
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2014 

A non-invasive image based system for early diagnosis of A non-invasive image based system for early diagnosis of 

prostate cancer. prostate cancer. 

Ahmad Abdusalam Firjani Firjani Naef 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Firjani Naef, Ahmad Abdusalam Firjani, "A non-invasive image based system for early diagnosis of 
prostate cancer." (2014). Electronic Theses and Dissertations. Paper 1710. 
https://doi.org/10.18297/etd/1710 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F1710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1710
mailto:thinkir@louisville.edu


A NON-INVASIVE IMAGE BASED SYSTEM FOR EARLY
DIAGNOSIS OF PROSTATE CANCER

By

Ahmad Abdusalam Firjani Naef
M.Sc., University of Putra Malaysia, 2002

A Dissertation
Submitted to the Faculty of the

J. B. Speed School of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

December, 2014





A NON-INVASIVE IMAGE BASED SYSTEM FOR EARLY
DIAGNOSIS OF PROSTATE CANCER

By

Ahmad Abdusalam Firjani Naef
M.Sc., University of Putra Malaysia, 2002

A Dissertation Approved on

December 4th, 2014

by the Following Reading and Examination Committee:

Adel S. Elmaghraby, Ph.D., Co-Advisor

Ayman El-Baz, Ph.D., Co-Advisor

Olfa Nasraoui, Ph.D.

Ibrahim Imam, Ph.D.

Garth Beache, M.D.

ii



DEDICATION

This dissertation is dedicated to my mother, my father, and my wife for their

love, patience, and support during the completion of this endeavor.

iii



ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful. All the praises

and thanks be to Allah Almighty, the Giver of bountiful blessings and gifts. I

would like to thank all those people that contributed to the completion of this

thesis.

I would like to express my sincere gratitude to Dr. Adel Elmaghraby and Dr.

Ayman El-Baz, my dissertation advisors, for the immeasurable amount of support

and guidance they had provided throughout this work. I would like to express my

deepest gratitude to Dr. Olfa Nasraoui, Dr.Ibrahim Imam, and Dr.Garth Beache

for being on my dissertation committee. And, I want to thank all the people who

are part of the research group in the BioImaging Lab. who have become not only

colleagues but also good friends.

Additionally, I would also like to thanks all members of the research group

in the Innovative and Emerging Technologies Lab. Special thanks to Dr. Yehia

H. Khalil, Omar Abdelwahab. I would like to extend my warmest thanks to the

Computer Engineering and Computer Science department staff for their great help

and support.

I owe my loving thanks for my wife Eman Alarnaoti without her encour-

agement and understanding it would have been impossible for me to finish this

work. My special gratitude is due to my mother, my Father Abdusallam Firjani

Naef, my sisters, and my brothers for their loving support.

iv



ABSTRACT

A NON-INVASIVE IMAGE BASED SYSTEM FOR EARLY DIAGNOSIS OF

PROSTATE CANCER

Ahmad Abdusalam Firjani Naef

December 04, 2014

Prostate cancer is the second most fatal cancer experienced by American

males [1]. The average American male has a 16.15% chance of developing prostate

cancer, which is 8.38% higher than lung cancer, the second most likely cancer. The

current in-vitro techniques that are based on analyzing a patients blood and urine

have several limitations concerning their accuracy. In addition, the prostate Spe-

cific Antigen (PSA) blood-based test, has a high chance of false positive diagnosis,

ranging from 28%-58%. Yet, biopsy remains the gold standard for the assessment

of prostate cancer, but only as the last resort because of its invasive nature, high

cost, and potential morbidity rates. The major limitation of the relatively small

needle biopsy samples is the higher possibility of producing false positive diagno-

sis. Moreover, the visual inspection system (e.g., Gleason grading system) is not

quantitative technique and different observers may classify a sample differently,

leading to discrepancies in the diagnosis. As reported in the literature that the

early detection of prostate cancer is a crucial step for decreasing prostate cancer re-

lated deaths. Thus, there is an urgent need for developing objective, non-invasive

image based technology for early detection of prostate cancer.
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The objective of this dissertation is to develop a computer vision methodol-

ogy, later translated into a clinically usable software tool, which can improve sen-

sitivity and specificity of early prostate cancer diagnosis based on the well-known

hypothesis that malignant tumors are will connected with the blood vessels than

the benign tumors. Therefore, using either Diffusion Weighted Magnetic Reso-

nance imaging (DW-MRI) or Dynamic Contrast Enhanced Magnetic Resonance

Imaging (DCE-MRI), we will be able to interrelate the amount of blood in the

detected prostate tumors by estimating either the Apparent Diffusion Coefficient

(ADC) in the prostate with the malignancy of the prostate tumor or perfusion pa-

rameters. We intend to validate this hypothesis by demonstrating that automatic

segmentation of the prostate from either DW-MRI or DCE-MRI after handling its

local motion, provides discriminatory features for early prostate cancer diagnosis.

The proposed CAD system consists of three majors components, the first

two of which constitute new research contributions to a challenging computer

vision problem. The three main components are: (1) A novel Shape-based seg-

mentation approach to segment the prostate from either low contrast DW-MRI or

DCE-MRI data; (2) A novel iso-contours-based non-rigid registration approach to

ensure that we have voxel-on-voxel matches of all data which may be more dif-

ficult due to gross patient motion, transmitted respiratory effects, and intrinsic

and transmitted pulsatile effects; and (3) Probabilistic models for the estimated

diffusion and perfusion features for both malignant and benign tumors. Our re-

sults showed a 98% classification accuracy using Leave-One-Subject-Out (LOSO)

approach based on the estimated ADC for 30 patients (12 patients diagnosed as

malignant; 18 diagnosed as benign). These results show the promise of the pro-

posed image-based diagnostic technique as a supplement to current technologies

for diagnosing prostate cancer.
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CHAPTER I

PROSTATE ANATOMY AND CURRENT DIAGNOSTIC TECHNIQUES

Prostate cancer is the most common malignancy among men. Despite its

prevalence, Prostate cancer is a curable condition in many cases. In America for

example, the five-year survival rate of prostate cancer for men is 100% among pa-

tients diagnosed with localized or regional disease and only 31% among men di-

agnosed at a distant stage [9]. Mortality often happens when patients are affected

by metastasis of the cancer to the bones. At that stage, surgical and hormonal

treatments are not very effective. Therefore, the early diagnosis and staging of the

disease play an important role in the choice and the success of the treatment.This

chapter provides the background to adequately understand the anatomy of the

prostate, prostate cancer, staging of the prostate cancer, and screening modalities.

A. PROSTATE ANATOMY

The term prostate means ”to stand in front of ”, which is derived from the

Greek prohistani. This expression was adopted by Herophilus of Alexandria in 335

B.C. to describe the organ located in front of the urinary bladder [3]. The prostate

gland location is illustrated in Figure 1. It measures approximately 4x3x2 cm. The

anterior surface lies at the back of the retropubic space and is connected to the

pubic bone by the puboprostatic ligaments [10].

The prostate is divided into three main zones: the central zone (CZ), the
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FIGURE 1: Schematic illustration of an anatomical view of the lower abdomen area

that contains the prostate (Courtesy of [3]).

peripheral zone (PZ), and the transition zone (TZ), excluding the urethra and peri-

urethral glands (Figure 2). The peripheral zone represents approximately 65% of

the prostatic volume. The second largest part of the prostate is the central zone.

It is represents approximately 25% of the prostatic volume. The third zone of the

prostate is called the transition zone, which represents only 5% to 10% of a typical

prostatic volume. The prostate gland is divided into three zones according to their

function:

• The transition zone (TZ) consists of two independent pear shaped lobes situ-

ated laterally on either side of the prostatic urethra together with periurethral

glands. This is the zone where benign prostatic hypertrophy (BPH) occurs.

• The central zone (CZ) surrounds the transitional zone posteriorly and en-

closes the ejaculatory ducts. It is the zone most commonly affected by in-

flammatory processes (e.g. prostatitis). In benign prostatic hyperplasia, the

transitional zone and periurethral glands enlarge considerably compressing

the central zone to form a thin layer, the so called surgical pseudocapsule.
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• The peripheral zone (PZ) is the most posterolateral glandular component of

the prostate. The ratio of peripheral zone to central gland tissue gradually

decreases from the apex to the base of the gland. The peripheral zone can be

compressed and distorted by BPH and it is the site of the majority of prostate

cancers [11].

FIGURE 2: Schematic illustration of the front and side cross-sectional views of the

prostate showing different prostate zones (Courtesy of [4]).

B. CURRENT DIAGNOSTIC TECHNIQUES

Inside the prostate, groups of cells may form benign or malignant tumors

(see Figure 3). The cancerous cells may form within the prostate but grow too

slowly to cause problems. In other cases, cancerous tumors may grow inside the

prostate, then spread [6]. The prostate cancerous cells are characterized as follows:

• Noncancerous cells: These may grow inside the prostate as a man ages. This

condition is called benign prostatic hyperplasia (BPH). These growths often
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FIGURE 3: Illustration of Malignant Tumor (Courtesy of [5]).

squeeze the urethra, causing symptoms such as difficulty urinating.

• Pre-cancerous cells: These cells do not appear normal, but they do not present

all the characteristics of cancerous cells. They can not be felt during a physi-

cal exam and they do not produce symptoms.

• Cancerous cells: These form most often in the prostate’s outer tissue. Can-

cer cells may stay inside the prostate or they may spread to nearby organs

and tissues, such as the bladder and seminal vesicles (local spread) or to

the lymph nodes near the prostate (regional spread). Cancer cells can also

spread through the bloodstream to more distant structures such as the bones

(distant metastasis). Many early-stage tumors do not squeeze the urethra, so

they may not cause symptoms. In some cases, tumors can be felt during an

exam.

1. Staging

Staging is used to classify how far the cancer has spread. Cancer is assigned

to one of four stages as, shown in figure 4:
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FIGURE 4: The stages of prostate cancer (Courtesy of [6]).

• Stage I: Early cancer that is confined to a microscopic area and is too small to

feel when palpated.

• Stage II: The doctor can palpate the tumor, but it is confined only to the

prostate gland.

• Stage III: The cancer has spread to nearby tissues.

• Stage IV: The cancer has spread to the lymph nodes, bones, lungs or other

areas, distant from the original tumor.
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2. Treatment

Four types of standard treatment for prostate cancer have been established

[6]:

• Surgery is a first choice if the prostate cancer has not spread outside the gland

(stage I or II cancers). In this surgery, the surgeon removes the entire prostate

gland. This type of surgery is called a radical prostatectomy.

• Radiation therapy uses high-energy radiation, such as x-rays to kill cancer

cells. Radiation is used as the initial treatment for cancers that have grown

outside of the prostate gland and into nearby tissues,it is als used to reduce

the size of the tumor (stage III cancers).

• Hormone therapy prevents testosterone from reaching prostate cancer cells.

This therapy is used if the patient is not able to have surgery or radiation or

if the cancer has grown beyond the prostate gland (stage IV).

• Expectant management, or active surveillance, describes the monitoring of

the prostate cancer with prostate-specific antigen (PSA) blood tests, digital

rectal exams (DREs), and prostate biopsies every three to six months to see

changes. Expectant management is used when it is difficult to interpret if

the cells are malignant or not. Because, the PSA arises from both benign and

malignant epithelial cells, PSA usually increases over time.

3. Diagnostic Techniques

Most men, diagnosed with prostate cancer, have no symptoms and only

find their cancer due to screening. However, in advanced cases of prostate cancer,

there are symptoms such as bladder outlet obstruction, acute urinary retention,
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neurological symptoms of cord compression or pathologic fractures secondary to

bony metastases. The currently used screening tests are as follow:

• Digital Rectal Exam (DRE): The DRE test is carried out by a skilled physician

who manually feels for any abnormalities in the prostate gland through the

rectum. The accuracy of this examination is not high, averaging 39%. Nev-

ertheless, DRE is inexpensive, easy to perform, and can detect most of the

tumors of a sufficient volume. However, the DRE alone can not be relied on

to detect prostate cancer.

• Serum PSA: is considered as the best serum marker in the early detection of

prostate cancer. PSA is an enzyme which is secreted by prostatic cells. PSA

was first identified and purified in the 1970s. However, its widespread use in

clinical urology did not occur until the 1980s. The PSA testing is minimally

invasive, simple and safe. Serum PSA elevation may indicate the presence

of prostatic disease (including prostate cancer, benign prostatic hypertrophy,

urinary retention and prostatitis) or result from prostate manipulation such

as transrectal biopsy and prostatic massage. Elevation of PSA above 4 ng/mL

carries a 22% probability of prostate cancer, and a further increase above

10ng/mL raises the cancer risk to 63% [12–14]. As PSA values rise with

age, there is an agreed cut-off level for different age groups. Although this

is not universally accepted, as men may harbor prostate cancer despite low

levels of serum PSA, the use of an age-specific normal range for PSA val-

ues increases the positive predictive value of PSA testing. Table 1 details the

normal range of values according to age.

• PSA Density: is defined as the PSA per unit prostate volume. It is useful to

differentiate between prostate cancer and benign hyperplasia. The prostate

volume can be found from TRUS screening.

• PSA Velocity:is defined as the rate of change of serum PSA with time.

7



• TransRectal UltraSound (TRUS) and TRUS Biopsy: TRUS is used to display

the prostate, visualize the cancer, and guide the needles to obtain biopsies

from the prostate. The most common approaches to biopsies are transrectal

and transperineal (see Figure 6). In the transrectal procedure, a 2D US probe

is equipped with a needle guide to access to the prostate through the rectal

wall [7]. The needle trajectory is aligned with the TRUS image enabling the

visualization of the needle trajectory and placement . Since some lesions are

isoechoic, thus not visible in US images, it is necessary to sample the prostate

in a systematic randomized way. The gland is usually divided into six or

more zones of equal volume and one or more core is randomly collected from

each zone. In initial biopsies, the needles are usually laterally directed to

the peripheral zone, since 70% of the lesions are situated in this area. These

samples are later analyzed in laboratory for evidence of cancerous tissue.

Although a large number of biopsies are done with a transrectal approach,

as explained above, some urologists prefer to use a transperineal approach.

In this case, the image is still acquired by TRUS, but needle insertion is done

through the skin between the scrotum and the anus. This procedure is carried

out with the patient under local or general anaesthesia [15]. The accuracy of

TRUS Biopsy in detecting cancer is in the range of 57% to 76%.

• Gleason score The samples of tissue from the biopsy are graded based on

how it looks under a microscope. A low Gleason score means the cancer tis-

sue is similar to normal prostate tissue and the tumor is less likely to spread;

a high Gleason score means the cancer tissue is very different from normal

and the tumor is more likely to spread [12].

The main diagnostic tools for prostate cancer are digital rectal exam (DRE) and

serum concentration using prostate specific antigen (PSA) blood test. If any of the

previous screening modalities suggest any abnormalities, biopsies should be done,
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FIGURE 5: Diagnosing scheme for prostate cancer.

TABLE 1: Outlines normal age-specific PSA

Age group Normal PSA value

> 60 PSA≤ 3

60-69 PSA ≤ 4

> 70 PSA ≤ 5

and then examined by a pathologist. The chart in Figure 5 displays the diagnostic

scheme for prostate cancer [3].

C. Limitation of the Current Diagnostic Techniques

The currently used techniques for diagnosing prostate cancer are clearly un-

satisfactory. For example, prostate specific antigen (PSA) screening does not offer
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FIGURE 6: An illustration of Transperineal and transrectal approaches to prostate

biopsy. A thin needle is inserted through the rectum or through the perineum par-

allel to the urethra to perform the operation, and the procedure is usually directed

by an imaging device (e.g., ultrasound) to help in placing the needle into the right

location (Courtesy of [7])

accurate information about the location and extend of the lesion(s). In addition,

PSA is associated with a high risk of over diagnosis. TRUS Biopsy is widely used

for diagnosis of prostate cancer. However, this technique presents some draw-

backs. Because the cores are sampled in a blinded way, without the aid of any

visual references (in particular with respect to 3D space), its very difficult to know

the correct position of the biopsy inside the gland, since the TRUS images have

low signal to noise ratio (SNR) [7, 16]. Therefore, its impossible to sample the exact

same site in a later exam to investigate the development of a small cancer lesion

over time. Furthermore, with the current technique, it is possible to miss the can-

cer since the exam performs a non-exhaustive systematic search for an invisible

target. This results in a low detection rate of about 30 to 40% in traditional 12-

core biopsies and even with saturation biopsies with 18-cores similar results have

been obtained [15, 17]. Even after an initial extended biopsy, followed by a second,
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third, and fourth saturation biopsy, prostate cancer was still detected in 18%, 17%,

and 14% of patients, respectively [18]. Being so, a large number of false negatives

are inherent to the process, and a negative result cannot exclude cancer diagnosis.

