted adhesive glycoprotein with a functional RGD 
cell-binding domain that interacts with the alpha(v)beta3 cell 
surface integrin heterodimer. 

116.  This places Spp-1 on mouse chromosome 5 
117.  we identified an intracellular form of osteopontin with a 

perimembranous distribution in migrating fetal fibroblasts 
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3.6 Extraction of new information 

The keyword list results using test set #2 showed that our system was able to 

identify keywords associated with newly discovered functions of OPN (Table 3-1). For 

example, our algorithms can identify the keywords and their associated z- scores 

captopril 2.3 (not shown), losartan 7.9, and atherosclerosis 4.4 (not shown) after the 

possible role of OPN in hypertension (Hartner et al., 2001).  Similarly, a functional link 

between OPN and autoimmune demyelinating diseases (Chabas et al., 2001) is suggested 

by the keywords demyelinating 2.1 (not shown), encephalomyelitis 2.9 (not shown), 

autoantigen 2.6 (not shown), and autoimmune 6.2, whereas a link to tumor metastasis 

(Furger et al., 2001 is pointed to by the keywords catenin 5.3 (not shown), cadherin 3.3 

(not shown), and tumorigenic 4.4 (not shown). 

Besides MEDLINE (PubMed), there are several other resources which are 

available over the Internet that contain useful information regarding the specific functions 

of genes, for example, the Gene Ontology (GO) Consortium, SwissProt, GenBank, and 

GeneCards. These databases necessarily reduce the vast literature into a few functional 

concepts, whereas the algorithm-derived keywords often convey a much broader sense of 

the functions of genes. Using the osteopontin (OPN) gene as an example, we manually 

extracted all available functional information on OPN from these resources in January 

2002.  The extracted results are presented in Table 3-3.  For OPN, the three GO keywords 

represent functional concepts, whereas the 19 words in GenBank are mostly aliases or 

biochemical descriptions for OPN.  The GeneCards and SwissProt information are 

essentially the same and contain aliases, general characteristics and functional 

information.  Taken together, a number of biological concepts regarding OPN are 
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represented in these various databases; however, individually, there are certain gaps in 

discrete topics for each database. For example, as of April 30, 2003, none of these 

databases identified the possible role of OPN in hypertension (Hartner et al., 2001), 

tumor metastasis (Furger et al., 2001), or in autoimmune demyelinating disease (Chabas 

et al., 2001). Finally, we searched Gene Ontology for the other gene names that we used 

to generate our preliminary data and found: 9 keywords for nexin, 0 keywords for 

cathepsin H and cathepsin S, 3 keywords for calcyclin, and no entries for glutamate-

oxaloacetate transaminase or uridine monophosphate kinase.  Therefore, we conclude that 

these popular public databases are useful, but individually and collectively incomplete 

when it comes to computing all relevant functional information about genes available 

publicly in Medline. This example indicates that our statistical algorithm can extract 

many relevant keywords, a number of which point to biological concepts not found in the 

existing public gene databases. 
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Table 3-3 – Information on OPN Extracted from Various Internet Gene Resources 
 

Resource Information 
Gene 
Ontology: cell adhesion   
 cell adhesion molecule  
 ossification  
   
GeneCards: alternate/related names: osteopontin precursor 
  bone sialoprotein 1 
  urinary stone protein 
  secreted phosphoprotein 1 
  SPP-1 
  nephropontin 
  uropontin 
 gene:  SPP1 or OPN 
 composition: 314 amino acids 
 molecular weight: 35 kD  

function: binds tightly to hydroxyapatite; appears to form an integral part of the  
  mineralized matrix; probably important to cell-matrix interaction. 
 subunit: ligand for integrin alpha-v/beta-3. 

alternative products: 3 isoforms are produced by alternative splicing: a/opn-a/op1b, 
   b/opn-b/op1a, and c/opn-c. 
 posttrans. modifications: extensively phosphorylated on serine residues. 
  N- and O-glycosylated. 
 similarity: belongs to the osteopontin family. 
SwissProt: [All of the above info from GeneCards is available in the human osteopontin entry  

for SwissProt, which also included the following fact:] 
 Disease: this protein plays a principal role in urinary stone formation as the stone matrix. 
  
GenBank (Keywords field) 
bone phosphoprotein; bone sialoprotein; calcium binding protein; cell adhesion phosphoprotein; extracellular matrix  
Protein; hydroxyapatite-binding protein; integrin-binding protein; matrix protein; mOP; osteopontin; phosphoprotein; 
secreted phosphoprotein; sialoprotein; sialoprotein I; SPP1 gene; SPPI protein; structural protein; tumor-associated 
phosphoprotein; hOP. 
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3.7 Optimization of the keyword selection algorithm.  
 

The performance of the keyword-selection weighting schemes was evaluated 

initially by comparing their output with the set of keywords selected by human 

investigators from an identical set of 100 abstracts. The statistical algorithms used 1008 

(3 * 3 * 4 * 28) combinations of three background sets: PDB-1155, PDB-760, and 

random families; three stemming rules: none, weak (Andrade and Valencia, 1998), and 

strong (Porter, 1980); four stop lists: none, simple stop list of 319 words, a 22,205 word 

online pocket dictionary (PD), and the supplemented pocket dictionary named PD+; and 

28 z-score thresholds for accepting a keyword as being associated with the gene. A word 

was deemed to be associated with a gene by the algorithm only if the weight was above a 

user-set threshold. The investigator-derived lists were then used as the standard for 

evaluation of the algorithm-derived lists.  For each combination of parameters we used 

the typical metrics of Precision (P) and Recall (R) to evaluate algorithm performance. 
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Figure 3-1. Evaluation and optimization of the keyword selection algorithm. A) 
Precision and recall as a function of the z-score threshold for accepting a word. B) The 
optimization function is plotted for each parameter set that includes the Porter strong 
stemmer. Solid circles represent data from the random background set and the PD+ stop 
list. C) The minima of the optimization function were determined from plots in B) and 
are plotted against the corresponding z-score for all parameter combinations. Solid 
circles = Porter stemmer, open boxes = the stemmer described in Andrade and Valencia 
(1998), and open triangles = no stemming. The arrow points to the optimum 
combination of parameters, which involve a z-score threshold > 3 and the combination 
of Porter stemmer, random background set and PD+ stop list. D) The sensitivity of the 
algorithm performance to changes in each parameter was systematically evaluated by 
calculating the mean (+SEM) of all optimization function minima in a data set, holding 
each parameter constant in turn. Performance was most affected by the stop list. 
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 For the case in which 1000 families in the random background list were stemmed 

by the Porter algorithm and filtered by the PD+ stop list, as word selection became more 

stringent (increasing z-scores), recall fell but precision was nearly unaffected (Figure 3-

1A). Examination of all P-R plots indicated that the extensive stop list was primarily 

responsible for the relatively flat precision because less extensive stop lists caused low 

precision at low z-score values. Figure 2B plots the error minimization function with V=4 

for all 12 parameter sets that included the Porter strong stemming algorithm, and Figure 

2C plots the minimum of this function against the z-score threshold for each parameter 

combination. Overall the best performance was achieved with the random background 

set, Porter strong stemming, the PD+ stop list and a z-score acceptance threshold of 3-8 

for V ranging between 2 and 4. 

Examination of Figure 3-1C shows that the stronger stemming algorithm (Porter, 

solid circles) often outperformed the weaker stemming algorithm (open squares) or no 

stemming (open triangles). To determine which parameter (background set, stemming 

algorithm or stop list) exerts the most influence on the performance of the algorithm, we 

calculated the mean value of the optimization function with each parameter being fixed in 

turn. Figure 3-1D shows that a stringent stop list (PD+) is most important for optimizing 

the algorithms, followed by a strong stemming algorithm. Selection of the background set 

had relatively little effect on the performance of the keyword selection algorithm, which 

indicates that as long as the weight of a word is reduced if it occurs commonly in a fairly 

large set of MEDLINE abstracts, it may be less important as to how that set is chosen.  

Therefore, the best keyword selection performance for the z-score scheme utilizes 

a random background set, the PD+ stop list and Porter’s stemming algorithm. To 
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preclude the occurrence of the “New” words, which occur in the test but are missing in 

all background sets, we created a large random background set (about 112,000 pseudo-

families of 50 abstracts each), which included all MEDLINE abstracts up to the year 

2000. For the remaining study, we used the combination of this large random background 

set, PD+ stop list and Porter’s stemming algorithm to extract keywords for each gene. 

The use of keywords selected from gene-related literature to cluster functionally-

related genes has two fundamental limitations. First, with the keyword selection 

algorithms described above, some words with high z-scores have low predictive potential 

for biological function or are erroneously associated with the gene in question (per 

observation of experts).  Such results could occur more often when the gene name is 

referenced in the abstracts, but is not the actual topic of discussion, when the topic 

switches from the gene name to some other issue, or when the word “not” reverses the 

meaning of the sentence.  Enhancements to the basic schemes could involve using natural 

language processing to exploit the added information in compound phrases, syntax, and 

grammatical structures such as negative sentences, and improving our stop list. The 

sensitivity analysis (Figure 3-1D) indicates that the quality of the stop list is the most 

important element in algorithm performance. Second, inconsistency among human 

investigators in the task of agreeing upon keywords from a document places a 

fundamental limit on our ability to evaluate the performance of computer algorithms 

against human opinion. Keyword selection by an investigator is ultimately subjective and 

leads to ambiguities in document classification (Funk and Reid, 1983; Blair and Maron, 

1985; Swanson, 1960; Saracevic, 1991) with the consequence that performance better 

than ~75-80% precision may not be achievable.  
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  For the reasons described above, the use of investigator-selected keywords as the “gold 

standard” for evaluating the performance of keyword-selection algorithms is imperfect. 

However, even in the face of these challenges, the keyword selection algorithms used 

here appear sufficiently robust to serve as the basis for functional gene clustering. 

We also tested some other random background sets, such as one which contains all 

the Medline abstracts up to the year 2000. The keyword ranking is the same as the 

50,000-abstract background set. The only difference is that the z-score value of each 

keyword is increased. 

 

3.8 Comparison of TFIDF and Normalized Z-score Method for 
Keyword Extraction.  

 
The performance of keyword-selection by TFIDF and normalized z-score 

methods were also evaluated with precision and recall metrics (Figure 3-2) by comparing 

the TFIDF and normalized z-score method outputs with the set of keywords selected by 

human investigators from an identical set of 100 abstracts (the first test set). Figure 3-2 

shows that TFIDF outperforms the normalized z-score method with higher precision and 

recall values. Due to cosine normalization, the thresholds are much smaller in Figure 3-2 

than those in Figure 3-1. 

Word weighting is an important step in information retrieval, text mining, and 

text categorization for indexing documents. The main function of a word-weighting 

scheme is to enhance retrieval effectiveness (Salton and Buckley, 1988). In gene 

clustering by functional keyword associations, the weighting scheme is used to extract 

high quality keyword lists. Despite the variations in weighting schemes, the essential 
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ideas on which they are based can be grouped into a few categories (Kageura and Umino, 

1996): (1) A “word” which appears once in a document is likely to be a keyword for that 

document; (2) a “word” which appears frequently in a document is likely to be a keyword 

for that document; (3) a “word” which appears only in a limited number of documents is 

likely to be a keyword for any document in which it appears; (4) a “word” which appears 

relatively more frequently in a document than in the other documents is likely to be a 

keyword for that document; (5) a “word” which shows a specific distribution in a 

collection of documents is likely to be a keyword for that collection of documents. 

Categories (1) and (2) emphasize the “representation” aspect of keywords, and 

categories (3) and (4) emphasize the “discrimination” aspect. While categories (1) to (4) 

focus on individual documents, category (5) takes into account the relationships among 

documents as seen from the overall distribution of words. Therefore, category (5) has the 

advantage of considering topics as represented by a group of documents, while categories 

(1) to (4) only treat each document as a basic topic unit. Accordingly, the weighting 

schemes based on category (5) vary considerably, both in theoretical viewpoints and in 

the resultant weights given to words (Kageura and Umino, 1996). TFIDF is based on 

categories (1) to (4) because it considers the representation and discrimination aspects of 

keywords by combining the term frequency and inverse-document frequency. On the 

other hand, the word distribution in the background set is also taken into account in the z-

score method because the word’s average frequency and standard deviation in the 

background set are used to calculate the z-scores. Andrade and Valencia (1998) used a δ 

measure to present the distribution of the words in the background set. In their original z- 
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Figure 3-2. Keyword extraction by two weighting schemes (TFDIF and normalized z-
score). Precision and recall is plotted as a function of the weight threshold for 
accepting a word.  
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score method, the abstracts in the background set were grouped by protein families, 

indicating that the abstracts inside a family were closely related. Therefore, it is 

reasonable to consider the relationship among families as seen from the overall word 

distribution. However, in the random background sets, the abstracts inside the pseudo-

families were randomly chosen. Therefore, the word distribution among pseudo-families 

is meaningless. Our results show that TFIDF outperforms the normalized z-score method, 

indicating that the word distribution does not add any information to the metric. 

A particular word is more likely to be repeated in a larger test set than in a shorter 

test set, and as a result, the term frequency of that word will be higher, which causes a 

higher TFIDF value since the IDF is the same. In our case, a larger test set means the 

gene has more abstracts and/or longer abstracts. Cosine normalization is applied in 

TFIDF so that the words in the longer documents are not unfairly given more weight. In 

order to compare with TFIDF, the z-score values were also normalized. In direct 

comparisons of cluster quality with keywords selected by the two schemes, TFIDF 

outperformed the normalized z-score for both test sets of genes.  

 

3.9 Future experiments 

As we mentioned in section 3.6, the text mining method we develop can extract 

new gene-to-disease information that we cannot find from publically available databases. 

One future experiment we can do is to test the gene osteopontin with the abstracts before 

2001 to see if the method can predict the gene-disease relationship which was discovered 

after 2001. 
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3.10 Summary  

In this chapter, we expand, extend, and optimize the z-score method by testing 

new background sets, a new stemming algorithm, and a new, extensive stop list 

customized for use with the biological literature. This extended method was used to 

create a repository of functional keywords from MEDLINE abstracts for genes. We also 

compare our results with information found in public databases. We then compare the 

performance of the z-score method with TFIDF for the purpose of extracting the 

functional keywords for each tested gene set by evaluating the precision and recall 

values. In the next chapter, we will use the keyword extraction strategy to extract 

functional keywords for each gene and cluster the gene based on the shared keywords. A 

new algorithm is proposed. 
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CHAPTER 4 
 
Clustering Genes based on Keyword Feature Vectors 
 
 

Partitioning genes into closely related groups has become an element of 

practically all analyses of microarray data (Cherepinsky et al., 2003). 

A number of computer algorithms have been applied to gene clustering. Based on 

the assumption that genes with the same function or in the same biological pathway 

usually show similar expression patterns, the functions of unknown genes can be inferred 

from those of the known genes with similar expression profile patterns. Therefore, 

expression profile gene clustering by all the algorithms mentioned above has received 

much attention, however, the task of finding functional relationships between specific 

genes is left to the investigator. Manual scanning of the biological literature (for example, 

via MEDLINE) for clues regarding potential functional relationships among a set of 

genes is not feasible when the number of genes to be explored rises above approximately 

ten. Restricting the scan (manual or automatic) to annotation fields of GenBank, 

SwissProt or LocusLink is quicker but can suffer from the ad hoc relationship of 

keywords to the research interests of whoever submitted the entry. Moreover, keeping 

annotation fields current as new information appears in the literature is a major challenge 

that is rarely met adequately.  

