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ABSTRACT

A NON-INVASIVE IMAGE BASED SYSTEM FOR EARLY DIAGNOSIS OF
PROSTATE CANCER

Ahmad Abdusalam Firjani Naef

December 04, 2014

Prostate cancer is the second most fatal cancer experienced by American
males [1]. The average American male has a 16.15% chance of developing prostate
cancer, which is 8.38% higher than lung cancer, the second most likely cancer. The
current in-vitro techniques that are based on analyzing a patients blood and urine
have several limitations concerning their accuracy. In addition, the prostate Spe-
cific Antigen (PSA) blood-based test, has a high chance of false positive diagnosis,
ranging from 28%-58%. Yet, biopsy remains the gold standard for the assessment
of prostate cancer, but only as the last resort because of its invasive nature, high
cost, and potential morbidity rates. The major limitation of the relatively small
needle biopsy samples is the higher possibility of producing false positive diagno-
sis. Moreover, the visual inspection system (e.g., Gleason grading system) is not
quantitative technique and different observers may classify a sample differently,
leading to discrepancies in the diagnosis. As reported in the literature that the
early detection of prostate cancer is a crucial step for decreasing prostate cancer re-
lated deaths. Thus, there is an urgent need for developing objective, non-invasive

image based technology for early detection of prostate cancer.



The objective of this dissertation is to develop a computer vision methodol-
ogy, later translated into a clinically usable software tool, which can improve sen-
sitivity and specificity of early prostate cancer diagnosis based on the well-known
hypothesis that malignant tumors are will connected with the blood vessels than
the benign tumors. Therefore, using either Diffusion Weighted Magnetic Reso-
nance imaging (DW-MRI) or Dynamic Contrast Enhanced Magnetic Resonance
Imaging (DCE-MRI), we will be able to interrelate the amount of blood in the
detected prostate tumors by estimating either the Apparent Diffusion Coefficient
(ADC) in the prostate with the malignancy of the prostate tumor or perfusion pa-
rameters. We intend to validate this hypothesis by demonstrating that automatic
segmentation of the prostate from either DW-MRI or DCE-MRI after handling its

local motion, provides discriminatory features for early prostate cancer diagnosis.

The proposed CAD system consists of three majors components, the first
two of which constitute new research contributions to a challenging computer
vision problem. The three main components are: (1) A novel Shape-based seg-
mentation approach to segment the prostate from either low contrast DW-MRI or
DCE-MRI data; (2) A novel iso-contours-based non-rigid registration approach to
ensure that we have voxel-on-voxel matches of all data which may be more dif-
ficult due to gross patient motion, transmitted respiratory effects, and intrinsic
and transmitted pulsatile effects; and (3) Probabilistic models for the estimated
diffusion and perfusion features for both malignant and benign tumors. Our re-
sults showed a 98% classification accuracy using Leave-One-Subject-Out (LOSO)
approach based on the estimated ADC for 30 patients (12 patients diagnosed as
malignant; 18 diagnosed as benign). These results show the promise of the pro-
posed image-based diagnostic technique as a supplement to current technologies

for diagnosing prostate cancer.

Vi
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CHAPTERI

PROSTATE ANATOMY AND CURRENT DIAGNOSTIC TECHNIQUES

Prostate cancer is the most common malignancy among men. Despite its
prevalence, Prostate cancer is a curable condition in many cases. In America for
example, the five-year survival rate of prostate cancer for men is 100% among pa-
tients diagnosed with localized or regional disease and only 31% among men di-
agnosed at a distant stage [9]. Mortality often happens when patients are affected
by metastasis of the cancer to the bones. At that stage, surgical and hormonal
treatments are not very effective. Therefore, the early diagnosis and staging of the
disease play an important role in the choice and the success of the treatment.This
chapter provides the background to adequately understand the anatomy of the

prostate, prostate cancer, staging of the prostate cancer, and screening modalities.

A. PROSTATE ANATOMY

The term prostate means “to stand in front of ”, which is derived from the
Greek prohistani. This expression was adopted by Herophilus of Alexandria in 335
B.C. to describe the organ located in front of the urinary bladder [3]. The prostate
gland location is illustrated in Figure 1. It measures approximately 4x3x2 cm. The
anterior surface lies at the back of the retropubic space and is connected to the

pubic bone by the puboprostatic ligaments [10].

The prostate is divided into three main zones: the central zone (CZ), the



vas deferens

seminal vesicles

ejaculatory ducts

prostate gland

bulbourethral gland

FIGURE 1: Schematic illustration of an anatomical view of the lower abdomen area

that contains the prostate (Courtesy of [3]).

peripheral zone (PZ), and the transition zone (TZ), excluding the urethra and peri-
urethral glands (Figure 2). The peripheral zone represents approximately 65% of
the prostatic volume. The second largest part of the prostate is the central zone.
It is represents approximately 25% of the prostatic volume. The third zone of the
prostate is called the transition zone, which represents only 5% to 10% of a typical
prostatic volume. The prostate gland is divided into three zones according to their

function:

e The transition zone (TZ) consists of two independent pear shaped lobes situ-
ated laterally on either side of the prostatic urethra together with periurethral

glands. This is the zone where benign prostatic hypertrophy (BPH) occurs.

e The central zone (CZ) surrounds the transitional zone posteriorly and en-
closes the ejaculatory ducts. It is the zone most commonly affected by in-
flammatory processes (e.g. prostatitis). In benign prostatic hyperplasia, the
transitional zone and periurethral glands enlarge considerably compressing

the central zone to form a thin layer, the so called surgical pseudocapsule.



e The peripheral zone (PZ) is the most posterolateral glandular component of
the prostate. The ratio of peripheral zone to central gland tissue gradually
decreases from the apex to the base of the gland. The peripheral zone can be
compressed and distorted by BPH and it is the site of the majority of prostate

cancers [11].

°Pr0state Gland

OUrethra
OBladder

o Central Zone
e Transition Zone
G Peripheral Zone

Front View Side View

FIGURE 2: Schematic illustration of the front and side cross-sectional views of the

prostate showing different prostate zones (Courtesy of [4]).

B. CURRENT DIAGNOSTIC TECHNIQUES

Inside the prostate, groups of cells may form benign or malignant tumors
(see Figure 3). The cancerous cells may form within the prostate but grow too
slowly to cause problems. In other cases, cancerous tumors may grow inside the

prostate, then spread [6]. The prostate cancerous cells are characterized as follows:

e Noncancerous cells: These may grow inside the prostate as a man ages. This

condition is called benign prostatic hyperplasia (BPH). These growths often



FIGURE 3: Illustration of Malignant Tumor (Courtesy of [5]).

squeeze the urethra, causing symptoms such as difficulty urinating.

e Pre-cancerous cells: These cells do not appear normal, but they do not present
all the characteristics of cancerous cells. They can not be felt during a physi-

cal exam and they do not produce symptoms.

e Cancerous cells: These form most often in the prostate’s outer tissue. Can-
cer cells may stay inside the prostate or they may spread to nearby organs
and tissues, such as the bladder and seminal vesicles (local spread) or to
the lymph nodes near the prostate (regional spread). Cancer cells can also
spread through the bloodstream to more distant structures such as the bones
(distant metastasis). Many early-stage tumors do not squeeze the urethra, so
they may not cause symptoms. In some cases, tumors can be felt during an

exam.

1. Staging

Staging is used to classify how far the cancer has spread. Cancer is assigned

to one of four stages as, shown in figure 4:



Stage

FIGURE 4: The stages of prostate cancer (Courtesy of [6]).

e Stage I: Early cancer that is confined to a microscopic area and is too small to

feel when palpated.

e Stage II: The doctor can palpate the tumor, but it is confined only to the

prostate gland.
e Stage III: The cancer has spread to nearby tissues.

e Stage IV: The cancer has spread to the lymph nodes, bones, lungs or other

areas, distant from the original tumor.



2. Treatment

[6]:

Four types of standard treatment for prostate cancer have been established

Surgery is a first choice if the prostate cancer has not spread outside the gland
(stage I or II cancers). In this surgery, the surgeon removes the entire prostate

gland. This type of surgery is called a radical prostatectomy.

Radiation therapy uses high-energy radiation, such as x-rays to kill cancer
cells. Radiation is used as the initial treatment for cancers that have grown
outside of the prostate gland and into nearby tissues,it is als used to reduce

the size of the tumor (stage III cancers).

Hormone therapy prevents testosterone from reaching prostate cancer cells.
This therapy is used if the patient is not able to have surgery or radiation or

if the cancer has grown beyond the prostate gland (stage IV).

Expectant management, or active surveillance, describes the monitoring of
the prostate cancer with prostate-specific antigen (PSA) blood tests, digital
rectal exams (DREs), and prostate biopsies every three to six months to see
changes. Expectant management is used when it is difficult to interpret if
the cells are malignant or not. Because, the PSA arises from both benign and

malignant epithelial cells, PSA usually increases over time.

3. Diagnostic Techniques

Most men, diagnosed with prostate cancer, have no symptoms and only

tind their cancer due to screening. However, in advanced cases of prostate cancer,

there are symptoms such as bladder outlet obstruction, acute urinary retention,



neurological symptoms of cord compression or pathologic fractures secondary to

bony metastases. The currently used screening tests are as follow:

e Digital Rectal Exam (DRE): The DRE test is carried out by a skilled physician
who manually feels for any abnormalities in the prostate gland through the
rectum. The accuracy of this examination is not high, averaging 39%. Nev-
ertheless, DRE is inexpensive, easy to perform, and can detect most of the
tumors of a sufficient volume. However, the DRE alone can not be relied on

to detect prostate cancer.

e Serum PSA: is considered as the best serum marker in the early detection of
prostate cancer. PSA is an enzyme which is secreted by prostatic cells. PSA
was first identified and purified in the 1970s. However, its widespread use in
clinical urology did not occur until the 1980s. The PSA testing is minimally
invasive, simple and safe. Serum PSA elevation may indicate the presence
of prostatic disease (including prostate cancer, benign prostatic hypertrophy,
urinary retention and prostatitis) or result from prostate manipulation such
as transrectal biopsy and prostatic massage. Elevation of PSA above 4 ng/mL
carries a 22% probability of prostate cancer, and a further increase above
10ng/mL raises the cancer risk to 63% [12-14]. As PSA values rise with
age, there is an agreed cut-off level for different age groups. Although this
is not universally accepted, as men may harbor prostate cancer despite low
levels of serum PSA, the use of an age-specific normal range for PSA val-
ues increases the positive predictive value of PSA testing. Table 1 details the

normal range of values according to age.

e PSA Density: is defined as the PSA per unit prostate volume. It is useful to
differentiate between prostate cancer and benign hyperplasia. The prostate

volume can be found from TRUS screening.

e PSA Velocity:is defined as the rate of change of serum PSA with time.



e TransRectal UltraSound (TRUS) and TRUS Biopsy: TRUS is used to display
the prostate, visualize the cancer, and guide the needles to obtain biopsies
from the prostate. The most common approaches to biopsies are transrectal
and transperineal (see Figure 6). In the transrectal procedure, a 2D US probe
is equipped with a needle guide to access to the prostate through the rectal
wall [7]. The needle trajectory is aligned with the TRUS image enabling the
visualization of the needle trajectory and placement . Since some lesions are
isoechoic, thus not visible in US images, it is necessary to sample the prostate
in a systematic randomized way. The gland is usually divided into six or
more zones of equal volume and one or more core is randomly collected from
each zone. In initial biopsies, the needles are usually laterally directed to
the peripheral zone, since 70% of the lesions are situated in this area. These
samples are later analyzed in laboratory for evidence of cancerous tissue.
Although a large number of biopsies are done with a transrectal approach,
as explained above, some urologists prefer to use a transperineal approach.
In this case, the image is still acquired by TRUS, but needle insertion is done
through the skin between the scrotum and the anus. This procedure is carried
out with the patient under local or general anaesthesia [15]. The accuracy of

TRUS Biopsy in detecting cancer is in the range of 57% to 76%.

e Gleason score The samples of tissue from the biopsy are graded based on
how it looks under a microscope. A low Gleason score means the cancer tis-
sue is similar to normal prostate tissue and the tumor is less likely to spread;
a high Gleason score means the cancer tissue is very different from normal

and the tumor is more likely to spread [12].

The main diagnostic tools for prostate cancer are digital rectal exam (DRE) and
serum concentration using prostate specific antigen (PSA) blood test. If any of the

previous screening modalities suggest any abnormalities, biopsies should be done,
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FIGURE 5: Diagnosing scheme for prostate cancer.

TABLE 1: Outlines normal age-specific PSA

Age group Normal PSA value

> 60 PSA< 3
60-69 PSA <4
> 70 PSA <5

and then examined by a pathologist. The chart in Figure 5 displays the diagnostic

scheme for prostate cancer [3].

C. Limitation of the Current Diagnostic Techniques

The currently used techniques for diagnosing prostate cancer are clearly un-

satisfactory. For example, prostate specific antigen (PSA) screening does not offer
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FIGURE 6: An illustration of Transperineal and transrectal approaches to prostate
biopsy. A thin needle is inserted through the rectum or through the perineum par-
allel to the urethra to perform the operation, and the procedure is usually directed
by an imaging device (e.g., ultrasound) to help in placing the needle into the right

location (Courtesy of [7])

accurate information about the location and extend of the lesion(s). In addition,
PSA is associated with a high risk of over diagnosis. TRUS Biopsy is widely used
for diagnosis of prostate cancer. However, this technique presents some draw-
backs. Because the cores are sampled in a blinded way, without the aid of any
visual references (in particular with respect to 3D space), its very difficult to know
the correct position of the biopsy inside the gland, since the TRUS images have
low signal to noise ratio (SNR) [7, 16]. Therefore, its impossible to sample the exact
same site in a later exam to investigate the development of a small cancer lesion
over time. Furthermore, with the current technique, it is possible to miss the can-
cer since the exam performs a non-exhaustive systematic search for an invisible
target. This results in a low detection rate of about 30 to 40% in traditional 12-
core biopsies and even with saturation biopsies with 18-cores similar results have

been obtained [15,17]. Even after an initial extended biopsy, followed by a second,
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third, and fourth saturation biopsy, prostate cancer was still detected in 18%, 17%,
and 14% of patients, respectively [18]. Being so, a large number of false negatives
are inherent to the process, and a negative result cannot exclude cancer diagnosis.
Patients with maintained suspicions may have to repeat biopsy series. Gleason
scores require biopsies to invasively collect tissue samples. Therefore, despite all
its high costs and morbidity rates, biopsy is still remaining as the golden standard

for diagnosis of prostate cancer. However,it is resort.

On the other hand, imaging tests are favorable since they provide reliable
information about the size and shape of prostate gland and can localize the cancer
foci, which would improve the accuracy of diagnosis and enable more efficient

treatment.

D. THE NEED FOR THIS WORK

The main objective of this dissertation is to develop a computer-aided diag-
nostic (CAD) system for early detection of prostate cancer from both (DCE-MRI)
and (DW-MRI). Non-invasive approaches for prostate cancer diagnosis have been
widely employed, due to their potential to provide superior resolution that plays
an important role in, for example, assessing pathological tissues, locations and ex-
tent of the tumor, directing biopsies, planning proper therapy, and evaluating ther-
apeutic results. A generic framework for the analysis of prostate cancer images can
include one or more of the following: (i) segmentation approaches to extract the
prostate, (ii) registration techniques for motion correction, (iii) construction of per-
tusion curves to distinguish between normal and abnormal tissues, (iv) estimation
of perfusion-related parameters, (v) modeling of the extracted parameters, and
(vi) classification and diagnosis. Since the main steps of any computer-assisted

diagnosis (CAD) system for prostate cancer are image segmentation and image
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registration, below we will briefly overview the popular techniques for image seg-

mentation and registration.

1. Image Segmentation Methods

Accurate segmentation of the prostate is fundamental for reliable and ro-
bust non-invasive analysis of prostate cancer images. Both accuracy and automa-
tion of the segmentation technique are of considerable importance. First, auto-
mated segmentation is important because it facilitates the complete automation
of the CAD system, minimizes the effect of the operator-dependency, and makes
the diagnosis process reproducible. On the other hand, accuracy of segmentation
is essential for correct diagnosis because many crucial indexes (e.g., features for
discriminating benign and malignant lesions) are based on the contour, shape and
texture of the prostate. These features can be effectively extracted after the de-
sired boundary is correctly detected. Popular prostate segmentation techniques
can be divided into four major categories: (i) rule-based approaches, (ii) statistical-
based approaches, (iii) atlas-based approaches, and (iv) deformable models-based
approaches. A brief overview and the limitations of the existing segmentation ap-

proaches are given below.

e Rule-based techniques aim to partition an image into pixels of two or more
values through comparison of pixel values. Most popular approaches are
thresholding, region growing, and region split-and-merge. However, thresh-
old based segmentation approaches are not accurate in the case of gray levels
similarities between the prostate and the surrounding tissues. In addition, re-
gion growing-based approaches are sensitive to initialization and often need

user assistance to select proper seed points.

e Statistical-based techniques involves parametric or nonparametric probabil-
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ity models of appearance and shape of goal objects, e.g., Bayesian or maxi-
mum likelihood inference. The main limitation of current statistical models
is that the tails of the prostate distributions usually overlap, so it is difficult if
not impossible to find thresholds that separate these objects accurately unless
the object intensities considerably differ from the background. However, this
is generally not the case in prostate images so most of the applications need

more adequate probability models.

Atlas-based techniques use anatomical atlases that depict prototypical loca-
tions and shapes of anatomical structures together with their spatial rela-
tions, as reference images to guide segmentation of new images. All the
known atlas-based methods can be classified into single and multi-atlas-based
segmentation. In general, the accuracy of the atlas-based segmentation de-
pends on the accuracy of the atlas-to-target registration (i.e., the segmenta-
tion problem is reduced to the registration one). Also, the single-atlas-based
segmentation could suffer from the possibly insufficient representation of the
whole image population. The multi-atlas approach can overcome this draw-
back, but it requires a large number of atlas-to-target registration steps in

order to produce the final segmentation.

Image Registration Methods

The majority of CADs assumes that the prostates (prostate contours) remain

exactly the same from scan to scan. However, prostate contours may not always

exactly match due to patient movement or breathing effects; therefore, accurate

registration of the prostate in MR images is important to precisely analyze the

transit of a contrast agent into the tissue, especially in the suspicious lesions. Ac-

curate registration will also improve spatial correspondence of the prostate region

and provide a one-on-one pixel match in all registered images, thus increasing the
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accuracy of diagnosis. To overcome the above-mentioned limitations, a novel non-

invasive MRI-based framework for early diagnosis of prostate cancer is proposed.

The proposed framework performs sequentially the following processing steps.

lows.

Segmentation of the prostate from MR imaging based on a Maximum a Pos-
teriori (MAP) estimate of a new likelihood function that accounts for both
appearance features of the prostate and their 3D spatial voxel interactions ,

as well as a 3D shape prior.

The integration of image registration approaches (nonrigid techniques), us-
ing geometric-based approaches (iso-contours) to improve spatial correspon-
dence of regions-of-interest and provide a one-on-one pixel match in all reg-
istered images, thus increasing the accuracy of parameter estimation and/or

diagnosis.

KNN classifier to classify the prostate into benign or malignant based on

three appearance features extracted from registered image.

E. DISSERTATION ORGANIZATION

This dissertation consists of six chapters, which can be summarized as fol-

Chapter I present the background to adequately understand the anatomy of
the prostate, prostate cancer, staging of the prostate cancer, and screening
modalities. In addition, a brief summary of the basic contributions of the
proposed research for diagnosing prostate cancer using DCE-MRI and DWI

are also outlined.
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Chapter II presents some basic concepts about prostate cancer and medical

images. The current challenges of imaging the prostate in cancer.

Chapter III presents an overview of the existing computational methods for
diagnosing prostate cancer using MRI and outlines their strengths and weak-
nesses. Additionally, the state-of-the-art clinical applications and findings

using these computational methods are covered.

Chapter IV presents a novel, noninvasive framework in prostate application

for early detection of prostate cancer using DCE-MRI.

Chapter V presents a fully automated image-based framework for early de-

tection of prostate cancer from DWI data.

Chapter VI presents a general discussion about the presented research and
its results, followed by the main conclusions and the possible areas for future

work.
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CHAPTERII

IMAGING THE PROSTATE IN CANCER

Early detection of prostate cancer is crucial for the accurate diagnosis and
institution of appropriate medical therapies, which can increase the survival rate
of the patients [9]. However, a growing belief that nonlife threatening prostate can-
cers are being over-detected. Therefore, medical imaging techniques are favorable
since they provide reliable information about the size and shape of the prostate
gland and can localize the cancer foci. which would allow the determination of
efficient treatments and enable more reliable methods of diagnosis and prognos-
tication. Nowadays, medical imaging is a basic component in current medical
diagnostic tools and has demonstrated the proven ability to detect prostate can-
cer without the associated deleterious side effects of invasive techniques. These
noninvasive methods for prostate cancer diagnosis are based on acquiring scans
of the prostate and analyzing these scans for cancer detection. To acquire scans of
the prostate, different medical imaging techniques, such as Transrectal Ultrasound
(TRUS), Single Photon Emission Computed Tomographic (SPECT), Positron Emis-
sion Tomography (PET), Magnetic Resonance Imaging (MRI), and Computed To-
mography (CT), have been used (see Figure 7). Each of these image modalities
has its own mechanism for providing relevant physiological information about
the prostate as well as its own advantages and limitations. For example, CT is cur-
rently used for post-therapy evaluation by physicians to assess the effectiveness of
treatment. However, it is expensive, uses radiation, and has poor contrast between

soft tissues [19]. The SPECTs used in the detection of metastatic disease and are
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performed when symptoms for disease are present, such as bone pain. PET/CT
allows differentiation between tumor and bowel in pelvis [20], it has limitations to
distinguishing tumors from inflammation. As a result, TRUS and MRI are more

commonly used in CAD systems for diagnosing prostate cancer.

Imaging
prostate cancer

MR Imaging Transrectal US CT Imaging “ @

FIGURE 7: Schematic illustration of different medical image modalities for imag-

ing the prostate in cancer.

The Transrectal Ultrasound (TRUS) imaging [21-23] is widely used for guided
needle biopsy due to the real-time nature of the imaging system, ease of use, and
portability (see Figure 8). However, TRUS images have a low signal to noise ratio

(SNR) and detection of malignant tissues is difficult. Although,

FIGURE 8: Different types of prostate medical images: (a) ultrasound image (Cour-
tesy of [8]), (b) computed tomography (CT) image (Courtesy of [7]), and (c) T3-
weighted (MRI) image.

