3,433 research outputs found

    Comparison of linear and non-linear 2D+T registration methods for DE-MRI cardiac perfusion studies

    Full text link
    A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    Generative Interpretation of Medical Images

    Get PDF

    Quantification in cardiac MRI: advances in image acquisition and processing

    Get PDF
    Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function, blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    A non-invasive image based system for early diagnosis of prostate cancer.

    Get PDF
    Prostate cancer is the second most fatal cancer experienced by American males. The average American male has a 16.15% chance of developing prostate cancer, which is 8.38% higher than lung cancer, the second most likely cancer. The current in-vitro techniques that are based on analyzing a patients blood and urine have several limitations concerning their accuracy. In addition, the prostate Specific Antigen (PSA) blood-based test, has a high chance of false positive diagnosis, ranging from 28%-58%. Yet, biopsy remains the gold standard for the assessment of prostate cancer, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The major limitation of the relatively small needle biopsy samples is the higher possibility of producing false positive diagnosis. Moreover, the visual inspection system (e.g., Gleason grading system) is not quantitative technique and different observers may classify a sample differently, leading to discrepancies in the diagnosis. As reported in the literature that the early detection of prostate cancer is a crucial step for decreasing prostate cancer related deaths. Thus, there is an urgent need for developing objective, non-invasive image based technology for early detection of prostate cancer. The objective of this dissertation is to develop a computer vision methodology, later translated into a clinically usable software tool, which can improve sensitivity and specificity of early prostate cancer diagnosis based on the well-known hypothesis that malignant tumors are will connected with the blood vessels than the benign tumors. Therefore, using either Diffusion Weighted Magnetic Resonance imaging (DW-MRI) or Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), we will be able to interrelate the amount of blood in the detected prostate tumors by estimating either the Apparent Diffusion Coefficient (ADC) in the prostate with the malignancy of the prostate tumor or perfusion parameters. We intend to validate this hypothesis by demonstrating that automatic segmentation of the prostate from either DW-MRI or DCE-MRI after handling its local motion, provides discriminatory features for early prostate cancer diagnosis. The proposed CAD system consists of three majors components, the first two of which constitute new research contributions to a challenging computer vision problem. The three main components are: (1) A novel Shape-based segmentation approach to segment the prostate from either low contrast DW-MRI or DCE-MRI data; (2) A novel iso-contours-based non-rigid registration approach to ensure that we have voxel-on-voxel matches of all data which may be more difficult due to gross patient motion, transmitted respiratory effects, and intrinsic and transmitted pulsatile effects; and (3) Probabilistic models for the estimated diffusion and perfusion features for both malignant and benign tumors. Our results showed a 98% classification accuracy using Leave-One-Subject-Out (LOSO) approach based on the estimated ADC for 30 patients (12 patients diagnosed as malignant; 18 diagnosed as benign). These results show the promise of the proposed image-based diagnostic technique as a supplement to current technologies for diagnosing prostate cancer

    Lung Imaging and Function Assessment using Non-Contrast-Enhanced Magnetic Resonance Imaging

