3,076 research outputs found

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks

    Get PDF
    A number of graph-parallel processing frameworks have been proposed to address the needs of processing complex and large-scale graph structured datasets in recent years. Although significant performance improvement made by those frameworks were reported, comparative advantages of each of these frameworks over the others have not been fully studied, which impedes the best utilization of those frameworks for a specific graph computing task and setting. In this work, we conducted a comparison study on parallel processing systems for large-scale graph computations in a systematic manner, aiming to reveal the characteristics of those systems in performing common graph algorithms with real-world datasets on the same ground. We selected three popular graph-parallel processing frameworks (Giraph, GPS and GraphLab) for the study and also include a representative general data-parallel computing system— Spark—in the comparison in order to understand how well a general data-parallel system can run graph problems. We applied basic performance metrics measuring speed, resource utilization, and scalability to answer a basic question of which graph-parallel processing platform is better suited for what applications and datasets. Three widely-used graph algorithms— clustering coefficient, shortest path length, and PageRank score—were used for benchmarking on the targeted computing systems.We ran those algorithms against three real world network datasets with diverse characteristics and scales on a research cluster and have obtained a number of interesting observations. For instance, all evaluated systems showed poor scalability (i.e., the runtime increases with more computing nodes) with small datasets likely due to communication overhead. Further, out of the evaluated graphparallel computing platforms, PowerGraph consistently exhibits better performance than others

    Methods to Improve Applicability and Efficiency of Distributed Data-Centric Compute Frameworks

    Get PDF
    The success of modern applications depends on the insights they collect from their data repositories. Data repositories for such applications currently exceed exabytes and are rapidly increasing in size, as they collect data from varied sources - web applications, mobile phones, sensors and other connected devices. Distributed storage and data-centric compute frameworks have been invented to store and analyze these large datasets. This dissertation focuses on extending the applicability and improving the efficiency of distributed data-centric compute frameworks

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201

    Dynamic re-optimization techniques for stream processing engines and object stores

    Get PDF
    Large scale data storage and processing systems are strongly motivated by the need to store and analyze massive datasets. The complexity of a large class of these systems is rooted in their distributed nature, extreme scale, need for real-time response, and streaming nature. The use of these systems on multi-tenant, cloud environments with potential resource interference necessitates fine-grained monitoring and control. In this dissertation, we present efficient, dynamic techniques for re-optimizing stream-processing systems and transactional object-storage systems.^ In the context of stream-processing systems, we present VAYU, a per-topology controller. VAYU uses novel methods and protocols for dynamic, network-aware tuple-routing in the dataflow. We show that the feedback-driven controller in VAYU helps achieve high pipeline throughput over long execution periods, as it dynamically detects and diagnoses any pipeline-bottlenecks. We present novel heuristics to optimize overlays for group communication operations in the streaming model.^ In the context of object-storage systems, we present M-Lock, a novel lock-localization service for distributed transaction protocols on scale-out object stores to increase transaction throughput. Lock localization refers to dynamic migration and partitioning of locks across nodes in the scale-out store to reduce cross-partition acquisition of locks. The service leverages the observed object-access patterns to achieve lock-clustering and deliver high performance. We also present TransMR, a framework that uses distributed, transactional object stores to orchestrate and execute asynchronous components in amorphous data-parallel applications on scale-out architectures

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered
    • …
    corecore