If, instead of organizing by expression pattern similarity, genes were grouped 

according to shared function, investigators might more quickly discover patterns or 

themes of biological processes that were revealed by their microarray experiments and 

focus on a select group of functionally related genes. A number of clustering strategies 
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based on shared functions rather than similar expression patterns have been devised. 

Chaussabel and Sher (2002) analyzed literature profiles generated by extracting the 

frequencies of certain terms from the abstracts in MEDLINE and then clustered the genes 

based on these terms, essentially applying the same algorithm used for expression pattern 

clustering. Jenssen et al. (2001) used co-occurrence of gene names in abstracts to create 

networks of related genes automatically. Text analysis of biomedical literature has also 

been applied successfully to incorporate functional information about the genes in the 

analysis of gene expression data (Blaschke et al., 2001; Raychaudhuri et al., 2002; 

Raychaudhuri et al., 2003; Masys et al., 2003) without generating clusters de novo. For 

example, Blaschke et al. (2001) extracted information about the common biological 

characteristics of gene clusters from MEDLINE using Andrade and Valencia’s statistical 

text mining approach, which accepts user-supplied abstracts related to a protein of 

interest and returns an ordered set of keywords that occur in those abstracts more often 

than would be expected by chance (Andrade and Valencia, 1998).  

In this chapter, we describe an approach that applies an algorithm called the Bond 

Energy Algorithm (BEA) (McCormick et al., 1972; Navathe et al., 1984) for functional 

gene clustering based on keyword association. We modify it so that the “affinity” among 

attributes (in our case genes) is defined based on the sharing of keywords between them 

and we develop a scheme for partitioning the clustered affinity matrix to produce clusters 

of genes. We call the resulting algorithm as BEA-PARTITION. BEA was originally 

conceived as a technique to cluster questions in psychological instruments (McCormick 

et al., 1972), has been used in operations research, production engineering, marketing, 

and various other fields (Arabie and Hubert, 1990), and is a popular clustering algorithm 
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in distributed database system (DDBS) design. The fundamental task of BEA in DDBS 

design is to group attributes based on their affinity, which indicates how closely related 

the attributes are, as determined by the inclusion of these attributes by the same database 

transactions. In our case, each gene is considered as an attribute. Hence, the basic premise 

is that two genes would have higher affinity, thus higher bond energy, if abstracts 

mentioning these genes shared many informative keywords. BEA has several useful 

properties (Navathe et al., 1984; Ozsu and Valduriez, 1999). First, it groups attributes 

with larger affinity values together, and the ones with smaller values together (i.e., during 

the permutation of columns and rows, it shuffles the attributes towards those with which 

they have higher affinity and away from those with which they have lower affinity). 

Second, the composition and order of the final groups are insensitive to the order in 

which items are presented to the algorithm. Finally, it seeks to uncover and display the 

association and interrelationships of the clustered groups with one another.  

In this chapter, we develop a methodology to cluster the genes by shared 

functional keywords. Our gene clustering strategy is similar to the document clustering in 

information retrieval. Document clustering, defined as grouping documents into clusters 

according to their topics or main contents in an unsupervised manner, organizes large 

amounts of information into a small number of meaningful clusters and improves the 

information retrieval performance either via cluster-driven dimensionality reduction, 

term-weighting, or query expansion (Aslam et al., 1982; Willett, 1998; Jain et al., 1999; 

Baeza-Yates and Ribeiro-Neto, 1999; Sebastiani, 1999). In order to explore whether this 

algorithm could be useful for clustering genes derived from microarray experiments, we 

compared the performance of BEA-PARTITION, hierarchical clustering algorithm, self-
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organizing map, and the k-means algorithm for clustering functionally-related genes 

based on shared keywords, using purity, entropy, and mutual information as metrics for 

evaluating cluster quality. 

 
4.1 Keyword Extraction from biomedical literature 

We use statistical methods to extract keywords from MEDLINE citations, based 

on the work of Andrade and Valencia (1998).  This method estimates the significance of 

words by comparing the frequency of words in a given gene-related set (Test Set) of 

abstracts with their frequency in a background set of abstracts. We modify the original 

method by using a (i) different background set, (ii) a different stemming algorithm 

(Porter’s stemmer), and (iii) a customized stop list as mentioned in Chapter 3.  

For each gene analyzed, word frequencies were calculated from a group of 

abstracts retrieved by an SQL (structured query language) search of MEDLINE for the 

specific gene name, gene symbol or any known aliases (see LocusLink, 

ftp://ftp.ncbi.nih.gov/refseq/LocusLink/LL_tmpl.gz for gene aliases) in the TITLE field.  

The resulting set of abstracts (the Test Set) was processed to generate a specific keyword 

list.   

4.1.1 Test sets of genes 

We compared BEA-PARTITION and other clustering algorithms (k-means, hierarchical, 

and SOM) on two test sets.  

1. 26 genes in four well-defined functional groups consisting of ten glutamate 

receptor subunits, seven enzymes in catecholamine metabolism, five cytoskeletal proteins 

and four enzymes in tyrosine and phenylalanine synthesis. The gene names and aliases 
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are listed in Table 4-1. This experiment was performed to determine whether keyword 

associations can be used to group genes appropriately and whether the four gene families 

or clusters that were known a priori would also be predicted by a clustering algorithm 

simply using the affinity metric based on keywords. 
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Table 4-1. 26 Genes manually clustered based on functional similarity 

Group Genes Functions 
1 GluR1,GluR2,GluR3,GluR4,GluR6, 

KA1,KA2,NMDA-R1,NMDA-R2A, NMDA-R2B 
Glutamate receptor 
channels 

2 Tyrosine hydroxylase, DOPA decarboxylase, 
Dopamine beta-hydroxylase, Phenethanolamine 
N-methyltransferase, Monoamine oxidase A, 
Monoamine oxidase B, Catechol-O-
methyltransferase 

Catecholamine synthetic 
enzymes 

 

3 Actin, Alpha-tubulin, Beta-tubulin, Alpha-
spectrin, Dynein 

Cytoskeletal proteins 

4 Chorismate mutase, Prephenate dehydratase, 
Prephenate dehydrogenase, Tyrosine 
transaminase 

Enzymes in tyrosine and 
phenylalanine synthesis 

 

 

 

 

2. 44 yeast genes involved in the cell cycle of budding yeast (Saccharomyces 

cerevisiae) that had altered expression patterns on spotted DNA microarrays (Eisen et al., 

1998) were analyzed by Cherepinsky et al. (2003) to demonstrate their Shrinkage 

algorithm for gene clustering.  A master list of member genes for each cluster was 

assembled according to a combination of 1) common cell-cycle functions and regulatory 

systems and 2) the corresponding transcriptional activators for each gene (Cherepinsky et 

al., 2003) (Table 4-2). 
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Table 4-2. 44 Yeast Genes grouped by transcriptional activators and cell cycle functions  

 
Group Activators Genes Functions 
1 Swi4, Swi6 Cln1, Cln2, Gic1, Gic2, Msb2, 

Rsr1, Bud9, Mnn1, Och1, Exg1, 
Kre6, Cwp1 
 

Budding 

2 Swi6, Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, 
Dun1, Rad51, Cdc45, Mcm2 
 

DNA replication and 
repair 

3 Swi4, Swi6 Htb1, Htb2, Hta1, Hta2, Hta3, 
Hho1 
 

Chromatin 

4 Fkh1 Hhf1, Hht1, Tel2, Apr7 
 

Chromatin 

5 Fkh1 Tem1 
 

Mitosis control 

6 Ndd1, Fkh2, 
Mcm1 

Clb2, Ace2, Swi5, Cdc20 
 

Mitosis control 

7 Ace2, Swi5 Cts1, Egt2 
 

Cytokinesis 

8 Mcm1 Mcm3, Mcm6, Cdc6, Cdc46 
 

Prereplication complex 
formation 

9 Mcm1 Ste2, Far1 Mating 
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4.1.2 Keyword Assessment 

Statistical formulae from Andrade and Valencia (1998) for word frequencies were used 

without modification. These calculations were repeated for all gene names in the test set, 

a process that generated a database of keywords associated with specific genes, the 

strength of the association being reflected by a z-score.  

4.1.3 Keyword selection for gene clustering 

We used z-score thresholds to select the keywords used for gene clustering. Those 

keywords with z-scores less than the threshold were discarded. The z-score thresholds we 

tested were 0, 5, 8, 10, 15, 20, 30, 50, and 100. The output of the keyword selection for 

all genes in each Test Set is represented as a sparse keyword (rows) x gene (columns) 

matrix with cells containing z-scores.  

 
4.2 List of keywords and keyword x gene matrix generation 
 
 

A list of keywords was generated for each gene to build the keyword x gene 

matrix. Keywords were sorted according to their z-scores. The keyword selection 

experiment (see below) showed that a z-score threshold of 10 generally produced better 

results, which suggests that keywords with z-scores lower than 10 have less information 

content, e.g. “cell”, “express”.  The relative values of z-scores depend on the size of the 

background set (data not shown). Since we used 5.6 million abstracts as the background 

set, the z-scores of most of the informative keywords were well above 10 (based on 

smaller values of standard deviation in the definition of z-score). The keyword x gene 

matrices were used as inputs to k-means, hierarchical clustering algorithm, self-
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organizing map, while as required by the BEA approach, they were first converted to a 

gene X gene matrix based on common shared keywords and these gene x gene matrices 

were used as inputs to BEA-PARTITION. An overview of the gene clustering by shared 

keyword process is provided in Figure 4-1. 
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Figure 4-1. Procedure for clustering genes by the strength of their associated keywords  
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4.3 BEA-PARTITION: a new algorithm with application to gene 
clustering 
 
 
The BEA-PARTITION takes a symmetric matrix as input, permutes its rows and 

columns, and generates a sorted matrix, which is then partitioned to form a clustered 

matrix. 

4.3.1 Constructing the symmetric gene x gene matrix 

The sparse word X gene matrix, with the cells containing the z-scores of each 

word-gene pair, was converted to a gene X gene matrix with the cells containing the sum 

of products of z-scores for shared keywords. The z-score value was set to zero if the 

value was less than the threshold. Larger values reflect stronger and more extensive 

keyword associations between gene-gene pairs.  For each gene pair (Gi, Gj) and every 

word a they share in the sparse word x gene matrix, the Gi x Gj cell value (aff(Gi,Gj)) in 

the gene X gene matrix represents the affinity of the two genes for each other and is 

calculated as:  

1000
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Dividing the sum of the z-score product by 1000 was done to reduce the typically large 

numbers to a more readable format in the output matrix. 

This calculation is called cosine similarity calculation in text mining, which is a popular 

way to find out how close two documents are. 

4.3.2 Sorting the matrix (Ozsu and Valduriez, 1999) 

The sorted matrix is generated as follows: 

1. Initialization. Place and fix one of the columns of symmetric matrix arbitrarily 

into the clustered matrix; 

2. Iteration. Pick one of the remaining n-i columns (where i is the number of 

columns already in the sorted matrix). Choose the placement in the sorted matrix that 

maximizes the change in bond energy as described below (equation 3). Repeat this step 

until no more columns remain; 

3. Row ordering. Once the column ordering is determined, the placement of the rows 

should also be changed correspondingly so that their relative positions match the relative 

position of the columns. This restores the symmetry to the sorted matrix.  

To calculate the change in bond energy for each possible placement of the next 

(i+1) column, the bonds between that column (k) and each of two newly adjacent 

columns (i, j) are added and the bond that would be broken between the latter two 

columns is subtracted.  Thus, the “bond energy” between these three columns i, j, and k 

(representing gene i (Gi); gene j (Gj); gene k (Gk))) is calculated by the following 

interaction measure: 
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where bond(Gi,Gj) is the bond energy between gene Gi and gene Gj and  
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The last set of conditions (equation 4-5) takes care of cases where a gene is being 

placed in the sorted matrix to the left of the leftmost gene or to the right of the rightmost 

gene during column permutations, and prior to the topmost row and following the last 

row during row permutations. 

4.3.3 Partitioning the sorted matrix  

The original BEA algorithm (McCormick et al., 1972) did not propose how to 

partition the sorted matrix. The partitioning heuristic was added by Navathe et al. (1984) 

for the problems in the distributed database design. These heuristics were constructed 

using the goals of design: to minimize access time and storage costs. We do not have the 

luxury of such a clear cut objective function in our case. Hence, to partition the sorted 

matrix into submatrices, each representing a gene cluster, we experimented with different 

heuristics, and finally derived a heuristic that identifies the boundaries between clusters 

by sequentially finding the maximum sum of the quotients for corresponding cells in 

adjacent columns across the matrix. With each successive split, only those rows 

corresponding to the remaining columns were processed, i.e. only the remaining 
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symmetrical portion of the submatrix was used for further iterations of the splitting 

algorithm.  The number of clusters into which the gene affinity matrix was partitioned 

was determined by AUTOCLASS (described below), however, other heuristics might be 

useful for this determination. The boundary metric (B) for columns Gi and Gj was 

defined as: 

 

∑ −=≤≤− +
+

=
)(

)1()()1( ))1,(),,(min(
))1,(),,(max(max),( pindex
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qkaffqkaffGGB  (4-5) 

 

where q is the new splitting point (for simplicity, we use the number of the leftmost 

column in the new submatrix that is to the right of the splitting point), which will split the 

submatrix defined between two previous splitting points, index(p) and index(p-1) (which 

do not necessarily represent contiguous columns). To partition the entire sorted matrix, 

the following initial conditions are set, index(p) = N, index(p-1) =0.  
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4.4 Other Clustering Algorithm  

K-means and hierarchical clustering analysis were performed using 

Cluster/Treeview programs available online (http://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster/software.htm).  

Self-organizing map 

 Self-organizing map was performed using GeneCluster 2.0 

(http://www.broad.mit.edu/cancer/software/software.html).  

Euclidean distance measure was used for gene X keyword matrix to determine 

similarity among genes. When gene X gene matrix was used as input, the gene similarity 

was calculated by equation 4-1. 

4.4.1 Determination of number of clusters 

 In order to apply BEA-PARTITION and k-means clustering algorithms, the 

investigator needs to have a priori knowledge about the number of clusters in the test set. 

We determined the number of clusters by applying AUTOCLASS, an unsupervised 

Bayesian classification system developed by (Cheeseman and Stutz, 1996). 

AUTOCLASS, which seeks a maximum posterior probability classification, determines 

the optimal number of classes in large data sets. Among a variety of applications, 

AUTOCLASS has been used for the discovery of new classes of infra-red stars in the 

IRAS Low Resolution Spectral catalogue, new classes of airports in a database of all 

USA airports, and discovery of classes of proteins, introns and other patterns in 

DNA/protein sequence data (Cheeseman and Stutz, 1996). We applied an open source 

implementation of AUTOCLASS (http://ic.arc.nasa.gov/ic/projects/bayes-

group/autoclass/autoclass-c-program.html). The resulting number of clusters was then 
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used as the endpoint for the partitioning step of the BEA-PARTITION algorithm. To 

determine whether AUTOCLASS could discover the number of clusters in the test sets 

correctly, we also tested different number of clusters other than the ones AUTOCLASS 

predicted.  