    Get PDF
    Measurement of pulmonary ventilation and perfusion has significant clinical value for the diagnosis and monitoring of prevalent lung diseases. To this end, non-contrast-enhanced MRI techniques have emerged as a promising alternative to scintigraphical measurements, computed tomography, and contrast-enhanced MRI. Although these techniques allow the acquisition of both structural and functional information in the same scan session, they are prone to robustness issues related to imaging artifacts and post-processing techniques, limiting their clinical utilization. In this work, new acquisition and post-processing techniques were introduced for improving the robustness of non-contrast-enhanced MRI based functional lung imaging. Furthermore, pulmonary functional maps were acquired in 2-year-old congenital diaphragmatic hernia (CDH) patients to demonstrate the feasibility of non-contrast-enhanced MRI methods for functional lung imaging. In the first study, a multi-acquisition framework was developed to improve robustness against field inhomogeneity artifacts. This method was evaluated at 1.5T and 3T field strengths via acquisitions obtained from healthy volunteers. The results demonstrate that the proposed acquisition framework significantly improved ventilation map homogeneity p<0.05. In the second study, a post-processing method based on dynamic mode decomposition (DMD) was developed to accurately identify dominant spatiotemporal patterns in the acquisitions. This method was demonstrated on digital lung phantoms and in vivo acquisitions. The findings indicate that the proposed method led to a significant reduction in dispersion of estimated ventilation and perfusion map amplitudes across different number of measurements when compared with competing methods p<0.05. In the third study, the free-breathing non-contrast-enhanced dynamic acquisitions were obtained from 2-year-old patients after CDH repair, and then processed using the DMD to obtain pulmonary functional maps. Afterwards, functional differences between ipsilateral and contralateral lungs were assessed and compared with results obtained using contrast-enhanced MRI measurements. The results demonstrate that pulmonary ventilation and perfusion maps can be generated from dynamic acquisitions successfully without the need for ionizing radiation or contrast agents. Furthermore, lung perfusion parameters obtained with DMD MRI correlate very strongly with parameters obtained using dynamic contrast-enhanced MRI. In conclusion, the presented work improves the robustness and accuracy of non-contrast-enhanced functional lung imaging using MRI. Overall, the methods introduced in this work may serve as a valuable tool in the clinical adaptation of non-contrast-enhanced imaging methods and may be used for longitudinal assessments of pulmonary functional changes

    Mapping the Impact and Plasticity of Cortical-Cardiovascular Interactions in Vascular Disease Using Structural and Functional MRI

    Get PDF
    There is growing interest in the role of vascular disease in accelerating age-related decline in cerebrovascular structural and functional integrity. Since an increased number of older adults are surviving chronic diseases, of which cardiovascular disease (CVD) is prevalent, there is an urgent need to understand relationships between cardiovascular dysfunction and brain health. It is unclear if CVD puts the brains of older adults, already experiencing natural brain aging, at greater risk for degeneration. In this thesis, the role of CVD in accelerating brain aging is explored. Because physical activity is known to provide neuroprotective benefits to brains of older adults, the role of physical activity in mediating disease effects were also explored. Using novel neuroimaging techniques, measures of gray matter volume and cerebrovascular hemodynamics were compared between groups of coronary artery disease patients and age-matched controls, to describe regional effects of CVD on the brain. In a sub-set of patients, imaging measures were repeated after completion of a 6-month exercise training, part of a cardiac rehabilitation program, to examine exercise effects. Differences in cerebrovascular hemodynamics were measured as changes in resting cerebral blood flow (CBF) and changes in cerebrovascular reactivity (CVR) to hypercapnia (6% CO2) using a non-invasive perfusion magnetic resonance imaging technique, arterial spin labelling (ASL). We found decreased brain volume, CBF and CVR in several regions of the brains of coronary artery disease patients compared to age-matched healthy controls. The reductions in CBF and CVR were independent of underlying brain atrophy, suggesting that changes in cerebrovascular function could precede changes in brain structure. In addition, increase in brain volume and CBF were observed in some regions of the brain after exercise training, indicating that cardiac rehabilitation programs may have neurorehabiliation effects as well. Since, CBF measured with ASL is not the [gold] standard measure of functional brain activity, we examined the regional correlation of ASL-CBF to glucose consumption rates (CMRglc) measured with positron emission tomography (PET), a widely acceptable marker of brain functional activity. Simultaneous measurements of ASL-CBF and PET-CMRglc were performed in a separate study in a group of older adults with no neurological impairment. Across brain regions, ASL-CBF correlated well with PET-CMRglc, but variations in regional coupling were found and demonstrate the role of certain brain regions in maintaining higher level of functional organization compared to other regions. In general, the results of the thesis demonstrate the impact of CVD on brain health, and the neurorehabiliation capacity of cardiac rehabilitation. The work presented also highlights the ability of novel non-invasive neuroimaging techniques in detecting and monitoring subtle but robust changes in the aging human brain
    corecore