87,578 research outputs found

    Adaptive Investment Strategies For Periodic Environments

    Full text link
    In this paper, we present an adaptive investment strategy for environments with periodic returns on investment. In our approach, we consider an investment model where the agent decides at every time step the proportion of wealth to invest in a risky asset, keeping the rest of the budget in a risk-free asset. Every investment is evaluated in the market via a stylized return on investment function (RoI), which is modeled by a stochastic process with unknown periodicities and levels of noise. For comparison reasons, we present two reference strategies which represent the case of agents with zero-knowledge and complete-knowledge of the dynamics of the returns. We consider also an investment strategy based on technical analysis to forecast the next return by fitting a trend line to previous received returns. To account for the performance of the different strategies, we perform some computer experiments to calculate the average budget that can be obtained with them over a certain number of time steps. To assure for fair comparisons, we first tune the parameters of each strategy. Afterwards, we compare the performance of these strategies for RoIs with different periodicities and levels of noise.Comment: Paper submitted to Advances in Complex Systems (November, 2007) 22 pages, 9 figure

    'On the Application of Hierarchical Coevolutionary Genetic Algorithms: Recombination and Evaluation Partners'

    Get PDF
    This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements

    An Experimental Study of Adaptive Control for Evolutionary Algorithms

    Get PDF
    The balance of exploration versus exploitation (EvE) is a key issue on evolutionary computation. In this paper we will investigate how an adaptive controller aimed to perform Operator Selection can be used to dynamically manage the EvE balance required by the search, showing that the search strategies determined by this control paradigm lead to an improvement of solution quality found by the evolutionary algorithm

    Partnering Strategies for Fitness Evaluation in a Pyramidal Evolutionary Algorithm

    Full text link
    This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity
    • …
    corecore