Magnetic Resonance Imaging (MRI) has been recently suggested for im-
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proved visualization and localization of the prostate. It provides valuable patho-
logical and anatomical information [24]. Recently, new MRI modalities, such as
Magnetic resonance Spectroscopy (MRS), Dynamic Contrast-Enhanced MRI (DCE-
MRI), and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI),

have gained considerable attention as important tools for the early detection of
prostate cancer. However, a side effect is an increase in image data that can be
attributed to a number of factors including: increased image resolution, increased
bits per volume image element (voxel), sampling in an increased number of dimen-
sions, and an increased amount of tissue imaged. Although acquiring additional
data provides a more complete view of the patient’s physiology, it also creates a
quantity of data that may be impossible for a physician to examine. For example,
radiologists have traditionally dealt with only a few 2-D images (such as x-ray ra-
diographs) per exam. However, now the capability exists for doctors to perform
high resolution 3-D MRI scans of a patient. If many of these scans are taken at
different times in order to monitor the progression of the patient’s condition, the
doctor is left with an immense 4-D dataset consisting of hundreds or thousands
of images. Analysis consistency begins to suffer due to inter- and intra-observer
variations. Since all the work presented in this dissertation mainly deals with MRI
prostate data, an overview of different types of the MRI modality is given in the

following section.

A. MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) has become the most powerful and cen-
tral noninvasive tool for clinical diagnosis of diseases. The fundamental principle
of MRl is based on the use of a strong static magnetic field in which the hydrogen
nuclei (single proton) of water molecules in human tissues is aligned parallel to

that field. Then, an external radio frequency (RF) pulse (wave) is applied to thun-
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paired magnetic spins (proton) aligned in the static magnetic field, making them
spin in different directions [25]. The interaction between the RF and proton spins
leads to periodic absorption and emission of energy. When the protons relax back
to their lower energy (equilibrium) state, they release detectable signals (energy)

that are spatially encoded and are used to construct the MR image.

Magnetic Resonance Imaging (MRI)

. ] Perfusion MR-
Fracim [V N weghted MR | Spectroscopy R Taged RN Difusion M
) W) (MRS)

T1- Weighted

T2 Weighted

FIGURE 9: Different specialized MRI acquisition techniques.

Different types of tissues (muscle, fat, cerebral, spinal fluid, etc.) send back
measurably different types of tissue-specific signals following the application of
the same RF pulse. The contrast of an MR image is strongly dependent on the way
the image is acquired. Different components of the scanned area can be highlighted
using different preselected pulse sequences: strength, shape, and timing of the RF
and gradient pulses (external fields).The most commonly-known specialized MRI
techniques are shown in Figure 9. Generally, MRI can be used to acquire planar

2D images or 3D volumes [25]. Since this dissertation is concerned with building a
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MRI-based CAD system for the early diagnosis of prostate cancer, a brief overview

of the basic principles of is presented in the next section.

1. Structural MRI

T1- and -T,-weighted is a basic type of MRI in which most of the contrast be-
tween tissues is due to differences in tissue 75 or 7} values. Usually, T>-weighted
scans are used when contrast between fluid, abnormalities (e.g., tumors, inflam-
mation, trauma), and the surrounding tissues is required. Therefore, it is the best
MRI method for pathological details (see Figure 8). The T>-weighted MRI modal-
ity has the ability to provide reliable information about the size and shape of the
prostate gland. However, it is limited by unsatisfactory sensitivity and specificity

for cancer detection and localization [26].

2. Dynamic Contrast-Enhanced MRI (DCE-MRI)

Although structural MRI provides excellent soft tissue contrast, it lacks func-
tional information. Dynamic Contrast-Enhanced MRI (DCE-MRI) is a special MR
technique that has the ability to provide superior information about the anatomy,
function, and metabolism of target tissues. The DCE-MRI technique involves ac-
quiring T1-weighted volume images before and at several time points after the in-
jection of a contrast agent. The main role of the DCE-MRI is to increase the image
contrast of anatomical structures (e.g., blood vessels) that are not easily visualized
by the alteration of the magnetic properties of water molecules in their vicinity.
This in turns improves the visualization of tissues, organs, and physiological pro-
cesses. The DCE-MRI takes advantage of the network of microvascular structures

associated with cancerous tumors. Specifically, the DCE-MRI procedure allows
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for the observation and quantification of vascular permeability and vascular den-
sity curves or time-intensity curves as shown in Figure 11. Typical examples of

dynamic MRI time series data of the prostate are shown in Figure 10.

FIGURE 10: MRI Prostate images taken at different time points post the admin-
stration of the contrast agent showing the change of the contrast as the contrast

agent perfuse into the prostate tissues.

High Perfusion
(a) ——

Signal Intensity (S(t))

I Low Perfusion
—

FIGURE 11: (a) A typical time-intensity curve of the average intensity of the
prostate measured before and after contrast agent adminstration. The curve il-
lustrates typical perfusion-related indexes that can be estimated and used for di-

agnosis of the prostate cancer. (b) Prostate colored by wash-in and wash-out
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3. Magnetic Resonance Spectroscopy Imaging (MRSI)

Magnetic Resonance Spectroscopy Imaging (MRSI) allows the evaluation of
the metabolic activity within the prostate gland by assessing the quantities of dif-
ferent metabolites. Within the prostate, the most commonly detected metabolites
are choline, creatine, polyamines and citrates. In a healthy prostate, there are low
levels of choline and high levels of citrates; the opposite is observed in patients
with prostate cancer. Polyamines are increased in benign prostatic hyperplasia
and reduced in cancer (see Figure 12). A ratio of choline-plus-creatine to citrate

has been used to help differentiate benign from malignant lesions [27].

Ch/SpmiCr
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FIGURE 12: Examples of MRS. There is a single choline, polyamine, and creatine
peak.

4. Diffusion-Weighted Imaging (DWI)

DWTI is designed to obtain images whose contrast depends on the differ-
ences in water molecule mobility. This is achieved during data acquisition by
adding diffusion magnetic field gradients. The degree of diffusion weighting of

the sequence, expressed as the b-factor (in s/mm?), depends on the amplitude of
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the field gradient, time of application, and time interval between the magnetic
tield gradients. A typical DWI-MRI for the prostate is shown in Figure 13. DWI is
a well-established MRI method that has been successfully used for tumor localiza-

tion and diagnosis [28].

()

(b)
FIGURE 13: Diffusion MR images for the prostate at (a) b-value of 0s/mm? and (b)

b-value of 800 s/mm?.

B. QUANTIFICATION OF PROSTATE CANCER USING MR IMAGES

The use of MRI medical images for prostate cancer has been increased in
recent years due to its ability to provide superior anatomical and functional infor-
mation about the tumor classification. The goal of this work is to evaluate the di-
agnostic value of an imaging protocol that uses Dynamic Contrast-Enhanced MRI
(DCE-MRI) and Diffusion-Weighted Imaging (DWI) in patients with suspicious
prostate cancer and to determine if additional information, provided by DWI, im-
proves the diagnostic value of prostate MRI [29]. In this dissertation, the proposed

models have been applied to both imaging protocols.

a. Early Detection of Prostate Cancer using (DCE-MRI) The DCE-MRI has
demonstrated the promise for early detection of prostate cancer [30]. The DCE-

MRI process begins with several MRI scans which are used to establish a baseline
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in image intensity. These scans are performed without the administration of con-
trast enhancing agents so that the tissue’s non-enhanced image intensity can be
established. In the next stage, a contrast agent (such as Gadolinium) is adminis-
tered intravenously. At this point, MRI scans are performed at regular intervals.
The contrast agent flows throughout the body, including the tissues being imaged.
Malignant areas of increased microvascular growth have increased vascular leak-
age; therefore, in these regions more contrast agent passes between the vascular
system and the extravascular tumor tissue [30-32]. The observed dynamics of the
buildup and washout of the contrast agent can help characterize the micro-vessel
density and porosity. Repeated MRI scans continue until the body filters most of
the contrast agent from the blood stream via the kidneys. A signal intensity versus
time curve is created for each voxel in the volume, and local exchange model pa-
rameters, inferred from these curves, are used by radiologists to detect and classify
malignant lesions. Currently, manual DCE-MRI analysis is performed using esti-
mated pharmacokinetic parameters which quantify the movement of the contrast
agent into and out of tissues. These parameters are color-coded and superimposed
on a pre-contrast MR image. The radiologists then manually outline the lesions
in the superimposed images using a computer mouse. Once segmented, the av-
erage time vs signal intensity plot may be observed and the lesion is classified by

matching the resulting plot with theoretical plots for specific lesion types.

The proposed work in this dissertation seeks to provide a new noninvasive
system that possesses the ability to facilitate the accurate analysis of the perfu-
sion of a CA in the prostate tissue in an effort to extract perfusion parameters that
distinguish between malignant and benign prostate cancers. The innovation in
this case study is a CAD system that integrates stochastic approaches using new
Markov-Gibbs random field (MGRF) energy models and the geometric approaches
to accurately separate the prostate from the surrounding tissues, after handling the

global and local motion, in order to optimally distinguish between malignant and
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benign prostate cancers (see Figure 14).

Input DCE-MRI
Time Series

Construction Diagnosis, Color

Motion Prostate of Time- Map Generation,
Correction Segmentation Intensity and Tumor
Curves Delineation

FIGURE 14: A block diagram of the proposed CAD system for the early diagnosis
of prostate cancer using DCE-MRI. The time series data is first corrected for motion
artifacts. Then, the prostatic tissue is segmented and the agent kinetic curves are
constructed. Finally, perfusion-related parameters are extracted from the kinetic

curves and are used for the classification of both malignant and benign cases.

b. Diffusion-Weighted MRI Diffusion-Weighted MRI (DWI),
a non-invasive technique in which molecular motion of water is measured in bi-
ological tissues, is now used in the detection of prostate cancer as an adjunct to
Ty-weighted [33]. The Apparent Diffusion Coefficient (ADC) calculated from DWI
in prostate cancer showed that the mean ADC for malignant prostate is lower than
the mean ADC in the non-malignant prostatic tissue [34-39]. In recent years, a
growing number of clinical studies have evaluated the utility of DWI, either in
combination with or in comparison with other MRI techniques, for the detection
of prostate cancer. These studies have reported various sensitivities and specifici-
ties of cancer diagnosis [34,40—43]. In this dissertation, a comprehensive frame-
work for detection of prostate cancer is proposed based on DWI, see Figure 15.
The proposed diagnostic approach segments the prostate from the surrounding
anatomical structures based on a Maximum a Posteriori (MAP) estimate of a new

log-likelihood function after handling the global and local motions. Then, three
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appearance features are extracted and used for the evaluation of the potential
prostate tumor. In addition, the tumor boundaries are determined using a level
set deformable model controlled by the diffusion information and the spatial in-

teractions between the prostate voxels, see Figure 16.
Prostate Nonrigid Feature Diagnoss snd
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FIGURE 15: Flowchart of the proposed CAD system for automatic detection of
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cancer from 3D DWI. An automatic prostate segmentation method is applied to
isolate the prostate from the surrounding anatomical structures. Following seg-
mentation, a non-rigid registration approach is employed to account for any local
deformation that could occur in the prostate during the scanning process. Three
features are extracted from registered diffusion data. The features are summarized

by a supervised classifier to calculate the likelihood of malignancy.
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FIGURE 16: Pixel-wise parametric map display of the diffusion information and
the spatial interactions between the prostate voxels. The red and blue hues of each

color scale correspond to enhanced and reduced perfusion, respectively.
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CHAPTER III

IMAGE BASED RELATED WORK FOR EARLY DIAGNOSES OF PROSTATE
CANCER

This chapter discusses the developed non-invasive state-of-the-art Com-
puter Aided Diagnosis (CAD) systems for prostate cancer based on analyzing dif-
ferent types of Magnetic Resonance Imaging (MRI), e.g., T,-MRI, Diffusion
Weighted Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-
parametric MRI, focusing on their implementation, experimental procedures, and
reported outcomes. Furthermore, the chapter addresses the limitations of the cur-
rent prostate cancer diagnostic techniques, outlines the challenges that these tech-
niques face, and introduces the recent trends to solve these challenges. Prostate
segmentation from MRI images, i.e., the delineation of prostate borders from the
surrounding tissues, is a basic step in any noninvasive CAD system for early de-
tection of prostate cancer. However, accurate delineation of prostate borders in MR
images is a challenge due to: large variations of prostate shapes within a specific
time series as well as across subjects; the lack of strong edges and diffused prostate
boundaries; and the similar intensity profile of the prostate and surrounding tis-
sues. Although manual outlining of the prostate border enables the prostate vol-
ume to be determined, it is time consuming and observer dependent. Moreover,
traditional edge detection methods [24] are unable to extract the correct boundaries
of the prostate since the gray level distributions of the prostate and the surround-
ing organs are hardly distinguishable. To overcome this limitation, most successful

known approaches have addressed the segmentation challenges by incorporating
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the prostate appearances and shapes into their segmentation techniques. In par-
ticular, an automated framework by Allen et al. [44] was proposed for 3D prostate
segmentation that consists of two steps. voxel classification is performed based
on Gaussian probabilities of grey level. Then, a statistical shape model is used to
segment the prostate region. A hybrid 2D/3D active shape model (ASM)-based
methodology for global optimal segmentation of the 3D MRI prostate data was
proposed by Zhu et al. [45]. Iterative segmentation was performed by a 2D ASM
search on each slice, then the final surface is reconstructed from the 2D search re-
sults and updated by re-estimating the parameters of the 3D probabilistic shape
model. Klein et al. [8,46] presented an atlas-based segmentation approach that
utilized a localized version of mutual information (MI) to extract the prostate from
MR images. The segmentation of the prostate is obtained as the average of the best-
matched registered atlas set to the test image (image to be segmented).Flores-Tapia
et al. [47] proposed a semi-automated edge detection technique for MRI prostate
segmentation. In their framework, the prostate borders were detected by tracing
four manually-selected reference points on the edge of the prostate using a static
Wavelet transform [48] to locate the prostate edges. Toth et al. [49] presented an al-
gorithm for the automatic segmentation of the prostate in multi-modal MRI. Their
algorithm starts by isolating the region of interest (ROI) from MRS data. Then, an
ASM within the ROI is used to obtain the final segmentation. A semi-automated
approach by Vikal et al. [50] used a priori knowledge of prostate shape to detect the
contour in each slice and then refined them to form a 3D prostate surface. Firjani
et al. [51] proposed a MAP based framework that combines a graph-cut approach
and three image features (grey-level intensities, spatial interactions between the
prostate pixels, and a prior shape model) for 2D DCE-MRI prostate segmentation.
Their method was later extended in [52] to allow for 3D segmentation from DCE-
MRI volumes. It utilized both a 3D MRF to model the spatial interaction between

the prostate voxels and a 3D shape prior.
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An unsupervised segmentation method was proposed by Liu et al. [53] for
the segmentation of MR prostate images. A level set deformable model was em-
ployed and was guided by an elliptical prostate shape prior and intensity gradient
was employed to refine the initial results obtained by Otsu thresholding [54]. A
maximum A posteriori (MAP)-based framework was proposed by Makni et al. [55]
to perform automated 3D MRI prostate segmentation. Their framework combined
graylevel, contextual information regarding voxels neighborhoods using MRF, and
statistical shape information to find optimum segmentation based on Bayesian a
posteriori classification, estimated with the iterative conditional mode (ICM) algo-
rithm. Liu et al. [56] proposed an automated approach that utilized fuzzy MRF
modeling for prostate segmentation from multi-parametric MRI. Their framework
exploited T>-weighted image intensities, pharmacokinetic (PK) parameter kep ,
and apparent diffusion coefficient (ADC) values in a Bayesian approach to label
prostate pixels as cancerous or non-cancerous. The labeled pixels are then clus-
tered using the k-means algorithm. The system had a specificity of 89.58%, sensi-
tivity of 87.50%, accuracy of 89.38%, and a DSC of 62.2%. A similar approach was
developed by Artan et al. [57] and located cancerous regions using cost-sensitive
support vector machine (SVM). Prostate segmentation was performed using a con-
ditional random field and the same three features in [56] were utilized for classi-
fication. The DSC for prostate localization and segmentation was 0.46 =+ 0.26, and
the area under the receiver operator characteristic (ROC) curves (A,) of the classi-
fication was 0.79 & 0.12. Ozer et al. [58] also developed a technique that directly
segmented prostate cancers using the same three features in [56,57]. Both the
SVM and relevance vector machine (RVM) [59] classifiers were used and the sys-
tem showed a specificity of 0.78 and a sensitivity of 0.74 for RVM and 0.74 and 0.79
tor SVM. Gao et al. [60] proposed a shape-based technique that utilized point cloud
registration of the MR images before segmenting the prostate. The final prostate
border is obtained by minimizing a cost functional that incorporated both the lo-

cal image statistics as well as the learned shape prior. Martin et al. [61] developed
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an atlas-based approach for segmenting the prostate from 3D MR images by map-
ping a probabilistic anatomical atlas to the test image. The resulting map is used
to constrain a deformable model-based segmentation framework. Recently, Dowl-
ing et al. [62] proposed an automated framework that combined dynamic multi-
atlas label fusion methods. They employed the diffeomorphic demons method for
the nonrigid registration using the selective and iterative method for performance
level estimation (SIMPLE) technique [63]. In their framework, a pre-processing
step for bias field correction, histogram equalization, and anisotropic diffusion
smoothing was employed. Ghose et al. [64] proposed a probabilistic graph-cut-
based framework for prostate segmentation based on the fusion of the posterior
probabilities determined with a probabilistic atlas and a supervised random forest
learning framework. An automated technique that first applied global registration
to the prostate MRI data followed by an active appearance model (AAM) based
segmentation of the prostate tissue was proposed by Ghose et al. [65]. Table 2
summarizes the reviewed methodologies for prostate segmentation and registra-
tion with the validation data sets and achieved performance for each study. How-
ever, in most of these approaches the segmentation and registration reliability is
not very high due to the following reasons: (i) parametric shape models fail in the
presence of large gray-level variability across subjects and time; (ii) edge detection
methods are not suitable for discontinued objects; (i7i) deformable models tend to
fail in the case of excessive noise, poor image resolution, diffused boundaries or
occluded objects if they do not incorporate a priori models (e.g., shape and ap-
pearance). In addition, most of the motion correction models account only for the
global motion and do not take into account the local motion of the prostate due to
transmitted respiratory and peristaltic effects. Furthermore, the existing local mo-
tion correction methods are intensity-based techniques, which are prone to non-
linear intensity variations over the time series and perform poorly in pre-contrast
images. Also, local motion correction methods register the original grey level data

without any prior segmentation; therefore, they do not guarantee voxel-on-voxel
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matches of the registered perfusion data.

The state-of-the-art CAD systems extract several features from MR image
modality for classifying a prostate region as cancerous or noncancerous. Several
CAD systems in the literature have used multi-parametric MRI, a combination of
multiple MRI modalities, to increase the number and quality of the features that
the systems can utilize. A summary of the the common features extracted from
each of these MRI modalities as well as the basic systems along with their compu-
tational methods, validation data sets, and validation accuracy are given in Table 3.
To the best of our knowledge, the first semi-automated computerized MRI-based
CAD system for prostate cancer diagnosis was developed by Chan et al [66]. In
their study, multi-modal MRI (7, —weighted, 7,—mapping, and line scan diffusion
imaging) were used to estimate malignancy likelihood in the PZ of the prostate.
Both statistical maps and textural features were obtained and a SVM and a linear
discriminant analysis (LDA) classifiers were employed for the classification. Their
systems resulted in an A, of 0.7614+0.043 and 0.839+0.064, for SVM and LDA re-
spectively. Madabhushi et al [67] proposed an automated CAD system for detect-
ing prostatic adenocarcinoma from MR prostate images. In their method, multiple
image features, including gray levels statistics (intensity values, mean, and stan-
dard deviation), intensity gradient, and Gabor filter features, were used for clas-
sifying groups of pixels as tumors. A K-nearest neighbor classifier and Bayesian
conditional densities were used for classification, and the system achieved an A, of
0.957. A study by Engelbrecht et al. [68] evaluated which MRI parameters would
result in optimal discrimination of prostatic carcinoma from normal PZ and CZ
of the prostate. Using the ROC curves, their study concluded that the relative
peak enhancement was the most accurate perfusion parameter for cancer detec-
tion in the PZ and CZ of the gland. A semiautomated CAD system by Kim et
al. [27] demonstrated that parametric imaging of the wash-in rate was more accu-

rate for the detection of prostate cancer in the PZ than was 7, —weighted imaging
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alone. However, they also observed significant overlap between the wash-in rate
for cancer and normal tissue in the TZ. Fiitterer et al. [69] developed a CAD system
to compare the accuracies of 7,—weighted MRI, DCE-MRI, and MRS imaging for
prostate cancer localization. The results showed higher accuracy in DCE-MRI than
were achieved with T,—weighted MRI in prostate cancer localization. A similar
study was conducted by Rouvieere et al. [70] for the detection of postradiotherapy
recurrence of prostate cancer. Their study also concluded that DCE-MRI possesses
the ability to depict the intraprostatic distribution of recurrent cancer after therapy
more accurately and with less inter-observer variability than 7, — weighted MRI.
Puech et al. [71] developed a semiautomated dynamic MRI-based CAD system
for the detection of prostate cancer. Candidate lesion ROIs were selected either
manually or by using a region growing technique initiated by a user-selected seed
point. Lesions are classified as benign, malignant or indeterminate based on the
analysis of the median wash-in and wash-out values. Their CAD system demon-
strated a sensitivity and specificity of 100% and 45% for the PZ, and sensitivity and
specificity of 100% and 40% for the TZ. Ocak et al. [72] developed a CAD system
using PK analysis for prostate cancer diagnostics in patients with biopsy-proven
lesions. In their framework, four PK parameters (K", k v, , and the area un-
der the gadolinium concentration curve) were determined and compared for can-
cer, inflammation, and healthy peripheral. Their results showed improvement in
prostate cancer specificity using the K¢ and k’ parameters over that obtained
using conventional 75—weighted MRI. An automated DCE-MRI CAD system for
prostate cancer detection was proposed by Viswanath et al. [73]. Prostate borders
were segmented using an ASM, and a nonrigid registration scheme (affine and thin
plate spline) was employed to map the whole mount histological sections onto cor-
responding 2D DCE-MRI. In order to classify prostate tissue, a local linear embed-
ding approach [74] was used to create a feature vector using local neighborhood
intensities. Then, a k-means clustering approach was used for the classification

and the system achieved an accuracy of about 77%. Their framework was later
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extended in [75] by combining 7,— weighted features and DCE-MRI functional
features. The system validation showed that the integration of both modalities
(A, of 0.815) has a better performance of either individual modalities (0.704 for
T, —weighted MRI and 0.682 for DCE-MRI). A semi-automated framework by Vos
et al. [76] classified prostate lesions using quantitative PK maps and 7} estimates.
PK features were extracted from a user-defined ROI around the prostate and a
SVM was used to estimate the likelihood of malignancy. Based on the ROC anal-
ysis, the reported results showed that the system had an accuracy of 83% in the
classification of the ROIs with abnormal enhancement patterns in the PZ. Ampeli-
otis et al. [77] proposed a semi-automated multi-parametric CAD system that used
T 2 -weighted and DCE-MRI. The T;—weighted pixel intensities and the four low-
frequency coefficients of the discrete cosine transform were used as features and
probabilistic neural networks were employed as the classifier. Based on the ROC
analysis (A, of 0.898), their study concluded that the fused 7>—weighted and dy-
namic MRI features outperform that of either modalitys features alone. A similar
CAD system was proposed by Litjens et al. [78] that employed an ASM to segment
the prostate. In order to classify the segmented prostate voxels, the ADC, K",
and k° parameters were estimated and a SVM classifier with a radial basis func-
tion kernel was used. The validation results showed a sensitivity of 74.7% and
83.4% with seven and nine FPs per patient, respectively. Vos et al. [75] utilized
an automated CAD system for the detection of prostate cancer. Just as in [78],
the prostate was segmented using an ASM-based technique. Then, multiple ROIs
were located within the segmented prostate using peak and mean neighborhood
intensity and ADC values. These values and the differences between the peak and
the mean were again used as features for ROI classification. In addition, the 25
percentile T , 25 percentile ADC, 25 percentile wash-out, 50 percentile T} , 75 per-
centile K%  and 75 percentile v, were used as features. The resulting feature
vector was classified using an LDA classifier. This system had an A, of 0.830.20. A

maximum A, of 0.88 was reported for high-grade tumors, but the system had dif-
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ticulty classifying lower grade tumors, achieving a maximum A, of 0.74. Another
semi-automated multi-parametric system by Peng et al. [79] utilized T, —weighted,
DCE-MRI and DWI. Candidate features, including the T 2 -weighted intensity
skew, the K" and the average and 10th percentile ADC, were calculated from a
manually-selected ROI Then, an LDA classifier was used to differentiate prostate
cancer from normal tissue in those ROIs. Their CAD system concluded that the
best diagnostic performance (A, of 0.95 £ 0.02, SEN of 0.82, and SPE of 0.953) is
obtained by combining the 10" percentile ADC, average ADC, and T,—weighted

intensity skewness features.