Patients with maintained suspicions may have to repeat biopsy series. Gleason

scores require biopsies to invasively collect tissue samples. Therefore, despite all

its high costs and morbidity rates, biopsy is still remaining as the golden standard

for diagnosis of prostate cancer. However,it is resort.

On the other hand, imaging tests are favorable since they provide reliable

information about the size and shape of prostate gland and can localize the cancer

foci, which would improve the accuracy of diagnosis and enable more efficient

treatment.

D. THE NEED FOR THIS WORK

The main objective of this dissertation is to develop a computer-aided diag-

nostic (CAD) system for early detection of prostate cancer from both (DCE-MRI)

and (DW-MRI). Non-invasive approaches for prostate cancer diagnosis have been

widely employed, due to their potential to provide superior resolution that plays

an important role in, for example, assessing pathological tissues, locations and ex-

tent of the tumor, directing biopsies, planning proper therapy, and evaluating ther-

apeutic results. A generic framework for the analysis of prostate cancer images can

include one or more of the following: (i) segmentation approaches to extract the

prostate, (ii) registration techniques for motion correction, (iii) construction of per-

fusion curves to distinguish between normal and abnormal tissues, (iv) estimation

of perfusion-related parameters, (v) modeling of the extracted parameters, and

(vi) classification and diagnosis. Since the main steps of any computer-assisted

diagnosis (CAD) system for prostate cancer are image segmentation and image
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registration, below we will briefly overview the popular techniques for image seg-

mentation and registration.

1. Image Segmentation Methods

Accurate segmentation of the prostate is fundamental for reliable and ro-

bust non-invasive analysis of prostate cancer images. Both accuracy and automa-

tion of the segmentation technique are of considerable importance. First, auto-

mated segmentation is important because it facilitates the complete automation

of the CAD system, minimizes the effect of the operator-dependency, and makes

the diagnosis process reproducible. On the other hand, accuracy of segmentation

is essential for correct diagnosis because many crucial indexes (e.g., features for

discriminating benign and malignant lesions) are based on the contour, shape and

texture of the prostate. These features can be effectively extracted after the de-

sired boundary is correctly detected. Popular prostate segmentation techniques

can be divided into four major categories: (i) rule-based approaches, (ii) statistical-

based approaches, (iii) atlas-based approaches, and (iv) deformable models-based

approaches. A brief overview and the limitations of the existing segmentation ap-

proaches are given below.

• Rule-based techniques aim to partition an image into pixels of two or more

values through comparison of pixel values. Most popular approaches are

thresholding, region growing, and region split-and-merge. However, thresh-

old based segmentation approaches are not accurate in the case of gray levels

similarities between the prostate and the surrounding tissues. In addition, re-

gion growing-based approaches are sensitive to initialization and often need

user assistance to select proper seed points.

• Statistical-based techniques involves parametric or nonparametric probabil-
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ity models of appearance and shape of goal objects, e.g., Bayesian or maxi-

mum likelihood inference. The main limitation of current statistical models

is that the tails of the prostate distributions usually overlap, so it is difficult if

not impossible to find thresholds that separate these objects accurately unless

the object intensities considerably differ from the background. However, this

is generally not the case in prostate images so most of the applications need

more adequate probability models.

• Atlas-based techniques use anatomical atlases that depict prototypical loca-

tions and shapes of anatomical structures together with their spatial rela-

tions, as reference images to guide segmentation of new images. All the

known atlas-based methods can be classified into single and multi-atlas-based

segmentation. In general, the accuracy of the atlas-based segmentation de-

pends on the accuracy of the atlas-to-target registration (i.e., the segmenta-

tion problem is reduced to the registration one). Also, the single-atlas-based

segmentation could suffer from the possibly insufficient representation of the

whole image population. The multi-atlas approach can overcome this draw-

back, but it requires a large number of atlas-to-target registration steps in

order to produce the final segmentation.

2. Image Registration Methods

The majority of CADs assumes that the prostates (prostate contours) remain

exactly the same from scan to scan. However, prostate contours may not always

exactly match due to patient movement or breathing effects; therefore, accurate

registration of the prostate in MR images is important to precisely analyze the

transit of a contrast agent into the tissue, especially in the suspicious lesions. Ac-

curate registration will also improve spatial correspondence of the prostate region

and provide a one-on-one pixel match in all registered images, thus increasing the
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accuracy of diagnosis. To overcome the above-mentioned limitations, a novel non-

invasive MRI-based framework for early diagnosis of prostate cancer is proposed.

The proposed framework performs sequentially the following processing steps.

• Segmentation of the prostate from MR imaging based on a Maximum a Pos-

teriori (MAP) estimate of a new likelihood function that accounts for both

appearance features of the prostate and their 3D spatial voxel interactions ,

as well as a 3D shape prior.

• The integration of image registration approaches (nonrigid techniques), us-

ing geometric-based approaches (iso-contours) to improve spatial correspon-

dence of regions-of-interest and provide a one-on-one pixel match in all reg-

istered images, thus increasing the accuracy of parameter estimation and/or

diagnosis.

• KNN classifier to classify the prostate into benign or malignant based on

three appearance features extracted from registered image.

E. DISSERTATION ORGANIZATION

This dissertation consists of six chapters, which can be summarized as fol-

lows.

• Chapter I present the background to adequately understand the anatomy of

the prostate, prostate cancer, staging of the prostate cancer, and screening

modalities. In addition, a brief summary of the basic contributions of the

proposed research for diagnosing prostate cancer using DCE-MRI and DWI

are also outlined.
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• Chapter II presents some basic concepts about prostate cancer and medical

images. The current challenges of imaging the prostate in cancer.

• Chapter III presents an overview of the existing computational methods for

diagnosing prostate cancer using MRI and outlines their strengths and weak-

nesses. Additionally, the state-of-the-art clinical applications and findings

using these computational methods are covered.

• Chapter IV presents a novel, noninvasive framework in prostate application

for early detection of prostate cancer using DCE-MRI.

• Chapter V presents a fully automated image-based framework for early de-

tection of prostate cancer from DWI data.

• Chapter VI presents a general discussion about the presented research and

its results, followed by the main conclusions and the possible areas for future

work.
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CHAPTER II

IMAGING THE PROSTATE IN CANCER

Early detection of prostate cancer is crucial for the accurate diagnosis and

institution of appropriate medical therapies, which can increase the survival rate

of the patients [9]. However, a growing belief that nonlife threatening prostate can-

cers are being over-detected. Therefore, medical imaging techniques are favorable

since they provide reliable information about the size and shape of the prostate

gland and can localize the cancer foci. which would allow the determination of

efficient treatments and enable more reliable methods of diagnosis and prognos-

tication. Nowadays, medical imaging is a basic component in current medical

diagnostic tools and has demonstrated the proven ability to detect prostate can-

cer without the associated deleterious side effects of invasive techniques. These

noninvasive methods for prostate cancer diagnosis are based on acquiring scans

of the prostate and analyzing these scans for cancer detection. To acquire scans of

the prostate, different medical imaging techniques, such as Transrectal Ultrasound

(TRUS), Single Photon Emission Computed Tomographic (SPECT), Positron Emis-

sion Tomography (PET), Magnetic Resonance Imaging (MRI), and Computed To-

mography (CT), have been used (see Figure 7). Each of these image modalities

has its own mechanism for providing relevant physiological information about

the prostate as well as its own advantages and limitations. For example, CT is cur-

rently used for post-therapy evaluation by physicians to assess the effectiveness of

treatment. However, it is expensive, uses radiation, and has poor contrast between

soft tissues [19]. The SPECTs used in the detection of metastatic disease and are
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performed when symptoms for disease are present, such as bone pain. PET/CT

allows differentiation between tumor and bowel in pelvis [20], it has limitations to

distinguishing tumors from inflammation. As a result, TRUS and MRI are more

commonly used in CAD systems for diagnosing prostate cancer.

FIGURE 7: Schematic illustration of different medical image modalities for imag-

ing the prostate in cancer.

The Transrectal Ultrasound (TRUS) imaging [21–23] is widely used for guided

needle biopsy due to the real-time nature of the imaging system, ease of use, and

portability (see Figure 8). However, TRUS images have a low signal to noise ratio

(SNR) and detection of malignant tissues is difficult. Although,

(a) (b) (c)

FIGURE 8: Different types of prostate medical images: (a) ultrasound image (Cour-

tesy of [8]), (b) computed tomography (CT) image (Courtesy of [7]), and (c) T2-

weighted (MRI) image.

Magnetic Resonance Imaging (MRI) has been recently suggested for im-
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proved visualization and localization of the prostate. It provides valuable patho-

logical and anatomical information [24]. Recently, new MRI modalities, such as

Magnetic resonance Spectroscopy (MRS), Dynamic Contrast-Enhanced MRI (DCE-

MRI), and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI),

have gained considerable attention as important tools for the early detection of

prostate cancer. However, a side effect is an increase in image data that can be

attributed to a number of factors including: increased image resolution, increased

bits per volume image element (voxel), sampling in an increased number of dimen-

sions, and an increased amount of tissue imaged. Although acquiring additional

data provides a more complete view of the patient’s physiology, it also creates a

quantity of data that may be impossible for a physician to examine. For example,

radiologists have traditionally dealt with only a few 2-D images (such as x-ray ra-

diographs) per exam. However, now the capability exists for doctors to perform

high resolution 3-D MRI scans of a patient. If many of these scans are taken at

different times in order to monitor the progression of the patient’s condition, the

doctor is left with an immense 4-D dataset consisting of hundreds or thousands

of images. Analysis consistency begins to suffer due to inter- and intra-observer

variations. Since all the work presented in this dissertation mainly deals with MRI

prostate data, an overview of different types of the MRI modality is given in the

following section.

A. MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) has become the most powerful and cen-

tral noninvasive tool for clinical diagnosis of diseases. The fundamental principle

of MRI is based on the use of a strong static magnetic field in which the hydrogen

nuclei (single proton) of water molecules in human tissues is aligned parallel to

that field. Then, an external radio frequency (RF) pulse (wave) is applied to thun-
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paired magnetic spins (proton) aligned in the static magnetic field, making them

spin in different directions [25]. The interaction between the RF and proton spins

leads to periodic absorption and emission of energy. When the protons relax back

to their lower energy (equilibrium) state, they release detectable signals (energy)

that are spatially encoded and are used to construct the MR image.

FIGURE 9: Different specialized MRI acquisition techniques.

Different types of tissues (muscle, fat, cerebral, spinal fluid, etc.) send back

measurably different types of tissue-specific signals following the application of

the same RF pulse. The contrast of an MR image is strongly dependent on the way

the image is acquired. Different components of the scanned area can be highlighted

using different preselected pulse sequences: strength, shape, and timing of the RF

and gradient pulses (external fields).The most commonly-known specialized MRI

techniques are shown in Figure 9. Generally, MRI can be used to acquire planar

2D images or 3D volumes [25]. Since this dissertation is concerned with building a
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MRI-based CAD system for the early diagnosis of prostate cancer, a brief overview

of the basic principles of is presented in the next section.

1. Structural MRI

T1- and -T2-weighted is a basic type of MRI in which most of the contrast be-

tween tissues is due to differences in tissue T2 or T1 values. Usually, T2-weighted

scans are used when contrast between fluid, abnormalities (e.g., tumors, inflam-

mation, trauma), and the surrounding tissues is required. Therefore, it is the best

MRI method for pathological details (see Figure 8). The T2-weighted MRI modal-

ity has the ability to provide reliable information about the size and shape of the

prostate gland. However, it is limited by unsatisfactory sensitivity and specificity

for cancer detection and localization [26].

2. Dynamic Contrast-Enhanced MRI (DCE-MRI)

Although structural MRI provides excellent soft tissue contrast, it lacks func-

tional information. Dynamic Contrast-Enhanced MRI (DCE-MRI) is a special MR

technique that has the ability to provide superior information about the anatomy,

function, and metabolism of target tissues. The DCE-MRI technique involves ac-

quiring T1-weighted volume images before and at several time points after the in-

jection of a contrast agent. The main role of the DCE-MRI is to increase the image

contrast of anatomical structures (e.g., blood vessels) that are not easily visualized

by the alteration of the magnetic properties of water molecules in their vicinity.

This in turns improves the visualization of tissues, organs, and physiological pro-

cesses. The DCE-MRI takes advantage of the network of microvascular structures

associated with cancerous tumors. Specifically, the DCE-MRI procedure allows
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for the observation and quantification of vascular permeability and vascular den-

sity curves or time-intensity curves as shown in Figure 11. Typical examples of

dynamic MRI time series data of the prostate are shown in Figure 10.

FIGURE 10: MRI Prostate images taken at different time points post the admin-

stration of the contrast agent showing the change of the contrast as the contrast

agent perfuse into the prostate tissues.

FIGURE 11: (a) A typical time-intensity curve of the average intensity of the

prostate measured before and after contrast agent adminstration. The curve il-

lustrates typical perfusion-related indexes that can be estimated and used for di-

agnosis of the prostate cancer. (b) Prostate colored by wash-in and wash-out
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3. Magnetic Resonance Spectroscopy Imaging (MRSI)

Magnetic Resonance Spectroscopy Imaging (MRSI) allows the evaluation of

the metabolic activity within the prostate gland by assessing the quantities of dif-

ferent metabolites. Within the prostate, the most commonly detected metabolites

are choline, creatine, polyamines and citrates. In a healthy prostate, there are low

levels of choline and high levels of citrates; the opposite is observed in patients

with prostate cancer. Polyamines are increased in benign prostatic hyperplasia

and reduced in cancer (see Figure 12). A ratio of choline-plus-creatine to citrate

has been used to help differentiate benign from malignant lesions [27].

FIGURE 12: Examples of MRS. There is a single choline, polyamine, and creatine

peak.

4. Diffusion-Weighted Imaging (DWI)

DWI is designed to obtain images whose contrast depends on the differ-

ences in water molecule mobility. This is achieved during data acquisition by

adding diffusion magnetic field gradients. The degree of diffusion weighting of

the sequence, expressed as the b-factor (in s/mm2), depends on the amplitude of
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the field gradient, time of application, and time interval between the magnetic

field gradients. A typical DWI-MRI for the prostate is shown in Figure 13. DWI is

a well-established MRI method that has been successfully used for tumor localiza-

tion and diagnosis [28].

(a)

(b)

FIGURE 13: Diffusion MR images for the prostate at (a) b-value of 0s/mm2 and (b)

b-value of 800 s/mm2.

B. QUANTIFICATION OF PROSTATE CANCER USING MR IMAGES

The use of MRI medical images for prostate cancer has been increased in

recent years due to its ability to provide superior anatomical and functional infor-

mation about the tumor classification. The goal of this work is to evaluate the di-

agnostic value of an imaging protocol that uses Dynamic Contrast-Enhanced MRI

(DCE-MRI) and Diffusion-Weighted Imaging (DWI) in patients with suspicious

prostate cancer and to determine if additional information, provided by DWI, im-

proves the diagnostic value of prostate MRI [29]. In this dissertation, the proposed

models have been applied to both imaging protocols.

a. Early Detection of Prostate Cancer using (DCE-MRI) The DCE-MRI has

demonstrated the promise for early detection of prostate cancer [30]. The DCE-

MRI process begins with several MRI scans which are used to establish a baseline

23



in image intensity. These scans are performed without the administration of con-

trast enhancing agents so that the tissue’s non-enhanced image intensity can be

established. In the next stage, a contrast agent (such as Gadolinium) is adminis-

tered intravenously. At this point, MRI scans are performed at regular intervals.

The contrast agent flows throughout the body, including the tissues being imaged.