4.4.2 Determination of z-score threshold 

The effect of using different z-score thresholds for keyword selection on the 

quality of resulting clusters is shown in Figure 4-2A1 and 4-2B1. For both test sets, BEA-

PARTITION produced clusters with higher mutual information when z-score thresholds 

were within a range of 10 to 20. For the 44-gene set, K-means produced clusters with the 

highest mutual information when the z-score threshold was 8, while, for the 26-gene set, 

mutual information was highest when z-score threshold was 15. For the remaining 

studies, we chose to use a z-score threshold of 10 to keep as many functional keywords as 

possible.  

Once the keyword X gene matrix was created, we used AUTOCLASS to decide 

the number of clusters in the test sets. AUTOCLASS took the keyword X gene matrix as 

input and predicted that there were 5 clusters in the set of 26 genes and 9 clusters in the 

set of 44 yeast genes. The effect of the numbers of clusters on the algorithm performance 

was shown in Figures 4-2A2 and 4-B2. BEA-PARTITION again produced a better result 

regardless of the number of clusters used. BEA-PARTITION had the highest mutual 

information when the numbers of clusters were 5 (26-gene set) and 9 (44-gene set), 

whereas k-means worked marginally better when the numbers of clusters were 8 (26-gene 

set) and 10 (44-gene set). Based on these results we chose to use 5 and 9 clusters, 
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respectively, for the 26-gene and 44-gene data sets, because the probabilities were higher 

than the other choices.  
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Figure 4-2. Effect of keyword selection by z-score thresholds (A1 and B1) and different 
number of clusters (A2 and B2) on the cluster quality. Z-score thresholds were used to 
select the keywords for gene clustering. Those keywords with z-scores less than the 
threshold were discarded. To determine the effect of keyword selection by z-score 
thresholds on cluster quality, we tested z-score thresholds 0, 5, 8, 10, 15, 20, 30, 50, and 
100. To determine whether AUTOCLASS could be used to discover the number of 
clusters in the test sets correctly, we tested different number of clusters other than the 
ones AUTOCLASS predicted (4 for the 26-gene set and 9 for the 44-gene set). 
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4.5 Evaluating the clustering results 

To evaluate the quality of our resultant clusters, we used the established metrics 

of Purity, Entropy and Mutual Information, which are briefly described below (Strehl, 

2002).  Let us assume that we have C classes (i.e. C expert clusters, as shown in Tables 1 

and 2), while our clustering algorithms produce K clusters, π1, π2, …, πk. 

4.5.1 Purity 

 Purity can be interpreted as classification accuracy under the assumption that all 

objects of a cluster are classified to be members of the dominant class for that cluster. If 

the majority of genes in cluster A are in class B, then class B is the dominant class. Purity 

is defined as the ratio between the number of items in cluster πi from dominant class j and 

the size of cluster πi, that is: 

j

j
i

i
i kin

n
P ,...,2,1),max(1)( ==π

   (4-6) 

where ni = |πi|, that is, the size of cluster i and n j
i is the number of genes in πi that belong 

to class j, j = 1, 2, . . . ,C.  The closer to 1 the purity value is, the more similar this cluster 

is to its dominant class. Purity is measured for each cluster and the average purity of each 

test gene set cluster result was calculated. 

4.5.2 Entropy 

Entropy denotes how uniform the cluster is. If a cluster is composed of genes coming 

from different classes, then the value of entropy will be close to 1. If a cluster only 

contains one class, the value of entropy will be close to 0. The ideal value for entropy 

would be zero. Lower values of entropy would indicate better clustering. Entropy is also 

measured for each cluster and is defined as: 
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The average entropy of each test gene set cluster result was also calculated. 

4.5.3 Mutual Information 

One problem with purity and entropy is that they are inherently biased to favor small 

clusters. For example, if we had one object for each cluster, then the value of purity 

would be 1 and entropy would be zero, no matter what the distribution of objects in the 

expert classes is.  

Mutual information is a symmetric measure for the degree of dependency between 

clusters and classes. Unlike correlation, mutual information also takes higher order 

dependencies into account. We use mutual information because it captures how related 

clusters are to classes without bias towards small clusters. Mutual information is a 

measure of the discordance between the algorithm-derived clusters and the actual 

clusters. It is the measure of how much information the algorithm-derived clusters can 

tell us to infer the actual clusters. Random clustering has mutual information of 0 in the 

limit. Higher mutual information indicates higher similarity between the algorithm-

derived clusters and the actual clusters. Mutual information is defined as: 
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where N is the total number of genes being clustered and K is the number of clusters the 

algorithm produced, and C is the number of expert classes. 

 
4.6 A comparative study of BEA-PARTITION with other Clustering 

algorithms: Using 26-gene set. 
 
 

To determine whether keyword associations could be used to group genes 

appropriately, we cluster the 26-gene set with either BEA-PARTITION or k-means. 

Keyword lists are generated for each of these 26 genes, which belong to one of four well-

defined functional groups (Table 4-1). The resulting word x gene matrix has 26 columns 

(genes) and approximately 8,540 rows (words with z-scores >= 10 appearing in any of 

the query sets). The BEA-PARTITION, with z-score threshold = 10, correctly assigns 25 

of 26 genes to the appropriate cluster based on the strength of keyword associations 

(Figure 4-3).  Tyrosine transaminase is the only outlier. As expected from the BEA-

PARTITION, cells inside clusters tend to have much higher values than those outside.  

Hierarchical clustering algorithm, with the gene X keyword matrix as the input, generate 

similar result as BEA-PARTITION (5 clusters and TT is the outlier) (Figure 4-4A).  

While BEA-PARTITION and hierarchical clustering algorithm produce clusters 

very similar to the original functional classes, those produced by k-means (Table 4-4), 

self-organizing map (Table 4-5), and AUTOCLASS (Table 4-6), with gene X keyword 
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matrix as input, are heterogeneous and thus more difficult to explain. The average purity, 

average entropy, and mutual information of the BEA-PARTITION and hierarchical 

algorithm result are 1, 0, and 0.88, while those of k-means result are 0.53, 0.65 and 0.28, 

respectively, those of SOM result are 0.76, 0.35, and 0.18, respectively, and those of 

AUTOCLASS result are 0.82, 0.28, and 0.56 (Table 4-3) (gene X keyword matrix as 

input). When gene X gene matrix is used as input to hierarchical algorithm, k-means, and 

SOM, the results are even worse as measured by purity, entropy, and mutual information 

(Table 4-3). 

The results, with gene X gene matrix as the input, are shown in Tables 4-7, 4-8, 4-

9, and 4-10. 
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A       B

 

 

 

Figure 4-4. Gene clusters by keyword associations using hierarchical clustering algorithm. 
Keywords with z-scores >=10 were extracted from MEDLINE abstracts for 26 genes in 4 
functional classes (A) and 44-gene in 9 classes (B). The resulting word x gene sparse matrix is 
used as input to the hierarchical algorithm. 
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Table 4-3.  The quality of the gene clusters derived by different clustering algorithms, 
measured by Purity, Entropy, and Mutual Information 

 
Input Matrix Test gene set Clustering algorithm Average 

Purity 
Average 
Entropy 

Mutual 
Information 

Hierarchical 1 0 0.88 

k-means 0.53 0.65 0.28 

SOM 0.76 0.35 0.18 

 
 

26-gene set 

Autoclass 0.82 0.28 0.56 

Hierarchical 0.86 0.12 0.58 

k-means 0.60 0.37 0.46 

SOM 0.61 0.33 0.39 

 

 
 
 
 

Gene X keyword 
matrix 

 

 
 

44-gene set 

Autoclass 0.57 0.39 0.49 

BEA-PARTITION 1 0 0.88 

Hierarchical 1 0 0.88 

k-means 0.87 0.19 0.16 

SOM 0.81 0.28 0.20 

 
 
 

26-gene set 
 

Autoclass 0.89 0.13 0.78 

BEA-PARTITION 0.74 0.24 0.60 

Hierarchical 0.84 0.16 0.56 

k-means 0.84 0.12 0.30 

SOM 0.71 0.27 0.35 

 
 

 
 
 
 

Gene X Gene 
matrix  

 
 

44-gene set 

Autoclass 0.72 0.26 0.51 
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Table 4-4. 26-gene set k-means result (gene X keyword matrix as input) 
 

Cluster Gene Function 
1 Dynein, Alpha-Tublin 

MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A) 
 

Cytoskeletal proteins 
Catecholamine synthetic enzymes 
 

2 GluR1,GluR2,GluR6,KA2,NMDA-R1 
PNMT (Phenethanolamine N-
methyltransferase ) 
 

Glutamate receptor channels 
Catecholamine synthetic enzymes 
 

3 Actin,Beta-Tublin 
DBH (Dopamine beta-hydroxylase), 
DOPA (DOPA decarboxylase) 
NMDA-R2B 
 

Cytoskeletal proteins 
Catecholamine synthetic enzymes 
 
Glutamate receptor channels 

4 COM (Catechol-O-methyltransferase) 
GluR3,GluR4,KA1 
PD1 (Prephenate dehydratase), 
PD2 (Prephenate dehydrogenase) 
 

Catecholamine synthetic enzymes 
Glutamate receptor channels 
Enzymes in tyrosine synthesis 
 

5 Alpha-Spectrin 
TH (Tyrosine hydroxylase) 
NMDA-R2A 
CM (Chorismate mutase), 
TT (tyrosine transaminase) 

Cytoskeletal proteins 
Catecholamine synthetic enzymes 
Glutamate receptor channels 
Enzymes in tyrosine synthesis 
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Table 4-5. 26-gene SOM result (gene X keyword matrix as input) 
 

Cluster Gene Function 
1 Actin,Alpha-Spectrin,Alpha-Tubulin 

Beta-tubulin,Dynein 
GluR1,GluR2,GluR3,NMDA-R1,NMDA-
R2A,NMDA-R2B 
DBH (Dopamine beta-hydroxylase), 
COM (Catechol-O-methyltransferase) 
DOPA (DOPA decarboxylase) 
MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A) 
TH (Tyrosine hydroxylase) 
PNMT (Phenethanolamine N-
methyltransferase 
TT (tyrosine transaminase) 
CM (Chorismate mutase) 
 

Cytoskeletal proteins 
 
Glutamate receptor channels 
 
Catecholamine synthetic enzymes  
 
 
 
 
 
 
 
Enzymes in tyrosine synthesis 
 

2 GluR6 Glutamate receptor channels 

3 GluR4 
KA2 

 
Glutamate receptor channels 

4 KA1 
PD2 (Prephenate dehydrogenase) 
PD1 (Prephenate dehydratase) 

Glutamate receptor channels 
Enzymes in tyrosine synthesis 
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Table 4-6. 26-gene AUTOCLASS result (gene X keyword matrix as input) 
 

Cluster Gene Function 
1 Alpha-Spectrin 

DBH (Dopamine beta-hydroxylase), 
DOPA (DOPA decarboxylase) 
TH (Tyrosine hydroxylase) 
NMDA-R1 
 

Cytoskeletal proteins 
Catecholamine synthetic enzymes  
 
 
Glutamate receptor channels 

2 GluR2,GluR3,GluR4,GluR6,NMDA-
R2A,NMDA-R2B 
 

Glutamate receptor channels 

3 GluR1,KA1,KA2  
PD2 (Prephenate dehydrogenase) 
PD1 (Prephenate dehydratase) 
TT (tyrosine transaminase)  
CM (Chorismate mutase) 
PNMT (Phenethanolamine N-
methyltransferas) 
 

Glutamate receptor channels 
Enzymes in tyrosine synthesis 
 
 
Catecholamine synthetic enzymes 

4 Actin,Alpha-Tubulin,Beta-tubulin 
Dynein 
 

Cytoskeletal proteins 
 

5 MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A) 
COM (Catechol-O-methyltransferase) 

Catecholamine synthetic enzymes 
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Table 4-7. 26-gene set k-means result (gene X gene matrix as input) 
 

Cluster Gene Function 
1 PD1 (Prephenate dehydratase), 

 
Enzymes in tyrosine synthesis 
 

2 PD2 (Prephenate dehydrogenase) Enzymes in tyrosine synthesis 
 

3 Actin,Beta-Tublin,Dynein, Alpha-Tublin 
Alpha-Spectrin 
MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A),  
PNMT (Phenethanolamine N-
methyltransferase) 
DBH (Dopamine beta-hydroxylase), 
DOPA (DOPA decarboxylase) 
COM (Catechol-O-methyltransferase) 
TH (Tyrosine hydroxylase) 
GluR1,GluR2,GluR3,GluR4,GluR6,NMDA-
R1,NMDA-R2A,NMDA-R2B 
CM (Chorismate mutase), 
TT (tyrosine transaminase) 
 

Cytoskeletal proteins 
 
Catecholamine synthetic enzymes 
 
 
 
 
 
 
 
Glutamate receptor channels 
 
Enzymes in tyrosine synthesis 

4 KA1 Glutamate receptor channels 
 

5 KA2 Glutamate receptor channels 
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Table 4-8. 26-gene set Hierarchical cluster result (gene X gene matrix as input) 
 

Cluster Gene Function 
1 CM (Chorismate mutase),PD1 (Prephenate 

dehydratase), PD2 (Prephenate 
dehydrogenase), TT (tyrosine transaminase) 
 

Enzymes in tyrosine synthesis 
 

2 Actin,Beta-Tublin,Dynein, Alpha-Tublin 
 

Cytoskeletal proteins 

3 MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A),  
PNMT (Phenethanolamine N-
methyltransferase) 
DBH (Dopamine beta-hydroxylase), 
DOPA (DOPA decarboxylase) 
COM (Catechol-O-methyltransferase) 
TH (Tyrosine hydroxylase) 
 

Catecholamine synthetic enzymes 
 
 
 
 
 
 

4 GluR1,GluR2,GluR3,GluR4,GluR6,KA1, 
KA2,NMDA-R1,NMDA-R2A,NMDA-R2B 
 

Glutamate receptor channels 
 

5 Alpha-Spectrin Cytoskeletal proteins 
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Table 4-9. 26-gene SOM result (gene X gene matrix as input) 
 

Cluster Gene Function 
1 GluR3,GluR4 Glutamate receptor channels 

1 Actin,Alpha-Spectrin,Alpha-Tubulin 
Beta-tubulin,Dynein 
GluR1,GluR2,NMDA-R1,NMDA-R2A 
NMDA-R2B 
DBH (Dopamine beta-hydroxylase), 
COM (Catechol-O-methyltransferase) 
DOPA (DOPA decarboxylase) 
MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A) 
TH (Tyrosine hydroxylase) 
PNMT (Phenethanolamine N-
methyltransferase 
TT (tyrosine transaminase) 
CM (Chorismate mutase) 

Cytoskeletal proteins 
 
Glutamate receptor channels 

Catecholamine synthetic enzymes  
 
 
 
 
 
 
 
 
Enzymes in tyrosine synthesis 

2 GluR6 Glutamate receptor channels 

3 KA2 Glutamate receptor channels 

4 KA1 
PD2 (Prephenate dehydrogenase) 
PD1 (Prephenate dehydratase) 

Glutamate receptor channels 
Enzymes in tyrosine synthesis 
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Table 4-10. 26-gene AUTOCLASS result (gene X gene matrix as input) 
 

Cluster Gene Function 
1 DBH (Dopamine beta-hydroxylase), 

DOPA (DOPA decarboxylase) 
TH (Tyrosine hydroxylase) 
 

Catecholamine synthetic enzymes  
 
 
 

2 GluR2,GluR3,GluR4,GluR6,NMDA-R1 
NMDA-R2A,NMDA-R2B 
 

Glutamate receptor channels 

3 GluR1,KA1,KA2  
PD2 (Prephenate dehydrogenase) 
PD1 (Prephenate dehydratase) 
TT (tyrosine transaminase)  
CM (Chorismate mutase) 
PNMT (Phenethanolamine N-
methyltransferas) 
 

Glutamate receptor channels 
Enzymes in tyrosine synthesis 
 
 
Catecholamine synthetic enzymes 

4 Actin,Alpha-Spectrin,Alpha-Tubulin 
Beta-tubulin,Dynein 
 

Cytoskeletal proteins 
 

5 MOB (Monoamine oxidase B), 
MOA (Monoamine oxidase A) 
COM (Catechol-O-methyltransferase) 

Catecholamine synthetic enzymes 
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4.7 A comparative study of BEA-PARTITION with other Clustering 
algorithms: Using 44-gene set. 