TABLE 2: Summary of the discussed prostate segmentation and registration tech-
niques and their experimental performance. Note that DIM and AL stand for data
dimension (i.e., 2D, 3D, or 4D) and the automation level (i.e., automated or semi-
automated), respectively.

Study DIM, AL, and Methods Data and Performance
Allen et | e« 3D e 22 data sets
al. [44] e Automated e MAD: 2.8£0.82
e ASM-based segmentation
Klein et | e« 3D e 38 data sets
al. [46] e Automated e Median DSC: 0.82
o Affine + B-Splines Registra-
tion
o Atlas-based segmentation
Zhu et | e 3D e 26 data sets (288 slices)
al. [45] e Automated e RMSD: 5.481+2.91
e Hybrid 2D+3D ASM
Flores- e 3D e 1 data set (19 slices)
Tapia et | e Semi-automated e DSC: 0.93£0.005
al. [47] e Edge detection
Toth et | e« 3D e 150 slices
al. [49] e Automated e Average OR: 0.83, average
e Unsupervised spectral clus- SEN: 0.89, average SPE:
tering 0.86, and average PPV:
e ASM-based segmentation 0.93
Klein et | o 3D e 50 slices
al. [8] e Automated e Median DSC: 0.85
e Affine + B-splines registra-
tion
e Atlas matching
continued on the next page ...
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TABLE 2 - continued from the previous page

Study DIM, AL, and Methods Data and Performance
Vikal et | e 3D e 3 data sets (39 slices)
al. [50] e Semi-automated e DSC: 0.93+0.3 and MAD:
e ASM 2.0040.6 (mm)
Makni et| o 3D e 12 data sets
al. [55] e Automated e Mean HD: 9.62 (mm), GD:
o ASM 2.39 (mm), OR: 0.84, VPC:
0.90, and DSC: 0.91
Liu et| o 2D e 10 data sets
al. [53] e Automated e DSC:0.91+0.03
o Level-set-based segmenta-
tion
Ozer et al. | o 2D e 20 data sets
[58] e Automated e SPE: 0.78, SEN: 0.74, and
e SVM and RVM DSC: 0.51 for RVM
e SPE: 0.74, SEN: 0.79 and
DSC: 0.52 for SVM
Artan et| o 2D e 21 data sets
al. [57] e Automated o A.: 0.790+0.12 and DSC:
e Cost-sensitive conditional 0.4640.26
random field
Liu et| o 3D e 11 data sets
al. [56] e Automated e SPE: 0.896, SEN: 0.894,
o fuzzy MRFs and DSC: 0.622
Gao et| o 3D e 48 data sets
al. [60] e Automated e DSC: 0.8440.03 and 95%
o Affine registration HD: 8.10+1.50 (mm) (33
o Level set segmentation data sets)
e DSC: 0.82+0.03 and 95%
HD: 10.22+4.03 (mm) (15
public data sets)
Martin et | e 3D e 36 data sets
al. [61] e Automated e Median DSC: 0.86 and
e Affine + Multi-resolution Average surface error:
Demons registration 2.4Imm
o ASM
Dowling et | e 3D e 50 data sets
al. [62] e Automated e Median DSC: 0.86 and Av-
e Diffeomorphic demons regis- erage surface error: 2.0

tration
Atlas-based segmentation

(mm)

continued on the next page...
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TABLE 2 - continued from the previous page

Study DIM, AL, and Methods Data and Performance

Ghose et | e 3D e 15 data sets

al. [64] e Semi-automated e DSC: 0.91+0.04 and
e Affine + nonrigid Demon 95%HD: 4.6942.62 (mm)

registration

e Graph-cut segmentation

Ghose et | e 2D e 15 data sets

al. [65] e Automated e DSC: 0.88+0.11; HD:
o Affine registration 3.38+2.81 (mm), and
o AAM-based segmentation MAD: 1.324+1.53

AMM: Active appearance model.

ASM: Active shape model.

DSC: Dice similarity coefficient: DSC = %
where, TP: true positive, FP: false positive, FN: false negative.

GD: Gravity distance.

HD: Hausdorff distance.

MD: Mean distance.

MAD: Mean absolute distance.

N/A: Not applicable.

OR: Overlap ratio.

OAE: Overlapping area error; OAE = Egiﬁﬁ?

PPV: Positive predictive value; PPV = TPTEFP

RMSD: Root mean squared distance.

RVM: Relevance vector machine.

SEN: Sensitivity; SEN = TP +FN

SPE: Specificity; SPE = +FP, ; where TN: true negative.

VPC: Volume properly contoured.
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TABLE 3: Summary of MRI-based CAD systems for prostate cancer detection and
diagnosis, including segmentation method, selected features, classifier, and exper-
imental performance.

Study Technique Features Performance
Chan et | T2WLDWI,| e Manual ROIs 5 Subjects (33 im-
al. [66] T2 map e Gabor filter ages)

e SVM o A.:0.83+0.064
Litjens et | DWI, e ASM e 188 subjects
al. [78] DCE-MRI, | e T)—weighted e SEN: (0.747 (at 7 FP
T2WI intensities, per patient) and
K" ke, and 0.834 (at 9 FP per
ADC patient)
e Affine + B-Splines
Registration
o Atlas-based seg-
mentation
Engelbrecht | DCE-MRI | e Manual ROIs e 36 subjects
et al. [68] e time to peak, peak | o A, PZ:0.79
enhancement, o A, CZ:0.70
washout
e N/A
Tiwari et | T2WI, e Manual ROIs e 36 subjects
al. [80] MRS e Random Forest o AUC =0.79£0.02
e N/A
Rouviere et | DCE- e Manual ROIs e 22 subjects
al. [70] MRI,T2WI | ¢ N/A o ACC: 059 (I3-
e Evaluation and weighted MRI)
scoring by three ACC: 0.75 (DCE-
independent MRI)
readers
Kim et | DCE- e Manual ROIs e 53 subjects
al. [27] MRI, T2WI | e Wash-in rate e ACC: 0.62 (T5-
e A cut-off thresh- weighted MRI)
old selected by ACC: 0.88 (DCE-
a radiologist dif- MRI)
ferentiate cancer
from normal
tissue
Madabhushi| DCE- e N/A 5 data set (33
et al. [67] MRI, T2WI,PDe Gabor filter slices)
e Bayes classifier SEN: 042, SPE:
0.97 and PPV: 0.43
continued on the next page ...
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TABLE 3 - continued from the previous page

Study Technique Features Performance
Madabhushi| DCE- e N/A e 5 data set (33
et al. [81] MRI, T2WI | e Gabor filter slices)

e Bayes and kNN- A,:0.957
nearest neighbor
classifiers
Fiitterer et | DCE-MRI | e Manual ROIs e 34 subjects
al. [69] e wash-out slopes o A.:0.68
e Prospectively
evaluation  and
scoring of the se-
lected features by
two independent
radiologists
Viswanath | DCE-MRI | ¢ ASM e 21 subjects
et al. [73] e Ratio of the wash- || e SEN: 60.72%, SPE:
in and wash-out 83.24%, and ACC:
rates 77 2%
K-means cluster-
ing
Ocak et al. | T2W], e Manual ROIs e 50 subjects
[72] DCE-MRI e the area wunder | e SEN: 0.94, SPE:
the  gadolinium 0.37, PPV: 50,
concentration and NPV: 0.89
curve (Tr-weighted
Logistic regression MRI)
modeling SEN: 0.73, SPE:
0.88, PPV:75,
and NPV: 0.75
(DCE-MRI)
Puech et al. | DCE-MRI | e Manual ROIs e 84 subjects
[71] e Wash-in and || e for PZ SEN: 100%
wash-out slopes and SPE: 45%
Automatic scoring for TZ SEN: 100%
algorithm and SPE: 40%
Vos et | DCE-MRI, | e Manual ROIs e 34 subjects
al. [76] T2WI e Quantitative e A.:0.83

features were
extracted from a
kinetic modelling
of the enhance-
ment curve

SVM

continued on the next page...
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TABLE 3 - continued from the previous page

Study Technique Features Performance
Ampeliotis | T2WI, e Manual ROIs e 10 subjects
et al. [77] DCE-MRI o Th-weighted fea- | o A,:0.89 (T>-
tures  (intensity, weighted ~ MRI)
and the intensity and (DCE-MRI)
variance)
Probabilistic neu-
ral networks
Viswanath | DCE-MRI | ¢ ASM e 6 subjects (18 Im-
et al. [82] e T, features (stan- ages)
dard  deviation, || e A.:0.815+ 0.029
gradient, Haralick
feature), and DCE
features (washin
and wash-out)
Bayes  classifier
and random forest
Lopes et al. | DWI e Manual ROIs e 17 subjects
[83] e Fractal dimen- || e SEN:0.83 and SPE:
sion, and Multi- 0.91 for AdaBoost
fractional Brown- || e SEN:0.85and SPE:
ian motion 0.93 for SVM
SVM and Ad-
aBoost
Shah et al. | T2WI, e K-means e 24 subjects
[84] DWI, o T, intensities | ¢ F-M: 0.93, Raters
DCE-MRI and Quantitative agreement

features were
extracted from a
kinetic modelling
of the enhance-
ment curve and
ADC

SVM

(Kappa): 0.89

continued on the next page ...
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TABLE 3 - continued from the previous page

Study

Technique

Features

Performance

Sung et al.
[85]

DCE-MRI

e Manual ROIs
e T, baseline and

peak signal in-
tensities, initial
up-slope, wash-
in and washout
rates, time to peak,
percentage of rela-
tive enhancement,
percentage en-
hancement ratio,
time of arrival

e SVM

e 42 subjects

e SEN: 0.77, SPE:
0.77, and ACC:
0.83

Vos et
al. [75]

DWI,
DCE-MRI

e ASM
o T, intensities

and Quantitative
features were
extracted from a
kinetic modelling
of the enhance-
ment curve and
ADC

LDA

e 200 subjects

e SEN: 041 (at 1
FPs), 0.65 (at 3
FPs), and 0.74 ( at
5 FPs)

Niaf et al.
[86]

T2W],
DCE-MR],
DWI

e Manual ROlIs
o T Quantitative

features were
extracted from a
kinetic modelling
of the enhance-
ment curve

Nonlinear SVM,
LDA, kNN-
nearest neighbor,
and naive Bayes
classifiers

e 30 subjects
e A.:0.89

Peng et al.
[79]

T2W],
DCE-MR],
DWI

e Manual ROlIs
o T, Quantitative

features were
extracted from a
kinetic modelling
and ADC

e LDA

e 48 subjects
o A.:0.954+0.02

AMM:
ASM:

Active appearance model.
Active shape model.

continued on the next page...
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TABLE 3 - continued from the previous page

Study | Technique | Features | Performance
AAC: Accuracy: ACC = 5ot
where, TP: true positive, FP: false positive, TN: true negative.
SVM: Support vector machine.
LDA: Linear discriminate analysis
F-M: F-Measure.
IAUC: Initial area under the time-concentration curve.
ADC: Apparent diffusion coefficient.
DSC: Dice similarity coefficient: DSC = %
where, TP: true positive, FP: false positive, FN: false negative.
GD: Gravity distance.
HD: Hausdorff distance.
MD: Mean distance.
MAD: Mean absolute distance.
N/A: Not applicable.
OR: Overlap ratio.
OAE: Overlapping area error; OAE = ?gﬁﬁ%
PPV: Positive predictive value; PPV = .
RMSD: Root mean squared distance.
RVM: Relevance vector machine.
SEN: Sensitivity; SEN = 5l
SPE: Specificity; SPE = T;fFP ; where TN: true negative.
VPC: Volume properly contoured.

In summary, developing noninvasive CAD systems for the detection and

diagnosis of prostate cancer is an area of research interest. Current CAD sys-
tems focus mainly on the initial voxel classification stage by obtaining likelihood
maps that combine information from MR images using mathematical descriptors.
State-of-the art studies showed that voxel basis discrimination between benign
and malignant tissue is feasible with good performances. However, the major-
ity of these studies were performed by radiologists who selected an ROI (small
window) around the prostate and followed signal changes within these ROIs. In
addition, the final diagnosis and patient management is left to the radiologist. Un-
fortunately, such approaches not only require manual interaction of the operators,
but also ROI selection biases the final decision and brings up the same issue of

over- or under-estimating the problem in the entire gland, just as with biopsy.
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Moreover, manual ROI selection and function curve generation from these ROIs
assume that the prostates (prostate contours) remain exactly the same from scan to
scan. Nonetheless, prostate contours may not always exactly match due to patient
movement or breathing effects; therefore, motion correction techniques should be
applied first before ROI selection. Also, to automate the algorithm and to cancel
ROI dependency, segmentation approaches that can separate the prostate from the

surrounding structures are needed.
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CHAPTER IV

A NOVEL IMAGE-BASED APPROACH FOR EARLY DETECTION OF
PROSTATE CANCER USING DCE-MRI

This chapter presents a novel non-invasive approach for early diagnosis
of prostate cancer from dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI). In order to precisely analyze the complex 3D DCE-MRI of the prostate,
a novel processing frame work that consists of four main steps is proposed. The
first step is to isolate the prostate from the surrounding anatomical structures
based on a Maximum a Posteriori (MAP) estimate of a log-likelihood function that
accounts for the shape priori, the spatial interaction, and the current appearance
of the prostate tissues and its background (surrounding anatomical structures).
In the second step, a non-rigid registration algorithm is employed to account for
any local deformation that could occur in the prostate during the scanning process
due to the patient’s breathing and local motion. In the third step, the perfusion
curves that show propagation of the contrast agent into the tissue are obtained
from the segmented prostate of the whole image sequence of the patient. In the fi-
nal step, we collect two features from these curves and use a k,-Nearest Neighbor
classifier classifier to distinguish between malignant and benign detected tumors.
Moreover, in this chapter, we introduce a new approach to generate color maps
that illustrate the propagation of the contrast agent in the prostate tissues based
on the analysis of the 3D spatial interaction of the change of the gray level values
of prostate voxels using a Generalized Gauss-Markov Random Field (GGMRF)

image model. Finally, the tumor boundaries are determined using a level set de-
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formable model controlled by the perfusion information and the spatial interac-
tions between the prostate voxels. Experimental results on 30 clinical DCE-MRI

data sets yield promising results.

A. INTRODUCTION

Neoangiogenesis is the key component of the development of prostate can-
cer, composed of increases in both the density and permeability of blood vessels
within the cancerous area [87,88]. These microvascular alterations result in dif-
ferences in the enhancement pattern of prostate cancer compared with benign
prostate tissue when performing Dynamic Contrast-Enhanced MRI (DCE-MRI).
These differences are multifactorial and include earlier and more intense enhance-
ment as well as more rapid washout of contrast material within the tumor [89].
Studies have shown dynamic contrast enhancement to improve the performance
of MRI for the localization of prostate cancer, raising the sensitivity for tumor in
comparison with either 7,-weighted imaging alone. This in turn contributes to
a role for DCE-MRI in directing prostate biopsy [88] as well as in preoperative
staging and surgical planning [69,90]. DCE-MRI poses multiple challenges stem-
ming from the need to image very quickly, to capture the transient first-pass transit
event, while maintaining adequate spatial resolution. Other factors such as vary-
ing signal intensities over the time course of agent transit also complicate segmen-
tation procedures. Nonrigid deformations, or shape changes, may occur related to

pulsatile or transmitted effects from adjacent structures, such as bowel.

Most prostate CAD researchers [27,68-71,76] have focused on the initial
voxel classification stage. They obtained likelihood maps by combining informa-
tion from MR images using mathematical descriptors. These studies showed on

a voxel basis that the discrimination between benign and malignant tissue is fea-
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sible with good performances. However, these studies require user interaction to
select a ROI around the prostate. In addition to the localization of the ROI of the
tumor, the final diagnosis and patient management is left to the radiologist. How-
ever, the majority of these studies were performed by radiologists who selected a
region of interest (ROI) (a small window) around the prostate and followed sig-
nal change within this region of interest. Unfortunately, such approaches not only
require manual interaction of the operators, but also ROI selection biases the fi-
nal decision and brings up the same issue of over or underestimating the problem
in the entire graft, just as with biopsy. Moreover, manual window selection and
generating a function curve from this window over a time-sequence of images, as-
sumes that the prostates (prostate contours) remain exactly the same from scan to
scan. However, prostate contours may not always exactly match due to patient
movement or breathing effects; therefore, image registration schemes should be
applied first before ROI selection. Also, to automate the algorithm and to cancel
ROI dependency, segmentation algorithms that can separate the prostate from the
surrounding structures are needed. To overcome these limitations, we propose an

automatic framework for the early diagnosis of prostate cancer using DCE-MRI.

The proposed framework segments the prostate from the surrounding
anatomical structures based on a MAP estimate of a new likelihood function. To
handle the object inhomogeneities and variability and overcome image noise, the
proposed likelihood function accounts for the visual appearances of the prostate
and background, 3D spatial interaction between the prostate voxels, and a learned
3D shape model. Second, in order to account for any local prostate deformations
that could occur during the scanning process, a nonrigid registration algorithm is
employed, which is based on deforming a target prostate object over evolving iso-
contours to match a reference object. The correspondences between the target and
reference objects are found by the solution of the Laplace equation as described in

Section IV.B.2 In the third step, agent kinetic curves that show the contrast agent
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propagation into the tissue are obtained, and then used to collect two features
to distinguish between malignant and benign detected tumors using a k,-nearest
neighbor classifier. Finally, parametric map displays that illustrate the propagation
of the contrast agent into the prostate tissue are constructed for visual assessment
and characterization of the physiological data. Details of the proposed framework

are described in the following sections.

B. Methods

In this chapter we introduce a new, automated, and noninvasive framework
for early diagnosis of prostate cancer by analyzing 3D DCE-MRI time series perfu-
sion data is proposed see Figure 17. In the proposed DCE-MRI based framework,

the classification of prostate cancer is performed using the following five steps:

1. Segmentation of the prostate objects from the surrounding abdominal struc-
tures on the DCE-MR images.

2. Nonrigid registration for local motion correction.

3. Distinguish between malignant and benign detected tumors.

The overall framework has been tested on a total of 30 dynamic DCE-MRI perfu-

sion data sets to permit us to draw statistically meaningful inferences

1. Segmentation of the Prostate Using a Joint MGRF Model

The segmentation of the prostate is a challenge, since the gray-level distri-
bution of the prostate and surrounding organs is not highly distinguishable and

because of the anatomical complexity of prostate. This stage proposes a power-
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FIGURE 17: The proposed CAD system for early detection of prostate cancer
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tul framework for prostate segmentation based on a learned shape model and an
identifiable joint Markov-Gibbs Random Field (MGRF) model of DCE-MRI and
”object-background” region maps. The joint-MGRF model is fundamentally a
model that relates the joint probability of an image and its object-background re-
gion map, to geometric structure and to the energy of repeated patterns within the
image. The basic theory behind such models is that they assume that the signals
associated with each pixel depend on the signals of the neighboring pixels, and
thus explicitly take into account their spatial interactions, and other features, such

as shape.

LetQ = {0,...,Q — 1}, L = {ob,bg}, and U = [0, 1] be a set of () integer
gray levels, a set of object (“ob”) and background (“bg”) labels, and a unit interval,

respectively. Let a 3D arithmetic grid R = {(z,y,2) : = 0,1,..., X — L,y =
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0,1,...,Y —1;2 = 0,1,...,Z — 1} support grayscale DCE-MRI g : R — Q and
their binary region maps m : R — L, and probabilistic shape model s : R — U.
The shape model allows for registering (aligning) 3D prostate DCE-MRI. The DCE-

MR data g and its region maps m are described with a joint probability model:

P(g, m) = P(g|m)F (m) (1)

where P(g|m) is a conditional distribution of the images given the map and
P,(m) = P,(m)P(m) is an unconditional probability distribution of maps. The
map model A,(m) = Ps(m)P(m) has two independent parts: a shape prior being
a spatially variant independent random field of region labels P;(m), for a set of
co-aligned training DCE-MR data, and a 2"-order MGRF model P(m) of spatially

homogeneous evolving map m.