Malignant areas of increased microvascular growth have increased vascular leak-

age; therefore, in these regions more contrast agent passes between the vascular

system and the extravascular tumor tissue [30–32]. The observed dynamics of the

buildup and washout of the contrast agent can help characterize the micro-vessel

density and porosity. Repeated MRI scans continue until the body filters most of

the contrast agent from the blood stream via the kidneys. A signal intensity versus

time curve is created for each voxel in the volume, and local exchange model pa-

rameters, inferred from these curves, are used by radiologists to detect and classify

malignant lesions. Currently, manual DCE-MRI analysis is performed using esti-

mated pharmacokinetic parameters which quantify the movement of the contrast

agent into and out of tissues. These parameters are color-coded and superimposed

on a pre-contrast MR image. The radiologists then manually outline the lesions

in the superimposed images using a computer mouse. Once segmented, the av-

erage time vs signal intensity plot may be observed and the lesion is classified by

matching the resulting plot with theoretical plots for specific lesion types.

The proposed work in this dissertation seeks to provide a new noninvasive

system that possesses the ability to facilitate the accurate analysis of the perfu-

sion of a CA in the prostate tissue in an effort to extract perfusion parameters that

distinguish between malignant and benign prostate cancers. The innovation in

this case study is a CAD system that integrates stochastic approaches using new

Markov-Gibbs random field (MGRF) energy models and the geometric approaches

to accurately separate the prostate from the surrounding tissues, after handling the

global and local motion, in order to optimally distinguish between malignant and
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benign prostate cancers (see Figure 14).

FIGURE 14: A block diagram of the proposed CAD system for the early diagnosis

of prostate cancer using DCE-MRI. The time series data is first corrected for motion

artifacts. Then, the prostatic tissue is segmented and the agent kinetic curves are

constructed. Finally, perfusion-related parameters are extracted from the kinetic

curves and are used for the classification of both malignant and benign cases.

b. Diffusion-Weighted MRI Diffusion-Weighted MRI (DWI),

a non-invasive technique in which molecular motion of water is measured in bi-

ological tissues, is now used in the detection of prostate cancer as an adjunct to

T2-weighted [33]. The Apparent Diffusion Coefficient (ADC) calculated from DWI

in prostate cancer showed that the mean ADC for malignant prostate is lower than

the mean ADC in the non-malignant prostatic tissue [34–39]. In recent years, a

growing number of clinical studies have evaluated the utility of DWI, either in

combination with or in comparison with other MRI techniques, for the detection

of prostate cancer. These studies have reported various sensitivities and specifici-

ties of cancer diagnosis [34, 40–43]. In this dissertation, a comprehensive frame-

work for detection of prostate cancer is proposed based on DWI, see Figure 15.

The proposed diagnostic approach segments the prostate from the surrounding

anatomical structures based on a Maximum a Posteriori (MAP) estimate of a new

log-likelihood function after handling the global and local motions. Then, three
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appearance features are extracted and used for the evaluation of the potential

prostate tumor. In addition, the tumor boundaries are determined using a level

set deformable model controlled by the diffusion information and the spatial in-

teractions between the prostate voxels, see Figure 16.

FIGURE 15: Flowchart of the proposed CAD system for automatic detection of

cancer from 3D DWI. An automatic prostate segmentation method is applied to

isolate the prostate from the surrounding anatomical structures. Following seg-

mentation, a non-rigid registration approach is employed to account for any local

deformation that could occur in the prostate during the scanning process. Three

features are extracted from registered diffusion data. The features are summarized

by a supervised classifier to calculate the likelihood of malignancy.
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FIGURE 16: Pixel-wise parametric map display of the diffusion information and

the spatial interactions between the prostate voxels. The red and blue hues of each

color scale correspond to enhanced and reduced perfusion, respectively.
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CHAPTER III

IMAGE BASED RELATED WORK FOR EARLY DIAGNOSES OF PROSTATE
CANCER

This chapter discusses the developed non-invasive state-of-the-art Com-

puter Aided Diagnosis (CAD) systems for prostate cancer based on analyzing dif-

ferent types of Magnetic Resonance Imaging (MRI), e.g., T2-MRI, Diffusion

Weighted Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-

parametric MRI, focusing on their implementation, experimental procedures, and

reported outcomes. Furthermore, the chapter addresses the limitations of the cur-

rent prostate cancer diagnostic techniques, outlines the challenges that these tech-

niques face, and introduces the recent trends to solve these challenges. Prostate

segmentation from MRI images, i.e., the delineation of prostate borders from the

surrounding tissues, is a basic step in any noninvasive CAD system for early de-

tection of prostate cancer. However, accurate delineation of prostate borders in MR

images is a challenge due to: large variations of prostate shapes within a specific

time series as well as across subjects; the lack of strong edges and diffused prostate

boundaries; and the similar intensity profile of the prostate and surrounding tis-

sues. Although manual outlining of the prostate border enables the prostate vol-

ume to be determined, it is time consuming and observer dependent. Moreover,

traditional edge detection methods [24] are unable to extract the correct boundaries

of the prostate since the gray level distributions of the prostate and the surround-

ing organs are hardly distinguishable. To overcome this limitation, most successful

known approaches have addressed the segmentation challenges by incorporating
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the prostate appearances and shapes into their segmentation techniques. In par-

ticular, an automated framework by Allen et al. [44] was proposed for 3D prostate

segmentation that consists of two steps. voxel classification is performed based

on Gaussian probabilities of grey level. Then, a statistical shape model is used to

segment the prostate region. A hybrid 2D/3D active shape model (ASM)-based

methodology for global optimal segmentation of the 3D MRI prostate data was

proposed by Zhu et al. [45]. Iterative segmentation was performed by a 2D ASM

search on each slice, then the final surface is reconstructed from the 2D search re-

sults and updated by re-estimating the parameters of the 3D probabilistic shape

model. Klein et al. [8, 46] presented an atlas-based segmentation approach that

utilized a localized version of mutual information (MI) to extract the prostate from

MR images. The segmentation of the prostate is obtained as the average of the best-

matched registered atlas set to the test image (image to be segmented).Flores-Tapia

et al. [47] proposed a semi-automated edge detection technique for MRI prostate

segmentation. In their framework, the prostate borders were detected by tracing

four manually-selected reference points on the edge of the prostate using a static

Wavelet transform [48] to locate the prostate edges. Toth et al. [49] presented an al-

gorithm for the automatic segmentation of the prostate in multi-modal MRI. Their

algorithm starts by isolating the region of interest (ROI) from MRS data. Then, an

ASM within the ROI is used to obtain the final segmentation. A semi-automated

approach by Vikal et al. [50] used a priori knowledge of prostate shape to detect the

contour in each slice and then refined them to form a 3D prostate surface. Firjani

et al. [51] proposed a MAP based framework that combines a graph-cut approach

and three image features (grey-level intensities, spatial interactions between the

prostate pixels, and a prior shape model) for 2D DCE-MRI prostate segmentation.

Their method was later extended in [52] to allow for 3D segmentation from DCE-

MRI volumes. It utilized both a 3D MRF to model the spatial interaction between

the prostate voxels and a 3D shape prior.
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An unsupervised segmentation method was proposed by Liu et al. [53] for

the segmentation of MR prostate images. A level set deformable model was em-

ployed and was guided by an elliptical prostate shape prior and intensity gradient

was employed to refine the initial results obtained by Otsu thresholding [54]. A

maximum A posteriori (MAP)-based framework was proposed by Makni et al. [55]

to perform automated 3D MRI prostate segmentation. Their framework combined

graylevel, contextual information regarding voxels neighborhoods using MRF, and

statistical shape information to find optimum segmentation based on Bayesian a

posteriori classification, estimated with the iterative conditional mode (ICM) algo-

rithm. Liu et al. [56] proposed an automated approach that utilized fuzzy MRF

modeling for prostate segmentation from multi-parametric MRI. Their framework

exploited T2-weighted image intensities, pharmacokinetic (PK) parameter kep ,

and apparent diffusion coefficient (ADC) values in a Bayesian approach to label

prostate pixels as cancerous or non-cancerous. The labeled pixels are then clus-

tered using the k-means algorithm. The system had a specificity of 89.58%, sensi-

tivity of 87.50%, accuracy of 89.38%, and a DSC of 62.2%. A similar approach was

developed by Artan et al. [57] and located cancerous regions using cost-sensitive

support vector machine (SVM). Prostate segmentation was performed using a con-

ditional random field and the same three features in [56] were utilized for classi-

fication. The DSC for prostate localization and segmentation was 0.46 ± 0.26, and

the area under the receiver operator characteristic (ROC) curves (Az) of the classi-

fication was 0.79 ± 0.12. Ozer et al. [58] also developed a technique that directly

segmented prostate cancers using the same three features in [56, 57]. Both the

SVM and relevance vector machine (RVM) [59] classifiers were used and the sys-

tem showed a specificity of 0.78 and a sensitivity of 0.74 for RVM and 0.74 and 0.79

for SVM. Gao et al. [60] proposed a shape-based technique that utilized point cloud

registration of the MR images before segmenting the prostate. The final prostate

border is obtained by minimizing a cost functional that incorporated both the lo-

cal image statistics as well as the learned shape prior. Martin et al. [61] developed
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an atlas-based approach for segmenting the prostate from 3D MR images by map-

ping a probabilistic anatomical atlas to the test image. The resulting map is used

to constrain a deformable model-based segmentation framework. Recently, Dowl-

ing et al. [62] proposed an automated framework that combined dynamic multi-

atlas label fusion methods. They employed the diffeomorphic demons method for

the nonrigid registration using the selective and iterative method for performance

level estimation (SIMPLE) technique [63]. In their framework, a pre-processing

step for bias field correction, histogram equalization, and anisotropic diffusion

smoothing was employed. Ghose et al. [64] proposed a probabilistic graph-cut-

based framework for prostate segmentation based on the fusion of the posterior

probabilities determined with a probabilistic atlas and a supervised random forest

learning framework. An automated technique that first applied global registration

to the prostate MRI data followed by an active appearance model (AAM) based

segmentation of the prostate tissue was proposed by Ghose et al. [65]. Table 2

summarizes the reviewed methodologies for prostate segmentation and registra-

tion with the validation data sets and achieved performance for each study. How-

ever, in most of these approaches the segmentation and registration reliability is

not very high due to the following reasons: (i) parametric shape models fail in the

presence of large gray-level variability across subjects and time; (ii) edge detection

methods are not suitable for discontinued objects; (iii) deformable models tend to

fail in the case of excessive noise, poor image resolution, diffused boundaries or

occluded objects if they do not incorporate a priori models (e.g., shape and ap-

pearance). In addition, most of the motion correction models account only for the

global motion and do not take into account the local motion of the prostate due to

transmitted respiratory and peristaltic effects. Furthermore, the existing local mo-

tion correction methods are intensity-based techniques, which are prone to non-

linear intensity variations over the time series and perform poorly in pre-contrast

images. Also, local motion correction methods register the original grey level data

without any prior segmentation; therefore, they do not guarantee voxel-on-voxel
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matches of the registered perfusion data.

The state-of-the-art CAD systems extract several features from MR image

modality for classifying a prostate region as cancerous or noncancerous. Several

CAD systems in the literature have used multi-parametric MRI, a combination of

multiple MRI modalities, to increase the number and quality of the features that

the systems can utilize. A summary of the the common features extracted from

each of these MRI modalities as well as the basic systems along with their compu-

tational methods, validation data sets, and validation accuracy are given in Table 3.

To the best of our knowledge, the first semi-automated computerized MRI-based

CAD system for prostate cancer diagnosis was developed by Chan et al [66]. In

their study, multi-modal MRI (T2−weighted, T2−mapping, and line scan diffusion

imaging) were used to estimate malignancy likelihood in the PZ of the prostate.

Both statistical maps and textural features were obtained and a SVM and a linear

discriminant analysis (LDA) classifiers were employed for the classification. Their

systems resulted in an Az of 0.761±0.043 and 0.839±0.064, for SVM and LDA re-

spectively. Madabhushi et al [67] proposed an automated CAD system for detect-

ing prostatic adenocarcinoma from MR prostate images. In their method, multiple

image features, including gray levels statistics (intensity values, mean, and stan-

dard deviation), intensity gradient, and Gabor filter features, were used for clas-

sifying groups of pixels as tumors. A K-nearest neighbor classifier and Bayesian

conditional densities were used for classification, and the system achieved anAz of

0.957. A study by Engelbrecht et al. [68] evaluated which MRI parameters would

result in optimal discrimination of prostatic carcinoma from normal PZ and CZ

of the prostate. Using the ROC curves, their study concluded that the relative

peak enhancement was the most accurate perfusion parameter for cancer detec-

tion in the PZ and CZ of the gland. A semiautomated CAD system by Kim et

al. [27] demonstrated that parametric imaging of the wash-in rate was more accu-

rate for the detection of prostate cancer in the PZ than was T2−weighted imaging
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alone. However, they also observed significant overlap between the wash-in rate

for cancer and normal tissue in the TZ. Fütterer et al. [69] developed a CAD system

to compare the accuracies of T2−weighted MRI, DCE-MRI, and MRS imaging for

prostate cancer localization. The results showed higher accuracy in DCE-MRI than

were achieved with T2−weighted MRI in prostate cancer localization. A similar

study was conducted by Rouvièere et al. [70] for the detection of postradiotherapy

recurrence of prostate cancer. Their study also concluded that DCE-MRI possesses

the ability to depict the intraprostatic distribution of recurrent cancer after therapy

more accurately and with less inter-observer variability than T2− weighted MRI.

Puech et al. [71] developed a semiautomated dynamic MRI-based CAD system

for the detection of prostate cancer. Candidate lesion ROIs were selected either

manually or by using a region growing technique initiated by a user-selected seed

point. Lesions are classified as benign, malignant or indeterminate based on the

analysis of the median wash-in and wash-out values. Their CAD system demon-

strated a sensitivity and specificity of 100% and 45% for the PZ, and sensitivity and

specificity of 100% and 40% for the TZ. Ocak et al. [72] developed a CAD system

using PK analysis for prostate cancer diagnostics in patients with biopsy-proven

lesions. In their framework, four PK parameters (Ktrans, kep, ve , and the area un-

der the gadolinium concentration curve) were determined and compared for can-

cer, inflammation, and healthy peripheral. Their results showed improvement in

prostate cancer specificity using the Ktrans and kep parameters over that obtained

using conventional T2−weighted MRI. An automated DCE-MRI CAD system for

prostate cancer detection was proposed by Viswanath et al. [73]. Prostate borders

were segmented using an ASM, and a nonrigid registration scheme (affine and thin

plate spline) was employed to map the whole mount histological sections onto cor-

responding 2D DCE-MRI. In order to classify prostate tissue, a local linear embed-

ding approach [74] was used to create a feature vector using local neighborhood

intensities. Then, a k-means clustering approach was used for the classification

and the system achieved an accuracy of about 77%. Their framework was later
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extended in [75] by combining T2− weighted features and DCE-MRI functional

features. The system validation showed that the integration of both modalities

(Az of 0.815) has a better performance of either individual modalities (0.704 for

T2−weighted MRI and 0.682 for DCE-MRI). A semi-automated framework by Vos

et al. [76] classified prostate lesions using quantitative PK maps and T1 estimates.

PK features were extracted from a user-defined ROI around the prostate and a

SVM was used to estimate the likelihood of malignancy. Based on the ROC anal-

ysis, the reported results showed that the system had an accuracy of 83% in the

classification of the ROIs with abnormal enhancement patterns in the PZ. Ampeli-

otis et al. [77] proposed a semi-automated multi-parametric CAD system that used

T 2 -weighted and DCE-MRI. The T2−weighted pixel intensities and the four low-

frequency coefficients of the discrete cosine transform were used as features and

probabilistic neural networks were employed as the classifier. Based on the ROC

analysis (Az of 0.898), their study concluded that the fused T2−weighted and dy-

namic MRI features outperform that of either modalitys features alone. A similar

CAD system was proposed by Litjens et al. [78] that employed an ASM to segment

the prostate. In order to classify the segmented prostate voxels, the ADC, Ktrans ,

and kep parameters were estimated and a SVM classifier with a radial basis func-

tion kernel was used. The validation results showed a sensitivity of 74.7% and

83.4% with seven and nine FPs per patient, respectively. Vos et al. [75] utilized

an automated CAD system for the detection of prostate cancer. Just as in [78],

the prostate was segmented using an ASM-based technique. Then, multiple ROIs

were located within the segmented prostate using peak and mean neighborhood

intensity and ADC values. These values and the differences between the peak and

the mean were again used as features for ROI classification. In addition, the 25

percentile T2 , 25 percentile ADC, 25 percentile wash-out, 50 percentile T1 , 75 per-

centile Ktrans , and 75 percentile ve were used as features. The resulting feature

vector was classified using an LDA classifier. This system had an Az of 0.830.20. A

maximum Az of 0.88 was reported for high-grade tumors, but the system had dif-
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ficulty classifying lower grade tumors, achieving a maximum Az of 0.74. Another

semi-automated multi-parametric system by Peng et al. [79] utilized T2−weighted,

DCE-MRI and DWI. Candidate features, including the T 2 -weighted intensity

skew, theKtrans , and the average and 10th percentile ADC, were calculated from a

manually-selected ROI. Then, an LDA classifier was used to differentiate prostate

cancer from normal tissue in those ROIs. Their CAD system concluded that the

best diagnostic performance (Az of 0.95 ± 0.02, SEN of 0.82, and SPE of 0.953) is

obtained by combining the 10th percentile ADC, average ADC, and T2−weighted

intensity skewness features.