 
 

   To determine whether our test mining/gene clustering approach could be used to 

group genes identified in microarray experiments, we cluster 44 yeast genes taken from 

Eisen et al. (1998) via Cherepinsky et al. (2003), again using BEA-PARTITION, 

hierarchical algorithm, SOM, and k-means. Keyword lists are generated for each of the 

44 yeast genes (Table 4-2) and a 3,882 (words appearing in the query sets with z-score 

greater or equal 10) x 44 (genes) matrix is created. The clusters produced by the BEA-

PARTITION, k-means, SOM, and AUTOCLASS are shown in tables 7, 8, 9, and 10 

respectively, whereas those produced by hierarchical algorithm are shown in Figure 4B. 

The average purity, average entropy, and mutual information of the BEA-PARTITION 

result are 0.74, 0.24, and 0.60, whereas those of hierarchical algorithm, SOM, k-means, 

and AUTOCLASS results (gene X keyword matrix as input) are 0.86, 0.12, and 0.58; 

0.60, 0.37, and 0.46; 0.61, 0.33, and 0.39; 0.57, 0.39, and 0.49, respectively (Table 4-3). 

A new notation to represent the resulting cluster sets and a scoring function were 

introduced by Cherepinsky et al. (2003). We argue that the scoring function (Error Score 

= FP + FN), like purity and entropy, is also biased to favor the small cluster. If each 

cluster only had one gene, for each cluster, there is no false positive or false negative (FP 

= 0 and FN = 0). Therefore Error Score = 0.  

We used the new notation to represent our resulting clusters: 
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BEA result: 

 

{1 -> {{4, *}, {4, 3}, {2, 2}, {2, 4}}, 

  2 -> {{4, 2}, {4, 4}, {1, 7}}, 

  3 -> {{5, 3}, {1, 3}}, 

 4 -> {{2, 6}, {1, *}, {1, 4}}, 

 5 -> {{1, 5}}, 

 6 -> {{4, 2}}, 

 7 -> {{2, 4}}, 

 8 -> {{4, 4}}, 

 9 -> {{1, 5}, {1, 3}} 

} 

The Error Score = 67 + 87 = 154. 

The error score of Cherepinsky clusters is: 

Error Score = 76 + 88 = 164. 

While the error score of Eisen cluster is: 

Error Score = 370 + 79 = 449. 

So the cluster result produced by BEA, clustering the genes by the functional 

keyword association reduces the false positives (FPs) and false negatives (FNs). 
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Table 4-11. 44 Yeast genes BEA-PARTITION result (gene X keyword matrix as 
input) 

 
Clusters Activators Genes 
1 Swi4, Swi6 Cwp1, Exg1, Mnn1, Och1 

 
2 Fkh1 Arp7 

 
3 Ndd1, Fkh2, Mcm1 

Ace2, Swi5 
Cdc20, Swi5, Ace2, Clb2 
Egt2, Cts1 
 

4 Swi4, Swi6 
Mcm1 
Fkh1 

Bud9, Rsr1, Gic1, Gic2 
Far1 
Tem1 
 

5 Swi4, Swi6 
Swi6, Mbp1 

Cln1, Cln2 
Clb5, Clb6, Rnr1, Dun1 
 

6 Swi4, Swi6 
Fkh1 
Swi6, Mbp1 

Hta1, Hta3, Hta2, Htb2, Htb1 
Hhf1, Hht1 
Rad51 
 

7 Swi4, Swi6 
Swi4, Swi6 
Mcm1 

 Kre6, Msb2 
Hho1 
Ste2 
 

8 Fkh1 Tel2 
 

9 Swi6, Mbp1 
Mcm1 

Rad27, Cdc45, Mcm2, Cdc21 
Cdc46, Mcm3, Mcm6, Cdc6 

 
 
 
 



 119 

 
 
 
 
 
 
 
 
 
 

Table 4-12.  44 Yeast gene SOM result (gene X keyword as input) 
 

Clusters Activators Genes 
1 Swi4, Swi6 Gic1,Gic2,Msb2 

2 Fkh1 
Swi4, Swi6 

Hhf1,Hht1 
Hta2,Hta3,Htb2 
 

3 Swi4, Swi6 Hta1,Htb1 
 

4 Ndd1, Fkh2, Mcm1 
Swi6, Mbp1 
Mcm1 
Mcm1  
Fkh1 

Cdc20,Clb2,Cln1,Cln2,Cwp1,Exg1,Mnn1,Och1,Rsr1 
Cdc21,Cdc45,Clb5,Clb6,Dun1,Mcm2,Rad27,Rad51,Rnr1 
Cdc46,Cdc6,Mcm3,Mcm6 
Far1,Ste2 
Tem1 
 

5 Ndd1, Fkh2, Mcm1 
Ace2, Swi5 
Swi4, Swi6 

Ace2,Swi5 
Cts1 
Kre6 
 

6 Ace2, Swi5 
Swi4, Swi6 
Fkh1 

Egt2 
Hho1 
Tel2 
 

7 Fkh1 
Swi4, Swi6 

Arp7 
Bud9 
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Table 4-13. 44 Yeast gene k-means result (gene X keyword matrix as input) 
 

Clusters Activators Genes 
1 Ndd1, Fkh2, Mcm1 

Ace2, Swi5 
Swi6, Mbp1 
Fkh1 

Ace2, Swi5 
Cts1, Egt2 
Rad51 
Tel2 
 

2 Swi6, Mbp1 
Mcm1 
Mcm1 

Cdc21, Cdc45, Mcm2 
Cdc46, Mcm3, Mcm6 
Ste2 
 

3 Swi4, Swi6 Hho1, Hta3 
 

4 Swi4, Swi6 
Swi6, Mbp1 

Gic1, Gic2 
Rad27 
 

5 Swi4, Swi6 
Swi6, Mbp1 

Bud9, Mnn1, Rsr1 
Rnr1 
 

6 Swi4, Swi6 
Fkh1 

Exg1, Kre6, Och1,  
Tem1 
 

7 Fkh1 
Swi4, Swi6 

 Arp7 
Cwp1, Msb2 
 

8 Swi6, Mbp1 
Fkh1 
Swi4, Swi6 

Dun1, 
Hhf1, Hht1 
Hta1, Hta2, Htb1, Htb2 
 

9 Ndd1, Fkh2, Mcm1 
Mcm1 
Swi6, Mbp1 
Swi4, Swi6 
Mcm1 

Cdc20, Clb2 
Cdc6 
Clb5, Clb6 
Cln1, Cln2 
Far1 
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Table 4-14. 44 Yeast gene AUTOCLASS  result (gene X keyword matrix as input) 
 

Clusters Activators Genes 
1 Swi4, Swi6 

Swi4, Swi6 
Fkh1 

Cwp1, Exg1, Mnn1, Och1 
Hhf1, Hht1 
Hta1, Hta3, Hta2, Htb2, Htb1 

2 Fkh1 
Swi4, Swi6 
Swi4,Swi6 
Mcm1 

Arp7 
Bud9, Msb2, Rsr1 
Hho1 
Mcm3  

3 Ndd1, Fkh2, Mcm1 
Swi6,Mbp1 
Fkh1 

Cdc20, Clb2 
Clb5,Clb6 
Tem1 

4 Ndd1, Fkh2, Mcm1 
Swi6,Mbp1 
Ace2, Swi5 

Ace2,Swi5 
Cdc21 
Cts1,Egt2 

5 Mcm1 
Swi6, Mbp1 

Cdc6,Mcm6 
Rad27,Rad51,Mcm2 

6 Swi4,Swi6 
Mcm1 

Exg1,Kre6,Mnn1,Och1 
Ste2 

7 Swi6,Mbp1 
Mcm1 
Swi4,Swi6 

Cdc45 
Cdc46 
Gic1,Gic2 

8 Swi6,Mbp1 
Fkh1 

Dun1,Rnr1 
Tel2 

9 Swi4,Swi6 
Mcm1 

Cln1,Cln2 
Far1 
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Table 4-15. 44 Yeast-gene k-means result (gene X gene matrix as input) 
 

Clusters Activators Genes 
1 Fkh1 

Swi4, Swi6 
 

Hhf1 
Htb2 

2 Fkh1 
Swi4, Swi6 

Hht1 
Hta1, Hta2, Hta3,Htb1 
 

3 Swi4, Swi6 Msb2 
 

4 Fkh1 
 

Arp7 

5 Ndd1, Fkh2, Mcm1 
Ace2, Swi5 
Swi6, Mbp1 
Fkh1 
Mcm1 
Mcm1 
Swi4, Swi6 
Fkh1 
 

Ace2, Cdc20, Clb2,Swi5 
Cts1 
Rad51, Clb5, Clb6,Cdc21, Cdc45, Dun1,Mcm2, Rnr1, Rad27 
Tel2 
Cdc46, Cdc6, Mcm3, Mcm6 
Ste2, Far1 
Exg1, Kre6, Och1, Cwp1,Cln1, Cln2,Mnn1, Rsr1 
Tem1 
 

6 Swi4, Swi6 
 

Gic1,Gic2 

7 Ace2, Swi5 
 

Egt2 

8 Swi4, Swi6 Hho1 
 

9 Swi4, Swi6 Bud9 
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Table 4-16. 44 Yeast-gene Hierarchical clustering result (gene X gene matrix as 
input) 

 
Clusters Activators Genes 
1 Swi6, Mbp1 

Ndd1, Fkh2, Mcm1 
Swi4, Swi6 
Fkh1 
Ace2, Swi5 

Clb5, Clb6 
Ace2,Clb2,Cdc20,Swi5 
Cln1,Cln2 
Tem1 
Cts1,Egt2 
 

2 Swi6, Mbp1 
 

Rad51,Dun1, Rnr1, Rad27 
 

3 Mcm1 
Swi6, Mbp1 
 

Cdc46, Cdc6, Mcm3, Mcm6 
Cdc21,Cdc45,Mcm2 

4 Swi4, Swi6 
Mcm1 

Bud9,Rsr1,Gic1,Gic2 
Far1 
 

5 Fkh1 
Swi4, Swi6 

Hhf1,Hht1 
Hta1,Hta2,Hta3,Htb1,Htb2 
 

6 Fkh1 
 

Arp7 

7 Swi4, Swi6 
 

Hho1 

8 Swi4, Swi6 
Mcm1 
 

Mnn1,Och1,Kre6,Msb2 
Ste2 

9 Swi4, Swi6 
 

Exg1,Cwp1 

10 Fkh1 Tel2 
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Table 4-17.  44 Yeast-gene SOM result (gene X gene as input) 

 
Clusters Activators Genes 
1 Fkh1 

Swi4, Swi6 
Arp7,Tel2 
Hho1 
 

2 Ndd1, Fkh2, Mcm1 
 

Rsr1 

3 Fkh1 
Swi4, Swi6 

Hht1 
Hta1,Hta2,Hta3,Htb1 
 

4 Swi4, Swi6 Bud9,Gic1,Gic2,Msb2 

5 Fkh1 
Swi4, Swi6 

Hhf1 
Htb2 
 

6 Ndd1, Fkh2, Mcm1 
Swi6, Mbp1 
Mcm1 
Mcm1  
Fkh1 
Swi4, Swi6 
Ace2, Swi5 

Cdc20,Clb2,Cln1,Cln2,Cwp1,Exg1,Mnn1,Och1, Ace2,Swi5 
Cdc21,Cdc45,Clb5,Clb6,Dun1,Mcm2,Rad27,Rad51,Rnr1 
Cdc46,Cdc6,Mcm3,Mcm6 
Far1,Ste2 
Tem1 
Kre6 
Cts1, Egt2 
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Table 4-18. 44 Yeast-gene AUTOCLASS  result (gene X gene matrix as input) 
 

Clusters Activators Genes 
1 Ndd1, Fkh2, Mcm1 

Swi6,Mbp1 
Swi4,Swi6 
Ace2, Swi5 
Mcm1 
Fkh1 
 

Ace2,Cdc20,Clb2,Swi5 
Clb5,Clb6,Rnr1 
Cln1,Cln2 
Cts1 
Far1 
Tem1 

2 Fkh1 
Swi4, Swi6 
Swi4, Swi6 
 

Arp7,Hhf1,Hht1,Tel2 
Hta1,Htb1,Htb2, 
Msb2 
 

3 Swi6,Mbp1 
Mcm1 

Cdc21,Cdc45,Mcm2 
Cdc46,Cdc6 ,Mcm3,Mcm6 
 

4 Swi4, Swi6 
 

Bud9,Gic1,Gic2,Rsr1 

5 Swi4, Swi6 
 

Cwp1,Egt2,Exg1,Mnn1 

6 Swi6, Mbp1 Dun1,Rad27,Rad51 
 

7 Swi4,Swi6 
Fkh1 
 

Hho1 
Hta2,Hta3 

8 Swi4,Swi6 
Mcm1 

Kre6,Och1 
Ste2 
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4.8 Top-scoring keywords shared among members of a gene cluster 
 
 

Keywords are ranked according to their highest shared z-scores in each cluster. 

The keyword sharing strength metric ( aK ) is defined as the sum of z-scores for a shared 

keyword a within the cluster, multiplied by the number of genes (M) within the cluster 

with which the word is associated; in this calculation z-scores below a user-selected 

threshold are set to zero and are not counted.  

 

∑ ∑= =
×=

M

g

M

g
a
g

a
g

a ZCountZK
1 1

)()(    (4-9) 

Thus, larger values reflect stronger and more extensive keyword associations 

within a cluster.  We identify the 30 highest scoring keywords for each of the four 

clusters and provide these four lists to approximately 20 students, postdoctoral fellows, 

and faculty, asking them to guess a major function of the underlying genes that gave rise 

to the four keyword lists.  

Keywords shared among genes (26-gene set) within each cluster are ranked 

according to a metric based on both the degree of significance (the sum of z-scores for 

each keyword) and the breadth of distribution (the sum of the number of genes within the 

cluster for which the keyword has a z-score greater than a selected threshold).  This 

double-pronged metric obviate the difficulty encountered with keywords that have 

extremely high z-scores for single genes within the cluster but modest z-scores for the 

remainder.  The 30 highest scoring keywords for each of the four clusters are tabulated 

(Table 4-19).   
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Table 4-19.  Top ranking keywords associated with each gene cluster. 
 