The Bayesian MAP estimate of the map, given the MR data g,

m* = arg max L(g, m) maximize the log-likelihood function:

L(g, m) = log(P(g|m)) + log(F(m)) (2)

In this work we focus on accurate identification of the spatial interaction
between the prostate voxels (P, (m), and the intensity distribution for the prostate

tissues, (P(g/m)), as shown in Figure.18.
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FIGURE 18: Ilustration of the Joint Markov-Gibbs random field (MGRF) image
model of the prostate DCE-MRI.
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To perform the initial prostate segmentation, a given 3D DCE-MR images
is aligned to one of the training 3D DCE-MR images. The shape model provides
the voxels-wise object and background probabilities being used, together with the
conditional image intensity model P(g|m), to build an initial region map. The final
Bayesian segmentation is performed using the identified joint MGRF model of the

DCE-MRI and region maps.

a. Conditional Intensity Model ~The specific visual appearance of the
prostate in each data set to be segmented is taken into account by modeling a
marginal gray level distribution with a linear combination of discrete Gaussians
(LCDG) [91-93]. Unlike the conventional modeling with a mixture of Gaussians [94]
or other simple distributions [95], one per dominant mode, we accurately approxi-
mate the empirical signal distributions with a linear combination of sign-alternate
discrete Gaussians, and partition the LCDG for the whole image into sub-models

relating to each dominant mode, i.e. the prostate and the background.

A discrete Gaussian (DG) ¥y = (1(¢|f) : ¢ € Q) is defined as a discrete
probability distribution with () components obtained by integrating a continuous
1-D Gaussian density ¢(g|)) with parameters § = (p,0), where p is the mean

and o2

is the variance, over () intervals related to the successive signal values
in Q: if ®o(q) = [?_¢(2]0)dz is the cumulative Gaussian probability function,
then (0(0) = ©4(0.5), ¥(qlf) = Py(q¢ + 0.5) — Py(q¢ — 0.5) forqg = 1,...,Q — 2,
and ¥(Q — 110) = 1 — ®p(Q — 1.5). The LCDG, Pweo = [pwel(q) : ¢ € QJ;

>_scqPwe(q) = 1, with two positive dominant and multiple positive, ¢}, > 2,

and negative, C\, > 0, DGs subordinate is defined as follows [92]:

Cp Cn
pw,@(Q) = Z wp:k¢(Q|9p:k’) - Z wn:l¢(£]’9n:l) (3)
k=1 =1
with the non-negative weights w = [w.x, wy,] that meet the obvious constraint

chil W — S wyy = 1. The subordinate DGs approximate closely the devia-

tions of the empirical distribution from the conventional mixture of the dominant
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positive DGs.

Given the number K of the dominant DGs (in our particular case K = 2),
the numbers C,, — K and C), of the subordinate components, as well as the pa-
rameters w, © (i.e., the weights, the means, and the variances) of all the DGs are
estimated first with a sequential initializing expectation maximization (EM) based
algorithm producing a close initial LCDG-approximation of the empirical distri-
bution. Then, under the fixed numbers of the components, C}, and C,,, all the other
parameters are refined with an EM algorithm, modified to account for the sign-
alternate components [96]. The refined LCDG model is finally partitioned into
two LCDG sub-models, one per class, by associating the subordinate DGs with
the dominant components in such a way that the misclassification rate is minimal.
The LCDG of Equation 3, including the numbers C,and C,, of its components, is
identified using the expectation-maximization (EM)-based algorithm introduced

in [97-103].

b.  Spatial Voxel Interaction Model To overcome the noise effect and to en-
sure the homogeneity of the segmentation, spatial voxel interactions between the
region labels are also taken into account using a generic MGREF of the region map.
A generic MGRF of region maps [96, 104] accounts only for 2D pairwise interaction
between each region label and its characteristic neighbors. Generally, the interac-
tion structure and the Gibbs potentials can be arbitrary and are identified from
the training data. For simplicity, we restrict the interaction structure to the nearest
voxel 26- neighborhood only as shown in Figure. 19. By symmetry considerations,
we assume that the potentials are independent of relative orientation of each voxel
pair and depend only on intra- or inter-region position (i.e. whether the labels are
equal or not). Under these restrictions, it is the 3D extension of the conventional
auto-binomial, or Potts model differing only in that the potentials are estimated

analytically.
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FIGURE 19: 3D 2" order MGRF neighborhood system. Note that the reference
voxel is shown in red and d represents the absolute distance between two voxels

in the same and adjacent MRI slices, or cross-sections.

The 26-neighborhood has three types of symmetric pairwise interactions
specified by the absolute distance a between two voxels in the same and adja-
cent MRI slices (¢ = 1, v/2, and /3, respectively): (i) the closest pairs with the
inter-voxel coordinate offsets N; = {(1,0,0),(0,1,0),(0,0,1)}; (ii) the farther di-
agonal pairs with the offsets N 5 = {(0,1,£1),(1,0,£1),(1,%1,0)}, and (iii) the
farthest diagonal pairs with the offsets N 5 = {(1, £1, £1)}. The potentials of each
type are bi-valued because only the coincidence of the labels is taken into account:
Vi = {Vaeq; Vane} Where Vo = Vo(L,I)if I = I"and Ve = VL (I,U) if I # U;
a € A = {1,v2,v3}. Then the MGRF model of region maps is as follows:

1
P(m) = s Z Z Va(May 2, Maté ytn,2+r) 4)
(w,y,z)ERGEA (&m,k)ENg

where 7 is the normalizing factor (partition function).
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To identify the MGRF model described in the equation, approximate analyt-
ical maximum likelihood estimate of the 3D Gibbs potentials, V, ¢y, Vi ne are derived

in line with [91, 96, 105].

1

Va,eq = _‘/;L,I'IO =2 (fa,cq(m) - 5) (5)

where f, .,(m) denotes the relative frequency of the equal label pairs in the equiv-

alent voxel pairs {((z,v, 2), (z+&, y+n,2+k)): (z,y,2) € R, (e +&,y+n,2+kK) € R;
(&,m,K) € N,}. of a region map m of a given DCE-MRI aligned in accord with the

prior shape model.

c. Probabilistic Shape Model To enhance the segmentation accuracy, ad-
ditional constraints based on the expected shape of the prostate are introduced
by co-aligning each given DCE-MR data to a training database and using a soft
probabilistic 3D prostate shape model To circumvent this limitation, we use a soft
probabilistic 3D prostate shape model Fy(m) =[], , .)cg Sm,.,..; where Sy, _ is
the empirical probability that the voxel (z,v, z), belongs to the prostate (L = ob)
or the background (L = bg) given the map (see Figure.21). The soft template (see
Figure.22) is constructed and updated as outlined in Algorithm IV.B.1.c and the

proposed prostate segmentation process can be summarize as in Algorithm IV.B.1.c
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FIGURE 20: Forming the prostate shape prior onto 2D: (a) training samples, (b)

manually segmented prostate regions, and (b) their affine Ml-based alignment.

Note that the registration enhances the overlap between the prostate objects and

thus reduce the variability of the final estimated shape.
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FIGURE 21: 3D prostate shape model projected onto 2D axial (a), saggital (b), and

coronal (c) planes for visualization.
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FIGURE 22: Gray-coded (a) and color-coded (b) axial view of the prostate shape

prior. initial region map. The final Bayesian segmentation is performed using the
identified joint MGRF model of the DCE-MRI data and its region maps. In total,
the proposed prostate segmentation approach involves the steps summarized in

Algorithm IV.B.1.c
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Algorithm 1 3D Prostate Shape Model

Initialization

e Co-align the 3D MRI training sets collected from different subjects using

a rigid 3D registration maximizing their mutual information (MI) [106].
e Manually segment the prostate from the aligned sets.
e Estimate the voxel-wise probabilities by counting how many times each

voxel (z,y, z) was segmented as the prostate.

Updating Prior Shape Model:

e To enhance the segmentation of the current prostate volume, the prior
probabilistic shape model is updated by adding the previous segmented

3D prostate data to the prior calculated shape model.
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Algorithm 2 Prostate Segmentation Approach

Input: 3D DCE-MRI prostate data g to be segmented.

Output: segmented prostate border (the final estimate m).

e Training Phase:

1.

2.

3.

Co-align the 3D DCE-MRI training sets collected from different sub-
jects using a rigid 3D registration maximizing their mutual informa-
tion (MI) [106].

Manual delineation of the prostate borders from the co-aligned data

Estimate the voxel-wise probabilities by counting how many times

each voxel (z,y, z) was segmented as the prostate.

o Testing Phase:

1.

Perform an affine alignment of a given 3D DCE-MRI to an arbitrary
prototype prostate from the training set using MI [106] to obtain the

learned probabilistic shape model Ps(m).

Estimate the conditional intensity model P(g|m) by identifying the
bimodal LCDG.

Use the intensity model that is estimated using LCDG and the
learned probabilistic shape model to perform an initial segmenta-
tion (initial region map) of the prostate.

Use the initial region map to estimate the potential for the Potts
model using Equation (5) and to identify the MGRF model P(m)
of region maps.

Improve the region map using voxel-wise stochastic relaxation (It-
erative conditional mode-ICM [107]) through successive iterations
to maximize the log likelihood function of Equation (2) until the log

likelihood remains almost the same for two successive iterations.

Update the Shape Prior: by adding the current segmented 3D

prostate data to the prior calculated shape model.
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2. Nonrigid Registration

Due to patient breathing and local movement, accurate registration is a main
issue in DCE-MRI sequences. A tremendous number of nonrigid image registra-
tion techniques have been developed, e.g., [60,63]. However, more robust, effi-
cient, and sophisticated registration techniques are required. In order to avoid
problems associated with intensity variations over the temporal dynamic contrast
agent data set, the proposed approach exploits geometric features, rather than im-
age intensities. These geometric features are estimated from the electric field vec-
tors that are calculated by solving the Laplace second-order PDE between the seg-
mented prostate borders. Estimating these field vectors allow for co-allocation of
point-to-point correspondences between the segmented prostate objects. Mathe-

matically, the second-order Laplace PDE defines a scalar field v, defined as:

0y 0%y

2 = — _— =
V’y—ax2+ay2 0 (6)

The solution y(z, y) of Equation (6) results in intermediate equipotential sur-
faces and streamlines (field lines) that are everywhere orthogonal to all equipo-
tential surfaces and establish natural point-to-point correspondences between the
boundaries (see e.g., the line connecting the points B,; and B;; in Figure. 24). In
medical imaging applications, the Laplace-based approaches have been previously
used e.g., for colon surface flattening and centerline extraction [108] and thickness
measurements [109-111]. To the best of our knowledge, the Laplace-potential-
based method is the first of its kind to be applied to the motion correction in
DCE-MRI images for further improved analysis of the DCE-MRI data. The pro-
posed Laplace-based nonrigid registration approach is based on deforming each

pixel of the segmented prostate objects over a set of nested, equi-spaced contours
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(i.e., iso-contours), which is generated for both the target and reference prostate
objects as shown in Figure 23. To find the iso-contours, a distance map is gener-
ated inside the binary object area by finding the minimum Euclidean distance for
every inner point to the object boundary. The external points are excluded from
consideration. Then, the Laplace equation is applied to the respective reference
and target iso-contours to co-locate their corresponding points. The basic steps
of the Laplace-potential-based nonrigid registration are summarized in Algorithm

IV.B.2.

(d) (e) (f)

FIGURE 23: Illustration of the iso-contours generation: the reference (a) and target
(d) images, the reference (b) and target (e) distance maps, and reference (c) and

target (f) iso-contours.
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Algorithm 3 Laplace-Based Iso-Contours Nonrigid Registration

Input: segmented prostate objects.

Output: point-to-point correspondences.

1. Generate the distance maps inside the segmented prostate as shown in Fig-

ure 23 (b, e).

2. Generate nested, iso-contours for both target and reference distance maps as

shown in Figure. 23 (c, f).

3. Initial condition: Set the potential ¥ maximum at the target iso-contour and

minimum (equal zero) at the reference iso-contour.
4. Solve Eq. (6) between respective iso-contours using the above initial condi-
tion.

5. Compute components of the gradient vectors E, = g—; and £, = g_Z'

6. Find the point-to-point correspondences between the iso-contours being

matched by forming the streamlines.

7. Repeat steps 3 to 6 for the next set of corresponding iso-contours.
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FIGURE 24: 2-D schematic illustration of co-allocation of the point-to-point corre-

spondences between two boundaries by a potential field.

3. Classification, Performance Analysis, and Visualization of Perfusion Indexes

After the nonrigid alignment, the wash-in and wash-out curves are con-
structed by calculating the average intensities of prostate regions for each time
sequence. These curves show the response of the prostate tissues as the contrast

agent perfuses for each image section (see Figure 32).

a. Color Map Generation and Tumor Boundary Determination To character-
ize the physiological data, color-coded maps that illustrate the propagation of the
contrast agent in the prostate tissues are constructed. To construct the initial color
maps, we have to estimate the changes in image signals ¢, ,, . due to the contrast
agent. These changes are estimated from the constructed perfusion curves as the

difference between the signals of image sequences at ¢, and ¢, (see Figure. 25).

To preserve continuity (remove inconsistencies), the initial estimated 4, .

values are considered as samples from a Generalized Gauss-Markov Random Field
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FIGURE 25: Estimating ¢ from the perfusion curve as the difference between the

peak and initial signal of image sequences.

(GGMRF) image model of measurements with the 26-voxel neighborhood (Fig-
ure 18). Continuity of the constructed 3-D volume (Figure 26) is amplified by using

their Maximum a Posteriori (MAP) estimates as shown in [112]:

(67

. ~ o ~
x)sz = arg plln 5$?y7z - 51’7y’z + p A/B : : n($7y7z)7(a:/7y,’z/) 51’7y’2 - 5w,7y/7zl

1
Y,z 2"y 2 ) V(g y,2)

o)

whereJ, , . and &QW denote the original values and their expected estimates, v, ,, .

is the 26-neighborhood voxel set (Figure 18), . is the GGMRF potential, and p and
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FIGURE 26: Enhanced perfusion estimation and continuity analysis using the 3D
GGMRF image model.

A are scaling factors. The parameter § € [1.01,2.0] controls the level of smooth-
ing (e.g., smooth, 3 = 2, vs. relatively abrupt edges, 3 = 1.01). The parameter
a € {1,2} determines the Gaussian, o = 2, or Laplace, o = 1, prior distribution of
the estimator. Then, the color maps are generated based on the final estimated 5

(see Figure 33).

Finally, to allocate the boundary of the detected tumors, which is important
to determine the cancer stage in case of malignancy, we used a level set-based de-
formable model controlled by a stochastic speed function [113]. The latter accounts

for the perfusion information and spatial interactions between the prostate voxels.

C. PERFORMANCE EVALUATION AND VALIDATION

To evaluate the performance of the proposed framework, we used two types
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of error metrics, the voxel-based and distance-based errors. To calculate the voxel-
based error, we measure the True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) segmentation. Let |C|, |G|, and |g| denote volumes
(by the number of voxels) of the segmented volume, C, its ground truth, G, and
the MR data, g, respectively. Then TP = |CN G| is the overlapping between C and
G, TN=|g—CUG[;FP=|C-CnNnG|,and FN = |G - CNG]|.

The Dice similarity coefficient (DSC) measures set agreement between two
sets C, G and is defined as the union size of the two sets divided by the average

size of the two sets:

2ICNG
DSC(C’G>:CH|G+C|UG @)

We calculate the Positive Predictive Value (PPV), Sensitivity (Sens), and Dice

Coefficient (DSC) - as defined as [114]:

_ TP
PPV = TP+FP
_ TP
Sens = TPLFN (8)
_ 2xT P
DSC = 2T P+FP+FN
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FIGURE 27: 2-D schematic illustration of measuring segmentation errors between
the ground truth G and automatic segmentation C obtained by the our segmenta-

tion approach.

D. PATIENT DATA AND DCE-MRI ACQUISITION PROTOCOL

The performance of the proposed segmentation approach is evaluated by
applying it on 3D DCE-MRI prostate images. We observed that good selection of
a DCE-MRI imaging protocol is as important as the image analysis. The protocol
described below has been found to be optimal with the current MRI hardware
(Signa Horizon LX Echo speed; General Electric Medical Systems, Milwaukee, WI,
USA).

In our protocol, gradient-echo T1 imaging was employed by a Signa Hori-
zon GE 1.5 Tesla MR scanner using an additional pelvic coil. Images were taken
at 7 mm thickness with an interslice gap of 0.5mm. The repetition time (TR) was
50ms, the T was minimum with flip angle at 60° degrees, the band width was
31.25 kilohertz (kHz), the field of view (FOV) was 28¢m, and the number of slices

was 7. The DCE-MRI process started with a series of MRI scans which were used
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to establish a baseline in image intensity. These scans were performed without
the administration of contrast enhancing agents so that the tissue’s nonenhanced
image intensity could be established. In the next stage, 10 cubic centimeter (cc)
of gadoteric acid (Dotarem 0.5 millimole/milliliter (mmol/mL); Guerbet, France)
was administered intravenously at a rate of 3mL/s. At this point, a series of MRI
scans was performed every 3 seconds for 6 minutes, and every series contained 7

slices. Note that all the subjects were diagnosed using a biopsy (ground truth).

1. Prostate Segmentation Results

The proposed segmentation approach has been tested on DCE-MRI
sequences for 30 independent subjects. Figure 28 demonstrates some segmenta-
tion results of the prostate region at selected image sections for different subjects
and their associated False Positive (FP) and False Negative (FN) errors. For com-
parison, our segmentation results are compared to the radiologists tracing based
on the Positive Predictive Value (PPV), Sensitivity (Sens), and Dice Similarity Co-
efficient (DSC) [114] statistics for the proposed approach are summarized in Table
4. To highlight the advantage of integrating the shape prior with the intensity and
spatial interaction information in the joint MGRF probabilistic model, we segment
the prostate region based only on the intensity and spatial interaction information.
The segmentation results are shown in Figure 29 (d). It is clear that counting on
intensity and spatial interaction information only will not lead to accurate segmen-

tation due to the gray-levels inhomogeneities.
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FIGURE 28: Segmentation results: the segmentation results with error referenced
to the ground truth G is outlined in yellow (False Negative (FN): pixels segmented
as the prostate in GG but not segmented as the prostate with our approach) and red
(False Positive (FP): pixels segmented as the prostate with our approach but not

segmented as the prostate in the G .
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TABLE 4: Error statistics of the proposed segmentation approach. Note that SD,

stands for standard deviation.

PPV SEN DSC

Mean+SD | 0.98+0.004 | 0.846+0.004 | 0.923+0.004

TABLE 5: Comparative segmentation accuracies of the proposed prostate seg-
mentation against the shape-based (5B) approach [2] in comparison to the experts

ground truth (SD standard deviation).

Segmentation Technique

Proposed Approach | Shape-based(SB) approach [2]

Mean+SD 0.53+0.33 591+4.44

Two-tailed P-value 0.0001

To show the advantage of the proposed segmentation approach, all time
series images have been segmented using the shape-based approach proposed in
Tsai et al. [2]. The comparative results for a few of them are shown in Figure 30.
Table 5 compares the segmentation results over all test data sets with the known
ground truth (manual tracing by an imaging expert) and the differences are shown
to be statistically significant by the unpaired t-test (the two-tailed value P is less

than 0.0001).
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(@) (b) () (d)
FIGURE 29: Segmentation results of the first subject after 30 iteration: (a) typical
prostate DCE-MRI images. (b) the ground truth (c) segmentation results by inten-
sity, shape prior, and spatial interaction (d) segmentation results by intensity, and

spatial interaction only.
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FIGURE 30: Accuracy of our segmentation in comparison with [2]. Our segmen-
tation is outlined in blue and [2] in red with reference to the ground truth G in

white.
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2. Diagnostic Results

The ultimate goal of the proposed framework is to successfully distinguish
malignant from benign detected tumors by constructing the perfusion curves from

the DCE-MRI sequences (see Figure 31).

A High Perfusion
(a)

Signal Intensity (S(t))

I Low Perfusion
——

1
1 —p

[ 5

FIGURE 31: Estimation of the perfusion parameters for the classification of

prostate tumor (a) Dynamic sequence showing prostate-averaged voxel intensity
versus time, along with images at three different time (b) Prostate colored by wash-

in and wash-out.

The curves on Figure 32 show the response of the prostate tissues as the
contrast agent perfuses. The malignant subjects show an abrupt increase to the
higher perfusion values and the benign subjects show a delay in reaching their

peak perfusion (see Figure 32).

From these curves, we conclude that the peak signal value and the wash-
in slope are the two major features that can be extracted for the classification of
prostate cancer. To distinguish between benign and malignant cases, a k,,-Nearest
Neighbor classifier is used to learn the statistical characteristics of both benign and
malignant cases from the time-intensity curves of the training sets (see Figure 32).

The diagnostic accuracy of the k,, classifier was 98% using Leave One-Subject-Out
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FIGURE 32: Selected normalized signal intensity, averaged over the entire

prostate, with respect to the timing of contrast agent delivery for malignant (red)

and benign (blue) subject.

(LOSO) approach.