TABLE 2: Summary of the discussed prostate segmentation and registration tech-
niques and their experimental performance. Note that DIM and AL stand for data
dimension (i.e., 2D, 3D, or 4D) and the automation level (i.e., automated or semi-
automated), respectively.

Study DIM, AL, and Methods Data and Performance
Allen et
al. [44]

• 3D
• Automated
• ASM-based segmentation

• 22 data sets
• MAD: 2.8±0.82

Klein et
al. [46]

• 3D
• Automated
• Affine + B-Splines Registra-

tion
• Atlas-based segmentation

• 38 data sets
• Median DSC: 0.82

Zhu et
al. [45]

• 3D
• Automated
• Hybrid 2D+3D ASM

• 26 data sets (288 slices)
• RMSD: 5.481±2.91

Flores-
Tapia et
al. [47]

• 3D
• Semi-automated
• Edge detection

• 1 data set (19 slices)
• DSC: 0.93±0.005

Toth et
al. [49]

• 3D
• Automated
• Unsupervised spectral clus-

tering
• ASM-based segmentation

• 150 slices
• Average OR: 0.83, average

SEN: 0.89, average SPE:
0.86, and average PPV:
0.93

Klein et
al. [8]

• 3D
• Automated
• Affine + B-splines registra-

tion
• Atlas matching

• 50 slices
• Median DSC: 0.85

continued on the next page . . .
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TABLE 2 – continued from the previous page
Study DIM, AL, and Methods Data and Performance

Vikal et
al. [50]

• 3D
• Semi-automated
• ASM

• 3 data sets (39 slices)
• DSC: 0.93±0.3 and MAD:

2.00±0.6 (mm)
Makni et
al. [55]

• 3D
• Automated
• ASM

• 12 data sets
• Mean HD: 9.62 (mm), GD:

2.39 (mm), OR: 0.84, VPC:
0.90, and DSC: 0.91

Liu et
al. [53]

• 2D
• Automated
• Level-set-based segmenta-

tion

• 10 data sets
• DSC: 0.91±0.03

Ozer et al.
[58]

• 2D
• Automated
• SVM and RVM

• 20 data sets
• SPE: 0.78, SEN: 0.74, and

DSC: 0.51 for RVM
• SPE: 0.74, SEN: 0.79 and

DSC: 0.52 for SVM
Artan et
al. [57]

• 2D
• Automated
• Cost-sensitive conditional

random field

• 21 data sets
• Az: 0.790±0.12 and DSC:

0.46±0.26

Liu et
al. [56]

• 3D
• Automated
• fuzzy MRFs

• 11 data sets
• SPE: 0.896, SEN: 0.894,

and DSC: 0.622
Gao et
al. [60]

• 3D
• Automated
• Affine registration
• Level set segmentation

• 48 data sets
• DSC: 0.84±0.03 and 95%

HD: 8.10±1.50 (mm) (33
data sets)

• DSC: 0.82±0.03 and 95%
HD: 10.22±4.03 (mm) (15
public data sets)

Martin et
al. [61]

• 3D
• Automated
• Affine + Multi-resolution

Demons registration
• ASM

• 36 data sets
• Median DSC: 0.86 and

Average surface error:
2.41mm

Dowling et
al. [62]

• 3D
• Automated
• Diffeomorphic demons regis-

tration
• Atlas-based segmentation

• 50 data sets
• Median DSC: 0.86 and Av-

erage surface error: 2.0
(mm)

continued on the next page . . .
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TABLE 2 – continued from the previous page
Study DIM, AL, and Methods Data and Performance

Ghose et
al. [64]

• 3D
• Semi-automated
• Affine + nonrigid Demon

registration
• Graph-cut segmentation

• 15 data sets
• DSC: 0.91±0.04 and

95%HD: 4.69±2.62 (mm)

Ghose et
al. [65]

• 2D
• Automated
• Affine registration
• AAM-based segmentation

• 15 data sets
• DSC: 0.88±0.11; HD:

3.38±2.81 (mm), and
MAD: 1.32±1.53

AMM: Active appearance model.
ASM: Active shape model.
DSC: Dice similarity coefficient: DSC = 2·TP

2·TP+FP+FN
where, TP: true positive, FP: false positive, FN: false negative.

GD: Gravity distance.
HD: Hausdorff distance.
MD: Mean distance.
MAD: Mean absolute distance.
N/A: Not applicable.
OR: Overlap ratio.
OAE: Overlapping area error; OAE = FP+FN

TP+FN%

PPV: Positive predictive value; PPV = TP
TP+FP .

RMSD: Root mean squared distance.
RVM: Relevance vector machine.
SEN: Sensitivity; SEN = TP

TP+FN .
SPE: Specificity; SPE = TN

TN+FP ; where TN: true negative.
VPC: Volume properly contoured.
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TABLE 3: Summary of MRI-based CAD systems for prostate cancer detection and
diagnosis, including segmentation method, selected features, classifier, and exper-
imental performance.

Study Technique Features Performance
Chan et
al. [66]

T2WI,DWI,
T2 map

• Manual ROIs
• Gabor filter
• SVM

• 5 Subjects (33 im-
ages)

• Az: 0.83±0.064
Litjens et
al. [78]

DWI,
DCE-MRI,
T2WI

• ASM
• T2−weighted

intensities,
Ktrans,kep, and
ADC

• Affine + B-Splines
Registration

• Atlas-based seg-
mentation

• 188 subjects
• SEN: 0.747 (at 7 FP

per patient) and
0.834 (at 9 FP per
patient)

Engelbrecht
et al. [68]

DCE-MRI • Manual ROIs
• time to peak, peak

enhancement,
washout

• N/A

• 36 subjects
• Az PZ: 0.79
• Az CZ: 0.70

Tiwari et
al. [80]

T2WI,
MRS

• Manual ROIs
• Random Forest
• N/A

• 36 subjects
• AUC = 0.79±0.02

Rouvière et
al. [70]

DCE-
MRI,T2WI

• Manual ROIs
• N/A
• Evaluation and

scoring by three
independent
readers

• 22 subjects
• ACC: 0.59 (T2-

weighted MRI)
• ACC: 0.75 (DCE-

MRI)

Kim et
al. [27]

DCE-
MRI,T2WI

• Manual ROIs
• Wash-in rate
• A cut-off thresh-

old selected by
a radiologist dif-
ferentiate cancer
from normal
tissue

• 53 subjects
• ACC: 0.62 (T2-

weighted MRI)
• ACC: 0.88 (DCE-

MRI)

Madabhushi
et al. [67]

DCE-
MRI,T2WI,PD

• N/A
• Gabor filter
• Bayes classifier

• 5 data set (33
slices)

• SEN: 0.42, SPE:
0.97 and PPV: 0.43

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Technique Features Performance

Madabhushi
et al. [81]

DCE-
MRI,T2WI

• N/A
• Gabor filter
• Bayes and kNN-

nearest neighbor
classifiers

• 5 data set (33
slices)

• Az:0.957

Fütterer et
al. [69]

DCE-MRI • Manual ROIs
• wash-out slopes
• Prospectively

evaluation and
scoring of the se-
lected features by
two independent
radiologists

• 34 subjects
• Az:0.68

Viswanath
et al. [73]

DCE-MRI • ASM
• Ratio of the wash-

in and wash-out
rates

• K-means cluster-
ing

• 21 subjects
• SEN: 60.72%, SPE:

83.24%, and ACC:
77.2%

Ocak et al.
[72]

T2WI,
DCE-MRI

• Manual ROIs
• the area under

the gadolinium
concentration
curve

• Logistic regression
modeling

• 50 subjects
• SEN: 0.94, SPE:

0.37, PPV: 50,
and NPV: 0.89
(T2-weighted
MRI)

• SEN: 0.73, SPE:
0.88, PPV:75,
and NPV: 0.75
(DCE-MRI)

Puech et al.
[71]

DCE-MRI • Manual ROIs
• Wash-in and

wash-out slopes
• Automatic scoring

algorithm

• 84 subjects
• for PZ SEN: 100%

and SPE: 45%
• for TZ SEN: 100%

and SPE: 40%
Vos et
al. [76]

DCE-MRI,
T2WI

• Manual ROIs
• Quantitative

features were
extracted from a
kinetic modelling
of the enhance-
ment curve

• SVM

• 34 subjects
• Az:0.83

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Technique Features Performance

Ampeliotis
et al. [77]

T2WI,
DCE-MRI

• Manual ROIs
• T2-weighted fea-

tures (intensity,
and the intensity
variance)

• Probabilistic neu-
ral networks

• 10 subjects
• Az:0.89 (T2-

weighted MRI)
and (DCE-MRI)

Viswanath
et al. [82]

DCE-MRI • ASM
• T2 features (stan-

dard deviation,
gradient, Haralick
feature), and DCE
features (washin
and wash-out)

• Bayes classifier
and random forest

• 6 subjects (18 Im-
ages)

• Az:0.815± 0.029

Lopes et al.
[83]

DWI • Manual ROIs
• Fractal dimen-

sion, and Multi-
fractional Brown-
ian motion

• SVM and Ad-
aBoost

• 17 subjects
• SEN: 0.83 and SPE:

0.91 for AdaBoost
• SEN: 0.85 and SPE:

0.93 for SVM

Shah et al.
[84]

T2WI,
DWI,
DCE-MRI

• K-means
• T2 intensities

and Quantitative
features were
extracted from a
kinetic modelling
of the enhance-
ment curve and
ADC

• SVM

• 24 subjects
• F-M: 0.93, Raters

agreement
(Kappa): 0.89

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Technique Features Performance

Sung et al.
[85]

DCE-MRI • Manual ROIs
• T2 baseline and

peak signal in-
tensities, initial
up-slope, wash-
in and washout
rates, time to peak,
percentage of rela-
tive enhancement,
percentage en-
hancement ratio,
time of arrival

• SVM

• 42 subjects
• SEN: 0.77, SPE:

0.77, and ACC:
0.83

Vos et
al. [75]

DWI,
DCE-MRI

• ASM
• T2 intensities

and Quantitative
features were
extracted from a
kinetic modelling
of the enhance-
ment curve and
ADC

• LDA

• 200 subjects
• SEN: 0.41 (at 1

FPs), 0.65 (at 3
FPs), and 0.74 ( at
5 FPs)

Niaf et al.
[86]

T2WI,
DCE-MRI,
DWI

• Manual ROIs
• T2 Quantitative

features were
extracted from a
kinetic modelling
of the enhance-
ment curve

• Nonlinear SVM,
LDA, kNN-
nearest neighbor,
and naı̈ve Bayes
classifiers

• 30 subjects
• Az:0.89

Peng et al.
[79]

T2WI,
DCE-MRI,
DWI

• Manual ROIs
• T2 Quantitative

features were
extracted from a
kinetic modelling
and ADC

• LDA

• 48 subjects
• Az:0.95± 0.02

AMM: Active appearance model.
ASM: Active shape model.

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Technique Features Performance

AAC: Accuracy: ACC = TP+TP
TP+FP+FN+TN

where, TP: true positive, FP: false positive, TN: true negative.
SVM: Support vector machine.
LDA: Linear discriminate analysis
F-M: F-Measure.
IAUC: Initial area under the time-concentration curve.
ADC: Apparent diffusion coefficient.
DSC: Dice similarity coefficient: DSC = 2·TP

2·TP+FP+FN
where, TP: true positive, FP: false positive, FN: false negative.

GD: Gravity distance.
HD: Hausdorff distance.
MD: Mean distance.
MAD: Mean absolute distance.
N/A: Not applicable.
OR: Overlap ratio.
OAE: Overlapping area error; OAE = FP+FN

TP+FN%

PPV: Positive predictive value; PPV = TP
TP+FP .

RMSD: Root mean squared distance.
RVM: Relevance vector machine.
SEN: Sensitivity; SEN = TP

TP+FN .
SPE: Specificity; SPE = TN

TN+FP ; where TN: true negative.
VPC: Volume properly contoured.

In summary, developing noninvasive CAD systems for the detection and

diagnosis of prostate cancer is an area of research interest. Current CAD sys-

tems focus mainly on the initial voxel classification stage by obtaining likelihood

maps that combine information from MR images using mathematical descriptors.

State-of-the art studies showed that voxel basis discrimination between benign

and malignant tissue is feasible with good performances. However, the major-

ity of these studies were performed by radiologists who selected an ROI (small

window) around the prostate and followed signal changes within these ROIs. In

addition, the final diagnosis and patient management is left to the radiologist. Un-

fortunately, such approaches not only require manual interaction of the operators,

but also ROI selection biases the final decision and brings up the same issue of

over- or under-estimating the problem in the entire gland, just as with biopsy.
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Moreover, manual ROI selection and function curve generation from these ROIs

assume that the prostates (prostate contours) remain exactly the same from scan to

scan. Nonetheless, prostate contours may not always exactly match due to patient

movement or breathing effects; therefore, motion correction techniques should be

applied first before ROI selection. Also, to automate the algorithm and to cancel

ROI dependency, segmentation approaches that can separate the prostate from the

surrounding structures are needed.
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CHAPTER IV

A NOVEL IMAGE-BASED APPROACH FOR EARLY DETECTION OF
PROSTATE CANCER USING DCE-MRI

This chapter presents a novel non-invasive approach for early diagnosis

of prostate cancer from dynamic contrast enhanced magnetic resonance imaging

(DCE-MRI). In order to precisely analyze the complex 3D DCE-MRI of the prostate,

a novel processing frame work that consists of four main steps is proposed. The

first step is to isolate the prostate from the surrounding anatomical structures

based on a Maximum a Posteriori (MAP) estimate of a log-likelihood function that

accounts for the shape priori, the spatial interaction, and the current appearance

of the prostate tissues and its background (surrounding anatomical structures).

In the second step, a non-rigid registration algorithm is employed to account for

any local deformation that could occur in the prostate during the scanning process

due to the patient’s breathing and local motion. In the third step, the perfusion

curves that show propagation of the contrast agent into the tissue are obtained

from the segmented prostate of the whole image sequence of the patient. In the fi-

nal step, we collect two features from these curves and use a kn-Nearest Neighbor

classifier classifier to distinguish between malignant and benign detected tumors.

Moreover, in this chapter, we introduce a new approach to generate color maps

that illustrate the propagation of the contrast agent in the prostate tissues based

on the analysis of the 3D spatial interaction of the change of the gray level values

of prostate voxels using a Generalized Gauss-Markov Random Field (GGMRF)

image model. Finally, the tumor boundaries are determined using a level set de-
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formable model controlled by the perfusion information and the spatial interac-

tions between the prostate voxels. Experimental results on 30 clinical DCE-MRI

data sets yield promising results.

A. INTRODUCTION

Neoangiogenesis is the key component of the development of prostate can-

cer, composed of increases in both the density and permeability of blood vessels

within the cancerous area [87, 88]. These microvascular alterations result in dif-

ferences in the enhancement pattern of prostate cancer compared with benign

prostate tissue when performing Dynamic Contrast-Enhanced MRI (DCE-MRI).

These differences are multifactorial and include earlier and more intense enhance-

ment as well as more rapid washout of contrast material within the tumor [89].

Studies have shown dynamic contrast enhancement to improve the performance

of MRI for the localization of prostate cancer, raising the sensitivity for tumor in

comparison with either T2-weighted imaging alone. This in turn contributes to

a role for DCE-MRI in directing prostate biopsy [88] as well as in preoperative

staging and surgical planning [69, 90]. DCE-MRI poses multiple challenges stem-

ming from the need to image very quickly, to capture the transient first-pass transit

event, while maintaining adequate spatial resolution. Other factors such as vary-

ing signal intensities over the time course of agent transit also complicate segmen-

tation procedures. Nonrigid deformations, or shape changes, may occur related to

pulsatile or transmitted effects from adjacent structures, such as bowel.