Cluster 1 
(Catecholamine 
Biosynthesis) 

Cluster 2 
(Tyrosine/Phenylalanine 

Metabolism) 

Cluster 3 
 

(Cytoplasmic Proteins) 

Cluster 4 
(Glutamate 
Receptors) 

mao mutase tubulin ampa 
clorgyline monofunct dynein ionotrop 
phenylethanolamine dehydratase spectrin kainate 
methyltransferase bifunct microtubule glutam 
monoamine phenylalanine axonem isoxazole 
hydroxylase tyrosine axoneme subunit 
deprenyl phenylpyruv chlamydomona glutamaterg 
catechol herbicola demembran homomer 
dopamine fluorophenylalanine flagellar receptor 
oxidase tryptophan flagella methyl 
chromaffin erwinia cytoskeleton propion 
selegiline catalyt isotype hydroxi 
dihydroxyphenyl brevibacterium cytoskelet neuron 
catecholamine substrate microtubular domoate 
tyrosine enzyme protofila hippocampu 
phenylethylamine dehydrogenase tetrahymena gyru 
adrenomedullari decarboxyl depolymer hippocamp 
dopa biosynthet subunit synapt 
tyramine flavum isoform methylisoxazole 
medulla aromat cilia hek 
pargyline hcl polymer aspart 
inhibitor subtili sequence postsynapt 
homovanill ammonium mutant cerebellum 
catecholaminerg sulfate tyrosin cortex 
adren monom diverg isoxazolepropion 
enzyme molecular kinesin cyclothiazide 
dihydroxyphenylalanine arg pvuii ca 
coeruleu mutant intron heteromer 
parkinson nicotinamide codon bergmann 
moclobemide subunit multigene coloc 
noradrenerg tyr encod forebrain 
mptp effector cytoplasm purkinje 
neuron inhibitor physarum cerebellar 
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The respective keyword lists appear to be highly informative about the general 

function of the original, pre-selected clusters.  Twenty volunteer faculty, postdoctoral 

fellows and medical graduate students form a hypothesis of the major function of the 

genes in each cluster based on the respective keyword lists. Even though this is an 

informal survey, the finding that a large majority of guesses are accurate (Table 4-20) 

adds credence to the conclusion that our clustering and keyword lists can be useful in 

allowing rapid sorting and evaluation of large lists of genes. Hypotheses about the 

function of the cluster containing tyrosine/phenylalanine synthesis enzymes appeared less 

accurate than the others, perhaps due to the relative obscurity of this cluster of genes to 

most of the volunteers.   
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Table 4-20. Hypotheses on cluster function formed by 10 volunteers presented with 
keyword lists of Table 4-1. 

 
Cluster 1 

(Catecholamine 
Biosynthesis) 

Cluster 2 
 

(Tyrosine/Phenylalanine 
Metabolism) 

Cluster 3 
 

(Cytoplasmic Proteins) 

Cluster 4 
 

(Glutamate Receptors) 

Catecholamine synthesis Amino acid synthesis Cell motility and 
chemotaxis 

Glutamatergic synaptic 
transmission 

Catecholamine synthesis 
and degradation 

amino acid or other 
metabolic pathways in 
bacteria 

Cell growth, size, 
shape and motility 

Glutamate receptor 
signaling 

Catecholamine 
metabolism/pathway, 
related to Parkinson’s 
disease 

Antibiotic synthesis and 
metabolism 

Cytoskeletal function, 
axonal transport 

Glutamate receptors, 
synaptic transmission, 
postsynaptic function 

Neurotransmitter 
synthesis/release 
(catecholamine) 

Enzyme catalysis and 
oxidation 

Cell movement 
 

Glutamine receptors in 
the brain 

Catecholamine synthesis 
 

Drug metabolism 
enzymes 

Cell motility Excitatory 
transmission 

depression, 
schizophrenia 

bacterial 
respiration/metabolism 

cell motility and 
transport 

memory/learning 

neuronal signaling 
mediated by 
monoamines 

drug (or endogenous 
substrate) metabolism 

cell structure and/or 
morphology; cell 
movement or cell 
division 

fast synaptic 
transmission mediated 
by ionotropic 
glutamate receptors 

Dopamine and 
catecholamine 
metabolism 

drug metabolism 
 

Cytoskeleton 
organization, dendritic 
growing; exocytosis 

Post synaptic 
glutamatergic 
neurotransmission  
AMPA/KA receptors 

Catecholamines 
synthesis and function; 
relation in pathological 
disorders such as 
Parkinson’s disease 

Cellular metabolic 
pathways 

Forming cytoskeleton 
or involved in flagellar 
movement 

AMPA/KA receptor 
functions and 
expression in different 
brain areas 

Metabolism, possibly 
catecholamine 
metabolism related 
pathways 
 

Metabolism of amino 
acids 

Cell structure 
components involved 
in cell motility and/or 
cell division 

Neuronal receptor 
function, possibly 
AMPA glutamate 
receptor related 
function 
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4.9 Discussion of clustering algorithm comparison 
 
4.9.1 BEA-PARTITION vs. k-means 

In this chapter, the z-score thresholds are used for keyword selection. When the 

threshold was 0, all words, including noise (non-informative words and misspelled 

words), are used to cluster genes. Under the tested conditions, clusters produced by BEA-

PARTITION have higher quality than those produced by k-means. BEA-PARTITION 

clusters genes based on their shared keywords. It is unlikely that genes within the same 

cluster shared the same noisy words with high z-scores, indicating that BEA-

PARTITION is less sensitive to noise than k-means. In fact, BEA-PARTITION performs 

better than k-means in the two test gene sets under almost all test conditions (Figure 4-2). 

BEA-PARTITION performs best when z-score thresholds were 10, 15, and 20, which 

indicated (1) that the words with z-score less than 10 are less informative and (2) few 

words with z-scores between 10 and 20 are shared by at least two genes and did not 

improve the cluster quality. When z-score thresholds are high (>30 in the 26-gene set and 

>20 in the 44-gene set), more informative words are discarded, and as a result, the cluster 

quality is degraded. 

BEA-PARTITION is designed to group cells with larger values together, and the 

ones with smaller values together. The final order of the genes within the cluster reflects 

deeper inter-relationships. Among the ten glutamate receptor genes examined, GluR1, 

GluR2, GluR4 are AMPA receptors, while GluR6, KA1 and KA2 are kainate receptors. 

The observation that BEA-PARTITION places gene GluR6 and gene KA2 next to each 

other, confirms that the literature associations between GluR6 and KA2 are higher than 

those between GluR6 and AMPA receptors. Furthermore, the association and 
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interrelationships of the clustered groups with one another can be seen in the final 

clustering matrix. For example, TT is an outlier in Figure 3, however, it still have higher 

affinity to PD1 (affinity = 202) and PD2 (affinity = 139) than to any other genes. Thus, 

TT appears to be strongly related to genes in the tyrosine and phenylalanine synthesis 

cluster, from which it originates. 

BEA-PARTITION has several advantages over the k-means algorithm: (1) while 

k-means generally produces a locally optimal clustering (Xu et al., 2003), BEA-

PARTITION produces globally optimal clustering by permuting the columns and rows of 

the symmetric matrix; (2) the k-means algorithm is sensitive to initial seed selection and 

noise (Jain et al., 1999), whereas BEA-PARTITION has no initial seed as input. It first 

starts off with a symmetric affinity matrix. 

4.9.2 BEA-PARTITION vs. hierarchical algorithm 

Hierarchical clustering algorithm, as well as k-means, and Self-Organizing Maps, 

have been widely used in microarray expression profile analysis. Hierarchical clustering 

organizes expression data into a binary tree without providing clear indication of how the 

hierarchy should be clustered. In practice, investigators define clusters by a manual scan 

of the genes in each node and rely on their biological expertise to notice shared functional 

properties of genes. Therefore, the definition of the clusters is subjective, and as a result, 

different investigators may interpret the same clustering result differently. Some have 

proposed automatically defining boundaries based on statistical properties of the gene 

expression profiles; however, the same statistical criteria may not be generally applicable 

to identify all relevant biological functions (Raychaudhuri et al., 2003). We believe that 

an algorithm that produces clusters with clear boundaries can provide more objective 
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results and possibly new discoveries, which are beyond the experts’ knowledge. In this 

report, our results show that BEA-PARTITION can have similar performance as the 

hierarchical algorithm, and provide distinct cluster boundaries. 

4.9.3 K-means vs. SOM 

The k-means algorithm and SOM can group objects into different clusters and 

provide clear boundaries. Despite its simplicity and efficiency, the SOM algorithm has 

several weaknesses that make its theoretical analysis difficult and limit its practical 

usefulness.  Various studies have suggested that it is hard to find any criteria under which 

the SOM algorithm performs better than the traditional techniques, such as k-means [11]. 

Balakrishnan et al. (1994) compared the SOM algorithm with k-means clustering on 108 

multivariate normal clustering problems. The results showed that the SOM algorithm 

performed significantly worse than the k-means clustering algorithm. Our results also 

showed that k-means performed better than SOM by generating clusters with higher 

mutual information.  

4.9.4 Computing time and complexity 

The computing time or computational complexityof BEA-PARTITION, same as 

that of hierarchical algorithm and SOM, is in the order of N2, which means that it grows 

proportionally to the square of the number of genes and commonly denoted as O(N2), and 

that of k-means is in the order of N*K*T (O(NKT)), where N is the number of genes 

tested, K is the number of clusters, and T is the number of improvement steps (iterations) 

performed by k-means. In our study, the number of improvement steps is 1000. 

Therefore, when the number of genes tested is about 1000, BEA-PARTITION runs (a * 

K + b) times faster than k-means, where a, and b are constants. As long as the number of 
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genes to be clustered is greater than the product of the number of clusters and the number 

of iterations, BEA-PARTITION will run faster than k-means.  

4.9.5 Effect of weighting schemes on clustering results 

We have shown, in Chapter 3, that as a weighting scheme, TFIDF outperforms z-

score method as measured by precision and recall values. Here, we cluster genes based on 

the keywords generated by the two weighting schemes, TFIDF, and z-score method. The 

results are shown in Figure 4-5, and Figure 4-6. 

From Figure 4-5, we can see, with TFIDF as the weighting scheme, that BEA-

PARTITION algorithm correctly assigns the 26 genes into the right clusters. BEA-

PARTITION clusters the 44 yeast genes into 9 groups (Figure 4-6). The 9 clusters 

generated by BEA-PARTITION using TFIDF-derived keywords have better quality as 

measured by Mutual information: 0.65 for TFIDF-derived keywords (Table 4-21) vs. 

0.60 for z-score-derived keywords (Table 4-3). 
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Table 4-21 44 Yeast genes BEA-PARTITION result 
 

Clusters Activators Genes Purity Entropy 
1 Fkh1 Arp7,Tel2,Hhf1 

 
1 0 

2 Swi4, Swi6 Hta3 
 

1 0 

3 Swi4, Swi6 
Fkh1 
 

Hta1,Hta2,Htb2,Htb1,Hho1 
 Hht1 
 

0.83 0.21 

4 Swi4, Swi6 Msb2,Och1,Mnn1,Exg1,Kre6,Cwp1 
 

1 0 

5 Ace2, Swi5 
Ndd1,Fkh2,Mcm1 

Egt2,Cts1 
Ace2,Swi5 
 

0.5 0.32 

6 Swi6, Mbp1 
 

Rnr1,Dun1,Rad51,Rad27 
 

1 0 

7 Swi6, Mbp1 
Mcm1 

Cdc45,Mcm2,Cdc21 
Cdc46,Mcm3,Mcm6,Cdc6 
 

0.57 0.31 

8 Swi4, Swi6 
Swi6, Mbp1 
Ndd1,Fkh2,Mcm1 
Mcm1 

Cln1,Cln2 
Clb5,Clb6 
Clb2,Cdc20 
Far1,Ste2 
 

0.25 0.63 

9 Swi4, Swi6 
Fkh1 

Gic2,Gic1,Rsr1,Bud9 
Tem1 

0.8 0.23 

Average Purity 
 

0.77  

Average Entropy 
 

 0.19 

Normalized Mutual Information 0.65 
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4.10 Future experiment 

The Genetrek algorithms can find new gene-to-gene relationship, such as the 

relationship between Exg1, Cwp1, Mnn1, and Och1. The shared keyword lists reveal that 

these four genes have something to do with polysaccharide metabolism. The future 

experiment we can do is to use the shared keywords as input to the Genetrek algorithms 

to see if the word “polysaccharide” can be a highly ranked keyword. This process could 

be an iterative process. 

 
4.11 Summary 

In this chapter, we cluster the genes by shared functional keywords. We describe 

an approach BEA-PARTITION that applies an algorithm called the Bond Energy 

Algorithm (BEA) (McCormick et al., 1972; Navathe et al., 1984) for functional gene 

clustering based on keyword association. We have developed our own criteria for affinity 

computation at the boundaries and for splitting matrix at each step of the algorithm. We 

also compare the performance of BEA-PARTITION, hierarchical clustering algorithm, 

self-organizing map, and the k-means algorithm for clustering functionally-related genes 

based on shared keywords, using purity, entropy, and mutual information as metrics for 

evaluating cluster quality. The results show that BEA-PARTITION outperforms the other 

popular clustering algorithms. The BEA-PARTITION algorithm represents our extension 

to the BEA approach specifically for dealing with the problem of discovering functional 

similarity among genes based on functional keywords extracted from literature. We 

believe that this important clustering technique has promise for application to other 

bioinformatics problems where starting matrices are available from experimental 

observations. 
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CHAPTER 5 
 
YEAST GENE FUNCTION PREDICTION FROM 
DIFFERENT DATA SOURCES 
 
 

The field of functional genomics studies gene function on a large scale by 

conducting parallel analysis of gene expression for a large number of genes (Strachan and 

Read, 1999; Hvidsten and Komorowski, 2001). This research is a natural successor to the 

genome sequencing efforts such as, for example, the Human Genome Project, and is 

made possible by the DNA microarrays. Such arrays, which allow researchers to 

simultaneously measure the expression levels of thousands of different genes, produce 

overwhelming amounts of data. In response, much recent research has been concerned 

with automating the analysis of microarray data. Current approaches mainly concentrate 

on applying clustering techniques to the expression data, in order to find clusters of genes 

demonstrating similar expression patterns. The assumption motivating such search for co-

expressed genes is that simultaneously expressed genes often share a common function.  

Different data sources can be used to predict gene function. High-throughput gene 

and protein assays give a view into the organization of molecular cellular life through 

quantitative measurements of gene expression levels (Hvidsten and Komorowski, 2001). 

Increasing quantities of high-throughput biological data have become available to assess 

functional relationships between gene products on a large scale.  

First, gene function can be inferred from DNA microarray expression data. The 

representation of DNA microarray results is based on the assumption that genes with 

similar functions have similar expression profiles in cells. This is utilized by inductive 
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learning methods that predict the function of genes that have an unknown function 

(unknown genes), from their expression-similarity with genes with a known function 

(known genes). Currently, techniques pursued for microarray data analysis concentrate on 

applying clustering methods directly on the expression data. However, cluster analysis 

alone cannot fully address the issue of gene function prediction (Shatkay et al., 2000). 