Following the classification, a visual assessment is made. Figure 33 presents
the color-coded maps over all image sections before and after applying the 3-D
GGMRF smoothing for three subjects involved in our study. Figures 34 and 36

show two examples of the tumor contours, determination for benign and malig-

nant subjects.
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FIGURE 33: Color-coded maps for four of the test subjects before and after the 3-D
GGMRF smoothing with p =1, A =5, = 1.01, o = 2, and 7,, = V2 and their
respective color-coded maps. The red and blue ends of the color scale relate to the

maximum and minimum changes, respectively.
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FIGURE 34: Color-coded maps of local tumor progression overlaid on anatomic
DCE-MRI data for one benign subject. The determined tumor contours are shown

in blue.
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FIGURE 35: Color-coded maps of local tumor progression overlaid on anatomic
DCE-MRI data for one benign subject. The determined tumor contours are shown

in blue.
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FIGURE 36: Dynamic contrast-enhanced MRI images of the pelvis with local tu-
mor progression of malignant subject. The determined tumor contours are shown

in blue.
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FIGURE 37: Dynamic contrast-enhanced MRI images of the pelvis with local tu-
mor progression of another malignant subject. The determined tumor contours are

shown in blue.
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E. SUMMARY

In this chapter, we presented a noninvasive MRI-based CAD for detecting
prostate cancer. The proposed framework demonstrated the documented ability
to reliably distinguish malignant from benign, in a biopsy-proven preliminary co-
hort of 30 participants. The proposed framework includes prostate segmentation,
nonrigid registration, and k,,-Nearest Neighbor based classification. For prostate
segmentation, we introduced a new 3D approach that is based on a MAP estimate
of a new log-likelihood function that accounts for the shape priori, the spatial in-
teraction, and the current appearance of the prostate tissues and its background.
Following segmentation, we introduced a nonrigid registration approach that de-
forms the prostate object on iso-contours instead of a square lattice, which provides
more degrees of freedom to obtain accurate deformation. The perfusion curves of
the segmented prostate region are calculated and the features extracted from these
curves undergo k,-Nearest Neighbor based classification. Applications of the pro-
posed approach yield promising results that would, in the near future, replace the
use of current technologies to determine the type of prostate cancer. The work pre-
sented in this chapter has been published in the IEEE International Symposium on
Biomedical Imaging (ISBI), [52], Computational Intelligence in Biomedical Imag-
ing [30], and the Medical Image Computing and Computer-Assisted Intervention
(MICCALI) conference [51]
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CHAPTER V

A NOVEL IMAGE-BASED APPROACH FOR EARLY DETECTION OF
PROSTATE CANCER USING DIFFUSION-WEIGHTED MRI

This chapter introduces a fully automatic non-invasive approach for the
early diagnosis of prostate cancer using Diffusion-Weighted MRI (DWI). The pro-
posed diagnostic approach consists of the following four steps to detect locations
that are suspicious for prostate cancer: 1) In the first step, we isolate the prostate
from the surrounding anatomical structures based on a Maximum A Posteriori
(MAP) estimate of a new log-likelihood function that ac- counts for the shape pri-
ori, the spatial interaction, and the current appearance of prostate tissues and its
background (surrounding anatomical structures); 2) In order to take into account
any local deformation between the segmented prostates at different b-values that
could occur during the scanning process due to local motion, a non-rigid registra-
tion algorithm is employed; 3) A k,-Nearest Neighbor classifier is used to classify
the prostate into benign or malignant based on three appearance features extracted
from registered images; and 4) The tumor boundaries are determined using a level
set deformable model controlled by the diffusion information and the spatial inter-
actions between the prostate voxels. Experimental results on in vivo data confirm

the accuracy and robustness of our method.
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A. INTRODUCTION

Earlier studies [40] have investigated the abilities of DWI for prostate cancer
diagnosis using an endorectal coil. However, the reported results demonstrated
low diagnostic sensitivity [115]. To increase the sensitivity of diagnosis, Shimofusa
etal. [34] suggested the addition of strong magnetic field gradient pulses (b-values)
to the pulse sequence instead of using an endorectal coil. In their study [34], they
detected the tumor in the central zone of the prostate in five of eight total patients
using DWI with strong magnetic field gradient pulses. Alternatively, the compared
diagnostic results with T,-weighted imaging, detected the tumor only in one of
the eight patients. Since then, DWI were used for the detection of cancerous tissue
in later studies [36,38,39,41,116] . For example, Tan et al. [116] compared the
performance of T>-weighted MRI, DCE-MRI, and DWI for the detection of cancer
within the prostate gland. In their study, they reported that DWI alone showed
better specificity than DCE-MRI alone. It is also showed better overall specificity
than combined DWI and T,-weighted imaging. To the best of our knowledge,
there is a very limited number [38,41] of image-based approaches for automated
computer-aided diagnosis of prostate cancer using DWI. Therefore, there is a need
for developing new methods for automated computer-aided diagnosis of prostate

cancer using DWL

B. MATERIALS AND METHODS

In this section we introduce automated and non-invasive framework for
early diagnosis of prostate cancer using DWI. Figure 38 demonstrates the steps of

the proposed CAD system. Below, we will illustrate each of these steps.
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FIGURE 38: Flowchart of the proposed CAD system for automatic detection of
cancer from 3D DWI.

1. Delineation of the Prostate Borders

The segmentation of the prostate from DWTI is a challenge due to the anatom-
ical complexity of the prostate and the undistinguishable gray-level distribution of
the prostate and surrounding organs. To account for these challenges, a MAP-
based approach based on a learned shape model and an identifiable joint Markov-
Gibbs random field (MGRF) model is proposed. The proposed MGRF image model
relates the joint probability of an image and its object-background region segmen-
tation map, to geometric structure and to the energy of repeated patterns within
the image [117]. The basic theory behind such models is that they assume that the
signals associated with each voxel depend on the signals of the neighboring voxel,

and thus explicitly take into account their spatial interaction, and other features,
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such as shape.

The input 3D DWI data ¢ and its region map m are described by the joint
MGRF model as outlined in Section IV.B.1, Equation 1. The Bayesian MAP estimate

of the map, given g, m* = arg max L(g, m) maximize the log-likelihood function:

L(g, m) = log(P(gm)) + log(F(m)) ©)

where P(g/m) is a conditional distribution of the images given the map m
and P(m) = P,p;(m)P,(m) is an unconditional probability distribution of maps.
Here, P,;(m) denotes the prostate shape prior, and P, (m) is a Gibbs probability
distribution with potentials V, which specifies a MGRF model of spatially homo-

geneous maps m.

The specific visual appearance of the prostate in each data set to be seg-
mented is taken into account by modeling the marginal gray level distribution
with the LCDG model [91-93] as described in Section IV.B.1.a. To overcome noise
effect and to ensure the homogeneity of the segmentation, the spatial voxel interac-
tions between the region labels of a given map m are also taken into account using
the pairwise MGRF spatial model as described in Section IV.B.1.b and the nearest

voxel 26-neighbors shown in Figure 39.

In addition to voxel-wise image intensities and their pairwise spatial in-
teraction, additional constraints based on the expected shape of the prostate are
introduced by co-aligning each given DWI data to a training database and using
probabilistic 3D prostate shape model F.,(m). To perform initial prostate segmen-
tation, a given 3D DWTI is aligned to one of the training data. The shape model pro-

vides the voxel-wise object and background probabilities being used together with
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FIGURE 39: 3D 2™ order MGRF neighborhood system. Note that the reference
voxel is shown in red and a represents the absolute distance between two voxels

in the same and adjacent MRI slices, or cross-sections

the conditional image intensity model P(g|m), to build an initial region map. The
final Bayesian segmentation is performed using the identified joint MGRF model
of the DWI data and its region maps. Finally, the proposed prostate segmentation

approach involves the steps summarized in Algorithm V.B.1.

2. Nonrigid Registration
The nonrigid registration of the DWI data of different b-values is performed
by solving the second-order linear partial differential Laplace equation as described

in Section IV.B.2. For completeness, the main steps of the Laplace-based nonrigid

registration is summarized in Figure 40 as follows:

1. Generation of the distance maps inside the prostate regions (Figure 40 (a,b)).
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Algorithm 4 Key Steps for prostate Segmentation

1. Input: The 3D DWI prostate data g to be segmented.

2. Construct the shape prior from the training data.

3. Approximate the marginal intensity distribution by the linear combinations

of discrete Gaussians (LCDG) with two dominant modes.
4. Form an initial region map m using the estimated LCDG model.

5. Find the Gibbs potentials for the Markov-Gibbs random field (MGRF) model

from the initial map.

6. Improve the region map using voxel-wise stochastic relaxation (Iterative con-
ditional mode-ICM [107]) through successive iterations to maximize the log
likelihood function of Equation (9) until the log likelihood remains almost

the same for two successive iterations.

7. Output: The 3D prostate segmentation is the final estimate region map, m.

2. Generation of the iso-contours using distance maps in step 1 in (Figure 40 (c,d)).

3. Solution of the Laplace equation between respective reference and target iso-

contours to co-allocate the corresponding points.

3. Diffusion Characterization and Tumor Boundary Determination

To characterize the physiological data, color-coded maps that illustrate the
propagation o of diffusion in the prostate tissues are constructed. To construct the
initial color maps, we have to estimate the changes in image signals ¢, ,, . due to the
Brownian motion. These changes are estimated from the constructed normalized

diffusion as the difference between the signals of image sequences at two differ-
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FIGURE 40: Mlustration of the iso-contours generation: the reference and target

distance maps (a, b), and their iso-contours (c, d).

ent b-values. DWI is performed with at least two b-values, including a b-value of
0s/mm? and a higher b-value of 500 — 1000s/mm? depending on the body region
or organ being imaged [118]. At b = 0s/mm? , there is no diffusion sensitizing gra-
dient with free water molecules have high signal intensity. We used b = 800s/mm?
because imaging of solid organs requires high b-value specially in prostate and us-
ing high b-values allows differentiation of areas of restricted from the normal high
signal at the peripheral zone. During our trials we found the b = 800s/mm? allows
lesions differentiation with least degradation of image quality as the image quality
decrease with the high b-values. To preserve continuity (remove inconsistencies),
the initial estimated §,, . values are considered as samples from a Generalized
Gauss-Markov Random Field (GGMRF) image model [112] of measurements with
the 26-voxel neighborhood . Continuity of the constructed 3-D volume is amplified

by using their MAP estimates [92]:
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where d, , . and gx,yz denote the original values and their expected estimates, v/, .
is the 26-neighborhood voxel set, 1 is the GGMREF potential, and p and X are scal-
ing factors (Figure 41. The parameter § € [1.01,2.0] controls the level of smooth-
ing (e.g., smooth, 3 = 2, vs. relatively abrupt edges, § = 1.01). The parameter
a € {1,2} determines the Gaussian, a = 2, or Laplace, o = 1, prior distribution of
the estimator. Then, the color maps are generated based on the final estimated 5

(see Figure 42).

FIGURE 41: Enhanced perfusion estimation and continuity analysis using the 3D
GGMRF image model.

Finally, locate the boundary of the detected tumors (see Figure 43), which
is important to determine the cancer stage in case of malignancy, we used a level

set-based deformable model controlled by a stochastic speed function [119]. The
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Color Scale

Before 3-D GGMRF After 3-D GGMRF

FIGURE 42: Color-coded maps for three of the test subjects (column wise) before
and after the 3-D GGMRF smoothing. The red and blue ends of the color scale

relate to the maximum and minimum changes, respectively.

latter accounts for the diffusion information and spatial interactions between the

prostate voxels.
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FIGURE 43: Pixel-wise parametric map display of the diffusion information and
the spatial interactions between the prostate voxels. The red and blue hues of each

color scale correspond to enhanced and reduced perfusion, respectively.

C. EXPERIMENTAL RESULTS

1. Patients and Data Acquisition

The performance of the proposed framework has been evaluated by ap-
plying it on DWI prostate images collected from 30 patients. These patients had
biopsy-proven prostate cancer and underwent DWIat 1.5 T (SIGNA Horizon, Gen-
eral Electric Medical Systems, Milwaukee, WI). a DWI was then obtained using
mono-directional gradients and a multi-section Fast Spin Echo type (FSE) echo-
planar sequence in the axial plane using a body coil with the following imaging
parameters: Tx: 84 : 6ms; Tk: 8.000ms; Band Width 142 kilohertz (kHz); field-of-
view (FOV) was 34cm; slice thickness was 3mm; inter-slice gap Omm; seven exci-

tations, water excitation with b-value of 0s/mm? and 800 s/mm?. Fifty-four slices
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TABLE 6: Error Statistics over all test data sets.

PPV SEN DSC

Mean=+SD | 0.952+0.004 | 0.816+£0.004 | 0.991+0.004

were obtained in 120 seconds to cover the prostate in each patient. Note that all

the subjects were diagnosed using a biopsy (ground truth).

2. Segmentation Results

The proposed segmentation approach has been tested on DWI sequences
for 30 independent subjects. Figure 44 shows some segmentation results of the
prostate region at selected image sections for different subjects and their associ-
ated false positive (FP) and false negative (FN) segmentation errors, with respect
to the ground truth segmentation. The ground truths were obtained by manual de-
lineation of the prostate borders by an MR imaging expert. The positive predictive
value (PPV), sensitivity (SEN), and Dice similarity coefficient (DSC) statistics for
the proposed approach are summarized in Table 6. To highlight the advantage of
the proposed segmentation approach, all time series images have been segmented
using the shape-based (SB) approach proposed by Tsai et al. [2]. The compara-
tive results for a few of them are shown in Figure 45 and Table 7 summarizes the
segmentation error statistics of the proposed approach and the SB approach with
respect to ground truth. The differences between the mean errors of the proposed
approach and the SB approach are shown to be statistically significant by the un-

paired t-test (the two-tailed value P is less than 0.0001).
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FIGURE 44: Segmentation result and their associated FN (green) and FP (red) er-

rors referenced to the ground truth G.

3. Diagnostic Results

The ultimate goal of the proposed framework is to distinguish between be-
nign and malignant detected tumors. The malignant tissues show higher signal
intensity with a b-value of 800s/mm?, and a lower Apparent Diffusion Coefficient
(ADC) compared with benign and normal tissue due to the replacement of nor-
mal tissue. To distinguish between the benign and malignant cases, we used a
k,-Nearest Neighbor classifier to learn statistical characteristics of the DWI. The
characteristics are obtained from the training sets containing both benign and ma-
lignant cases. After training, three features, which are the mean intensity value of

the DWI at 0s/mm?, the mean intensity value of the DWI at 800 s/mm?, and the
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TABLE 7: A Comparative segmentation accuracy over all test data sets for our

approach and [2]. Note that STD stands for standard deviation.

By %

Our approach [2]

Min. Error% 0 0
Max. Error% 1.6005 2.7724
Average Error% 0.5500 1.4675
STD % 0.3085 0.7687
P-value 0.001

TABLE 8: Area under the ROC curve for training subjects, testing subjects, and

combined (training and testing subjects).

Area Under ROC Curve

Training Subjects A, = 0.996
Test Subjects A, =0.964
All Subjects A,=0.985

mean value of ADC maps [120], were chosen to classify the test cases. To build the
k., classifier that characterizes the prostate tissue, we used 20 subjects for training,

and the other 10 subjects for testing.

Overall system performance is demonstrated in Figure 46. For each of these
ROC curves, performance is measured in comparison with the classification pro-
duced by the biopsy. Table 8 lists the area under the Receiver operating character-

istic (ROC) curve performance for the ROC curves shown in Figure 46.

For regional display, we explored pixel-by-pixel maps of the registered dif-
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(a)

(b)

FIGURE 45: 3-D prostate segmentation projected onto 2-D. (a) 2-D visualization for
our segmented prostates for three of the test subjects, (b) our segmentation (red)
in comparison with the ground truth (white), and (c) the segmentation with the

algorithm in [2] (red) comparison with the ground truth.

fusion data. The diffusion was computed for each pixel and superimposed on an
image slice to form a parametric image. Also, for visual assessment of the prostate
tumor, the tumor contours were determined. Figure 47 (c) shows the diffusion

map for selected image sections for four subjects involved in our study.
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FIGURE 46: Receiver operating characteristic curves for training subjects, testing
subjects, and combined (training and testing subjects). CAD performance is with

respect to classification produced by the expert.
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Subject #1 | Subject #2 | Subject #3 | Subject #4

FIGURE 47: Diffusion MR images for the prostate at (a) b-value of 0s/mm?, (b) b

value of 800 s/mm?, and (c) tumor progression for four of the test subjects.
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D. SUMMARY

In this chapter, we presented a novel fully automatic framework for detect-
ing prostate cancer using DWI. The framework includes prostate segmentation,
nonrigid registration, and KNN-based classification. For prostate segmentation,
we introduced a new 3D approach that is based on a MAP estimate of a new log-
likelihood function that accounts for the shape priori, the spatial interaction, and
the current appearance of the prostate and its background which increases the ac-
curacy of automatic segmentation, evidenced by the error and the DSC analysis
(Tables 7 and 6). Following segmentation, we used a nonrigid registration ap-
proach that deforms the prostate object on iso-contours instead of a square lattice,
which provides higher degrees of freedom to obtain accurate deformation. In the
classification step, the segmented prostate regions are classified into malignant or
benign using the £, classifier. Applications of the proposed framework can assist
the radiologist in detecting all prostate cancer locations and could replace the use
of current technologies to determine the type of prostate cancer. The work pre-
sented in this chapter has been published in the IEEE International Conference on
Image Processing (ICIP), [42], Journal of Biomedical Science and Engineering [33],

and the Biomedical Science and Engineering Conference (BSEC) [29].
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The work presented in this dissertation documents the ability of DCE-MRI
and DWI to distinguish between the benign and malignant prostate tumor cases.
The key main advantage of the proposed computer-aided diagnostic (CAD) sys-
tem for distinguishing between the benign and malignant cases is the ability of the
developed motion correction model to provide accurate pixel-on-pixel matches of
the registered images for generating and displaying parametric maps. These capa-
bilities are of great importance for the radiologists to help investigate, in the case
of cancer, in which local regions need attention and follow-up with appropriate
treatment. We give a summary of the main contributions of this dissertation is as

follows:

e A novel 3D prostate segmentation approach is proposed. The proposed ap-
proach is based on a Maximum a Posteriori (MAP) estimate of a log-likelihood
function that accounts for three image features: the higher-order spatial-
interaction between the image pixels, prior probabilistic shape model, and
first-order visual appearance of the prostate. These three features are inte-
grated into a two level joint Markov-Gibbs random field (MGRF) model of
the prostate and its background. As demonstrated in the experimental re-
sults, the DSC for extracting the prostate is 93.34 £ 0.004%, which confirms

the high accuracy of the proposed prostate segmentation approach.

e An unsupervised probabilistic model to learn the second- and higher-order
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spatial interactions between the object pixels (voxels) from medical images is
proposed. The model possesses the ability to account for the appearance fea-
tures to learn the inhomogeneity in the prostate. The proposed model adds
to the pairwise the higher-order spatial interactions between region labels of

a given segmentation.

e An adaptive probabilistic shape model that has the ability to learn both the
shape of the prostate and the subject-to-subject variability is proposed. The
adaptive shape model has been successfully used to guide the classification
of prostate cancer and has shown an ability to account for the complexity of
the prostate shape. The results of this model confirm its benefits and encour-

age using it to model other medical structures.

e A nonrigid registration to compensate for local object deformations caused
by physiological effects is proposed. The proposed nonrigid registration de-
forms each pixel of the target object over a set of nested, equi-spaced contours
(i.e., iso-contours) to closely match the reference object, by exploiting the ge-
ometric features, rather than image intensities to avoid problems associated

with nonlinear intensity variations in the prostate.

Several possibilities for the future work of this dissertation include, but are

not limited to, the following:

e Investigating the fusion between DCE-MRI and DWI. This fusion is expected

to give better diagnosis results of the prostate cancer.

e Investigating the integration of the proposed work with the Biolmaging lab
work for the detection of brain disorders such as autism [121-152] and dyslexia

[153-165].

e Testing the proposed mathematical models and learning techniques in other
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clinical studies, such as detection of lung cancer [166-207] , early detection of

acute renal rejection [113,208-230], and cardiac MRI [111, 119, 231-245]

99



REFERENCES

[1] American Cancer Society. Global Cancer Facts and Figures 2014. National
Home Office: American Cancer Society Inc, 2014.

[2] A.Tsai, Jr. Yezzi, A., W. Wells, C. Tempany, D. Tucker, A. Fan, W.E. Grimson,
and A. Willsky. A shape-based approach to the segmentation of medical
imagery using level sets. Medical Imaging, IEEE Transactions on, 22(2):137-
154, Feb 2003.

[3] J. G. E. Awad. Prostate Segmentation and Regions of Interest Detection in Tran-
srectal Ultrasound Images. PhD thesis, University of Waterloo, 2007.

[4] J. E. McNeal. The zonal anatomy of the prostate. Prostate, 2(1):35-49, 1981.

[5] B. Trkbey, D. Thomasson, Y. Pang, M. Bernardo, and P. L. Choyke. The role of
dynamic contrast-enhanced mri in cancer diagnosis and treatment. Turkish
Society of Radiology, 16:186-192, 2010.

[6] L. G. Gomella and F. Allen. Treatment Choices for Men Living with Advanced
Prostate Cancer. cancercare, CancerCare, New York, NY, 2006.

[7] D.T.S. Chang, B. Challacombe, and N. Lawrentschuk. Transperineal biopsy
of the prostate-is this the future? Nat Rev Urol, 10(12):690-702, 2013.

[8] S. Klein, M. Staring, and J.P.W. Pluim. Evaluation of optimization methods
for nonrigid medical image registration using mutual information and b-
splines. Image Processing, IEEE Transactions on, 16(12):2879-2890, Dec 2007.

[9] American Cancer Society. Cancer Facts and Figures 2014. National Home
Office: American Cancer Society Inc, 2014.

[10] E.David Crawford. Epidemiology of prostate cancer. Urology, 62(6, Supple-
ment 1):3 - 12, 2003.

[11] A.]Jemal, R. Siegel, E. Ward, T. Murray, ]. Xu, and M. Thun. Cancer statistics
2007. Cancer Journal for Clinicians, 57:43-66, 2007.

[12] W.]. Catalona, J. P. Richie, F. R. Ahmann, M. A. Hudson, P. T. Scardino, R. C.
Flanigan, J. B. deKernion, T. L. Ratliff, L. R. Kavoussi, B. L. Dalkin, and et al.
Comparison of digital rectal examination and serum prostate specific anti-

gen in the early detection of prostate cancer: results of a multicenter clinical
trial of 6,630 men. The Journal of urology, 151(5):1283-90, 1994.

100



[13] M. B. Matthew, R. C.and Jeannette, W. K. Philip, and R. C. Peter. Contempo-
rary trends in low risk prostate cancer: Risk assessment and treatment. The
Journal of Urology, 178(3, Supplement):S14 — S19, 2007.

[14] A. S. Jr. Joseph, T. S. Peter, I. R. Martin, D. H. Alberto, C. R. Steven, and
J. E. Marlene. Transrectal ultrasound versus digital rectal examination for
the staging of carcinoma of the prostate: Results of a prospective, multi-
institutional trial. The Journal of Urology, 157(3):902 — 906, 1997.

[15] B. Turner, Ph. Aslet, L. Drudge-Coates, H. Forristal, L. Gruschy, S. Hi-
eronymi, K. Mowle, M. Pietrasik, and A. Vis. Transrectal ultrasound guided
biopsy of the prostate. European Association of Urology Nurses, 2011.

[16] J. E. Langer. The current role of transrectal ultrasonography in the evalua-
tion of prostate carcinoma. Seminars in Roentgenology, 34(4):284 — 294, 1999.
Imaging of the Prostate.

[17] J. T. Wei. Limitations of a contemporary prostate biopsy: The blind march
forward. Urologic Oncology: Seminars and Original Investigations, 28(5):546 —
549, 2010.

[18] A. V. Taira, G. S. Merrick, R. W. Galbreath, H. Andreini, W. Taubenslag,
R. Curtis, W. M. Butler, E. Adamovich, and K. E. Wallner. Performance of
transperineal template-guided mapping biopsy in detecting prostate cancer
in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis, 13(1):71-
77, 2010.

[19] A. G. Webb. Introduction to Biomedical Imaging. Wiley—IEEE Press, NJ, USA,
2003.

[20] T. M. Blodgett, C. C. Meltzer, and D. W. Townsend. Pet/ct: Form and func-
tion. Radiology, 242:360-385, 2007.

[21] D. Shen, Y. Zhan, and C. Davatzikos. Segmentation of prostate boundaries
from ultrasound images using statistical shape model. IEEE Transactions on
Medical Imaging, 22:539-551, 2003.

[22] H. M. Ladak, E. Mao, Y. Wang, D. B. Downey, D. A. Steinman, and A. Fenster.
Prostate boundary segmentation from 2d ultrasound images. Medical physics,
27:1777-1788, 2000.