Most prostate CAD researchers [27, 68–71, 76] have focused on the initial

voxel classification stage. They obtained likelihood maps by combining informa-

tion from MR images using mathematical descriptors. These studies showed on

a voxel basis that the discrimination between benign and malignant tissue is fea-
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sible with good performances. However, these studies require user interaction to

select a ROI around the prostate. In addition to the localization of the ROI of the

tumor, the final diagnosis and patient management is left to the radiologist. How-

ever, the majority of these studies were performed by radiologists who selected a

region of interest (ROI) (a small window) around the prostate and followed sig-

nal change within this region of interest. Unfortunately, such approaches not only

require manual interaction of the operators, but also ROI selection biases the fi-

nal decision and brings up the same issue of over or underestimating the problem

in the entire graft, just as with biopsy. Moreover, manual window selection and

generating a function curve from this window over a time-sequence of images, as-

sumes that the prostates (prostate contours) remain exactly the same from scan to

scan. However, prostate contours may not always exactly match due to patient

movement or breathing effects; therefore, image registration schemes should be

applied first before ROI selection. Also, to automate the algorithm and to cancel

ROI dependency, segmentation algorithms that can separate the prostate from the

surrounding structures are needed. To overcome these limitations, we propose an

automatic framework for the early diagnosis of prostate cancer using DCE-MRI.

The proposed framework segments the prostate from the surrounding

anatomical structures based on a MAP estimate of a new likelihood function. To

handle the object inhomogeneities and variability and overcome image noise, the

proposed likelihood function accounts for the visual appearances of the prostate

and background, 3D spatial interaction between the prostate voxels, and a learned

3D shape model. Second, in order to account for any local prostate deformations

that could occur during the scanning process, a nonrigid registration algorithm is

employed, which is based on deforming a target prostate object over evolving iso-

contours to match a reference object. The correspondences between the target and

reference objects are found by the solution of the Laplace equation as described in

Section IV.B.2 In the third step, agent kinetic curves that show the contrast agent
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propagation into the tissue are obtained, and then used to collect two features

to distinguish between malignant and benign detected tumors using a kn-nearest

neighbor classifier. Finally, parametric map displays that illustrate the propagation

of the contrast agent into the prostate tissue are constructed for visual assessment

and characterization of the physiological data. Details of the proposed framework

are described in the following sections.

B. Methods

In this chapter we introduce a new, automated, and noninvasive framework

for early diagnosis of prostate cancer by analyzing 3D DCE-MRI time series perfu-

sion data is proposed see Figure 17. In the proposed DCE-MRI based framework,

the classification of prostate cancer is performed using the following five steps:

1. Segmentation of the prostate objects from the surrounding abdominal struc-

tures on the DCE-MR images.

2. Nonrigid registration for local motion correction.

3. Distinguish between malignant and benign detected tumors.

The overall framework has been tested on a total of 30 dynamic DCE-MRI perfu-

sion data sets to permit us to draw statistically meaningful inferences

1. Segmentation of the Prostate Using a Joint MGRF Model

The segmentation of the prostate is a challenge, since the gray-level distri-

bution of the prostate and surrounding organs is not highly distinguishable and

because of the anatomical complexity of prostate. This stage proposes a power-
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FIGURE 17: The proposed CAD system for early detection of prostate cancer

ful framework for prostate segmentation based on a learned shape model and an

identifiable joint Markov-Gibbs Random Field (MGRF) model of DCE-MRI and

”object-background” region maps. The joint-MGRF model is fundamentally a

model that relates the joint probability of an image and its object-background re-

gion map, to geometric structure and to the energy of repeated patterns within the

image. The basic theory behind such models is that they assume that the signals

associated with each pixel depend on the signals of the neighboring pixels, and

thus explicitly take into account their spatial interactions, and other features, such

as shape.

Let Q = {0, . . . , Q − 1}, L = {ob, bg}, and U = [0, 1] be a set of Q integer

gray levels, a set of object (“ob”) and background (“bg”) labels, and a unit interval,

respectively. Let a 3D arithmetic grid R = {(x, y, z) : x = 0, 1, . . . , X − 1; y =
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0, 1, . . . , Y − 1; z = 0, 1, . . . , Z − 1} support grayscale DCE-MRI g : R → Q and

their binary region maps m : R → L, and probabilistic shape model s : R → U.

The shape model allows for registering (aligning) 3D prostate DCE-MRI. The DCE-

MR data g and its region maps m are described with a joint probability model:

P (g,m) = P (g|m)Ph(m) (1)

where P (g|m) is a conditional distribution of the images given the map and

Ph(m) = Ps(m)P (m) is an unconditional probability distribution of maps. The

map model Ph(m) = Ps(m)P (m) has two independent parts: a shape prior being

a spatially variant independent random field of region labels Ps(m), for a set of

co-aligned training DCE-MR data, and a 2nd-order MGRF model P (m) of spatially

homogeneous evolving map m.

The Bayesian MAP estimate of the map, given the MR data g,

m∗ = argmax
m

L(g,m) maximize the log-likelihood function:

L(g,m) = log(P (g|m)) + log(Ph(m)) (2)

In this work we focus on accurate identification of the spatial interaction

between the prostate voxels (Ph(m), and the intensity distribution for the prostate

tissues, (P (g|m)), as shown in Figure.18.
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FIGURE 18: Illustration of the Joint Markov-Gibbs random field (MGRF) image

model of the prostate DCE-MRI.

50



To perform the initial prostate segmentation, a given 3D DCE-MR images

is aligned to one of the training 3D DCE-MR images. The shape model provides

the voxels-wise object and background probabilities being used, together with the

conditional image intensity model P (g|m), to build an initial region map. The final

Bayesian segmentation is performed using the identified joint MGRF model of the

DCE-MRI and region maps.

a. Conditional Intensity Model The specific visual appearance of the

prostate in each data set to be segmented is taken into account by modeling a

marginal gray level distribution with a linear combination of discrete Gaussians

(LCDG) [91–93]. Unlike the conventional modeling with a mixture of Gaussians [94]

or other simple distributions [95], one per dominant mode, we accurately approxi-

mate the empirical signal distributions with a linear combination of sign-alternate

discrete Gaussians, and partition the LCDG for the whole image into sub-models

relating to each dominant mode, i.e. the prostate and the background.

A discrete Gaussian (DG) Ψθ = (ψ(q|θ) : q ∈ Q) is defined as a discrete

probability distribution with Q components obtained by integrating a continuous

1-D Gaussian density φ(q|θ) with parameters θ = (µ, σ), where µ is the mean

and σ2 is the variance, over Q intervals related to the successive signal values

in Q: if Φθ(q) =
∫ q

−∞ φ(z|θ)dz is the cumulative Gaussian probability function,

then ψ(0|θ) = Φθ(0.5), ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2,

and ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5). The LCDG, Pw,Θ = [pw,Θ(q) : q ∈ Q];∑
q∈Q pw,Θ(q) = 1, with two positive dominant and multiple positive, Cp ≥ 2,

and negative, Cn ≥ 0, DGs subordinate is defined as follows [92]:

pw,Θ(q) =

Cp∑
k=1

wp:kψ(q|θp:k)−
Cn∑
l=1

wn:lψ(q|θn:l) (3)

with the non-negative weights w = [wp:k, wn:l] that meet the obvious constraint∑Cp

k=1wp:k −
∑Cn

l=1wn:l = 1. The subordinate DGs approximate closely the devia-

tions of the empirical distribution from the conventional mixture of the dominant
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positive DGs.

Given the number K of the dominant DGs (in our particular case K = 2),

the numbers Cp − K and Cn of the subordinate components, as well as the pa-

rameters w, Θ (i.e., the weights, the means, and the variances) of all the DGs are

estimated first with a sequential initializing expectation maximization (EM) based

algorithm producing a close initial LCDG-approximation of the empirical distri-

bution. Then, under the fixed numbers of the components, Cp and Cn, all the other

parameters are refined with an EM algorithm, modified to account for the sign-

alternate components [96]. The refined LCDG model is finally partitioned into

two LCDG sub-models, one per class, by associating the subordinate DGs with

the dominant components in such a way that the misclassification rate is minimal.

The LCDG of Equation 3, including the numbers Cpand Cn of its components, is

identified using the expectation-maximization (EM)-based algorithm introduced

in [97–103].

b. Spatial Voxel Interaction Model To overcome the noise effect and to en-

sure the homogeneity of the segmentation, spatial voxel interactions between the

region labels are also taken into account using a generic MGRF of the region map.

A generic MGRF of region maps [96, 104] accounts only for 2D pairwise interaction

between each region label and its characteristic neighbors. Generally, the interac-

tion structure and the Gibbs potentials can be arbitrary and are identified from

the training data. For simplicity, we restrict the interaction structure to the nearest

voxel 26- neighborhood only as shown in Figure. 19. By symmetry considerations,

we assume that the potentials are independent of relative orientation of each voxel

pair and depend only on intra- or inter-region position (i.e. whether the labels are

equal or not). Under these restrictions, it is the 3D extension of the conventional

auto-binomial, or Potts model differing only in that the potentials are estimated

analytically.
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FIGURE 19: 3D 2nd order MGRF neighborhood system. Note that the reference

voxel is shown in red and d represents the absolute distance between two voxels

in the same and adjacent MRI slices, or cross-sections.

The 26-neighborhood has three types of symmetric pairwise interactions

specified by the absolute distance a between two voxels in the same and adja-

cent MRI slices (a = 1,
√
2, and

√
3, respectively): (i) the closest pairs with the

inter-voxel coordinate offsets N1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}; (ii) the farther di-

agonal pairs with the offsets N√
2 = {(0, 1,±1), (1, 0,±1), (1,±1, 0)}, and (iii) the

farthest diagonal pairs with the offsets N√
3 = {(1,±1,±1)}. The potentials of each

type are bi-valued because only the coincidence of the labels is taken into account:

Va = {Va,eq;Va,ne} where Va,eq = Va(l, l
′) if l = l′ and Va,ne = Va(l, l

′) if l ̸= l′;

a ∈ A = {1,
√
2,
√
3}. Then the MGRF model of region maps is as follows:

P (m) =
1

Z
exp

∑
(x,y,z)∈R

∑
a∈A

∑
(ξ,η,κ)∈Na

Va(mx,y,z,mx+ξ,y+η,z+κ) (4)

where Z is the normalizing factor (partition function).
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To identify the MGRF model described in the equation, approximate analyt-

ical maximum likelihood estimate of the 3D Gibbs potentials, Va,eq, Va,ne are derived

in line with [91, 96, 105].

Va,eq = −Va,ne = 2

(
fa,eq(m)− 1

2

)
(5)

where fa,eq(m) denotes the relative frequency of the equal label pairs in the equiv-

alent voxel pairs {((x, y, z), (x+ξ, y+η, z+κ)): (x, y, z) ∈ R; (x+ξ, y+η, z+κ) ∈ R;

(ξ, η, κ) ∈ Na}. of a region map m of a given DCE-MRI aligned in accord with the

prior shape model.

c. Probabilistic Shape Model To enhance the segmentation accuracy, ad-

ditional constraints based on the expected shape of the prostate are introduced

by co-aligning each given DCE-MR data to a training database and using a soft

probabilistic 3D prostate shape model To circumvent this limitation, we use a soft

probabilistic 3D prostate shape model Ps(m) =
∏

(x,y,z)∈R Smx,y,z ; where Smx,y,z is

the empirical probability that the voxel (x, y, z), belongs to the prostate (L = ob)

or the background (L = bg) given the map (see Figure.21). The soft template (see

Figure.22) is constructed and updated as outlined in Algorithm IV.B.1.c and the

proposed prostate segmentation process can be summarize as in Algorithm IV.B.1.c
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(a)

(b)

(c)

FIGURE 20: Forming the prostate shape prior onto 2D: (a) training samples, (b)

manually segmented prostate regions, and (b) their affine MI-based alignment.

Note that the registration enhances the overlap between the prostate objects and

thus reduce the variability of the final estimated shape.

(a) (b) (c)

FIGURE 21: 3D prostate shape model projected onto 2D axial (a), saggital (b), and

coronal (c) planes for visualization.
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(a) (b)

FIGURE 22: Gray-coded (a) and color-coded (b) axial view of the prostate shape

prior. initial region map. The final Bayesian segmentation is performed using the

identified joint MGRF model of the DCE-MRI data and its region maps. In total,

the proposed prostate segmentation approach involves the steps summarized in

Algorithm IV.B.1.c
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Algorithm 1 3D Prostate Shape Model

Initialization

• Co-align the 3D MRI training sets collected from different subjects using

a rigid 3D registration maximizing their mutual information (MI) [106].

• Manually segment the prostate from the aligned sets.

• Estimate the voxel-wise probabilities by counting how many times each

voxel (x, y, z) was segmented as the prostate.

Updating Prior Shape Model:

• To enhance the segmentation of the current prostate volume, the prior

probabilistic shape model is updated by adding the previous segmented

3D prostate data to the prior calculated shape model.

57



Algorithm 2 Prostate Segmentation Approach

Input: 3D DCE-MRI prostate data g to be segmented.

Output: segmented prostate border (the final estimate m).

• Training Phase:

1. Co-align the 3D DCE-MRI training sets collected from different sub-

jects using a rigid 3D registration maximizing their mutual informa-

tion (MI) [106].

2. Manual delineation of the prostate borders from the co-aligned data

3. Estimate the voxel-wise probabilities by counting how many times

each voxel (x, y, z) was segmented as the prostate.

• Testing Phase:

1. Perform an affine alignment of a given 3D DCE-MRI to an arbitrary

prototype prostate from the training set using MI [106] to obtain the

learned probabilistic shape model Ps(m).

2. Estimate the conditional intensity model P (g|m) by identifying the

bimodal LCDG.

3. Use the intensity model that is estimated using LCDG and the

learned probabilistic shape model to perform an initial segmenta-

tion (initial region map) of the prostate.

4. Use the initial region map to estimate the potential for the Potts

model using Equation (5) and to identify the MGRF model P (m)

of region maps.

5. Improve the region map using voxel-wise stochastic relaxation (It-

erative conditional mode-ICM [107]) through successive iterations

to maximize the log likelihood function of Equation (2) until the log

likelihood remains almost the same for two successive iterations.

6. Update the Shape Prior: by adding the current segmented 3D

prostate data to the prior calculated shape model.
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2. Nonrigid Registration

Due to patient breathing and local movement, accurate registration is a main

issue in DCE-MRI sequences. A tremendous number of nonrigid image registra-

tion techniques have been developed, e.g., [60, 63]. However, more robust, effi-

cient, and sophisticated registration techniques are required. In order to avoid

problems associated with intensity variations over the temporal dynamic contrast

agent data set, the proposed approach exploits geometric features, rather than im-

age intensities. These geometric features are estimated from the electric field vec-

tors that are calculated by solving the Laplace second-order PDE between the seg-

mented prostate borders. Estimating these field vectors allow for co-allocation of

point-to-point correspondences between the segmented prostate objects. Mathe-

matically, the second-order Laplace PDE defines a scalar field γ, defined as:

∇2γ =
∂2γ

∂x2
+
∂2γ

∂y2
= 0 (6)

The solution γ(x, y) of Equation (6) results in intermediate equipotential sur-

faces and streamlines (field lines) that are everywhere orthogonal to all equipo-

tential surfaces and establish natural point-to-point correspondences between the

boundaries (see e.g., the line connecting the points Bai and Bbj in Figure. 24). In

medical imaging applications, the Laplace-based approaches have been previously

used e.g., for colon surface flattening and centerline extraction [108] and thickness

measurements [109–111]. To the best of our knowledge, the Laplace-potential-

based method is the first of its kind to be applied to the motion correction in

DCE-MRI images for further improved analysis of the DCE-MRI data. The pro-

posed Laplace-based nonrigid registration approach is based on deforming each

pixel of the segmented prostate objects over a set of nested, equi-spaced contours
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(i.e., iso-contours), which is generated for both the target and reference prostate

objects as shown in Figure 23. To find the iso-contours, a distance map is gener-

ated inside the binary object area by finding the minimum Euclidean distance for

every inner point to the object boundary. The external points are excluded from

consideration. Then, the Laplace equation is applied to the respective reference

and target iso-contours to co-locate their corresponding points. The basic steps

of the Laplace-potential-based nonrigid registration are summarized in Algorithm

IV.B.2.