Furthermore, many high-throughput methods sacrifice specificity for scale. Whereas gene 

co-expression data are an excellent tool for hypothesis generation, microarray data alone 

often lack the degree of specificity needed for accurate gene function prediction 

(Troyanskaya et al., 2003). Furthermore, genes that are functionally related may 

demonstrate strong anti-correlation in their expression levels, (a gene may be strongly 

suppressed to allow another to be expressed). 

Secondly, gene function can be inferred from phylogenetic profiles. The complete 

genomic sequences of human and other species provide a tremendous opportunity for 

understanding the functions of biological macromolecules (Pavlidis et al., 2002). 

Phylogenetic profiles are derived from a comparison between a given gene and a 

collection of complete genomes. Each profile characterizes the evolutionary history of a 

given gene. There is evidence that two genes with similar phylogenetic profiles may have 

similar functions, the idea being that their similar pattern of inheritance across species is 

the result of a functional link (Pellegrini et al., 1999).  

Finally, an important data source that can be used to infer the gene function is the 

scientific literature. The function of many genes has been described either in explicit 

terms, or in indirect ways in the literature. By relating documents that report about well 

understood genes to documents discussing other genes, we can predict, detect, and 
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explain the functional relationships between the genes that are involved in large-scale 

experiments. A number of groups are developing algorithms that link information from 

medical literature with gene names. Andrade and Valencia (1998) introduced a statistical 

profiling strategy that accepts user-supplied abstracts related to a protein of interest and 

returns an ordered set of keywords that occur in those abstracts more often than would be 

expected by chance. With the goal of automating the functional annotation of new 

proteins, Andrade et al. (1999) presented an interactive suite of programs called 

“Genequiz”, which searches and organizes information from many sequence and text 

databases. Andrade and Bork (2000) and Perez-Iratxeta et al. (2002) developed a program 

that links the OMIM database of human inherited diseases to keywords derived from 

MEDLINE. A variety of nonstatistical approaches have also been used to organize genes.  

The web tool, PubGene, finds links between pairs of genes based on their co-occurrence 

in MEDLINE abstracts (Jenssen and Vinterbo, 2000; Jenssen et al., 2001).  Another 

approach (Masys et al., 2001), the basis of the HAPI web tool, organizes gene names 

according to predefined hierarchical classification systems of enzymes and diseases, and 

includes hyperlinks to specific MEDLINE citations responsible for the individual 

classifications.  Still another approach (Tanabe et al., 1999), used by the MedMiner 

system, automatically retrieves functional information (both keywords and gene names 

related to a user-defined function) from the GeneCards database, and configures it for a 

PubMed search.  The algorithm presents the results by the specific sentence containing 

the information rather than by the title, speeding review of the results if the user prefers 

to extract relevant sentences rather than scan through the whole abstract text. A similar 

method of presenting the statistically most significant sentence was used by Andrade and 
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Valencia (1998), which we will also incorporate into our data displays.  In the previous 

chapters, we reported on the system that we have developed a system to retrieve 

functional keywords automatically from biomedical literature for each gene, and then 

cluster the genes by shared functional keywords (Chapter 4). Using a similarity-based 

search in document space, Shatkay et al. (2000) developed an approach for utilizing 

literature to establish functional relationships among genes on a genome-wide scale. 

In this chapter, we performed a comparative study for functional classification of 

Saccaromyces cerevisiae (budding yeast) genes from different data sources. Data from 

three different types of sources were compared: microarray data, phylogenetic profile 

data, and biomedical literature data. The goal was to determine the relative effectiveness 

or usefulness of this data in terms of prediction of gene function. 

 
5.1 Data sources. 

1. The first data set derives from a collection of DNA microarray hybridization 

experiments (Eisen et al., 1998). Each data point represents the logarithm of the ratio of 

expression levels of a particular gene under two different experimental conditions. The 

data consists of a set of 79-element gene expression vectors for 2,465 yeast genes. These 

genes were selected by Eisen et al. [16] based on the availability of accurate functional 

annotations. The data were generated from spotted arrays using samples collected at 

various time points during the diauxic shift (DeRisi et al., 1997), the mitotic cell division 

cycle (Spellman et al., 1998), sporulation (Chu et al., 1998) and temperature and reducing 

shocks. The feature values are the 79 tested conditions, such as diauxic shift, the mitotic 

cell division cycle, sporulation, and temperature and reducing shocks. 
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2. In addition to the microarray expression data, each of the 2,465 yeast genes is 

characterized by a phylogenetic profile (Pellegrini et al., 1999). In its simplest form, a 

phylogenetic profile is a bit string, in which the Boolean value of each bit indicates 

whether the gene of interest has a close homolog in the corresponding genome. If no 

homolog is found, the bit value is zero. The profiles employed in this chapter contain, at 

each position, the negative logarithm of the lowest E-value reported by BLAST version 

2.0 (Alschul et al., 1997) in a search against a complete genome, with negative values 

(corresponding to E-values greater than 1) truncated to 0. Two genes in an organism can 

have similar phylogenetic profiles for one of two reasons. First, genes with a high level of 

sequence similarity will have, by definition, similar phylogenetic profiles. Second, for 

two genes which lack sequence similarity, the similarity in phylogenetic profiles reflects 

a similar pattern of occurrence of their homologs across species. This coupled inheritance 

may indicate a functional link between the genes, based on the hypothesis that the genes 

are always present together or always both absent because they cannot function 

independently of one another. The feature values are the Boolean values which show if 

the gene has close homologs with the known genomes. 

 3. Classification experiments were carried out using gene functional categories 

from the Munich Information Center for Protein Sequences Yeast Genome Database 

(MYGD) (http://mips.gsf.de/genre/proj/yeast/index.jsp). The database contains several 

hundred functional classes, whose definitions come from biochemical and genetic studies 

of gene function. For each of the 2,465 genes, the abstracts used to curate the MYGD 

were extracted and combined into one document per gene. Abstracts may occur in more 

than one document if they refer to multiple genes. All the documents form a document 
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database. Since each document represents one gene, we use the words document and gene 

interchangeably. 

Background Sets: A background set is a set of abstracts used as the baseline to 

measure relative frequency of words in other documents (see Chapter 3). The background 

sets of abstracts were used to build a hash table of words and their respective statistics for 

comparison with the corresponding words in the test gene sets. We built a large 

background set, which incorporated all the MEDLINE abstracts (about 5.6 Million 

abstracts) up to year 2000.  

Text analysis. The abstracts in each document were tokenized into single words, 

stemmed by Porter’s stemming algorithm, and filtered by a stop list (Liu et al., 2004b). 

The standard term frequency-inverse document frequency (TFIDF) function was used 

(Salton and Buckley, 1988) to assign the weight to each word in the document. TFIDF 

combines term frequency (TF), which measures the number of times a word occurs in the 

gene’s documents (reflecting the importance of the word to the gene), and inverse 

document frequency (IDF), which measures the information content of a word – its rarity 

across all the abstracts in the background set (See Chapter 3 for more details).  

TFIDF vector: Each document, which corresponded to one gene, in the document 

database was modeled as an M-dimensional TFIDF vector, where M is the number of 

distinct words in the database. Formally, a document was a vector (tfidf1, tfidf2, … , 

tfidfM), where tfidfi is the tfidf value of word i.  

Prior to learning, the gene expression, phylogenetic profile, and text TFIDF 

vectors are adjusted to have a mean of 0 and a variance of 1. The gene expression and 
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phylogenetic profile data were from http://www.cs.columbia.edu/compbio (Pavlidis et al., 

2002). 

 
5.2 Design of a classifier to classify genes by function 

In this study, Support Vector Machine (SVM) was used for gene function 

classification.  

In this study, SVMLight v.3.5 was used (Joachims, 1998). Linear kernel and 

polynomial kernel are applied. 

 
5.3 Cross-validation of the models 

The normal method to evaluate the classification results is to perform cross-

validation on the classification algorithms (Tan and Gilbert, 2003). Tenfold cross-

validation has been shown to be statistically good enough in evaluating the classification 

performance (Witten and Frank, 1999). In this study, each of the three data sets 

(microarray, phylogenetic, and text data sets) was partitioned into ten subsets with both 

positive and negative genes spread as equally as possible between the sets. Each of these 

sets in turn was set aside while a model was built using the other nine sets. This model 

was then used to classify the genes in the tenth set, and the accuracy computed by 

comparing these predictions with the actual category. This process was repeated ten times 

and the results averaged (Bahler et al., 2000).  

 
5.4 Feature selection 

The feature selection method we used in this study is MIT correlation, which is 

also known as the signal-to-noise statistic (Golub et al., 1999) that helps to eliminate the 

“noisy” features. For a given feature i, we compute the mean and standard deviation of 
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that feature across the positive examples (µ +
i and σ +

i , respectively) and across the 

negative examples (µ −
i and σ −

i , respectively). The MIT correlation score is defined as 

MIT (i) = −+

−+

+
−

ii

ii

σσ
µµ ||

. When making selection, we simply take those features with the 

highest scores as the most discriminatory features.  

 
5.5 Performance Measures 

Several statistics were used as performance measures: 

(1). Accuracy: the proportion of correctly classified instances: 

 

Accuracy = 
FNFPTNTP

TNTP
+++

+  

where true positives (TP) denote the correct classifications of positive examples; true 

negatives (TN) are the correct classifications of negative examples; false positives (FP) 

represent the incorrect classification of negative examples into the positive class; and 

false negatives (FN) are the positive examples incorrectly classified into the negative 

class.  

(2). Sensitivity: (known as recall in information retrieval literature) the percent of 

positive examples which were correctly classified; 

Sensitivity = 
FNTP

TP
+

 

(3). Specificity: the percent of negative examples which were correctly classified; 

Specificity = 
FPTN

TN
+
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(4). Positive Predictive Value (PPV): (known as precision in information retrieval 

literature) the percentage of the examples predicted to be positive that were correct; 

PPV = 
FPTP

TP
+

 

(5). Negative Predictive Value (NPV): the percentage of the examples predicted to be 

negative that were in fact negative. 

NPV = 
FNTN

TN
+

 

Paired t-tests were performed to evaluate whether the results obtained from microarray 

data, phylogenetic data, and text data were significantly different from each other. 

 
5.6 Gene function categories tested 

The database contains different functional classes, whose definitions come from 

biochemical and genetic studies of gene function. The experiments reported here use 

classes containing 400 or more genes available in the MYGD data set as of July 30th, 

2004, amounting to 4 functional categories (Table 1). Categories with less than 400 genes 

are not analyzed. For each class, a support vector machine is trained to discriminate 

between class members and nonmembers. 

A primary goal in biology is to understand the molecular machinery of the cell. 

The sequencing projects provide us one view of this machinery. A complementary view 

is provided by data from microarray hybridization experiments. High-throughput 

techniques, such as DNA microarray and sequencing, accompanied by an increase in the 

number of publications discussing gene-related discovery, provide the researchers great 

resources to understand the gene function better. In this chapter, we predicted yeast gene 

functions from different data sources. MYGD database categorizes the yeast genes into 
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different categories, of which we analyzed four (category numbers 1, 11, 14, and 20) that 

amount to more than 400 genes per category. 

 

 

 

Table 5-1. The gene function categories studied in this study 

Function Category Function Number of genes 
1 Metabolism 636 

11 Transcription 556 
14 Protein fate(folding, modification, destination) 449 
20 441 

 Cellular Transport, Transport Facilitation and Transport 
Routes 

 

 

 

 

 

5.7 Gene function prediction  

The results of gene function prediction from different data sources are shown in 

Table 2. When microarry data is used and linear kernel was applied for gene function 

prediction, all the genes in each category were mis-classified (true positive = 0), which 

can be observed, in Table 2, that the sensitivity values are 0’s. Similar results can be 

observed when phylogenetic data is used and linear kernel was applied to predict gene 

function except for category #1. When linear kernel is applied and text data was used, the 

results derived from text data significantly outperforms those derived from microarray 

data and phylogenetic data (p<0.01). SVM can correctly predict the function of the genes 

in category #20 with an accuracy of 0.927 and a sensitivity of 0.669. 
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When polynomial kernel is applied, the results derived from text data outperform 

those derived from microarray data and phylogenetic data (p< 0.05) except category #1. 

No significant difference is observed between the gene function prediction results derived 

from microarray data and phylogenetic data (p >0.05). 

For text data, linear kernel outperforms polynomial kernel (p<0.01) as measured 

by sensitivity, PPV, and accuracy. Polynomial kernel works significantly better than 

linear kernel (p<0.01) for microarry data, and phylogenetic data. 

Our gene function prediction by text data strategy is similar to the document 

categorization in information retrieval. In our case, each document is the collection of 

abstracts which are related to a specific gene. Document categorization, defined as 

classifying documents into categories according to their topics or main contents in a 

supervised manner, organizes large amounts of information into a small number of 

meaningful categories and improves the information retrieval performance either via 

term-weighting, or query expansion.  
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The results show that, using SVM as the classifier, text data can provide better 

prediction results than microarray data and phylogenetic data, particularly when linear 

kernel is applied (Table 5-2) as measured by sensitivity, PPV, NPV and accuracy. These 

results confirm that the MYGD classifications we tested are not learnable from either 

microarray data or phylogenetic data (Pavlisis et al., 2002). Pavlidis et al. (2002) pointed 

out that the failure to predict the gene functions from microarray data or phylogenetic 

data was not a failure of the SVM model. Rather, for many functional categories, the data 

are simply not informative. The microarray data is only informative if the genes in the 

category are coordinately regulated at the level of transcription under the condition 

tested. Similarly, phylogenetic data are limited in resolution in part because relatively few 

genomes are available. In particular, among the genomes from which phylogenetic 

profiles were derived, all but one is bacterial. Thus it is difficult to generate useful 

phylogenetic profiles for genes that are specific to eukaryotes.  

One complement data source we can use to predict gene functions is literature 

data. With the advancement of genome sequencing techniques comes an overwhelming 

increase in the amount of literature discussing the discovered genes. As an illustrative 

example, the number of PubMed documents containing the word gene published between 

the years 1970-1980 is a little over 35,000, while the number of such documents 

published between the years 1990-2000 is 402,700 – over a ten fold increase. The gene 

functions have been described in the literature. Therefore, we believe that the gene 

functions can be predicted by revealing coherent themes within the literature. Content-

based relationships among abstracts are then translated into functional connections 

among genes. We develop a system to retrieve functional keywords automatically from 
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biomedical literature for each gene, and then cluster the genes by shared functional 

keywords (Chapter 3 and Chapter 4). The keywords extracted by the system revealed a 

wealth of potential functional concepts, which were not represented in existing public 

databases (Chapter 3). The system also clustered the genes into appropriate functional 

groups based on the functional keyword association (Chapter 4). 

 In this application, accuracy is not a good performance evaluation metric. When 

microarry data is used and linear kernel was applied for gene function prediction, all the 

genes in each category were mis-classified (true positive = 0), which can be observed, in 

Table 2, that the sensitivity values are 0’s. Similar results can be observed when 

phylogenetic data is used and linear kernel was applied to predict gene function except 

for category #1. But the accuracy is still over 0.70. This is because the number of positive 

instances is much smaller than the number of negative instances. Therefore, sensitivity is 

an appropriate measure in this application. 