[23] G. Pareek, U. R. Acharya, S. V. Sree, G. Swapna, R. Yantri, R. J. Martis,
L. Saba, G. Krishnamurthi, G. Mallarini, A. El-Baz, S. Al Ekish, M. Beland,
and J. S. Suri. Prostate tissue characterization/classification in 144 patient
population using wavelet and higher order spectra features from transrectal
ultrasound images. Technol Cancer Res Treat, 12:545-57, 2013.

[24] R. Zwiggelaar, Y. Zhu, and S. Williams. Semi-automatic segmentation of the
prostate. In Pattern Recognition and Image Analysis, volume 2652 of Lecture
Notes in Computer Science, pages 1108-1116. Springer Berlin Heidelberg, 2003.

101



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan. Magnetic
Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss, New
York, USA, 1st edition, 1999.

Y. J. Choj, J. K. Kim, N. Kim, K. W. Kim, E. K. Choi, and K. Cho. Func-
tional mr imaging of prostate cancer. RadioGraphics, 27(1):63-75, 2007. PMID:
17234999.

J. K. Kim, S. S. Hong, Y. J. Choi, S. H. Park, H. Ahn, C. Kim, and K. Cho.
Wash-in rate on the basis of dynamic contrast-enhanced mri: Usefulness

for prostate cancer detection and localization. Journal of Magnetic Resonance
Imaging, 22(5):639-646, 2005.

C. Sato, S. Naganawa, T. Nakamura, H. Kumada, S. Miura, O Takizawa,
and T. Ishigaki. Differentiation of noncancerous tissue and cancer lesions by
apparent diffusion coefficient values in transition and peripheral zones of
the prostate. Journal of Magnetic Resonance Imaging, 21(3):258-262, 2005.

A. Firjani, A. Elmaghraby, and A. El-Baz. Mri-based diagnostic system for
early detection of prostate cancer. In Biomedical Sciences and Engineering Con-
ference (BSEC), 2013, pages 1-4, May 2013.

A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. El-Ghar, A. Elmaghraby,
and A. El-Baz. A novel image-based approach for early detection of prostate
cancer using dce-mri. In Kenji Suzuki, editor, Computational Intelligence in
Biomedical Imaging, pages 55-82. Springer New York, 2014.

A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. El-
maghraby, and A. El-Baz. Non-invasive image-based approach for early de-
tection of prostate cancer. In Proceedings of Fourth International Conference on
Developments in eSystems Engineering, (DeSE’11), pages 172-177, Dubai, UAE,
December 6-8, 2011.

A. Firjani, A. Elnakib, F. Khalifa, A. El-Baz, G. Gimel’farb, M. Abou El-Ghar,
and A. Elmaghraby. A novel 3D segmentation approach for segmenting
the prostate from dynamic contrast enhanced MRI using current appear-
ance and learned shape prior. In Proceedings of IEEE International Symposium
on Signal Processing and Information Technology, (ISSPIT'10), pages 137-143,
Luxor, Egypt, December 15-18, 2010.

A. Firjani, A. Elnakib, F. Khalifa, G. Gimelfarb, M. El-Ghar, A. Elmaghraby,
and A. El-Baz. A diffusion-weighted imaging based diagnostic system for

early detection of prostate cancer. Journal of Biomedical Science and Engineer-
ing, 6(3):346-356, 2013.

R. Shimofusa, H. Fujimoto, H. Akamata, K. Motoori, S. Yamamoto, T. Ueda,
and H. Ito. Diffusion-weighted imaging of prostate cancer. | Comput Assist
Tomogr, 29(2):149-53, 2005.

102



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Ueno, S. Takahashi, K. Kitajima, T. Kimura, I. Aoki, F. Kawakami,
H. Miyake, Y. Ohno, and K. Sugimura. Computed diffusion-weighted imag-
ing using 3-t magnetic resonance imaging for prostate cancer diagnosis. Eu-
ropean Radiology, 23(12):3509-3516, 2013.

K. Yoshimitsu, K. Kiyoshima, H. Irie, T. Tajima, Y. Asayama, M. Hirakawa,
K. Ishigami, S. Naito, and H. Honda. Usefulness of apparent diffusion co-
efficient map in diagnosing prostate carcinoma: Correlation with stepwise
histopathology. Journal of Magnetic Resonance Imaging, 27(1):132-139, 2008.

C. K. Kim, B. K. Park, and H. M. Lee. Prediction of locally recurrent prostate
cancer after radiation therapy: Incremental value of 3t diffusion-weighted
mri. Journal of Magnetic Resonance Imaging, 29(2):391-397, 2009.

H. K. Lim, J. K. Kim, K. Ah Kim, and K. Cho. Prostate cancer: Apparent dif-
tusion coefficient map with t2-weighted images for detectiona multireader
study. Radiology, 250(1):145-151, 2009.

T. Hacklnder, C. Scharwchter, R. Golz, and H. Mertens. Value of diffusion-
weighted imaging for diagnosing vertebral metastases due to prostate cancer
in comparison to other primary tumors. Fortschr Rntgenstr, 04:214-424, 2006.

K. K Yu and H Hricak. Imaging prostate cancer. Radiol Clin North Am,
38(1):59-85, 2000.

M. A. Haider, T. H. van der Kwast, J. Tanguay, A. J. Evans, A. T. Hashmi,
G. Lockwood, and J. Trachtenberg. Combined t2-weighted and diffusion-
weighted mri for localization of prostate cancer. American Journal of
Roentgenology, 189(2):323-328, 2007.

A. Firjani, F. Khalifa, A. Elnakib, G. Gimel'farb, A. Elmaghraby, and A. El-
Baz. A novel image-based approach for early detection of prostate cancer.
In Proceedings of IEEE International Conference on Image Processing, (ICIP'12),
pages 2849-2852, Lake Buena Vista, Florida, September 30-October 3, 2012.

A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, A. El-
maghraby, and A. El-Baz. A new 3D automatic segmentation framework
for accurate extraction of prostate from diffusion imaging. In Proceedings of
Biomedical Science and Engineering Conference—Image Informatics and Analytics
in Biomedicine, (BSEC'11), pages 1306-1309, Knoxville, Tennessee, March 15—
17, 2011.

P.D. Allen, J. Graham, D.C. Williamson, and C.E. Hutchinson. Differential
segmentation of the prostate in mr images using combined 3d shape mod-
elling and voxel classification. In Biomedical Imaging: Nano to Macro, 2006. 3rd
IEEE International Symposium on, pages 410—413, April 2006.

Y. Zhu, S. Williams, and R. Zwiggelaar. Segmentation of volumetric prostate
mri datausing hybrid 2d+3d shape modeling. Medical Image Understanding
and Analysis, pages 61-64, 2004.

103



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

S. Klein, U. A. van der Heidi, B. W. Raaymakers, A. Kotte, M. Staring, and
J. Pluim. Segmentation of the prostate in mr images by atlas matching.
Biomedical Imaging: From Nano to Macro, pages 1300-1303, 2007.

D. Flores-Tapia, N. Venugopal, G. Thomas, B. McCurdy, L. Ryner, and S. Pis-
torius. Real time mri prostate segmentation based on wavelet multiscale
products flow tracking. In Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE, pages 5034-5037, Aug 2010.

S. Mallat and S. Zhong. Characterization of signals from multiscale edges.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(7):710-732,
Jul 1992.

R. Toth, P. Tiwari, M. Rosen, A. Kalyanpur, S. Pungavkar, and A. Madab-
hushi. A multi-modal prostate segmentation scheme by combining spec-
tral clustering and active shape models. Medical Imaging 2008, 6914:691445—
69144S, 2008.

S.Vikal, S. Haker, C. Tempany, and G. Fichtinger. Prostate contouring in mri
guided biopsy. In SPIE, volume 7259, 2009.

A. Firjany, A. Elnakib, A. El-Baz, G. Gimel'farb, M. El-Ghar, and A. El-
magharby.  Novel stochastic framework for accurate segmentation of
prostate in dynamic contrast enhanced mri. In A. Madabhushi, J. Dowl-
ing, P. Yan, A. Fenster, P. Abolmaesumi, and N. Hata, editors, Prostate Cancer
Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention, volume 6367
of Lecture Notes in Computer Science, pages 121-130. Springer Berlin Heidel-
berg, 2010.

A. Firjani, A. Elnakib, F. Khalifa, G. L. Gimel’farb, M. Abou El-Ghar, J. Suri,
A.Elmaghraby, and A. El-Baz. A new 3d automatic segmentation framework
for accurate segmentation of prostate from dce-mri. In ISBI, pages 14761479,
2011.

P. Liu, S. Wang, B. Turkbey, K. Grant, P. Pinto, P. Choyke, B. J. Wood, and
R. M. Summers. A prostate cancer computer-aided diagnosis system using
multimodal magnetic resonance imaging and targeted biopsy labels. volume
8670, pages 86701G-86701G-6, 2013.

P. Liao, T. Chen, and P. Chung. A fast algorithm for multilevel thresholding.
Journal of Information Science and Engineering, 17:713-727, 2001.

N. Makni, P. Puech, R. Lopes, A.S. Dewalle, O. Colot, and N. Betrouni. Com-
bining a deformable model and a probabilistic framework for an automatic

3d segmentation of prostate on mri. International Journal of Computer Assisted
Radiology and Surgery, 4(2):181-188, 2009.

Xin Liu, D.L. Langer, M.A. Haider, Yongyi Yang, M.N. Wernick, and LS.
Yetik. Prostate cancer segmentation with simultaneous estimation of markov

random field parameters and class. Medical Imaging, IEEE Transactions on,
28(6):906-915, June 2009.

104



[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Artan, M.A. Haider, D.L. Langer, T.H. van der Kwast, A.]. Evans, Yongyi
Yang, M.N. Wernick, J. Trachtenberg, and LS. Yetik. Prostate cancer localiza-
tion with multispectral mri using cost-sensitive support vector machines and

conditional random fields. Image Processing, IEEE Transactions on, 19(9):2444—
2455, Sept 2010.

S. Ozer, M.A. Haider, D.L. Langer, T.H. van der Kwast, A.]. Evans, M.N.
Wernick, J. Trachtenberg, and L.S. Yetik. Prostate cancer localization with
multispectral mri based on relevance vector machines. In Biomedical Imaging:
From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on, pages
73-76, June 2009.

M. E. Tipping. The relevance vector machine, 2000.

Y. Gao, R. Sandhu, G. Fichtinger, and A.R. Tannenbaum. A coupled global
registration and segmentation framework with application to magnetic res-
onance prostate imagery. Medical Imaging, IEEE Transactions on, 29(10):1781-
1794, Oct 2010.

S. Martin, V. Daanenc, and ]. Troccaz. Automated segmentation of the
prostate in 3d mr images using a probabilistic atlas and a spatially con-
strained deformable model. Medical physics, 37:1579-1590, 2010.

J. Dowling, ]J. Fripp, S. Chandra, J. Pluim, J. Lambert, J. Parker, ]J. Denham,
P. Greer, and O. Salvado. Fast automatic multi-atlas segmentation of the
prostate from 3d mr images. In Prostate Cancer Imaging. Image Analysis and
Image-Guided Interventions, volume 6963 of Lecture Notes in Computer Science,
pages 10-21. Springer Berlin Heidelberg, 2011.

B. Rodriguez-Vila, J. Pettersson, M. Borga, F. Garcia-Vicente, E. Gomez, and
H. Knutsson. 3d deformable registration for monitoring radiotherapy treat-
ment in prostate cancer. In Image Analysis, volume 4522 of Lecture Notes in
Computer Science, pages 750-759. Springer Berlin Heidelberg, 2007.

S. Ghose, J. Mitra, A. Oliver, R. Marti, X. Llado, J. Freixenet, J. C. Vilanova,
J. Comet, D. Sidibé, and F. Mériaudeau. A mumford-shah functional based
variational model with contour, shape, and probability prior information for
prostate segmentation. In IAPR International Conference on Pattern Recogni-
tion, Tsukba, Japan, November 2012.

S. Ghose, A. Oliver, R. Marti, X. LladO, J. Freixenet, J. Mitra, J. C. Vilanova,
and F Meriaudeau. A hybrid framework of multiple active appearance mod-

els and global registration for 3d prostate segmentation in mri. volume 8314,
pages 831405-831405-9, 2012.

I. Chan, W. Wells, R. V. M. S. Haker, J. Z., K. H. Zou, S. E. Maier, and C. M. C.
Tempany. Detection of prostate cancer by integration of line-scan diffusion,
t2-mapping and t2-weighted magnetic resonance imaging; a multichannel
statistical classifier. Medical Physics, 30:2390-2398, 2003.

105



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

A. Madabhushi, M.D. Feldman, D.N. Metaxas, J. Tomaszeweski, and
D. Chute. Automated detection of prostatic adenocarcinoma from high-

resolution ex vivo mri. Medical Imaging, IEEE Transactions on, 24(12):1611-
1625, Dec 2005.

M.W. Engelbrecht, J.O. Barentsz, and J.G. Jager. Prostate cancer staging using
imaging. Human Brain Mapping, 86:123-34, 2000.

J. J. Fiitterer, M. R. Engelbrecht, H. J. Huisman, G. J. Jager, C. A. Hulsbergen-
van De Kaa, J. A. Witjes, and ]J. O. Barentsz. Staging prostate cancer with
dynamic contrast-enhanced endorectal mr imaging prior to radical prostate-
ctomy: Experienced versus less experienced readers. Radiology, 237(2):541-
549, 2005.

O. Rouvire, O. Valette, S. Grivolat, C. Colin-Pangaud, R. Bouvier, J. Y.
Chapelon, A. Gelet, and D. Lyonnet. Recurrent prostate cancer after external
beam radiotherapy: value of contrast-enhanced dynamic {MRI} in localiz-
ing intraprostatic tumorcorrelation with biopsy findings. Urology, 63(5):922
—-927, 2004.

P. Puech, N. Betrouni, N. Makni, A. Dewalle, A. Villers, and L. Lemaitre.
Computer-assisted diagnosis of prostate cancer using dce-mri data: design,

implementation and preliminary results. International Journal of Computer
Assisted Radiology and Surgery, 4(1):1-10, 2009.

I. Ocak, M. Bernardo, G. Metzger, T. Barrett, P. Pinto, P. Albert, and
P. Choyke. Dynamic contrast-enhanced mri of prostate cancer at 3 t: A

study of pharmacokinetic parameters. American Journal of Roentgenology,
189(4):W192-W201, 2007.

S. Viswanath, B. Bloch, E. Genega, N. Rofsky, R. Lenkinski, J. Chappelow,
R. Toth, and A. Madabhushi. A comprehensive segmentation, registra-
tion, and cancer detection scheme on 3 tesla in vivo prostate dce-mri. In
D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, editors, Medical Image
Computing and Computer-Assisted Intervention-MICCAI 2008, volume 5241 of
Lecture Notes in Computer Science, pages 662-669. Springer Berlin Heidelberg,
2008.

D. de Ridder and R. PW. Duin. Locally linear embedding for classification,
2002.

P. C. Vos, T. Hambrock, J. O. Barentsz, and H. ]. Huisman. Computer-assisted
analysis of peripheral zone prostate lesions using t2-weighted and dynamic
contrast enhanced t1-weighted mri. Physics in medicine and biology, 55(6):888—
99, 2010.

P. C. Vos, C. A. Hambrock, T.and Hulsbergen-van de Kaa, J. J. Futterer, J. O.
Barentsz, and H. J. Huisman. Computerized analysis of prostate lesions in

the peripheral zone using dynamic contrast enhanced mri. Medical physics,
35(3):888-99, 2008.

106



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

D. Ampeliotis, A. Antonakoudi, K. Berberidis, E.Z. Psarakis, and
A.Kounoudes. A computer-aided system for the detection of prostate cancer
based on magnetic resonance image analysis. In Communications, Control and
Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on, pages
1372-1377, March 2008.

G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman.
Computer-aided detection of prostate cancer in mri. Medical Imaging, IEEE
Transactions on, 33(5):1083-1092, May 2014.

Y. Peng, Y. Jiang, T. Antic, M. L. Giger, S. Eggener, and A. Oto. A study of
t2-weighted mr image texture features and diffusion-weighted mr image fea-

tures for computer-aided diagnosis of prostate cancer. volume 8670, pages
86701H-86701H-6, 2013.

P. Tiwari, J. Kurhanewicz, and A. Madabhushi. Multi-kernel graph embed-
ding for detection, gleason grading of prostate cancer via mri/mrs. Medical
Image Analysis, 17(2):219 — 235, 2013.

A. Madabhushi, J. Shi, M. Rosen, J. E. Tomaszewski, and M. D. Feld-
man. Comparing classification performance of feature ensembles: Detect-
ing prostate cancer from high resolution mri. In Computer Vision Methods in
Medical Image Analysis (In conjunction with ECCV), volume 4241, pages 25-36.
Springer Verlag, Springer Verlag, 2006.

S. Viswanath, B. N. Bloch, M. Rosen, J. Chappelow, R. Toth, N. Rofsky,
R. Lenkinski, E. Genega, A. Kalyanpur, and A. Madabhushi. Integrating
structural and functional imaging for computer assisted detection of prostate

cancer on multi-protocol in vivo 3 tesla mri. volume 7260, pages 726031
726031-12, 2009.

R. Lopes, A. Ayache, N. Makni, P. Puech, A. Villers, S. Mordon, and N. Be-
trouni. Prostate cancer characterization on mr images using fractal features.
Medical Physics, 38(1):83-95, 2011.

V. Shah, B. Turkbey, H. Mani, Y. Pang, T. Pohida, M. J. Merino, P. A. Pinto,
P. L. Choyke, and M. Bernardo. Decision support system for localizing
prostate cancer based on multiparametric magnetic resonance imaging. Med-
ical Physics, 39(7):4093-4103, 2012.

Y.S. Sung, H. J. Kwon, B. W. Park, G. Cho, C. K. Lee, K. S. Cho, and J. K. Kim.
Prostate cancer detection on dynamic contrast-enhanced mri: computer-

aided diagnosis versus single perfusion parameter maps. AJR. American jour-
nal of roentgenology, 197(5):1122-9, 2011.

E. Niaf, R. Flamary, O. Rouviere, C. Lartizien, and S. Canu. Kernel-
based learning from both qualitative and quantitative labels: Application
to prostate cancer diagnosis based on multiparametric mr imaging. Image
Processing, IEEE Transactions on, 23(3):979-991, March 2014.

107



[87] C. M. A. Hoeks, J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford, S. W.
T. P. J. Heijmink, T. W. J. Scheenen, P. C. Vos, H. Huisman, I. M. van Oort,
J. A. Witjes, A. Heerschap, and ]. J. Fiitterer. Prostate cancer: Multiparametric
mr imaging for detection, localization, and staging. Radiology, 261(1):46-66,
2011.

[88] D. Bonekamp, M. A. Jacobs, R. El-Khouli, D. Stoianovici, and K. J. Macura.
Advancements in mr imaging of the prostate: From diagnosis to interven-
tions. RadioGraphics, 31(3):677-703, 2011.

[89] G.]J. Parker, J. Suckling, S. F. Tanner, A. R. Padhani, J. E. Husband, and M. O.
Leach. Mriw: parametric analysis software for contrast-enhanced dynamic
mr imaging in cancer. RadioGraphics, 18(2):497-506, 1998.

[90] K. Ogura, S. Maekawa, K. Okubo, Y. Aoki, T. Okada, K. Oda, Y. Watanabe,
C. Tsukayama, and Y. Arai. Dynamic endorectal magnetic resonance imag-
ing for local staging and detection of neurovascular bundle involvement of

prostate cancer: correlation with histopathologic results. Urology, 57(4):721 —
726, 2001.

[91] A. El-Baz. Novel stochastic models for medical image analysis. PhD thesis, Uni-
versity of Louisville, 2006.

[92] A. El-Baz and G. Gimel'farb. Em based approximation of empirical distri-
butions with linear combinations of discrete gaussians. In Image Processing,
2007. ICIP 2007. IEEE International Conference on, volume 4, pages 373-376,
Sept 2007.

[93] A. El-Baz, A. Elnakib, F. Khalifa, M.A. EI-Ghar, P. McClure, A. Soliman, and
G. Gimelrfarb. Precise segmentation of 3-d magnetic resonance angiography.
Biomedical Engineering, IEEE Transactions on, 59(7):2019-2029, July 2012.

[94] A. Webb. Statistical Pattern Recognition. ]. Wiley & Sons, New York, USA,
2002.

[95] D. L. Wilson and J. A. Noble. An adaptive segmentation algorithm for time-
of-flight MRA data. IEEE Transaction on Medical Imaging, 18(10):938-945,
1999.

[96] A.Farag, A.El-Baz, and G. Gimel'farb. Precise segmentation of multi-modal
images. IEEE Transactions on Image Processing, 15(4):952-968, 2006.

[97] A.El-Baz, A. A. Farag, and G. Gimel'farb. Iterative approximation of empir-
ical grey-level distributions for precise segmentation of multimodal images.
EURASIP Journal on Applied Signal Processing, 2005:1969-1983, 2005.

[98] A. El-Baz, A. Farag, and G. Gimel'farb. Iterative approximation of empiri-
cal grey level distributions for precise segmentation of multi-modal images.
EURASIP Journal on Applied Signal Processing, 13:1969-1983, 2005.

108



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

G. L. Gimel'farb, A. A. Farag, and A. El-Baz. Expectation-maximization for
a linear combination of gaussians. In Proceedings of IEEE International Con-

ference on Pattern Recognition, (ICPR’04), pages 422-425, Cambridge, UK, Au-

gust 23-26, 2004.

A. Farag, A. El-Baz, and G. Gimel'farb. Density estimation using modified
expectation maximization for a linear combination of gaussians. In Proceed-
ings of IEEE International Conference on Image Processing, (ICIP’04), volume 3,
pages 1871-1874, Singapore, 2004.

A. A. Farag, A. El-Baz, and R. M. Mohamed. Density estimation using gen-
eralized linear model and a linear combination of gaussians. International
Journal of Signal Processing, 1:76-79, 2005.

A. Farag, A. El-Baz, and G. Gimel'farb. Precise image segmentation by it-
erative em-based approximation of empirical grey level distributions with
linear combinations of Gaussians. In Computer Vision and Pattern Recognition
Workshop (CVPRW’2004), pages 121-129. IEEE, 2004.

A. El-Baz, R. M. Mohamed, A. A. Farag, and G. Gimel’farb. Unsupervised
segmentation of multi-modal images by a precise approximation of individ-
ual modes with linear combinations of discrete gaussians. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW’2005), pages 54-54. IEEE, 2005.

A. Farag, R. Mohamed, and A. El-Baz. A unified framework for map estima-
tion in remote sensing image segmentation. IEEE Transactions on Geoscience
and Remote Sensing, pages 1617-1634, 2005.

A. El-Baz, R. Mohamed, and A. Farag. Advanced support vector machines
for image modeling using gibbs-markov random field. Computational Intelli-

gence, pages 306-309, 2005.