(a) (b) (c)

(d) (e) (f)

FIGURE 23: Illustration of the iso-contours generation: the reference (a) and target

(d) images, the reference (b) and target (e) distance maps, and reference (c) and

target (f) iso-contours.
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Algorithm 3 Laplace-Based Iso-Contours Nonrigid Registration

Input: segmented prostate objects.

Output: point-to-point correspondences.

1. Generate the distance maps inside the segmented prostate as shown in Fig-

ure 23 (b, e).

2. Generate nested, iso-contours for both target and reference distance maps as

shown in Figure. 23 (c, f).

3. Initial condition: Set the potential γ maximum at the target iso-contour and

minimum (equal zero) at the reference iso-contour.

4. Solve Eq. (6) between respective iso-contours using the above initial condi-

tion.

5. Compute components of the gradient vectors Ex = ∂γ
∂x

and Ey =
∂γ
∂y

.

6. Find the point-to-point correspondences between the iso-contours being

matched by forming the streamlines.

7. Repeat steps 3 to 6 for the next set of corresponding iso-contours.
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FIGURE 24: 2-D schematic illustration of co-allocation of the point-to-point corre-

spondences between two boundaries by a potential field.

3. Classification, Performance Analysis, and Visualization of Perfusion Indexes

After the nonrigid alignment, the wash-in and wash-out curves are con-

structed by calculating the average intensities of prostate regions for each time

sequence. These curves show the response of the prostate tissues as the contrast

agent perfuses for each image section (see Figure 32).

a. Color Map Generation and Tumor Boundary Determination To character-

ize the physiological data, color-coded maps that illustrate the propagation of the

contrast agent in the prostate tissues are constructed. To construct the initial color

maps, we have to estimate the changes in image signals δx,y,z due to the contrast

agent. These changes are estimated from the constructed perfusion curves as the

difference between the signals of image sequences at tp and t0 (see Figure. 25).

To preserve continuity (remove inconsistencies), the initial estimated δx,y,z

values are considered as samples from a Generalized Gauss-Markov Random Field
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FIGURE 25: Estimating δ from the perfusion curve as the difference between the

peak and initial signal of image sequences.

(GGMRF) image model of measurements with the 26-voxel neighborhood (Fig-

ure 18). Continuity of the constructed 3-D volume (Figure 26) is amplified by using

their Maximum a Posteriori (MAP) estimates as shown in [112]:

δ̂x,y,z = arg min
δ̃x,y,z


∣∣∣∣∣∣∣δx,y,z − δ̃x,y,z

∣∣∣∣∣∣∣
α

+ ραλβ
∑

(x′,y′,z′)∈ν(x,y,z)

η(x,y,z),(x′,y′,z′)

∣∣∣∣∣∣∣δ̃x,y,z − δx′,y′,z′

∣∣∣∣∣∣∣
β

where δx,y,z and δ̃x,y,z denote the original values and their expected estimates, ν(x,y,z)

is the 26-neighborhood voxel set (Figure 18), η.,. is the GGMRF potential, and ρ and
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FIGURE 26: Enhanced perfusion estimation and continuity analysis using the 3D

GGMRF image model.

λ are scaling factors. The parameter β ∈ [1.01, 2.0] controls the level of smooth-

ing (e.g., smooth, β = 2, vs. relatively abrupt edges, β = 1.01). The parameter

α ∈ {1, 2} determines the Gaussian, α = 2, or Laplace, α = 1, prior distribution of

the estimator. Then, the color maps are generated based on the final estimated δ̂

(see Figure 33).

Finally, to allocate the boundary of the detected tumors, which is important

to determine the cancer stage in case of malignancy, we used a level set-based de-

formable model controlled by a stochastic speed function [113]. The latter accounts

for the perfusion information and spatial interactions between the prostate voxels.

C. PERFORMANCE EVALUATION AND VALIDATION

To evaluate the performance of the proposed framework, we used two types
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of error metrics, the voxel-based and distance-based errors. To calculate the voxel-

based error, we measure the True Positive (TP), True Negative (TN), False Positive

(FP), and False Negative (FN) segmentation. Let |C|, |G|, and |g| denote volumes

(by the number of voxels) of the segmented volume, C, its ground truth, G, and

the MR data, g, respectively. Then TP = |C∩G| is the overlapping between C and

G; TN = |g −C ∪G|; FP = |C−C ∩G|, and FN = |G−C ∩G|.

The Dice similarity coefficient (DSC) measures set agreement between two

sets C, G and is defined as the union size of the two sets divided by the average

size of the two sets:

DSC(C,G) =
2|C ∩G|

C ∩G+C ∪G
(7)

We calculate the Positive Predictive Value (PPV), Sensitivity (Sens), and Dice

Coefficient (DSC) - as defined as [114]:

PPV = TP
TP+FP

Sens = TP
TP+FN

DSC = 2∗TP
2∗TP+FP+FN

(8)
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FIGURE 27: 2-D schematic illustration of measuring segmentation errors between

the ground truth G and automatic segmentation C obtained by the our segmenta-

tion approach.

D. PATIENT DATA AND DCE-MRI ACQUISITION PROTOCOL

The performance of the proposed segmentation approach is evaluated by

applying it on 3D DCE-MRI prostate images. We observed that good selection of

a DCE-MRI imaging protocol is as important as the image analysis. The protocol

described below has been found to be optimal with the current MRI hardware

(Signa Horizon LX Echo speed; General Electric Medical Systems, Milwaukee, WI,

USA).

In our protocol, gradient-echo T1 imaging was employed by a Signa Hori-

zon GE 1.5 Tesla MR scanner using an additional pelvic coil. Images were taken

at 7 mm thickness with an interslice gap of 0.5mm. The repetition time (TR) was

50ms, the TE was minimum with flip angle at 60◦ degrees, the band width was

31.25 kilohertz (kHz), the field of view (FOV) was 28cm, and the number of slices

was 7. The DCE-MRI process started with a series of MRI scans which were used
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to establish a baseline in image intensity. These scans were performed without

the administration of contrast enhancing agents so that the tissue’s nonenhanced

image intensity could be established. In the next stage, 10 cubic centimeter (cc)

of gadoteric acid (Dotarem 0.5 millimole/milliliter (mmol/mL); Guerbet, France)

was administered intravenously at a rate of 3mL/s. At this point, a series of MRI

scans was performed every 3 seconds for 6 minutes, and every series contained 7

slices. Note that all the subjects were diagnosed using a biopsy (ground truth).

1. Prostate Segmentation Results

The proposed segmentation approach has been tested on DCE-MRI

sequences for 30 independent subjects. Figure 28 demonstrates some segmenta-

tion results of the prostate region at selected image sections for different subjects

and their associated False Positive (FP) and False Negative (FN) errors. For com-

parison, our segmentation results are compared to the radiologists tracing based

on the Positive Predictive Value (PPV), Sensitivity (Sens), and Dice Similarity Co-

efficient (DSC) [114] statistics for the proposed approach are summarized in Table

4. To highlight the advantage of integrating the shape prior with the intensity and

spatial interaction information in the joint MGRF probabilistic model, we segment

the prostate region based only on the intensity and spatial interaction information.

The segmentation results are shown in Figure 29 (d). It is clear that counting on

intensity and spatial interaction information only will not lead to accurate segmen-

tation due to the gray-levels inhomogeneities.
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FIGURE 28: Segmentation results: the segmentation results with error referenced

to the ground truth G is outlined in yellow (False Negative (FN): pixels segmented

as the prostate in G but not segmented as the prostate with our approach) and red

(False Positive (FP): pixels segmented as the prostate with our approach but not

segmented as the prostate in the G .
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TABLE 4: Error statistics of the proposed segmentation approach. Note that SD,

stands for standard deviation.

PPV SEN DSC

Mean±SD 0.98±0.004 0.846±0.004 0.923±0.004

TABLE 5: Comparative segmentation accuracies of the proposed prostate seg-

mentation against the shape-based (SB) approach [2] in comparison to the experts

ground truth (SD standard deviation).

Segmentation Technique

Proposed Approach Shape-based(SB) approach [2]

Mean±SD 0.53±0.33 5.91±4.44

Two-tailed P-value 0.0001

To show the advantage of the proposed segmentation approach, all time

series images have been segmented using the shape-based approach proposed in

Tsai et al. [2]. The comparative results for a few of them are shown in Figure 30.

Table 5 compares the segmentation results over all test data sets with the known

ground truth (manual tracing by an imaging expert) and the differences are shown

to be statistically significant by the unpaired t-test (the two-tailed value P is less

than 0.0001).
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(a) (b) (c) (d)

FIGURE 29: Segmentation results of the first subject after 30 iteration: (a) typical

prostate DCE-MRI images. (b) the ground truth (c) segmentation results by inten-

sity, shape prior, and spatial interaction (d) segmentation results by intensity, and

spatial interaction only.

70



FIGURE 30: Accuracy of our segmentation in comparison with [2]. Our segmen-

tation is outlined in blue and [2] in red with reference to the ground truth G in

white.
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2. Diagnostic Results

The ultimate goal of the proposed framework is to successfully distinguish

malignant from benign detected tumors by constructing the perfusion curves from

the DCE-MRI sequences (see Figure 31).

FIGURE 31: Estimation of the perfusion parameters for the classification of

prostate tumor (a) Dynamic sequence showing prostate-averaged voxel intensity

versus time, along with images at three different time (b) Prostate colored by wash-

in and wash-out.

The curves on Figure 32 show the response of the prostate tissues as the

contrast agent perfuses. The malignant subjects show an abrupt increase to the

higher perfusion values and the benign subjects show a delay in reaching their

peak perfusion (see Figure 32).

From these curves, we conclude that the peak signal value and the wash-

in slope are the two major features that can be extracted for the classification of

prostate cancer. To distinguish between benign and malignant cases, a kn-Nearest

Neighbor classifier is used to learn the statistical characteristics of both benign and

malignant cases from the time-intensity curves of the training sets (see Figure 32).

The diagnostic accuracy of the kn classifier was 98% using Leave One-Subject-Out
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FIGURE 32: Selected normalized signal intensity, averaged over the entire

prostate, with respect to the timing of contrast agent delivery for malignant (red)

and benign (blue) subject.

(LOSO) approach.

Following the classification, a visual assessment is made. Figure 33 presents

the color-coded maps over all image sections before and after applying the 3-D

GGMRF smoothing for three subjects involved in our study. Figures 34 and 36

show two examples of the tumor contours, determination for benign and malig-

nant subjects.
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FIGURE 33: Color-coded maps for four of the test subjects before and after the 3-D

GGMRF smoothing with ρ = 1, λ = 5, β = 1.01, α = 2, and ηs,r =
√
2 and their

respective color-coded maps. The red and blue ends of the color scale relate to the

maximum and minimum changes, respectively.
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FIGURE 34: Color-coded maps of local tumor progression overlaid on anatomic

DCE-MRI data for one benign subject. The determined tumor contours are shown

in blue.
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FIGURE 35: Color-coded maps of local tumor progression overlaid on anatomic

DCE-MRI data for one benign subject. The determined tumor contours are shown

in blue.
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FIGURE 36: Dynamic contrast-enhanced MRI images of the pelvis with local tu-

mor progression of malignant subject. The determined tumor contours are shown

in blue.
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FIGURE 37: Dynamic contrast-enhanced MRI images of the pelvis with local tu-

mor progression of another malignant subject. The determined tumor contours are

shown in blue.
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E. SUMMARY

In this chapter, we presented a noninvasive MRI-based CAD for detecting

prostate cancer. The proposed framework demonstrated the documented ability

to reliably distinguish malignant from benign, in a biopsy-proven preliminary co-

hort of 30 participants. The proposed framework includes prostate segmentation,

nonrigid registration, and kn-Nearest Neighbor based classification. For prostate

segmentation, we introduced a new 3D approach that is based on a MAP estimate

of a new log-likelihood function that accounts for the shape priori, the spatial in-

teraction, and the current appearance of the prostate tissues and its background.

Following segmentation, we introduced a nonrigid registration approach that de-

forms the prostate object on iso-contours instead of a square lattice, which provides

more degrees of freedom to obtain accurate deformation. The perfusion curves of

the segmented prostate region are calculated and the features extracted from these

curves undergo kn-Nearest Neighbor based classification. Applications of the pro-

posed approach yield promising results that would, in the near future, replace the

use of current technologies to determine the type of prostate cancer. The work pre-

sented in this chapter has been published in the IEEE International Symposium on

Biomedical Imaging (ISBI), [52], Computational Intelligence in Biomedical Imag-

ing [30], and the Medical Image Computing and Computer-Assisted Intervention

(MICCAI) conference [51]
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CHAPTER V

A NOVEL IMAGE-BASED APPROACH FOR EARLY DETECTION OF
PROSTATE CANCER USING DIFFUSION-WEIGHTED MRI

This chapter introduces a fully automatic non-invasive approach for the

early diagnosis of prostate cancer using Diffusion-Weighted MRI (DWI). The pro-

posed diagnostic approach consists of the following four steps to detect locations

that are suspicious for prostate cancer: 1) In the first step, we isolate the prostate

from the surrounding anatomical structures based on a Maximum A Posteriori

(MAP) estimate of a new log-likelihood function that ac- counts for the shape pri-

ori, the spatial interaction, and the current appearance of prostate tissues and its

background (surrounding anatomical structures); 2) In order to take into account

any local deformation between the segmented prostates at different b-values that

could occur during the scanning process due to local motion, a non-rigid registra-

tion algorithm is employed; 3) A kn-Nearest Neighbor classifier is used to classify

the prostate into benign or malignant based on three appearance features extracted

from registered images; and 4) The tumor boundaries are determined using a level

set deformable model controlled by the diffusion information and the spatial inter-

actions between the prostate voxels. Experimental results on in vivo data confirm

the accuracy and robustness of our method.
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A. INTRODUCTION

Earlier studies [40] have investigated the abilities of DWI for prostate cancer

diagnosis using an endorectal coil. However, the reported results demonstrated

low diagnostic sensitivity [115]. To increase the sensitivity of diagnosis, Shimofusa

et al. [34] suggested the addition of strong magnetic field gradient pulses (b-values)

to the pulse sequence instead of using an endorectal coil. In their study [34], they

detected the tumor in the central zone of the prostate in five of eight total patients

using DWI with strong magnetic field gradient pulses. Alternatively, the compared

diagnostic results with T2-weighted imaging, detected the tumor only in one of

the eight patients. Since then, DWI were used for the detection of cancerous tissue

in later studies [36, 38, 39, 41, 116] . For example, Tan et al. [116] compared the

performance of T2-weighted MRI, DCE-MRI, and DWI for the detection of cancer

within the prostate gland. In their study, they reported that DWI alone showed

better specificity than DCE-MRI alone. It is also showed better overall specificity

than combined DWI and T2-weighted imaging. To the best of our knowledge,

there is a very limited number [38, 41] of image-based approaches for automated

computer-aided diagnosis of prostate cancer using DWI. Therefore, there is a need

for developing new methods for automated computer-aided diagnosis of prostate

cancer using DWI.

B. MATERIALS AND METHODS

In this section we introduce automated and non-invasive framework for

early diagnosis of prostate cancer using DWI. Figure 38 demonstrates the steps of

the proposed CAD system. Below, we will illustrate each of these steps.
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FIGURE 38: Flowchart of the proposed CAD system for automatic detection of

cancer from 3D DWI.

1. Delineation of the Prostate Borders

The segmentation of the prostate from DWI is a challenge due to the anatom-

ical complexity of the prostate and the undistinguishable gray-level distribution of

the prostate and surrounding organs. To account for these challenges, a MAP-

based approach based on a learned shape model and an identifiable joint Markov-

Gibbs random field (MGRF) model is proposed. The proposed MGRF image model

relates the joint probability of an image and its object-background region segmen-

tation map, to geometric structure and to the energy of repeated patterns within

the image [117]. The basic theory behind such models is that they assume that the

signals associated with each voxel depend on the signals of the neighboring voxel,

and thus explicitly take into account their spatial interaction, and other features,
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such as shape.