 
5.8 Feature selection effect on gene function prediction 

In this study, the MIT feature selection metric is used as the feature selection 

method to test if feature selection can improve SVM performance on gene function 

prediction using text data. Linear kernel is applied. Figure 5-1 shows the effect of feature 

selection on SVM performance. From Figure 5-1, we can observe that SVM does not 

benefit from feature selection. Highest sensitivity, accuracy, PPV, and NPV are obtained 

when all the features (21,457) are used.  

 

 



   152

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

21457 10K 5K 1K 500

# of features

Se
ns

iti
vi

ty

0.95

1

21457 10K 5K 1K 500

# of features

Sp
ec

ifi
ci

ty

 

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

21457 10K 5K 1K 500

# of features

PP
V

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85

0.9
0.95

1

21457 10K 5K 1K 500

# of features

N
PV

 

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

21457 10K 5K 1K 500

# of features

Ac
cu

ra
cy

1 11 14 20
 

 

Figure 5-1. Effect of feature selection in combination of SVM classifier on sensitivity (A), 
specificity (B), PPV (C), NPV (D), and accuracy (E) of different functional categories tested 
(categories 1, 11, 14, and 20). Note the different scales on the vertical axes. The horizontal axes 
refer to the number of features used by SVM to classify the genes. Error bars indicated the 
standard errors. 
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The results of the experiments indicate that SVM does not benefit from feature 

selection, which has been reported in text classification. The best results were obtained 

when all the features were provided to the SVM (Yang and Pederson, 1997; Rogati and 

Yang, 2002; Brank et al., 2002). Taira and Haruno (1999) compared SVM and decision 

tree in text categorization, and the best average performance was achieved when all the 

features were given to SVM, which was a distinct characteristic of SVM compared with 

the decision tree learning algorithm. Joachims (1998) argued that, in text classification,  

feature selection was often not needed for SVM, as SVM tends to be fairly robust to 

overfitting and can scale up to considerable dimensionalities.   

 
5.9 Future experiment 

The assumption to use phylogenetic profile to classify gene function is that genes 

which have similar function are likely to evolve in a correlated fashion. However, the 

results from this thesis show that phylogenetic profile does not perform well in terms of 

yeast gene function classification. One future experiment is to find the genes that are 

highly correlated in the phylogenetic profile sense, but are not functionally correlated. 

 
5.10 Summary 

The results in this chapter show a rather counter-intuitive result that the literature 

text data can provide more accurate prediction results over microarray and phylogenetic 

data in case of the MYGD database containing all the genes of yeast whose function is 

already known. It establishes, albeit not in a very rigorous scientific manner, one’s belief 

that text mining has the potential for discovering relationship among genes that have been 

little to not discovered or reported. 
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CHAPTER 6 
 
BIOMEDICAL LITERATURE CLASSIFICATION USING 
SUPPORT VECTOR MACHINES 
 
 

PubMed (Medline) is a large repository of publicly available scientific literature. 

Currently, new data is being added to it at the rate of over 1500 abstracts per week. Most 

biomedical researchers want to access PubMed with specific goals based on their areas of 

interest. The ability to efficiently review the available literature is essential for rapid 

progress of research in the scientific community, and particularly so in the biological 

community where the onslaught of new data is increasing at a phenomenal rate.  

Traditional literature database search involves the use of simple Boolean queries, 

formulated using certain frequently used functionally important keywords the researcher 

is familiar with, followed by manual scanning of the retrieved records for relevance, 

which is time consuming, incomplete and error prone. Even with the formulation of 

complex queries, by a researcher over several years by continually adding new keywords 

encountered to the original query, the increase in the sensitivity of the searches is only 

marginal. Therefore, there is a pressing need for the development of automated literature 

mining techniques that can help the researchers to effectively harvest the heap of the 

knowledge available in the scientific literature.  

Supervised algorithms such as Support Vector Machines (SVM) can be used for 

classification of biomedical literature into user defined categories. SVM is a machine 

learning algorithm that performs binary and multiway classification (pattern recognition) 

of the data into user defined categories (Vladimir and Vapnik, 1995). Support Vector 
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Machines map non-linearly separable training vectors in input space to linearly separable 

higher dimensional feature space and find a separating hyper plane with maximal margin 

in that higher dimensional space. We surveyed this technique in our survey of clustering 

algorithms in Chapter 2. 

SVM has been widely used in text classification. The SVM method has been 

introduced in text classification by Joachims (1998) and subsequently used in other 

applications (Dumais et al., 1998; Drucker and Vapnik, 1999; Taira and Haruno, 1999; 

Dumais and Chen, 2000; Klinkenberg and Joachims, 2000; Yang and Liu, 1999; Tong 

and Koller, 2000; Joachims, 2002). Joachims (1998) applied SVM to text classification 

and reported that SVM yielded lower error than many other classification techniques. 

Yang and Liu (1999) compared different classifiers, Naive Bayes (NB), kNN, and SVM 

and found that SVM performed at least as well as all other classifiers they tried. Dumais 

et al. (1998) tested a novel algorithm for training SVM text classifiers and showed that 

this brings about training speeds comparable to computationally easy methods such as 

Rocchio. Han et al. (2003) applied SVM for automatically extracting Medline citations of 

biomedical articles and reranking them according to their relevance to a certain 

biomedical property difficult to express as PubMed query. They reported that major 

improvements were achieved in reranking citations with respect to protein disorder-

function relationships where the average relative ranking of a relevant citation was 

improved significantly. 

In this study, we report the results of application of SVM for incorporation of 

Human Genome Epidemiology (HuGE) relevant articles from PubMed database into the 

Center for Disease Control and Prevention’s (CDC) Human Genome Epidemiology 
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Network, or HuGENet™ (http://www.cdc.gov/genomics/hugenet/) published literature 

database. Although the present study is limited to classifying the epidemiology related 

articles, the method described here has a wider applicability and can be used for 

classifying the articles by disease, by topic or even by domain of expertise.  

 

6.1 Human screening of PubMed 

New abstracts appearing in the PubMed database are currently being manually 

processed and some of them are categorized as HuGE and populated into the CDC’s 

HuGENet™ database by a human expert using a complex search query (Figure 6-1).   

The complex query CDC uses for screening the PubMed database was developed over 

four years by iteratively adding the new HuGE relevant keywords encountered that were 

absent in the original query. As of March’2004 it consisted of 98 different keywords 

combined with boolean operators. An important point to note here is that after manual 

processing by human expert, on average, only 5 - 10% of the articles retrieved from the 

PubMed database by the complex query are HuGE relevant and are being added to the 

HuGENetTM database (Figure 6-1).  
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(((((((((((((((((((genetic[All Fields] AND ((((("disease"[MeSH Terms] OR 
("disease susceptibility"[MeSH Terms] OR predisposition[Text Word])) OR 
disease[Text Word]) OR defect[Text Word]) OR susceptibility[Text Word]) 
OR ("counseling"[MeSH Terms] OR counseling[Text Word]))) OR (("disease 
susceptibility"[MeSH Terms] OR susceptibility[Text Word]) AND 
(("genes"[MeSH Terms] OR gene[Text Word]) OR ("genes"[MeSH Terms] 
OR genes[Text Word])))) OR (((("mutation"[MeSH Terms] OR 
mutation[Text Word]) OR (("genes"[MeSH Terms] OR gene[Text Word]) 
AND ("mutation"[MeSH Terms] OR mutation[Text Word]))) OR 
(("mutation"[MeSH Terms] OR mutations[Text Word]) AND 
("genes"[MeSH Terms] OR gene[Text Word]))) OR (("mutation"[MeSH 
Terms] OR mutation[Text Word]) AND ("genes"[MeSH Terms] OR 
gene[Text Word])))) OR ("hereditary diseases"[MeSH Terms] OR genetic 
disorder[Text Word])) OR (genetic[All Fields] AND ((("TEST"[Substance 
Name] OR ("TEST"[Substance Name] OR test[Text Word])) OR ("research 
design"[MeSH Terms] OR testing[Text Word])) OR study[All Fields]))) OR 
("genetic screening"[MeSH Terms] OR genetic screening[Text Word])) OR 
(genetic[All Fields] AND ("risk"[MeSH Terms] OR risk[Text Word]))) OR 
("polymorphism (genetics)"[MeSH Terms] OR ("polymorphism 
(genetics)"[MeSH Terms] OR polymorphism[Text Word]))) OR 
(((("genotype"[MeSH Terms] OR ("genotype"[MeSH Terms] OR 
genotype[Text Word])) OR genotyping[All Fields]) OR ("haplotypes"[MeSH 
Terms] OR haplotype[Text Word])) OR ("haplotypes"[MeSH Terms] OR 
haplotypes[Text Word]))) OR ((("genome"[MeSH Terms] OR genome[Text 
Word]) OR genomic[All Fields]) OR ("Genomics"[MeSH Terms] OR 
genomics[Text Word]))) OR (((gene-environment) OR (gene AND 
environment)) AND interaction[Text Word])) OR (((genetic[Text Word] OR 
gene[Text Word]) OR allelic[All Fields]) AND ((variant[All Fields] OR 
variants[All Fields]) OR (("epidemiology"[MeSH Subheading] OR 
"epidemiology"[MeSH Terms]) OR frequency[Text Word])))) OR 
(variant[All Fields] AND (("alleles"[MeSH Terms] OR allele[Text Word]) 
OR ("alleles"[MeSH Terms] OR alleles[Text Word])))) OR ("heterozygote 
detection"[MeSH Terms] OR Heterozygote Detection[Text Word])) OR 
((Neonatal[All Fields] OR ("infant, newborn"[MeSH Terms] OR 
newborn[Text Word])) AND (("diagnosis"[MeSH Subheading] OR "mass 
screening"[MeSH Terms]) OR Screening[Text Word]))) OR germline[All 
Fields]) OR somatic[All Fields]) OR ("human genome project"[MeSH 
Terms] OR human genome project[Text Word])) AND 
((((((((((((((((((((("epidemiology"[Subheading] OR "epidemiology"[MeSH 
Terms]) OR epidemiology[Text Word]) OR ("public health"[MeSH Terms] 
OR public health[Text Word])) OR ((("alleles"[MeSH Terms] OR allele[Text 
Word]) OR allelic[All Fields]) AND ((("epidemiology"[MeSH Subheading] 
OR " id i l "[M SH T ]) OR f [T W d]) OR

Figure 6-1 The complex query the CDC currently uses for screening the PubMed 
database 



   158

 

 

                                                                                                                                      

1848 Total number of articles captured by complex query  

1544 Excluded based on reading titles  

304 Selected for further reading based on reading titles  

Manual Reading of full abstract of the above selected 304 articles gives following:  

174 HuGE articles – included in HuGENet database  

130 NonHuGE articles – Not included in HuGENet database 

Figure 6-2. Distribution of PubMed articles retrieved using complex query: Weekly 
PubMed update of April 1, 2004 
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6.2 Text analysis for keyword extraction 
 

As discussed in Chapter 3, the keyword extraction is one of the most important 

steps in text mining. In text classification, keywords are used as features to describe each 

abstract. The list of keywords, along with the weights, forms a feature vector to represent 

the abstracts in the training set and testing set. 

In this chapter, the keywords were generated using two different weighting 

schemes, Z-Score and TFIDF as mentioned in Chapter 3. The weighting schemes 

estimate the significance of words by comparing the frequency of words in a test set 

(HuGE) of abstracts with their frequency in a background set of abstracts. The 

background sets of abstracts were used to build a hash table of words and their respective 

statistics for comparison with the corresponding words in the training and test sets. The 

abstracts present in the PubMed database from 1969 till 2004 were used as the 

background set at the suggestion of CDC. Porter stemming algorithm (Porter, 1980) was 

used to truncate suffixes and trailing numerals so that words having the same root (e.g., 

epidemic, epidemics, epidemiology, epidemiological) are collapsed to the same stem 

“epidem” for frequency counting. The stop word list customized in the previous study 

(see Chapter 3) was used to filter out non-scientific English words that carry low domain-

specific information content.  
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6.3 SVM model design for text classification 

The keywords extracted using Z-Score and TFIDF weighting schemes were 

selected as features for the Support Vector Machines.  

Eight different top ranked sets of keywords with varying number of keywords were 

used as features for SVM. They were: 

 1. Z-Score top 100 keywords; 

  2. Z-Score top 500 keywords; 

  3. Z-Score top 784 keywords; 

  4. TFIDF top 100 keywords; 

  5. TFIDF top 500 keywords; 

  6. TFIDF top 750 keywords; 

  7. TFIDF top 1010 keywords; 

  8. TFIDF top 2010 keywords.  

The training and test sets were converted into an abstract X keyword matrix, a 

format readable by  SVMlight software (Joachims, 1998). In conversion of the abstracts in 

the training set into an abstract vs keyword matrix, +1 was used to denote the class label 

for positive (HuGE) abstracts and –l was used to denote the class label for negative 

abstracts (Non HuGE). The abstracts in the test sets were also converted to the similar 

format except for the class label, which is ‘0’ for all the abstracts. Unless otherwise 

mentioned the SVM was tested with linear kernel. 
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6.3.1 Training set 

The 11000 abstracts present in the CDC’s HuGENetTM database, as of March 

2004, were used as the positive training set. The Non-HuGE abstracts were obtained by 

searching the PubMed database using the complex query for the abstracts that appeared 

in it between 2000 and 2004 followed by removing the HuGE abstracts from them. A 

total of 11000 abstracts were then randomly selected from the Non HuGE abstracts and 

were used as the negative training set for the SVM. Two sets of training sets were 

compared, one consisting of equal number of positive and negative abstracts (11000 

positives and 11000 negatives) and the other consisting of twice the number of positives 

over negative abstracts (11000 positives and 5600 negatives).  

6.3.2 Test Set 

The abstracts retrieved from the PubMed database using the complex query 

during four different weeks, February 12’ 2004, April 1’ 2004, April 8’ 2004 and Jun 3’ 

2004 were used as the test sets for the SVM.  

6.3.3 SVM performance measure 

Three different metrics were used to evaluate the performance of SVM in 

classifying the abstracts. The classification of the abstracts by human expert was used as 

the “gold standard” against which the SVM classifications were evaluated by Sensitivity, 

Specificity, and Positive Predictive Value (PPV). These evaluation metrics were also 

mentioned in Chapter 5. The users, the researchers in CDC, expect SVM identifies all the 

positive articles. They are fine with a lot of false positives. Therefore, sensitivity is a 

better measure metric than other metrics. In the performance analysis, we pay more 
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attention to sensitivity. Without sacrificing the sensitivity, we also try to improve 

specificity. 

   

6.4 Effect of different sets of keywords on SVM performance 
 

As mentioned in section 6.3, we selected eight different top ranked sets of 

keywords with varying number of keywords were used as features to represent the 

abstracts in the training set and testing set. To find out which set of keyword should be 

used to train SVM, we evaluated the effect of different sets of keywords on SVM 

performance. We focused more on sensitivity (section 6.3.3). 