P. Viola and W. M. Wells. Alignment by maximization of mutual information.
In Proc. 5th Int. Conf. Comp. Vision, pages 16-23, 1995.

J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B, 48:259-302, 1986.

S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis. Nondistorting flat-
tening maps and the 3D visualization of colon CT images. IEEE Transaction
on Medical Imaging, 19(7):665-670, 2000.

AlJ. Yezzi, L. Zollei, and T. Kapur. A variational framework for integrating
segmentation and registration through active contours. Medical Image Anal-
ysis, 7(2):171-185, 2003.

M. Prasad, A. Ramesh, P. Kavanagh, B. K. Tamarappoo, R. Nakazato, J. Ger-
lach, V. Cheng, L. E.J. Thomson, D. S. Berman, G. Germano, and P. J. Slomka.
Quantification of 3d regional myocardial wall thickening from gated mag-
netic resonance images. Journal of Magnetic Resonance Imaging, 31(2):317-327,
2010.

109



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

E. Khalifa, G. M. Beache, G. Gimel’farb, G. A. Giridharan, and A. El-Baz.
Accurate automatic analysis of cardiac cine images. IEEE Transactions on
Biomedical Engineering, 59(2):445-455, 2012.

C. Bouman and K. Sauer. A generalized gaussian image model for edge-
preserving map estimation. Image Processing, IEEE Transactions on, 2(3):296—
310, Jul 1993.

F. Khalifa, A. Elnakib, G. M. Beache, G. Gimel'farb, M. A. El-Ghar,
G. Sokhadze, S. Manning, P. McClure, and A. El-Baz. 3d kidney segmen-
tation from ct images using a level set approach guided by a novel stochastic
speed function. In Proceedings of International Conference on Medical Image
Computing and Computer-Assisted Intervention, (MICCAI'11), pages 587-594,
Toronto, Canada, Sept. 18-22, 2011.

K. H. Zou, S. K. Warfield, A. Baharatha, C. Tempany, M. R. Kaus, S. J. Haker,
W. M. Wells, E. A. Jolesz, and R. Kikinis. Statistical Validation of Image Seg-
mentation Quality Based on a Spatial Overlap Index. Academic Radiology,
11:178-189, 2004.

P. McClure, A. Elnakib, M. Abou El-Ghar, F. Khalifa, A. Soliman, T. El-Diasty,
J. S. Suri, A. Elmaghraby, , and A. El-Baz. In-vitro and in-vivo diagnostic
techniques for prostate cancer a review. Journal of Biomedical Nanotechnology,
10(2747-2777), 2014.

C. Tan, J. Wang, and V. Kundra. Diffusion weighted imaging in prostate
cancer. European Radiology, 21(3):593-603, 2011.

Georgy Gimel’farb. Image textures and gibbs random fields. Kluwer, Dor-
drecht, The Netherlands, 1999.

D. M. Patterson, A. R. Padhani, and D. J. Collins. Technology insight: water
diffusion mri-a potential new biomarker of response to cancer therapy. Nat
Clin Prac Oncol, 5(4):220-233, 2008.

F. Khalifa, G. Beache, A. El-Baz, and G. Gimel'farb. Deformable model
guided by stochastic speed with application in cine images segmentation.
In Proceedings of IEEE International Conference on Image Processing, (ICIP'10),
pages 1725-1728, Hong Kong, September 26-29, 2010.

S. Walker-Samuel, M. Orton, J. K. R. Boult, and S. P. Robinson. Improv-
ing apparent diffusion coefficient estimates and elucidating tumor hetero-

geneity using bayesian adaptive smoothing. Magnetic Resonance in Medicine,
65(2):438-447, 2011.

M. Mostapha, A. Soliman, F. Khalifa, A. Elnakib, A. Alansary, M. Nitzken,
and M. E. Casanova. A statistical framework for the classification of infant dt
images. In IEEE International Conference on Image Processing (ICIP'14), pages
In—press, 2014.

110



[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

A. Alansary, A. Soliman, M. Nitzken, F. Khalifa, A. Elnakib, M. FE. Casanova,
and A. El-Baz. An integrated geometrical and stochastic approach for accu-

rate infant brain extraction. In IEEE International Conference on Image Process-
ing (ICIP’14), pages In—press, 2014.

]J. Baruth, E. Sokhadze, A. El-Baz, G. Mathai, L. Sears, and M. F. Casanova.
Transcranial Magnetic Stimulation, chapter 4, pages 143-152. Skyhorse Pub-
lishing, 2012.

R. Pennington, K. Welch, E. Sokhadze, A. El-Baz, A. Farag, P. Williams, and
M. Casanova. Crossing the Divide: Collaborative Efforts towards Innovative Treat-
ments at the University of Louisville Autism Center, chapter 5, pages 161-164.
Skyhorse Publishing, 2012.

M. Casanova, E. Sokhadze, A. El-Baz, J. Baruth, G. Mathai, and L. Sears.
Research at the University of Louisville Autism Center, chapter 7, pages 425—411.
Skyhorse Publishing, 2012.

E. Sokhadze, A. El-Baz, J. Baruth, G. Mathai, L. Sears, and M. Casanova. Ef-
fect of a low frequency repetitive transcranial magnetic stimulation (rtms) on
induced gamma frequency oscillations and event-related potentials during
processing of illusory figures in autism spectrum disorders. Journal of Autism
and Developmental Disorders, 39(4):619-634, 2009.

M. Casanova, J. Baruth, A. El-Baz, G. Sokhadze, M. Hensley, and
E. Sokhadze. Evoked and Induced Gamma-Frequency Oscillations in Autism,”
In: Imaging the Brain in Autism, chapter 5, pages 87-106. Springer, New York,
2013.

J. Baruth, M. Casanova, A. El-Baz, T. Horrell, G. Mathai, L. Sears, and
E. Sokhadze. Low-frequency repetitive transcranial magnetic stimulation
modulates evoked-gamma oscillations frequency in autism spectrum disor-
der. Journal of Neurotherapy, 3:179-194, 2010.

E. Sokhadze, J. Baruth, A. El-Baz, T. Horrell, G. Sokhadze, T. Carroll, A. Tas-
man, L. Sears, and M. Casanova. Impaired error monitoring and correction
function in autism. Journal of Neurotherapy, 14(2), 2010.

E.Sokhadze, J. Baruth, A. El-Baz, R. Ramaswamy, L. Sears, and M. Casanova.
Transcaranial magnetic stimulation study of gamma induction in response
to illusory figures in patients with autism spectrum disorders. Journal of
Neuroscience Methods, 13(4):271-272, 2009.

E. Sokhadze, ]J. Baruth, L. Sears, G. Sokhadze, A. El-Baz, E. Williams,
R. Klapheke, and M. Casanova. Event-related potentials study of attention
regulation during illusory figure categorization task in adhd, autism spec-
trum disorders, and typical children. Journal of Neurotherapy, 16:12-31, 2012.

J. Baruth, E. Williams, E. Sokhadze, A. El-Baz, L. Sears, and M. Casanova.
Beneficial effects of repetitive transcranial magnetic stimulation (rtms) on

111



[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

behavioral outcome measures in autism spectrum disorder. Autism Research,
pages 52-57, 2011.

A. El-Baz, A. Elnakib, M. E. Casanova, G. Gimel’farb, A. E. Switala, D. Jor-
dan, and S. Rainey. Accurate automated detection of autism related corpus
callosum abnormalities. Journal of Medical Systems, 35(5):929-939, 2011.

M. Mostapha, A. Alansary, A. Soliman, F. Khalifa, M. Nitzken, R. Khodeir,
M. E. Casanova, and A. El-Baz. Atlas-based approach for the segmenta-
tion of infant dti mr brain images. In Proc. IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI'14), 2014.

Y. Wang, A. El-Baz, X. Li, L. Sears, M. Casanova, A. Tasman, and
E. Sokhadze. A study of relative power of specific eeg bands and their ratios
during neurofeedback training in children with autism spectrum disorder.
Autism Research, 2014.

A. Alansary, A. Soliman, F. Khalifa, A. Elnakib, M. Mostapha, M. Nitzken,
M. Casanova, and A. El-Baz. Map-based framework for segmentation of mr
brain images based on visual appearance and prior shape. MIDAS Journal,
1:1-13, 2013.

M. Casanova, M. Hensley, E. Sokhadze, A. El-Baz, Y. Wang X. Li, and
L. Sears. Effects of weekly low-frequency rtms on autonomic measures in
children with autism spectrum disorder. Frontiers in Human Neuroscience,
8(851), 2014.

E. Sokhadze, A. El-Baz, A. Tasman, L. Sears, Y. Wang, E. Lamina, and
M. Casanova. Neuromodulation integrating rtms and neurofeedback for the
treatment of autism spectrum disorder. Applied Psychophysiology and Biofeed-
back, 39(3—4):137-257, December 2014.

E. Sokhadze, A. El-Baz, L. Sears, L Opris, and M. Casanova. rtms neuromod-
ulation improves electrocortical functional measures of information process-
ing and behavioral responses in autism. Frontiers in Systems Neuroscience, 8,
August 2014.

E. Sokhadze, J. Baruth, L. Sears, G. Sokhadze, A. El-Baz, and M. Casanova.
Prefrontal neuromodulation using rtms improves error monitoring and cor-
rection function in autism. Applied Psychophysiology and Biofeedback, 37(2):91—
102, 2012.

E. M. Sokhadze, J. M. Baruth, L. Sears, G. E. Sokhadze, A. S. El-Baz,
E. Williams, R. Klapheke, and M. F. Casanova. Event-related potential study
of attention regulation during illusory figure categorization task in adhd
autism spectrum disorder and typical children. ] Neurother, 16(1):12-31, 2012.

M. E. Casanova, A. Farag, A. EL-Baz, Mott Meghan, H. Hassan, R. Fahmi,
and A. E. Switala. Abnormalities of the gyral window in autism: A macro-
scopic correlate to a putative minicolumnopathy. Journal of Special Education
and Rehabilitation, 7(1-2), 2006.

112



[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

R. Fahmi, A. S. El-Baz, H. AbdEl Munim, A. A. Farag, and M. E. Casanova.
Classification techniques for autistic vs. typically developing brain using
MRI data. In Proc. IEEE International Symposium on Biomedical Imaging: From
Nano to Macro (ISBI'2007), pages 1348 —1351. IEEE, 2007.

A. El-Baz, M. F. Casanova, G. Gimel’farb, M. Mott, and A. E. Switwala. A
new image analysis approach for automatic classification of autistic brains.
In Proceedings of IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, (ISBI'07), pages 352-355. IEEE, 2007.

M. F. Casanova, A. S. El-Baz, and J. S. Suri. Imaging the Brain in Autism.
Springer, 2014.

A. A Farag, R. Fahmi, M. F. Casanova, A. E. Abdel-Hakim, H. Abd El-
Munim, and A. El-Baz. Robust neuroimaging-based classification techniques
of autistic vs. typically developing brain. In Deformable Models, pages 535—
566. Springer, 2007.

M. F. Casanova, B. Dombroski, and A. E. Switala. Imaging and the corpus
callosum in patients with autism. 2014.

R. Fahmi, A. Elbazb, H. Hassan, A. A Farag, and M. F Casanova. Structural
MRI-based discrimination between autistic and typically developing brain.
pages 24-26, 2007.

A. El-Baz, M. F Casanova, G. Gimel’farb, M. Mott, and A. E. Switala. Autism
diagnostics by 3d texture analysis of cerebral white matter gyrifications.
In Proc. International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI'2007), pages 882-890. Springer, 2007.

M. F. Casanova, A. El-Baz, M. Mott, G. Mannheim, H. Hassan, R. Fahmi,
J. Giedd, J. M Rumsey, A. E. Switala, and A. Farag. Reduced gyral window
and corpus callosum size in autism: Possible macroscopic correlates of a
minicolumnopathy. Journal of autism and developmental disorders, 39(5):751—

764, 2009.

M. F. Casanova, A. El-Baz, E. Vanbogaert, P. Narahari, and A. Switala. A
topographic study of minicolumnar core width by lamina comparison be-
tween autistic subjects and controls: Possible minicolumnar disruption due
to an anatomical element in-common to multiple laminae. Brain Pathology,

20(2):451-458, 2010.

M. F. Casanova, A. S. El-Baz, S. S. Kamat, B. A. Dombroski, F. Khalifa, A. El-
nakib, A. Soliman, A. Allison-McNutt, and A. E. Switala. Focal cortical dys-
plasias in autism spectrum disorders. Acta neuropathologica communications,
1(1):67, 2013.

A. Elnakib, A. El-Baz, M. Casanova, G. Gimel’farb, and A. Switala. Image-
based detection of corpus callosum variability for more accurate discrimina-
tion between dyslexic and normal brains. In Proc. IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro (ISBI'2010), pages 109-112.
IEEE, 2010.

113



[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

A. Elnakib, A. Soliman, M. Nitzken, M. F. Casanova, G. Gimel’farb, and
A. El-Baz. Magnetic resonance imaging findings for dyslexia: A review. Jour-
nal of Biomedical Nanotechnology, 10:2778-2805, 2014.

M.]. Nitzken, M.F. Casanova, G. Gimelfarb, T. Inanc, ].M. Zurada, and A. El-
Baz. Shape analysis of the human brain: A brief survey. Biomedical and Health
Informatics, IEEE Journal of, 18(4):1337-1354, July 2014.

A. Elnakib, A. El-Baz, M. Casanova, and A. Switala. Dyslexia diagnostics by
centerline-based shape analysis of the corpus callosum. In Proc. International
Conference on Pattern Recognition (ICPR’2010), pages 261-264. IEEE, 2010.

M. Sen, A. Rudra, A. Chowdhury, A. Elnakib, and A. El-Baz. Cerebral
White Matter Segmentation using Probabilistic Graph Cut Algorithm, chapter 2.
Springer-Verlag, 2011.

F. Casanova, A. El-Baz, A. Elnakib, J. Giedd, J. Rumsey, E. Williams, and
A. Switala. Corpus callosum shape analysis with application to dyslexia.
Translational Neuroscience, 1(2):124-130, 2010.

A. Elnakib, M. Casanova, G. Gimel'farb, A. Switala, and A. El-Baz. Dyslexia
diagnostics by 3-D shape analysis of the corpus callosum. IEEE Transactions
on Information Technology in Biomedicine, 16(4):700-708, 2012.

A. El-Baz, M. Casanova, G. Gimel'farb, M. Mott, A. Switala, E. Vanbogaert,
and R. McCracken. Dyslexia diagnostics by 3D texture analysis of cerebral
white matter gyrifications. In Proc. International Conference on Pattern Recog-
nition (ICPR’2008), pages 1-4. IEEE, 2008.

A. El-Baz, M. Casanova, G. Gimel'farb, M. Mott, A. Switala, E. Vanbogaert,
and R. McCracken. A new cad system for early diagnosis of dyslexic brains.
In Proc. International Conference on Image Processing (ICIP’2008), pages 1820—
1823. IEEE, 2008.

A. El-Baz, M. Casanova, G. Gimel’farb, M. Mott, and A. Switala. An mri-
based diagnostic framework for early diagnosis of dyslexia. International
Journal of Computer Assisted Radiology and Surgery, 3(3-4):181-189, 2008.

M. Casanova, A. El-Baz, J. Giedd, J. Rumsey, and A. Switala. Increased white
matter gyral depth in dyslexia: Implications for corticocortical connectivity.
Journal of Autism and Developmental Disorders, 40(1):21-29, 2010.

M. Nitzken, M. F. Casanova, G. Gimel’farb, A. Elnakib, F. Khalifa, A. Switala,
and A. El-Baz. 3d shape analysis of the brain cortex with application to

dyslexia. In Proc. International Conference on Image Processing (ICIP'2011),
pages 2657-2660. IEEE, 2011.

E. L. Williams, A. El-Baz, M. Nitzken, A. E. Switala, and M. F. Casanova.
Spherical harmonic analysis of cortical complexity in autism and dyslexia.
Translational Neuroscience, 3(1):36—40, 2012.

114



[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

A. El-Baz, G. M. Beache, G. L. Gimel'farb, K. Suzuki, and K. Okada. Lung
imaging data analysis. Int. |. Biomedical Imaging, 2013.

E. Hosseini Asl, J. M. Zurada, , and A. El-Baz. Lung segmentation based on
nonnegative matrix factorization. pages In—press, 2014.

A. El-Baz, A. A. Farag, R. Falk, and R. La Rocca. Detection, visualization
and identification of lung abnormalities in chest spiral ct scan: Phase-i. In

Proceedings of International conference on Biomedical Engineering, Cairo, EQypt,
volume 12, 2002.

A. El-Baz, A. A. Farag, R. Falk, and R. La Rocca. A unified approach for de-
tection, visualization, and identification of lung abnormalities in chest spiral

CT scans. In International Congress Series, volume 1256, pages 998-1004. El-
sevier, 2003.

A. El-Bazl, A. A. Farag, R. Falk, and R. La Rocca. Automatic identification
of lung abnormalities in chest spiral CT scans. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, (ICASSP’03),
volume 2, pages 11-261. IEEE, 2003.

A. A. Farag, A. El-Baz, G. Gimel’'farb, and R. Falk. Detection and recog-
nition of lung abnormalities using deformable templates. In Proceedings of

the 17th International Conference on Pattern Recognition, (ICPR’04), volume 3,
pages 738-741. IEEE, 2004.

A. A. Farag, A. El-Baz, G. G. Gimel’farb, R. Falk, and S. G. Hushek. Auto-
matic detection and recognition of lung abnormalities in helical CT images
using deformable templates. In Proceedings of Medical Image Computing and
Computer-Assisted Intervention, (MICCAI'04), pages 856—-864. Springer, 2004.

A. Farag, A. El-Baz, G. Gimel'farb, and R. Falk. Detection and recognition of
lung nodules in spiral ct images using deformable templates and bayesian

post-classification. In Proceedings of IEEE International Conference on Image
Processing, (ICIP'04), volume 5, pages 2921-2924. IEEE, 2004.

A. El-Baz, S. E Yuksel, S. Elshazly, and A. A. Farag. Non-rigid registration
techniques for automatic follow-up of lung nodules. In Proceedings of Com-
puter Assisted Radiology and Surgery, (CARS’05), volume 1281, pages 1115-
1120. Elsevier, 2005.

A. A. Farag, A. El-Baz, G. Gimel’farb, M. A. El-Ghar, and T. Eldiasty. Quan-
titative nodule detection in low dose chest ct scans: new template modeling
and evaluation for cad system design. In roceedings of Medical Image Comput-
ing and Computer-Assisted Intervention, (MICCAI'05), pages 720-728. Springer,
2005.

A. A. Farag, A. El-Baz, G. Gimel'farb, R. Falk, M. A. El-Ghar, T. Eldiasty,
and S. Elshazly. Appearance models for robust segmentation of pulmonary
nodules in 3d 1dct chest images. In Proceedings of Medical Image Computing and
Computer-Assisted Intervention—-MICCAI 2006, pages 662-670. Springer, 2006.

115



[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

A. El-Baz, A. Farag, G. Gimel'farb, R. Falk, M. El-Ghar, and T. Eldiasty. A
framework for automatic segmentation of lung nodules from low dose chest

CT scans. In Proceedings of International Conference on Pattern Recognition,
(ICPR’06), volume 3, pages 611-614. IEEE, 2006.

A. M. Ali, A. S El-Baz, and A. A. Farag. A novel framework for accurate
lung segmentation using graph cuts. In Proceedings of IEEE International Sym-
posium on Biomedical Imaging: From Nano to Macro, (ISBI'07), pages 908-911.
IEEE, 2007.

A. El-Baz, G. Gimel'farb, R. Falk, and M. Abou El-Ghar. A novel approach
for automatic follow-up of detected lung nodules. In Proceedings of IEEE
International Conference on Image Processing, (ICIP’07), volume 5, pages V-501.
IEEE, 2007.

A. El-Baz, G. Gimel'farb, R. Falk, and M. Abou El-Ghar. A new cad system
for early diagnosis of detected lung nodules. In Proceedings of IEEE Interna-
tional Conference on Image Processing, (ICIP’07), volume 2, pages 11-461. IEEE,
2007.

A. El-Baz, M. E Casanova, G. Gimel’farb, M. Mott, and A. E. Switwala. A
new image analysis approach for automatic classification of autistic brains.
In Proc. IEEE International Symposium on Biomedical Imaging: From Nano to
Macro (ISBI'2007), pages 352-355. IEEE, 2007.

A.El-Baz, G. Gimel'farb, R. Falk, M. Abou El-Ghar, and H. Refaie. Promising
results for early diagnosis of lung cancer. In Proceedings of IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, (ISBI'08), pages 1151-
1154. IEEE, 2008.

A. El-Baz, G. Gimel'farb, R. Falk, and M. El-Ghar. A new approach for
automatic analysis of 3D low dose CT images for accurate monitoring the

detected lung nodules. In Proceedings of International Conference on Pattern
Recognition, (ICPR’08), pages 1-4. IEEE, 2008.

A. El-Baz, G. L. Gimel’farb, R. Falk, T. Holland, and T. Shaffer. A framework
for unsupervised segmentation of lung tissues from low dose computed to-
mography images. In Proceedings of British Machine Vision, (BMVC’08), pages
1-10, 2008.

A. El-Baz, G. L. Gimel’farb, R. Falk, D. Heredis, and M. Abou El-Ghar. A
novel approach for accurate estimation of the growth rate of the detected

lung nodules. In Proceedings of International Workshop on Pulmonary Image
Analysis, pages 33-42, 2008.

A. El-Baz, G. L. Gimel’farb, R. Falk, M. Abou El-Ghar, T. Holland, and
T. Shaffer. A new stochastic framework for accurate lung segmentation.
In Proceedings of Medical Image Computing and Computer-Assisted Intervention,
(MICCAI'08), pages 322-330, 2008.

116



[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

A.M. Ali and A. A. Farag. Automatic lung segmentation of volumetric low-
dose ct scans using graph cuts. In Advances in Visual Computing, pages 258—
267. Springer, 2008.

A.El-Baz, G. Gimel'farb, R. Falk, and M. Abo El-Ghar. Automatic analysis of
3d low dose ct images for early diagnosis of lung cancer. Pattern Recognition,
42(6):1041-1051, 2009.

A. El-Baz, G. Gimel'farb, R. Falk, M. Abou El-Ghar, S. Rainey, D. Heredia,
and T. Shaffer. Toward early diagnosis of lung cancer. In Proceedings of Med-
ical Image Computing and Computer-Assisted Intervention, (MICCAI'09), pages
682-689. Springer, 2009.

A. El-Baz, G. Gimel'farb, R. Falk, and M. El-Ghar. Appearance analysis for
diagnosing malignant lung nodules. In Proceedings of IEEE International Sym-

posium on Biomedical Imaging: From Nano to Macro (ISBI'10), pages 193-196.
IEEE, 2010.