The input 3D DWI data g and its region map m are described by the joint

MGRF model as outlined in Section IV.B.1, Equation 1. The Bayesian MAP estimate

of the map, given g, m∗ = argmax
m

L(g,m) maximize the log-likelihood function:

L(g,m) = log(P (g|m)) + log(Ph(m)) (9)

where P (g|m) is a conditional distribution of the images given the map m

and P (m) = Psp(m)Pv(m) is an unconditional probability distribution of maps.

Here, Psp(m) denotes the prostate shape prior, and Pv(m) is a Gibbs probability

distribution with potentials V , which specifies a MGRF model of spatially homo-

geneous maps m.

The specific visual appearance of the prostate in each data set to be seg-

mented is taken into account by modeling the marginal gray level distribution

with the LCDG model [91–93] as described in Section IV.B.1.a. To overcome noise

effect and to ensure the homogeneity of the segmentation, the spatial voxel interac-

tions between the region labels of a given map m are also taken into account using

the pairwise MGRF spatial model as described in Section IV.B.1.b and the nearest

voxel 26-neighbors shown in Figure 39.

In addition to voxel-wise image intensities and their pairwise spatial in-

teraction, additional constraints based on the expected shape of the prostate are

introduced by co-aligning each given DWI data to a training database and using

probabilistic 3D prostate shape model Psp(m). To perform initial prostate segmen-

tation, a given 3D DWI is aligned to one of the training data. The shape model pro-

vides the voxel-wise object and background probabilities being used together with
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FIGURE 39: 3D 2nd order MGRF neighborhood system. Note that the reference

voxel is shown in red and a represents the absolute distance between two voxels

in the same and adjacent MRI slices, or cross-sections

the conditional image intensity model P (g|m), to build an initial region map. The

final Bayesian segmentation is performed using the identified joint MGRF model

of the DWI data and its region maps. Finally, the proposed prostate segmentation

approach involves the steps summarized in Algorithm V.B.1.

2. Nonrigid Registration

The nonrigid registration of the DWI data of different b-values is performed

by solving the second-order linear partial differential Laplace equation as described

in Section IV.B.2. For completeness, the main steps of the Laplace-based nonrigid

registration is summarized in Figure 40 as follows:

1. Generation of the distance maps inside the prostate regions (Figure 40 (a,b)).
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Algorithm 4 Key Steps for prostate Segmentation

1. Input: The 3D DWI prostate data g to be segmented.

2. Construct the shape prior from the training data.

3. Approximate the marginal intensity distribution by the linear combinations

of discrete Gaussians (LCDG) with two dominant modes.

4. Form an initial region map m using the estimated LCDG model.

5. Find the Gibbs potentials for the Markov-Gibbs random field (MGRF) model

from the initial map.

6. Improve the region map using voxel-wise stochastic relaxation (Iterative con-

ditional mode-ICM [107]) through successive iterations to maximize the log

likelihood function of Equation (9) until the log likelihood remains almost

the same for two successive iterations.

7. Output: The 3D prostate segmentation is the final estimate region map, m.

2. Generation of the iso-contours using distance maps in step 1 in (Figure 40 (c,d)).

3. Solution of the Laplace equation between respective reference and target iso-

contours to co-allocate the corresponding points.

3. Diffusion Characterization and Tumor Boundary Determination

To characterize the physiological data, color-coded maps that illustrate the

propagation o of diffusion in the prostate tissues are constructed. To construct the

initial color maps, we have to estimate the changes in image signals δx,y,z due to the

Brownian motion. These changes are estimated from the constructed normalized

diffusion as the difference between the signals of image sequences at two differ-
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FIGURE 40: Illustration of the iso-contours generation: the reference and target

distance maps (a, b), and their iso-contours (c, d).

ent b-values. DWI is performed with at least two b-values, including a b-value of

0s/mm2 and a higher b-value of 500 − 1000s/mm2 depending on the body region

or organ being imaged [118]. At b = 0s/mm2 , there is no diffusion sensitizing gra-

dient with free water molecules have high signal intensity. We used b = 800s/mm2

because imaging of solid organs requires high b-value specially in prostate and us-

ing high b-values allows differentiation of areas of restricted from the normal high

signal at the peripheral zone. During our trials we found the b = 800s/mm2 allows

lesions differentiation with least degradation of image quality as the image quality

decrease with the high b-values. To preserve continuity (remove inconsistencies),

the initial estimated δx,y,z values are considered as samples from a Generalized

Gauss-Markov Random Field (GGMRF) image model [112] of measurements with

the 26-voxel neighborhood . Continuity of the constructed 3-D volume is amplified

by using their MAP estimates [92]:
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δ̂x,y,z = arg min
δ̃x,y,z


∣∣∣∣∣∣∣δx,y,z − δ̃x,y,z

∣∣∣∣∣∣∣
α

+ ραλβ

∑
(x′,y′,z′)∈ν(x,y,z)

η(x,y,z),(x′,y′,z′)

∣∣∣∣∣∣∣δ̃x,y,z − δx′,y′,z′

∣∣∣∣∣∣∣
β

where δx,y,z and δ̃x,y,z denote the original values and their expected estimates, ν(x,y,z)

is the 26-neighborhood voxel set, η.,. is the GGMRF potential, and ρ and λ are scal-

ing factors (Figure 41. The parameter β ∈ [1.01, 2.0] controls the level of smooth-

ing (e.g., smooth, β = 2, vs. relatively abrupt edges, β = 1.01). The parameter

α ∈ {1, 2} determines the Gaussian, α = 2, or Laplace, α = 1, prior distribution of

the estimator. Then, the color maps are generated based on the final estimated δ̂

(see Figure 42).

FIGURE 41: Enhanced perfusion estimation and continuity analysis using the 3D

GGMRF image model.

Finally, locate the boundary of the detected tumors (see Figure 43), which

is important to determine the cancer stage in case of malignancy, we used a level

set-based deformable model controlled by a stochastic speed function [119]. The
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FIGURE 42: Color-coded maps for three of the test subjects (column wise) before

and after the 3-D GGMRF smoothing. The red and blue ends of the color scale

relate to the maximum and minimum changes, respectively.

latter accounts for the diffusion information and spatial interactions between the

prostate voxels.
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FIGURE 43: Pixel-wise parametric map display of the diffusion information and

the spatial interactions between the prostate voxels. The red and blue hues of each

color scale correspond to enhanced and reduced perfusion, respectively.

C. EXPERIMENTAL RESULTS

1. Patients and Data Acquisition

The performance of the proposed framework has been evaluated by ap-

plying it on DWI prostate images collected from 30 patients. These patients had

biopsy-proven prostate cancer and underwent DWI at 1.5 T (SIGNA Horizon, Gen-

eral Electric Medical Systems, Milwaukee, WI). a DWI was then obtained using

mono-directional gradients and a multi-section Fast Spin Echo type (FSE) echo-

planar sequence in the axial plane using a body coil with the following imaging

parameters: TE : 84 : 6ms; TR: 8.000ms; Band Width 142 kilohertz (kHz); field-of-

view (FOV) was 34cm; slice thickness was 3mm; inter-slice gap 0mm; seven exci-

tations, water excitation with b-value of 0s/mm2 and 800 s/mm2. Fifty-four slices
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TABLE 6: Error Statistics over all test data sets.

PPV SEN DSC

Mean±SD 0.952±0.004 0.816±0.004 0.991±0.004

were obtained in 120 seconds to cover the prostate in each patient. Note that all

the subjects were diagnosed using a biopsy (ground truth).

2. Segmentation Results

The proposed segmentation approach has been tested on DWI sequences

for 30 independent subjects. Figure 44 shows some segmentation results of the

prostate region at selected image sections for different subjects and their associ-

ated false positive (FP) and false negative (FN) segmentation errors, with respect

to the ground truth segmentation. The ground truths were obtained by manual de-

lineation of the prostate borders by an MR imaging expert. The positive predictive

value (PPV), sensitivity (SEN), and Dice similarity coefficient (DSC) statistics for

the proposed approach are summarized in Table 6. To highlight the advantage of

the proposed segmentation approach, all time series images have been segmented

using the shape-based (SB) approach proposed by Tsai et al. [2]. The compara-

tive results for a few of them are shown in Figure 45 and Table 7 summarizes the

segmentation error statistics of the proposed approach and the SB approach with

respect to ground truth. The differences between the mean errors of the proposed

approach and the SB approach are shown to be statistically significant by the un-

paired t-test (the two-tailed value P is less than 0.0001).
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FIGURE 44: Segmentation result and their associated FN (green) and FP (red) er-

rors referenced to the ground truth G.

3. Diagnostic Results

The ultimate goal of the proposed framework is to distinguish between be-

nign and malignant detected tumors. The malignant tissues show higher signal

intensity with a b-value of 800s/mm2, and a lower Apparent Diffusion Coefficient

(ADC) compared with benign and normal tissue due to the replacement of nor-

mal tissue. To distinguish between the benign and malignant cases, we used a

kn-Nearest Neighbor classifier to learn statistical characteristics of the DWI. The

characteristics are obtained from the training sets containing both benign and ma-

lignant cases. After training, three features, which are the mean intensity value of

the DWI at 0s/mm2, the mean intensity value of the DWI at 800 s/mm2, and the
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TABLE 7: A Comparative segmentation accuracy over all test data sets for our

approach and [2]. Note that STD stands for standard deviation.

Eavg %

Our approach [2]

Min. Error% 0 0

Max. Error% 1.6005 2.7724

Average Error% 0.5500 1.4675

STD % 0.3085 0.7687

P-value 0.001

TABLE 8: Area under the ROC curve for training subjects, testing subjects, and

combined (training and testing subjects).

Area Under ROC Curve

Training Subjects Az = 0.996

Test Subjects Az = 0.964

All Subjects Az= 0.985

mean value of ADC maps [120], were chosen to classify the test cases. To build the

kn classifier that characterizes the prostate tissue, we used 20 subjects for training,

and the other 10 subjects for testing.

Overall system performance is demonstrated in Figure 46. For each of these

ROC curves, performance is measured in comparison with the classification pro-

duced by the biopsy. Table 8 lists the area under the Receiver operating character-

istic (ROC) curve performance for the ROC curves shown in Figure 46.

For regional display, we explored pixel-by-pixel maps of the registered dif-
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FIGURE 45: 3-D prostate segmentation projected onto 2-D. (a) 2-D visualization for

our segmented prostates for three of the test subjects, (b) our segmentation (red)

in comparison with the ground truth (white), and (c) the segmentation with the

algorithm in [2] (red) comparison with the ground truth.

fusion data. The diffusion was computed for each pixel and superimposed on an

image slice to form a parametric image. Also, for visual assessment of the prostate

tumor, the tumor contours were determined. Figure 47 (c) shows the diffusion

map for selected image sections for four subjects involved in our study.
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FIGURE 46: Receiver operating characteristic curves for training subjects, testing

subjects, and combined (training and testing subjects). CAD performance is with

respect to classification produced by the expert.
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FIGURE 47: Diffusion MR images for the prostate at (a) b-value of 0s/mm2, (b) b

value of 800 s/mm2, and (c) tumor progression for four of the test subjects.
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D. SUMMARY

In this chapter, we presented a novel fully automatic framework for detect-

ing prostate cancer using DWI. The framework includes prostate segmentation,

nonrigid registration, and KNN-based classification. For prostate segmentation,

we introduced a new 3D approach that is based on a MAP estimate of a new log-

likelihood function that accounts for the shape priori, the spatial interaction, and

the current appearance of the prostate and its background which increases the ac-

curacy of automatic segmentation, evidenced by the error and the DSC analysis

(Tables 7 and 6). Following segmentation, we used a nonrigid registration ap-

proach that deforms the prostate object on iso-contours instead of a square lattice,

which provides higher degrees of freedom to obtain accurate deformation. In the

classification step, the segmented prostate regions are classified into malignant or

benign using the kn classifier. Applications of the proposed framework can assist

the radiologist in detecting all prostate cancer locations and could replace the use

of current technologies to determine the type of prostate cancer. The work pre-

sented in this chapter has been published in the IEEE International Conference on

Image Processing (ICIP), [42], Journal of Biomedical Science and Engineering [33],

and the Biomedical Science and Engineering Conference (BSEC) [29].
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The work presented in this dissertation documents the ability of DCE-MRI

and DWI to distinguish between the benign and malignant prostate tumor cases.

The key main advantage of the proposed computer-aided diagnostic (CAD) sys-

tem for distinguishing between the benign and malignant cases is the ability of the

developed motion correction model to provide accurate pixel-on-pixel matches of

the registered images for generating and displaying parametric maps. These capa-

bilities are of great importance for the radiologists to help investigate, in the case

of cancer, in which local regions need attention and follow-up with appropriate

treatment. We give a summary of the main contributions of this dissertation is as

follows:

• A novel 3D prostate segmentation approach is proposed. The proposed ap-

proach is based on a Maximum a Posteriori (MAP) estimate of a log-likelihood

function that accounts for three image features: the higher-order spatial-

interaction between the image pixels, prior probabilistic shape model, and

first-order visual appearance of the prostate. These three features are inte-

grated into a two level joint Markov-Gibbs random field (MGRF) model of

the prostate and its background. As demonstrated in the experimental re-

sults, the DSC for extracting the prostate is 93.34 ± 0.004%, which confirms

the high accuracy of the proposed prostate segmentation approach.

• An unsupervised probabilistic model to learn the second- and higher-order

97



spatial interactions between the object pixels (voxels) from medical images is

proposed. The model possesses the ability to account for the appearance fea-

tures to learn the inhomogeneity in the prostate. The proposed model adds

to the pairwise the higher-order spatial interactions between region labels of

a given segmentation.

• An adaptive probabilistic shape model that has the ability to learn both the

shape of the prostate and the subject-to-subject variability is proposed. The

adaptive shape model has been successfully used to guide the classification

of prostate cancer and has shown an ability to account for the complexity of

the prostate shape. The results of this model confirm its benefits and encour-

age using it to model other medical structures.

• A nonrigid registration to compensate for local object deformations caused

by physiological effects is proposed. The proposed nonrigid registration de-

forms each pixel of the target object over a set of nested, equi-spaced contours

(i.e., iso-contours) to closely match the reference object, by exploiting the ge-

ometric features, rather than image intensities to avoid problems associated

with nonlinear intensity variations in the prostate.

Several possibilities for the future work of this dissertation include, but are

not limited to, the following:

• Investigating the fusion between DCE-MRI and DWI. This fusion is expected

to give better diagnosis results of the prostate cancer.

• Investigating the integration of the proposed work with the BioImaging lab

work for the detection of brain disorders such as autism [121–152] and dyslexia

[153–165].

• Testing the proposed mathematical models and learning techniques in other
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clinical studies, such as detection of lung cancer [166–207] , early detection of

acute renal rejection [113, 208–230], and cardiac MRI [111, 119, 231–245]

99



REFERENCES

[1] American Cancer Society. Global Cancer Facts and Figures 2014. National
Home Office: American Cancer Society Inc, 2014.

[2] A. Tsai, Jr. Yezzi, A., W. Wells, C. Tempany, D. Tucker, A. Fan, W.E. Grimson,
and A. Willsky. A shape-based approach to the segmentation of medical
imagery using level sets. Medical Imaging, IEEE Transactions on, 22(2):137–
154, Feb 2003.

[3] J. G. E. Awad. Prostate Segmentation and Regions of Interest Detection in Tran-
srectal Ultrasound Images. PhD thesis, University of Waterloo, 2007.

[4] J. E. McNeal. The zonal anatomy of the prostate. Prostate, 2(1):35–49, 1981.

[5] B. Trkbey, D. Thomasson, Y. Pang, M. Bernardo, and P. L. Choyke. The role of
dynamic contrast-enhanced mri in cancer diagnosis and treatment. Turkish
Society of Radiology, 16:186–192, 2010.

[6] L. G. Gomella and F. Allen. Treatment Choices for Men Living with Advanced
Prostate Cancer. cancercare, CancerCare, New York, NY, 2006.

[7] D. T. S. Chang, B. Challacombe, and N. Lawrentschuk. Transperineal biopsy
of the prostate-is this the future? Nat Rev Urol, 10(12):690–702, 2013.

[8] S. Klein, M. Staring, and J.P.W. Pluim. Evaluation of optimization methods
for nonrigid medical image registration using mutual information and b-
splines. Image Processing, IEEE Transactions on, 16(12):2879–2890, Dec 2007.

[9] American Cancer Society. Cancer Facts and Figures 2014. National Home
Office: American Cancer Society Inc, 2014.