The performance of SVM with the eight different sets of keywords was 

compared. Training set containing equal number of positive and negative abstracts was 

used (Figure 6-3). From Figure 6-3, we can see that there was no significant difference 

among the eight keyword sets, as measured by sensitivity. Therefore, in order to include 

as much information as possible, we used the TFIDF top 2010 keywords and Z-score top 

784 were selected for the remainder of our experiments. 
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 Figure 6-3. Average performance of SVM with different keyword sets as features 

Sn: Sensitivity; Sp: Specificity; PPV: Positive Predictive Value 
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6.5 Improve the sensitivity by changing training sets 
 

In this study, the users in CDC are more interested in sensitivity as the overriding 

criterion for classification. They do not want to miss any positive article (as few false 

negatives as possible), while it is fine with some false positives. Then, it is possible to 

influence the results by biasing toward the positive examples over negative ones. We 

approach this problem in two ways: one way is to change the number of positive samples 

in the training set, while the other way is to change the weight of the positive samples in 

the training set. Next, we will discuss these two ways. 

First, we can control the relative sizes of the training set. We compared the 

performance of SVM with two training sets using TFIDF top 2010 keywords as features.  

With twice the number of positives than the negatives in the training set the sensitivity of 

the SVM increased consistently for each of the four test sets, while reducing the 

specificity and PPV (Table 6-1).  We can see that, by increasing the positive samples and 

negative samples ratio, the sensitivity values were improved. 

  



   165



   166

Second, we can weigh the positive samples heavily over negative samples in 

training the SVM. We tried weighing the positives over negatives by a factor of two, four 

and eight on a training set of equal positives and negatives and found that the sensitivity 

results consistently improved at the cost of Specificity and PPV(For Apr1 test set, the 

Sensitivity values are : 89.08, 97.13, 98.85 and 99.43).  

These results indicate that the outcome of the classification can be changed in 

response to the user’s need by tweaking the training set or by assigning different weights 

to the training sets. 

 

6.6 Improve the sensitivity by combining results using keywords based 
on TFIDF and Z-Score methods 

 
To improve the sensitivity, we control the number and/or the weight of the 

positive samples in the training set (section 6.5). Another way to improve sensitivity is 

that we can combine the classification results derived from different keyword sets. Then 

we can get the “union” result. Briefly, the union of results is done as follows. If the SVM 

identified an article as false positive with both the keywords sets then it was considered 

as false positive. On the other hand if the SVM disagreed with the keyword sets i.e. found 

as true positive with one keyword set and as false positive with the other set, then the 

article was still considered as the true positive. The same rule applies to true negatives 

and false negatives. The performance of SVM was estimated by taking the union of the 

results obtained from using TFIDF top 2010 and Z-Score all 784 keyword sets. This is 

done to minimize the false positive rate thereby increasing the sensitivity of the SVM 

(Table 6-2, and Figure 6-4). 
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Figure 6-4. Average performance of SVM from the union of results 

Sn: Sensitivity; Sp: Specificity; PPV: Positive Predictive Value 
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6.7 SVM classification outperforms Human expert classification 
 

Before we did this study, a human expert submits the complex query (Figure 6-1) 

to PubMed. Then this human expert manually categorizes the abstracts as HuGE and non-

HuGE. The HuGE abstracts categorized by this human expert are populated into the 

CDC’s HuGENet™ database. Since the whole process is dependent on this human 

expert, it is possible that the expert could miss some abstracts, e.g. some HuGE abstracts 

are mis-categorized as non-HuGE abstracts.  

In order to test if there are mis-categorized abstracts and if SVM can classify 

these abstracts as HuGE abstracts, we did the “false positive” analysis. False positives are 

the abstracts that were categorized as non-HuGE by human experts, but are classified as 

HuGE by SVM. The goal is to see if any abstracts in the “false positives” are real HuGE 

abstracts. 

The “false positives” from the above result (section 6.6) were given to the CDC 

appointed expert, in charge of reviewing the literature for the HuGENetTM database, for 

her scrutiny. In her inspection, she found that on average 50% of the “false positives” 

produced by the SVM were in fact true positives that were missed by her in her initial 

review process (Table 6-3). Thus, our automated classification using SVM not only 

reduced the burden of manual processing, but also increased the sensitivity of the search. 
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Table 6-3. “False Positive” analysis 

 

 Feb 12 Apr 1 Apr 8 Jun 3 

# of “false positives” predicted by 

SVM 
100 89 57 74 

# of HuGE abstracts in the “false 

positives” 
59 47 28 32 

Percentage of false positives which 

are true 
59% 52.8% 49% 43.2% 

 

 

 

6.8 Summary 

Automated and standardized categorization and classification of the bio-medical 

literature is an important challenge facing the scientific community. Due to the vast 

amount of data produced by emerging biomedical research, manual classification is not 

feasible. Support vector machines have been widely used in text classification. In this 

chapter, we tested the application of SVM to HuGE articles classification. The results 

showed that SVM performed well in terms of sensitivity, which is an important 

performance evaluation metric for this specific application. Furthermore, SVM can 

identify some HuGE articles which were missed by human expert. In our investigation 

into the use of SVM for efficiently classifying HuGE medical abstracts, a high degree of 
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sensitivity (96.3%) was achieved. In future we wish to develop a tool useful for the 

average biomedical researcher. Moreover, we intend to develop good benchmarks (e.g. 

different parameters such as kernel functions) and incorporate them into this personalized 

tool for the scientific community.  
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Chapter 7 
 
Conclusion and Future Work 
 
 

This thesis has focused on the discovery of genomics knowledge by mining 

biomedical literature. In the last few years, there has been a lot of interest within the 

scientific community in literature-mining tools to help sort through this ever-growing 

huge volume of literature and find the nuggets of information most relevant and useful 

for specific analysis tasks. We extend, expand and compare the available keyword 

extraction methods and present a new keyword extraction strategy. The keywords are 

used for gene clustering, gene function classification, and biomedical literature 

categorization.  

 

7.1 Original contributions to knowledge 

This thesis makes the following original contributions to knowledge: 

Computer Science: 

1. An optimum keyword extraction strategy is presented. The optimum strategy 

includes the background set, stemming algorithm, stop list and weighting scheme. 

This strategy can also be applied to other information retrieval problems for the 

artificial intelligence community; 

2. A new clustering algorithm (BEA-PARTITION) is introduced to the 

bioinformatics community.  

3. A comparative study of different clustering algorithms is performed. BEA-

PARTITION outperforms k-means and other popular clustering algorithms. We 
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believe that this important clustering technique has promise for application to 

other data clustering problems for machine learning community where starting 

matrices are available; 

4. A system based on support vector machine is designed to categorize biomedical 

literature automatically based on the functional information described in the 

literature. This system can also be applied to other problems in machine learning 

and information retrieval, such as spam e-mail detection. 

Biology: 

1. The keyword extraction strategy that we proposed discovers new biological 

information that biologists cannot find from the publicly available databases; 

2. Genes are clustered based on the shared functional information extracted from 

biomedical literature and the functional links among genes within each cluster is 

discovered. This information is very important to the biologists and medical 

researchers to uncover the functional relationships among genes;  

3. Gene functions (in this thesis, yeast genes are used as an example) can be 

classified by using the functional information derived from literature. Data 

derived from literature mining outperforms microarray data and phylogenetic 

data; 

4. The biomedical literature by itself can be categorized automatically by the 

functional information described in the text (in this thesis, text categorization is 

applied to the related articles).  

 

 



   174

7.2 Areas for future work 

 7.2.1 Algorithmic work 

There are several aspects of BEA that we are currently exploring with more 

detailed studies.  For example, although the BEA described here performs relatively well 

on small sets of genes, the larger gene lists expected from microarray experiments need 

to be tested. In addition, in this report, the magnitude of keyword-gene associations was 

determined by their z-scores, and term frequency – inverse document frequency (TFIDF). 

Various other weighting schemes could be compared with the z-score, and TFIDF by 

precision-recall to determine the conditions under which each performs best (Dumais, 

1991). In addition to the weighting schemes, the quality of the keyword lists are also 

affected by the noisy words (i.e. non-informative words, mis-spelled words), and 

common properties of English language: (1) Synonymy, different words can be used to 

describe the same underlying concept; (2) Polysemy, the same word may have more than 

one meaning. Latent Semantic Indexing (LSI) is a technique developed in information 

retrieval to address the problems deriving from the use of synonymous, near-

synonymous, and polysemous words (Deerwester et al., 1990). Therefore, LSI could be 

applied to the keyword lists to improve the keyword quality, and as a result, improve the 

cluster quality. Several other approaches may also improve the performance of the 

algorithm. First, attention could be focused only on sentences directly referring to the 

gene name, since if both keyword and gene name occur within the same sentence of the 

abstracts it is more likely that this keyword relates to the function of the gene. Second, 

natural language processing could be used to exploit the added information in compound 

phrases, syntax, and grammatical structures such as negative sentences. 
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Furthermore, we derived a heuristic to partition the BEA result matrix into 

clusters. We anticipate that this heuristic will generally work regardless of the type of 

items being clustered. In Navathe et al. (1984), the heuristic was governed by the nature 

of transactions against in the database and the goal was to minimize an overall cost 

function. Generally, optimizing the heuristic to partition a sorted matrix after BEA will 

be valuable. Finally, we are developing a web-based tool that will include a text mining 

section to identify functional keywords, and a gene clustering section to cluster the genes 

based on the shared functional keywords. A preliminary prototype of the tool is shown in 

Figure 7-1. We believe that this tool should be useful for discovering novel relationships 

among sets of genes because it links genes by shared functional keywords rather than just 

reporting known interactions based on published reports. Thus, genes that never co-occur 

in the same publication could still be linked by their shared keywords.  
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7.2.2 New system needs to be built 

Modern experimental techniques provide the ability to gather vast amounts of 

biological data in a single experiment. Finding the contextually-sensitive functional 

relationships between clusters of genes, or functional clustering in short, is very 

important.  Functional clustering is well known to us in everyday life, and has been 

investigated in the psychological literature (Barsalou, 1983). Likewise, in biology, gene 

function is also contextually-sensitive, and the functions, relationships, and categories of 

a gene, say, osteopontin depend on the context. For example, we were able to discover 

functional roles of osteopontin not typically thought of in the neurological context (Liu et 

al. 2004b). 

Considering the challenges we need to deal with, complex system needs to be 

built. The overall architecture of the system is shown in Figure 7-2.  
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First, we address the users who need to perform advanced search on Medline by 

providing the disease, gene, drug or other concept names. For such users, we will provide 

an advanced search and query engine that can retrieve a set of abstracts related to these 

along with gene ontology and other gene, disease, and drug relation information available 

from public databases. We create an enriched biomedical literature database for them. 

Second, we address the scientists who can provide the system a list of gene names 

derived from microarray or other experiments. Our system will cluster the genes based on 

the functional information discovered from our keyword-gene cross reference database. 

Then the clustering results will presented to the users by a visualization tool. 

 From Figure 7-2, we can see that there are five main tasks: 

1. To develop text analysis algorithms for functional keyword extraction 

from the title and abstract fields of MEDLINE searches. Both statistical and 

Natural Language Processing techniques will be further enhanced and 

optimized to achieve the best retrieval accuracy.  

2. Improvement and further development of keyword ranking clustering 

algorithms. We will investigate alternative techniques of clustering and 

compare to the BEA (bond energy algorithm) that we have developed and 

analyzed extensively. Alternate approaches for automatic ranking of keywords 

will be investigated.  

3. To create a database of functional keywords with efficient indexing for 

every known gene in Genbank suitable for querying. A general architecture is 

shown in Figure 7-3. 
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4. To create an enhanced biomedical literature database with new 

annotations by combining our keywords with other available sources of 

knowledge like the gene ontology and UMLS and by continuously learning 

from new queries answered by the system. 

5 To disseminate our databases and develop tools with easy-to-use 

interfaces for querying the data. Typical input will be in the form of lists of 

genes derived from microarray experiments. A web-enabled test environment 

and visualization tools will be created and evaluated.  Field testers will 

evaluate the user-friendliness, speed and effectiveness of our tools.  Online 

forms and automated e-mails will be used to collect user feedback; the 

responses will be archived in logs, analyzed and appropriate changes made. 

 
7.3 Summary 

The abundance of biomedical literature motivates an intensive pursuit for 

effective text-mining tools. Such tools are expected to help uncover the information 

present in the large and unstructured body of text. 

One of the most pressing higher-level needs is the construction of benchmarks 

and procedures for evaluating the utility of biomedical literature mining tools. Our 26-

gene set and 44-gene set can be used as the benchmarks for the gene clustering tool 

evaluation. 

As literature mining challenges in the context of bioinformatics vary widely in 

aspects such as scope, data sources, and ultimate goals, no single tool can currently 

perform all the required tasks. However, a combination of methods is likely to address 

many of the problems. To successfully mine the biomedical literature, it is important to 
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realize the merits and the limitations of the different literature-mining methods. 

Moreover, it is essential to coherently state the actual biomedical problems we expect to 

address by using such methods. 
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APPENDIX A 

PUBLICATIONS FROM THE WORK IN THIS THESIS 

 
The following publications have resulted from the work reported in this thesis and 

some related work. They may be consulted for further details. 

Ying Liu, Shamkant B. Navathe, Alex Pivoshenko, Jorge Civera, Venu Dasigi, Ashwin 
Ram, Brian J. Ciliax, and Ray Dingledine. (2005) “Text Mining Biomedical 
Literature for Discovering Gene-to-Gene Relationships. A Comparative Study of 
Algorithms” IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 2(1): 62-76. 

Ying Liu, Brian J. Ciliax, Karin Borges, Venu Dasigi, Ashwin Ram, Shamkant B. 
Navathe, and Ray Dingledine. “Comparison of Two Schemes for Automatic 
Keyword Extraction from MEDLINE for Functional Gene Clustering.” 
Proceedings of 2004 IEEE Computational Systems Bioinformatics Conference 
(CSB2004), Stanford University, August 16-19, 2004, pp394-404 

Ying Liu, Martin Brandon, Shamkant Navathe, Ray Dingledine, and Brian J. Ciliax. 
“Automatic Keyword Extraction from MEDLINE for Functional Gene 
Clustering”. 11th MEDInfo 2004 (American Medical Informatics Association 
Official Annual Conference), San Francisco, September 7-11, 2004, pp292-296. 

Ying Liu et al. (2004) Evaluation of a New Algorithm for Keyword-Based Functional 
Clustering of Genes. RECOMB March 26-31, 2004 San Diego, CA. 

Nalini Polavarapu, Shamkant B.Navathe, Ramprasad Ramnarayanan, Abrar ul Haque, 
Saurav Sahay,Ying Liu. (2005) Investigation into Biomedical Literature 
Classification using Support Vector Machines. Accepted by 2004 IEEE 
Computational Systems Bioinformatics Conference (CSB2005). 

R.J. Dingledine, Ying Liu, B.J. Ciliax, J. Civera, A. Ram, S.B. Navathe. Evaluating 
MEDLINE Text-Mining Strategies for Interpreting DNA Microarray Expression 
Profiles. Poster presented at the annual conference of the Society of 
Neuroscience, 2002, Program No. 250.1. 2002 Abstract Viewer/Itinerary Planner. 
Washington, DC: Society for Neuroscience, 2002 

B.J. Ciliax, M. Brandon, Ying Liu, S.B. Navathe, R. Dingledine. Data Mining Keywords 
Associated with Genes Identified by Expression Profiling with DNA Microarrays. 
Poster presented at the annual conference of the Society of Neuroscience, 2001, 
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Program No. 249. 2001 Abstract Viewer/Itinerary Planner. Washington, DC: 
Society for Neuroscience, 2001 
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