M. Kondapaneni, M. Nitzken, E. Bogaert, G. Gimel'farb, R. Falk, M. El-Ghar,
and A. El-Baz. A novel shape-based diagnostic approach for early diagnosis
of lung nodules. CHEST Journal, 140(4):655A-655A, 2011.

A.S.El-Baz and J. S. Suri. Lung Imaging and Computer Aided Diagnosis. CRC
Press, 2011.

A. El-Baz, P. Sethu, G. Gimel’farb, FE. Khalifa, A. Elnakib, R. Falk, and M. El-
Ghar. Elastic phantoms generated by microfluidics technology: Validation

of an imaged-based approach for accurate measurement of the growth rate
of lung nodules. Biotechnology journal, 6(2):195-203, 2011.

A. El-Baz, G. Gimel’farb, R. Falk, M. El-Ghar, and J. Suri. Appearance anal-
ysis for the early assessment of detected lung nodules. In Lung Imaging and
Computer Aided Diagnosis, chapter 17, pages 395-404. chapter, 2011.

A. El-Baz, P. Sethu, G. Gimel’farb, F. Khalifa, A. Elnakib, R. Falk, M. El-Ghar,
and J. Suri. Validation of a new imaged-based approach for the accurate es-
timating of the growth rate of detected lung nodules using real computed
tomography images and elastic phantoms generated by state-of-theart mi-
crofluidics technology. In Lung Imaging and Computer Aided Diagnosis, chap-
ter 18, pages 405—420. chapter, 2011.

A. El-Baz, M. Nitzken, G. Gimel'farb, E. Van Bogaert, R. Falk, M. El-Ghar,
and J. Suri. Three-dimensional shape analysis using spherical harmonics for
early assessment of detected lung nodules. In Lung Imaging and Computer
Aided Diagnosis, chapter 19, pages 421-438. chapter, 2011.

A. El-Baz, M. Nitzken, F. Khalifa, A. Elnakib, G. Gimel’farb, R. Falk, and
M. El-Ghar. 3d shape analysis for early diagnosis of malignant lung nodules.
In Proceedings of Information Processing in Medical Imaging, (IPMI'11), pages
772-783. Springer, 2011.

117



[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

B. Abdollahi, A. Soliman, A. Civelek, X-F Li, G. Gimel’farb, and A. El-Baz.
A novel gaussian scale space-based joint MGRF framework for precise lung

segmentation. In Proceedings of IEEE International Conference on Image Process-
ing, (ICIP'12), pages 2029-2032. IEEE, 2012.

A. El-Baz, F. Khalifa, A. Elnakib, M. Nitzken, A. Soliman, P. McClure, M. El-
Ghar, and G. Gimel’farb. A novel approach for global lung registration using
3d markov-gibbs appearance model. In Proceeding of Medical Image Comput-
ing and Computer-Assisted Intervention, (MICCAI'12), pages 114-121. Springer,
2012.

B. Abdollahi, A. Soliman, A. Civelek, X-F Li, G. Gimel'farb, and A. El-Baz.
A novel 3d joint mgrf framework for precise lung segmentation. In Machine
Learning in Medical Imaging, pages 86-93. Springer, 2012.

A. El-Baz, G. Gimel’farb, M. Abou El-Ghar, and R. Falk. Appearance-based
diagnostic system for early assessment of malignant lung nodules. In Pro-
ceedings of IEEE International Conference on Image Processing, (ICIP'12), pages
533-536. IEEE, 2012.

A. El-Baz, A. Soliman, P. McClure, G. Gimel’farb, M. El-Ghar, and R. Falk.
Early assessment of malignant lung nodules based on the spatial analysis
of detected lung nodules. In Proceedings of IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, (ISBI'12), pages 1463-1466. IEEE,
2012.

A. Soliman, F. Khalifa, A. Alansary, G. Gimel'farb, and A. El-Baz. Segmen-
tation of lung region based on using parallel implementation of joint mgrf:
Validation on 3d realistic lung phantoms. In Proceedings of International Sym-
posium on Biomedical Imaging: From Nano to Macro, (ISBI'13), pages 864—867.
IEEE, 2013.

A. Soliman, F. Khalifa, A. Alansary, G. Gimel'farb, and A. El-Baz. Per-
formance evaluation of an automatic MGRF-based lung segmentation ap-

proach. In Proceedings of International Symposium on Computational Models for
Life Sciences, (CMLS’13), volume 1559, page 323, 2013.

A. El-Baz, G Gimel’farb, R. Falk, and M. El-Ghar. 3D MGRF-based appear-
ance modeling for robust segmentation of pulmonary nodules in 3D LDCT
chest images. In Lung Imaging and Computer Aided Diagnosis, chapter 3, pages
51-63. chapter, 2011.

A. El-Baz, G. M. Beache, G. Gimel'farb, K. Suzuki, K. Okada, A. Elnakib,
A. Soliman, and B. Abdollahi. Computer-aided diagnosis systems for lung
cancer: Challenges and methodologies. International Journal of Biomedical
Imaging, page 46, 2013.

A.El-Baz, A. Elnakib, M. Abou El-Ghar, G. Gimel'farb, R. Falk, and A. Farag.
Automatic detection of 2d and 3d lung nodules in chest spiral ct scans. In-
ternational Journal of Biomedical Imaging, 2013, 2013.

118



[208] M. Mostapha, F. Khalifa, A. Alansary, A. Soliman, J. Suri, and A. El-Baz. Com-
puter Aided Diagnosis Systems for Acute Renal Transplant Rejection: Challenges
and Methodologies, chapter 1. Springer-Verlag, 2014.

[209] Luca Saba A. El-Baz and J. Suri. Abdomen and Thoracic Imaging - An Engineer-
ing and Clinical Perspective. Springer-Verlag, 2014.

[210] F. Khalifa, A. Soliman, M. Abou El-Ghar, G. Gimel’farb, R. Ouseph, A. C.
Dwyer, T. El-Diasty, , and A. El-Baz. Models and methods for analyzing dce
mri: A review. Medical Physics, 2014.

[211] L. Mackelaite, R. Ouseph, A. El-Baz, and A. Gaweda. Cortical ct perfusion
of the live donor kidneys as a predictor of post-transplant graft function.
American Journal of Transplantation, page 329, 2012.

[212] S. E. Yuksel, A. El-Baz, A. A. Farag, M. E. Abo El-Ghar, T. A. Eldiasty, and
M. A. Ghoneim. Automatic detection of renal rejection after kidney trans-
plantation. In International Congress Series, volume 1281, pages 773-778, 2005.

[213] S. E. Yuksel, A. El-Baz, and A. A. Farag. A kidney segmentation framework
for dynamic contrast enhanced magnetic resonance imaging. In Proceedings
of International Symposium on Mathematical Methods in Engineering, (MME’'06),
pages 55-64, Ankara, Turkey, April, 2006.

[214] A. Farag, A. El-Baz, S. Yuksel, M. Abou El-Ghar, and T. Eldiasty. A frame-
work for the detection of acute rejection with Dynamic Contrast Enhanced
Magnetic Resonance Imaging. In Proceedings of IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, (ISBI'06), pages 418-421, Arling-
ton, Virginia, USA, April 6-9, 2006.

[215] A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, W. Miller, M. Abou El-Ghar, T. El-
Diasty, and M. Ghoneim. A new cad system for the evaluation of kidney
diseases using dce-mri. In Proceedings of International Conference on Medical
Image Computing and Computer-Assisted Intervention, (MICCAI'08), pages 446—
453, Copenhagen, Denmark, October, 2006.

[216] A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, M. Abo El-Ghar, and T. Eldiasty.
Image analysis of renal DCE MRI for the detection of acute renal rejection. In
Proceedings of IAPR International Conference on Pattern Recognition (ICPR’06),
pages 822-825, Hong Kong, August 20-24, 2006.

[217] A. M. Ali, A. A. Farag, and A. El-Baz. Graph cuts framework for kid-
ney segmentation with prior shape constraints. In Proceedings of Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion, (MICCAI'07), volume 1, pages 384-392, Brisbane, Australia, October
29-November 2, 2007.

[218] A.El-Baz, G. Gimel'farb, and M. Abou El-Ghar. New motion correction mod-
els for automatic identification of renal transplant rejection. In Proceedings
of International Conference on Medical Image Computing and Computer-Assisted

119



[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Intervention, (MICCAI'07), pages 235-243, Brisbane, Australia, October 29—
November 2, 2007.

A.El-Baz, A. A. Farag, S. E. Yuksel, M. E. A. El-Ghar, T. A. Eldiasty, and M. A.
Ghoneim. Application of deformable models for the detection of acute renal
rejection. In A. A. Farag and ]. S. Suri, editors, Deformable Models, volume 1,
chapter 10, pages 293-333. 2007.

S. E. Yuksel, A. El-Baz, A. A. Farag, M. El-Ghar, T. Eldiasty, and M. A.
Ghoneim. A kidney segmentation framework for dynamic contrast en-

hanced magnetic resonance imaging. Journal of Vibration and Control, 13(9-
10):1505-1516, 2007.

A. El-Baz, G. Gimel'farb, and M. Abo El-Ghar. Image analysis approach for
identification of renal transplant rejection. In Proceedings of IAPR International
Conference on Pattern Recognition, (ICPR’08), pages 1-4, Tampa, Florida, USA,
December, 2008.

A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar. A novel image analysis ap-
proach for accurate identification of acute renal rejection. In Proceedings of
IEEE International Conference on Image Processing, (ICIP’08), pages 1812-1815,
San Diego, California, USA, October 12-15, 2008.

F. Khalifa, A. El-Baz, G. Gimel'farb, R. Ouseph, and M. A. El-Ghar. Shape-
appearance guided level-set deformable model for image segmentation. In
Proceedings of IAPR International Conference on Pattern Recognition, (ICPR’10),
pages 4581-4584, Istanbul, Turkey, August 23-26, 2010.

F. Khalifa, A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar. Non-invasive
image-based approach for early detection of acute renal rejection. In Pro-
ceedings of International Conference on Medical Image Computing and Computer-
Assisted Intervention, (MICCAI'10), pages 10-18, Beijing, China, September
20-24, 2010.

F. Khalifa, G. Gimel'farb, M. A. El-Ghar, G. Sokhadze, S. Manning, P. Mc-
Clure, R. Ouseph, and A. El-Baz. A new deformable model-based segmen-
tation approach for accurate extraction of the kidney from abdominal CT
images. In Proceedings of IEEE International Conference on Image Processing,
(ICIP’12), pages 3393-3396, Brussels, Belgium, September 11-14, 2011.

A. Rudra, A. Chowdhury, A. Elnakib, F. Khalifa, A. Soliman, G. M. Beache,
and A. El-Baz. Kidney segmentation using graph cuts and pixel connectivity.
Pattern Recognition Letters, 34(13):1470-1475, 2013.

F. Khalifa, M. Abou El-Ghar, Behnaz Abdollahi, Hermann Frieboes, Tarek
El-Diasty, and A. El-Baz. A comprehensive non-invasive framework for au-

tomated evaluation of acute renal transplant rejection using DCE-MRI. NMR
in Biomedicine, 26(11):1460-1470, 2013.

120



[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

F. Khalifa, G. M. Beache, M. Abou El-Ghar, Tarek El-Diasty, G. Gimel'farb,
Maiying Kong, and A. El-Baz. Dynamic contrast-enhanced MRI-based early

detection of acute renal transplant rejection. IEEE Transaction on Medical
Imaging, 32(10):1910-1927, 2013.

M. Mostapha, E. Khalifa, A. Alansaryand A. Solimanand G. Gimel'farb, and
A. El-Baz. Dynamic mri-based computer aided diagnostic systems for early
detection of kidney transplant rejection: A survey. In Proceedings of Interna-
tional Symposium on Computational Models for Life Science, (CMLS13), pages
297-306, Sydney, Australia, November 27-29, 2013.

M. Mostapha, E Khalifa, A. Alansary, A. Soliman, J. Suri, and A. El-
Baz. Computer-aided diagnosis systems for acute renal transplant rejection:
Challenges and methodologies. In A. El-Baz and L. saba ]. Suri, editors, Ab-
domen and Thoracic Imaging, pages 1-35. Springer, 2014.

M. Nguyen, J. Tinney, F. Yuan, T. Roussel, A. El-Baz, G. Giridharan, B. Keller,
and P. Sethu. Cardiac cell culture model as a left ventricle mimic for cardiac
tissue generation. Analytical Chemistry, 85:8773-8779, 2013.

H. Sliman, A. Elnakib, G. M. Beache, A. Soliman, F. Khalifa, G. Gimelfarb,
A. Elmaghraby, and A. El-Baz. A novel 4d pde-based approach for accurate
assessment of myocardium function using cine cardiac magnetic resonance
images. In IEEE International Conference on Image Processing (ICIP'14), pages
In—press, 2014.

G. M. Beache, F. Khalifa, A. El-Baz, and G. Gimel'farb. Fully automated
framework for the analysis of myocardial first-pass perfusion mr images.
Medical Physics, 41(10), 2014.

F. Khalifa, G. M. Beache, G. Gimel'farb, and A. El-Baz. A novel approach for
accurate estimation of left ventricle global indexes from short-axis cine MRI.
In Proceedings of IEEE International Conference on Image Processing, (ICIP'11),
pages 2645-2649, Brussels, Belgium, September 11-14, 2011.

E. Khalifa, G. M. Beache, M. Nitzken, G. Gimel’farb, G. A. Giridharan, and
A.El-Baz. Automatic analysis of left ventricle wall thickness using short-axis
cine CMR images. In Proceedings of IEEE International Symposium on Biomedi-
cal Imaging: From Nano to Macro, (ISBI'11), pages 1306-1309, Chicago, Illinois,
March 30-April 2, 2011.

F. Khalifa, G. M. Beache, G. Gimel’farb, G. A. Giridharan, and A. El-Baz. A
new image-based framework for analyzing cine images. In A. El-Baz, U. R.
Acharya, M. Mirmedhdi, and J. S. Suri, editors, Handbook of Multi Modality
State-of-the-Art Medical Image Segmentation and Registration Methodologies, vol-
ume 2, chapter 3, pages 69-98. Springer, New York, 2011.

M. Nitzken, G. M. Beache, A. Elnakib, F. Khalifa, G. Gimel’farb, and A. El-
Baz. Accurate modeling of tagged CMR 3D image appearance characteristics
to improve cardiac cycle strain estimation. In Proceedings of IEEE International

121



[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Conference on Image Processing, (ICIP'12), pages 521-524, Lake Buena Vista,
Florida, September 30-October 3, 2012.

M. Nitzken, G. M. Beache, A. Elnakib, F. Khalifa, G. Gimel'farb, and A. El-
Baz. Improving full-cardiac cycle strain estimation from tagged CMR by
accurate modeling of 3D image appearance characteristics. In Proceedings
of IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
(ISBI'12), pages 462-465, Barcelona, Spain, May 2-5, 2012.

F. Khalifa, G. M. Beache, G. Gimel'farb, and A. El-Baz. A novel cad sys-
tem for analyzing cardiac first-pass MR images. In Proceedings of IAPR In-
ternational Conference on Pattern Recognition (ICPR’12), pages 77-80, Tsukuba
Science City, Japan, November 11-15, 2012.

F. Khalifa, G. M. Beache, A. Firjani, K. C. Welch, G. Gimel'farb, and A. El-Baz.
A new nonrigid registration approach for motion correction of cardiac first-
pass perfusion MRI. In Proceedings of IEEE International Conference on Image
Processing, (ICIP’12), pages 1665-1668, Lake Buena Vista, Florida, September
30-October 3, 2012.

E. Khalifa, G. M. Beache, A. Elnakib, H. Sliman, G. Gimel’farb, K. C. Welch,
and A. El-Baz. A new nonrigid registration framework for improved visu-
alization of transmural perfusion gradients on cardiac first-pass perfusion
MRI. In Proceedings of IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, (ISBI'12), pages 828-831, Barcelona, Spain, May 2-5,
2012.

F. Khalifa, G. M. Beache, A. Elnakib, H. Sliman, G. Gimel’farb, K. C. Welch,
and A. El-Baz. A new shape-based framework for the left ventricle wall
segmentation from cardiac first-pass perfusion MRI. In Proceedings of IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, (ISBI'13),
pages 41-44, San Francisco, CA, April 7-11, 2013.

H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, G. Gimel'farb,
A.Emam, A. Elmaghraby, and A. El-Baz. Accurate segmentation framework
for the left ventricle wall from cardiac cine MRI. In Proceedings of International
Symposium on Computational Models for Life Science, (CMLS’13), volume 1559,
pages 287-296, Sydney, Australia, November 27-29, 2013.

H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, A. Elmaghraby,
G. Gimel'farb, and A. El-Baz. Myocardial borders segmentation from cine
MR images using bi-directional coupled parametric deformable models.
Medical Physics, 40(9):1-13, 2013.

H. Sliman, A. Elnakib, G. Beache, A. Elmaghraby, and A. El-Baz. Assess-
ment of myocardial function from cine cardiac mri using a novel 4d tracking
approach. Journal of Computer Science and Systems Biology, 7(5):169-173, 2010.

122



The following convention is used throughout the dissertation.

1D

2D

3D

4D

ACC
ADC
AIF
AAM
CA
CAD
CE
CE-CT
CT

CTA
DCE-CT
DCE-MRI
DG
DCT

APPENDIX I

A. LIST OF ABBREVIATIONS

One-Dimensional.
Two-Dimensional.
Three-Dimensional.
Four-Dimensional.

Accuracy.

Apparent Diffusion Coefficient.
Arterial Input Function.

Active Appearance Model.
Contrast Agent.
Computer-Assisted Diagnosis.

Contrast-Enhanced.

Contrast-Enhanced Computed Tomography.

Computed Tomography.

Computed Tomography Angiography.
Dynamic ContrastEnhanced Computed Tomography.

Dynamic ContrastEnhanced Magnetic Resonance Imaging.

Discrete-Gaussian.

Discrete Cosine Transform.
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DSC
DTI
DWI
ECF
EM
fMRI
FN

FP
FOV
GGMRF
ICA
LCDG
MGRF
MI
MRI
MRA
MRS
MRSI
NCC
NGF
NMI
PDE
PDMD
PET
PK
PPV
PWI
|4

Dice similarity coefficients.

Diffusion Tensor Image.
Diffusion-Weighted Image.

Extracellular Fluid Space.

expectation Maximization.

Functional Magnetic Resonance Imaging.
False Negative.

False Positive.

Field of View.

Generalized Gauss-Markov Random Field.
Independent Component Analysis.

Linear Combinations of Discrete Gaussians.
Markov Gibbs Random Field.

Mutual Information.

Magnetic Resonance Imaging.

Magnetic Resonance Angiography.
Magnetic Resonance Spectroscopy.
Magnetic Resonance Spectroscopy Imaging.
Normalized Cross-Correlation.
Normalized Gradient Field.

Normalized Mutual Information.

Partial Differential Equation.

Phase Difference Movement Detection .
Positron Emission Tomography.
Pharmacokinetic.

Positive Predictive Value.
Perfusion-Weighted Images.

Peripheral Zone.
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ROC
ROI

SD
SPECT
SEN
SNR
SPE
SVM
TIC
TN
TZ
TP
TRUS
US

Receiver Operating Characteristic.
Region-of-Interest.

Radio Frequency.

Standard Deviation.

Single Photon Emission Computed Tomography.
Sensitivity.

Signal-to-Noise Ratio.

Specificity.

Support Vector Machine.
Time-Intensity Curve.

True Negative.

Transition Zone.

True Positive.

Transrectal Ultrasound.

Ultrasound.
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APPENDIX II

A. NOMENCLATURE

The following convention is used throughout the dissertation

T; is the spin-lattice (longitudinal) relaxation time of an MRI scan.
T, is the spin-spin (transverse) relaxation time of an MRI scan.

K5 is the volume transfer constant of the contrast agent from the blood

plasma to the interstitial space.

K., is the reverse transfer constat of the contrast agent from the interstitial

space to the blood plasma.

(z,y)-denotes the cartesian coordinates of points (pixels) in the image plane.
t denotes the continuous time.

7 denotes a time step.

n denotes a discrete time instant.

V= [8%, a%, %} is the differential Operator.

V,.(z,y) is the deformable model speed function at each pixel location.

(@ is the number of gray levels.
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Q ={0,...,Q — 1} denote sets of gray levels g.

K = {1,..., K} denotes sets of region labels k.

R denotes a 2-D (x,y)- arithmetic lattice.

m denote binary region maps.

g denote gray level images.

K is the number of image modes (number of classes).

P(g,m) is a joint two-level probability model of a gray scale images and their

region maps.

P(g|m) is a conditional distribution of images, given the map.
P,(m) is an unconditional probability distribution of maps.

Py, (m) is shape prior probability of region maps.

p(q) is the estimated density for the mixed gray level distribution.
p(q|k) is the estimated marginal density for a class k.

1(q|f) is a Gaussian density with a shorthand notation § = (u,0?) for its

mean, y, and variance, o2.

Py(q) is a cumulative Gaussian probability function with a shorthand nota-

tion § = (u, o) for its mean, 1, and variance, 0.
C, is the number of positive Gaussian kernel for the estimated mixed density.

C,, is the number of negative Gaussian kernel for the estimated mixed den-

sity.
wy,. is the mixed weight of positive Gaussian kernel.

wy,. is the mixed weight of negative Gaussian kernel.
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a is the Euclidean distance between two pixel locations.
A = {1,4/2,/3} denotes a set of Euclidean distances.
N is the neighborhood system.

|Cn| is the cardinality of the neighborhood system.

Z is the normalizing factor or partition function.

Vi = {Vaeq, Vaeq} denotes the Gibbs potentials.

faeq(.) denotes the relative frequency of the equal label pairs in the equivalent

pixel pairs in a certain neighborhood.

¢ is the shift in z-direction.

7 is the shift in y-direction.

1.4,y is the combined shape, spatial, and intensity probabilities of the object.

Q.5 is the combined shape, spatial, and intensity probabilities of the back-

ground.

k is the contour curvature.

~ denotes a scalar field.

E, is the gradient vector in z-direction.

E, is the gradient vector in y-direction.

G denotes the expert, ground truth segmented region.
C denotes the model segmented region.

A, denotes the area under the curve.

IT denotes a lattice of control points.
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|e] denotes the integer part of a real-valued number ¢.

(s,t):s=x—|x] €]0,1)and t =y — |y] € [0, 1), is the relative position of the
cartesian point (z, y) with respect to the four nearest lattice points (u, v), (v +

L), (u,v+1), (u+1,0+1)

B;(.), j =—1,...,2,is the uniform cubic B-spline basis function.

C(.,.) is the similarity metric between the reference and target images.
H(.) is the Shannon’s entropy of the image signals.

H(.,.) is the joint entropy of the image signals.

N is the number of images in the training data.

a is the shape model mixing weights.

p is the normalized cross correlation.
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