[10] E.David Crawford. Epidemiology of prostate cancer. Urology, 62(6, Supple-
ment 1):3 – 12, 2003.

[11] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. Thun. Cancer statistics
2007. Cancer Journal for Clinicians, 57:43–66, 2007.

[12] W. J. Catalona, J. P. Richie, F. R. Ahmann, M. A. Hudson, P. T. Scardino, R. C.
Flanigan, J. B. deKernion, T. L. Ratliff, L. R. Kavoussi, B. L. Dalkin, and et al.
Comparison of digital rectal examination and serum prostate specific anti-
gen in the early detection of prostate cancer: results of a multicenter clinical
trial of 6,630 men. The Journal of urology, 151(5):1283–90, 1994.

100



[13] M. B. Matthew, R. C.and Jeannette, W. K. Philip, and R. C. Peter. Contempo-
rary trends in low risk prostate cancer: Risk assessment and treatment. The
Journal of Urology, 178(3, Supplement):S14 – S19, 2007.

[14] A. S. Jr. Joseph, T. S. Peter, I. R. Martin, D. H. Alberto, C. R. Steven, and
J. E. Marlene. Transrectal ultrasound versus digital rectal examination for
the staging of carcinoma of the prostate: Results of a prospective, multi-
institutional trial. The Journal of Urology, 157(3):902 – 906, 1997.

[15] B. Turner, Ph. Aslet, L. Drudge-Coates, H. Forristal, L. Gruschy, S. Hi-
eronymi, K. Mowle, M. Pietrasik, and A. Vis. Transrectal ultrasound guided
biopsy of the prostate. European Association of Urology Nurses, 2011.

[16] J. E. Langer. The current role of transrectal ultrasonography in the evalua-
tion of prostate carcinoma. Seminars in Roentgenology, 34(4):284 – 294, 1999.
Imaging of the Prostate.

[17] J. T. Wei. Limitations of a contemporary prostate biopsy: The blind march
forward. Urologic Oncology: Seminars and Original Investigations, 28(5):546 –
549, 2010.

[18] A. V. Taira, G. S. Merrick, R. W. Galbreath, H. Andreini, W. Taubenslag,
R. Curtis, W. M. Butler, E. Adamovich, and K. E. Wallner. Performance of
transperineal template-guided mapping biopsy in detecting prostate cancer
in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis, 13(1):71–
77, 2010.

[19] A. G. Webb. Introduction to Biomedical Imaging. Wiley–IEEE Press, NJ, USA,
2003.

[20] T. M. Blodgett, C. C. Meltzer, and D. W. Townsend. Pet/ct: Form and func-
tion. Radiology, 242:360–385, 2007.

[21] D. Shen, Y. Zhan, and C. Davatzikos. Segmentation of prostate boundaries
from ultrasound images using statistical shape model. IEEE Transactions on
Medical Imaging, 22:539–551, 2003.

[22] H. M. Ladak, F. Mao, Y. Wang, D. B. Downey, D. A. Steinman, and A. Fenster.
Prostate boundary segmentation from 2d ultrasound images. Medical physics,
27:1777–1788, 2000.

[23] G. Pareek, U. R. Acharya, S. V. Sree, G. Swapna, R. Yantri, R. J. Martis,
L. Saba, G. Krishnamurthi, G. Mallarini, A. El-Baz, S. Al Ekish, M. Beland,
and J. S. Suri. Prostate tissue characterization/classification in 144 patient
population using wavelet and higher order spectra features from transrectal
ultrasound images. Technol Cancer Res Treat, 12:545–57, 2013.

[24] R. Zwiggelaar, Y. Zhu, and S. Williams. Semi-automatic segmentation of the
prostate. In Pattern Recognition and Image Analysis, volume 2652 of Lecture
Notes in Computer Science, pages 1108–1116. Springer Berlin Heidelberg, 2003.

101



[25] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan. Magnetic
Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss, New
York, USA, 1st edition, 1999.

[26] Y. J. Choi, J. K. Kim, N. Kim, K. W. Kim, E. K. Choi, and K. Cho. Func-
tional mr imaging of prostate cancer. RadioGraphics, 27(1):63–75, 2007. PMID:
17234999.

[27] J. K. Kim, S. S. Hong, Y. J. Choi, S. H. Park, H. Ahn, C. Kim, and K. Cho.
Wash-in rate on the basis of dynamic contrast-enhanced mri: Usefulness
for prostate cancer detection and localization. Journal of Magnetic Resonance
Imaging, 22(5):639–646, 2005.

[28] C. Sato, S. Naganawa, T. Nakamura, H. Kumada, S. Miura, O Takizawa,
and T. Ishigaki. Differentiation of noncancerous tissue and cancer lesions by
apparent diffusion coefficient values in transition and peripheral zones of
the prostate. Journal of Magnetic Resonance Imaging, 21(3):258–262, 2005.

[29] A. Firjani, A. Elmaghraby, and A. El-Baz. Mri-based diagnostic system for
early detection of prostate cancer. In Biomedical Sciences and Engineering Con-
ference (BSEC), 2013, pages 1–4, May 2013.

[30] A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. El-Ghar, A. Elmaghraby,
and A. El-Baz. A novel image-based approach for early detection of prostate
cancer using dce-mri. In Kenji Suzuki, editor, Computational Intelligence in
Biomedical Imaging, pages 55–82. Springer New York, 2014.

[31] A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. El-
maghraby, and A. El-Baz. Non-invasive image-based approach for early de-
tection of prostate cancer. In Proceedings of Fourth International Conference on
Developments in eSystems Engineering, (DeSE’11), pages 172–177, Dubai, UAE,
December 6–8, 2011.

[32] A. Firjani, A. Elnakib, F. Khalifa, A. El-Baz, G. Gimel’farb, M. Abou El-Ghar,
and A. Elmaghraby. A novel 3D segmentation approach for segmenting
the prostate from dynamic contrast enhanced MRI using current appear-
ance and learned shape prior. In Proceedings of IEEE International Symposium
on Signal Processing and Information Technology, (ISSPIT’10), pages 137–143,
Luxor, Egypt, December 15–18, 2010.

[33] A. Firjani, A. Elnakib, F. Khalifa, G. Gimelfarb, M. El-Ghar, A. Elmaghraby,
and A. El-Baz. A diffusion-weighted imaging based diagnostic system for
early detection of prostate cancer. Journal of Biomedical Science and Engineer-
ing, 6(3):346–356, 2013.

[34] R. Shimofusa, H. Fujimoto, H. Akamata, K. Motoori, S. Yamamoto, T. Ueda,
and H. Ito. Diffusion-weighted imaging of prostate cancer. J Comput Assist
Tomogr, 29(2):149–53, 2005.

102



[35] Y. Ueno, S. Takahashi, K. Kitajima, T. Kimura, I. Aoki, F. Kawakami,
H. Miyake, Y. Ohno, and K. Sugimura. Computed diffusion-weighted imag-
ing using 3-t magnetic resonance imaging for prostate cancer diagnosis. Eu-
ropean Radiology, 23(12):3509–3516, 2013.

[36] K. Yoshimitsu, K. Kiyoshima, H. Irie, T. Tajima, Y. Asayama, M. Hirakawa,
K. Ishigami, S. Naito, and H. Honda. Usefulness of apparent diffusion co-
efficient map in diagnosing prostate carcinoma: Correlation with stepwise
histopathology. Journal of Magnetic Resonance Imaging, 27(1):132–139, 2008.

[37] C. K. Kim, B. K. Park, and H. M. Lee. Prediction of locally recurrent prostate
cancer after radiation therapy: Incremental value of 3t diffusion-weighted
mri. Journal of Magnetic Resonance Imaging, 29(2):391–397, 2009.

[38] H. K. Lim, J. K. Kim, K. Ah Kim, and K. Cho. Prostate cancer: Apparent dif-
fusion coefficient map with t2-weighted images for detectiona multireader
study. Radiology, 250(1):145–151, 2009.

[39] T. Hacklnder, C. Scharwchter, R. Golz, and H. Mertens. Value of diffusion-
weighted imaging for diagnosing vertebral metastases due to prostate cancer
in comparison to other primary tumors. Fortschr Rntgenstr, 04:214–424, 2006.

[40] K. K Yu and H Hricak. Imaging prostate cancer. Radiol Clin North Am,
38(1):59–85, 2000.

[41] M. A. Haider, T. H. van der Kwast, J. Tanguay, A. J. Evans, A. T. Hashmi,
G. Lockwood, and J. Trachtenberg. Combined t2-weighted and diffusion-
weighted mri for localization of prostate cancer. American Journal of
Roentgenology, 189(2):323–328, 2007.

[42] A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, A. Elmaghraby, and A. El-
Baz. A novel image-based approach for early detection of prostate cancer.
In Proceedings of IEEE International Conference on Image Processing, (ICIP’12),
pages 2849–2852, Lake Buena Vista, Florida, September 30–October 3, 2012.

[43] A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, A. El-
maghraby, and A. El-Baz. A new 3D automatic segmentation framework
for accurate extraction of prostate from diffusion imaging. In Proceedings of
Biomedical Science and Engineering Conference–Image Informatics and Analytics
in Biomedicine, (BSEC’11), pages 1306–1309, Knoxville, Tennessee, March 15–
17, 2011.

[44] P.D. Allen, J. Graham, D.C. Williamson, and C.E. Hutchinson. Differential
segmentation of the prostate in mr images using combined 3d shape mod-
elling and voxel classification. In Biomedical Imaging: Nano to Macro, 2006. 3rd
IEEE International Symposium on, pages 410–413, April 2006.

[45] Y. Zhu, S. Williams, and R. Zwiggelaar. Segmentation of volumetric prostate
mri datausing hybrid 2d+3d shape modeling. Medical Image Understanding
and Analysis, pages 61–64, 2004.

103



[46] S. Klein, U. A. van der Heidi, B. W. Raaymakers, A. Kotte, M. Staring, and
J. Pluim. Segmentation of the prostate in mr images by atlas matching.
Biomedical Imaging: From Nano to Macro, pages 1300–1303, 2007.

[47] D. Flores-Tapia, N. Venugopal, G. Thomas, B. McCurdy, L. Ryner, and S. Pis-
torius. Real time mri prostate segmentation based on wavelet multiscale
products flow tracking. In Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE, pages 5034–5037, Aug 2010.

[48] S. Mallat and S. Zhong. Characterization of signals from multiscale edges.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(7):710–732,
Jul 1992.

[49] R. Toth, P. Tiwari, M. Rosen, A. Kalyanpur, S. Pungavkar, and A. Madab-
hushi. A multi-modal prostate segmentation scheme by combining spec-
tral clustering and active shape models. Medical Imaging 2008, 6914:69144S–
69144S, 2008.

[50] S.Vikal, S. Haker, C. Tempany, and G. Fichtinger. Prostate contouring in mri
guided biopsy. In SPIE, volume 7259, 2009.

[51] A. Firjany, A. Elnakib, A. El-Baz, G. Gimel’farb, M. El-Ghar, and A. El-
magharby. Novel stochastic framework for accurate segmentation of
prostate in dynamic contrast enhanced mri. In A. Madabhushi, J. Dowl-
ing, P. Yan, A. Fenster, P. Abolmaesumi, and N. Hata, editors, Prostate Cancer
Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention, volume 6367
of Lecture Notes in Computer Science, pages 121–130. Springer Berlin Heidel-
berg, 2010.

[52] A. Firjani, A. Elnakib, F. Khalifa, G. L. Gimel’farb, M. Abou El-Ghar, J. Suri,
A. Elmaghraby, and A. El-Baz. A new 3d automatic segmentation framework
for accurate segmentation of prostate from dce-mri. In ISBI, pages 1476–1479,
2011.

[53] P. Liu, S. Wang, B. Turkbey, K. Grant, P. Pinto, P. Choyke, B. J. Wood, and
R. M. Summers. A prostate cancer computer-aided diagnosis system using
multimodal magnetic resonance imaging and targeted biopsy labels. volume
8670, pages 86701G–86701G–6, 2013.

[54] P. Liao, T. Chen, and P. Chung. A fast algorithm for multilevel thresholding.
Journal of Information Science and Engineering, 17:713–727, 2001.

[55] N. Makni, P. Puech, R. Lopes, A.S. Dewalle, O. Colot, and N. Betrouni. Com-
bining a deformable model and a probabilistic framework for an automatic
3d segmentation of prostate on mri. International Journal of Computer Assisted
Radiology and Surgery, 4(2):181–188, 2009.

[56] Xin Liu, D.L. Langer, M.A. Haider, Yongyi Yang, M.N. Wernick, and I.S.
Yetik. Prostate cancer segmentation with simultaneous estimation of markov
random field parameters and class. Medical Imaging, IEEE Transactions on,
28(6):906–915, June 2009.

104



[57] Y. Artan, M.A. Haider, D.L. Langer, T.H. van der Kwast, A.J. Evans, Yongyi
Yang, M.N. Wernick, J. Trachtenberg, and I.S. Yetik. Prostate cancer localiza-
tion with multispectral mri using cost-sensitive support vector machines and
conditional random fields. Image Processing, IEEE Transactions on, 19(9):2444–
2455, Sept 2010.

[58] S. Ozer, M.A. Haider, D.L. Langer, T.H. van der Kwast, A.J. Evans, M.N.
Wernick, J. Trachtenberg, and I.S. Yetik. Prostate cancer localization with
multispectral mri based on relevance vector machines. In Biomedical Imaging:
From Nano to Macro, 2009. ISBI ’09. IEEE International Symposium on, pages
73–76, June 2009.

[59] M. E. Tipping. The relevance vector machine, 2000.

[60] Y. Gao, R. Sandhu, G. Fichtinger, and A.R. Tannenbaum. A coupled global
registration and segmentation framework with application to magnetic res-
onance prostate imagery. Medical Imaging, IEEE Transactions on, 29(10):1781–
1794, Oct 2010.

[61] S. Martin, V. Daanenc, and J. Troccaz. Automated segmentation of the
prostate in 3d mr images using a probabilistic atlas and a spatially con-
strained deformable model. Medical physics, 37:1579–1590, 2010.

[62] J. Dowling, J. Fripp, S. Chandra, J. Pluim, J. Lambert, J. Parker, J. Denham,
P. Greer, and O. Salvado. Fast automatic multi-atlas segmentation of the
prostate from 3d mr images. In Prostate Cancer Imaging. Image Analysis and
Image-Guided Interventions, volume 6963 of Lecture Notes in Computer Science,
pages 10–21. Springer Berlin Heidelberg, 2011.

[63] B. Rodrı́guez-Vila, J. Pettersson, M. Borga, F. Garcia-Vicente, E. Gomez, and
H. Knutsson. 3d deformable registration for monitoring radiotherapy treat-
ment in prostate cancer. In Image Analysis, volume 4522 of Lecture Notes in
Computer Science, pages 750–759. Springer Berlin Heidelberg, 2007.

[64] S. Ghose, J. Mitra, A. Oliver, R. Marti, X. Llado, J. Freixenet, J. C. Vilanova,
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APPENDIX I

A. LIST OF ABBREVIATIONS

The following convention is used throughout the dissertation.

1D One-Dimensional.

2D Two-Dimensional.

3D Three-Dimensional.

4D Four-Dimensional.

ACC Accuracy.

ADC Apparent Diffusion Coefficient.

AIF Arterial Input Function.

AAM Active Appearance Model.

CA Contrast Agent.

CAD Computer-Assisted Diagnosis.

CE Contrast-Enhanced.

CE-CT Contrast-Enhanced Computed Tomography.

CT Computed Tomography.

CTA Computed Tomography Angiography.

DCE-CT Dynamic ContrastEnhanced Computed Tomography.

DCE-MRI Dynamic ContrastEnhanced Magnetic Resonance Imaging.

DG Discrete-Gaussian.

DCT Discrete Cosine Transform.
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DSC Dice similarity coefficients.

DTI Diffusion Tensor Image.

DWI Diffusion-Weighted Image.

ECF Extracellular Fluid Space.

EM expectation Maximization.

fMRI Functional Magnetic Resonance Imaging.

FN False Negative.

FP False Positive.

FOV Field of View.

GGMRF Generalized Gauss-Markov Random Field.

ICA Independent Component Analysis.

LCDG Linear Combinations of Discrete Gaussians.

MGRF Markov Gibbs Random Field.

MI Mutual Information.

MRI Magnetic Resonance Imaging.

MRA Magnetic Resonance Angiography.

MRS Magnetic Resonance Spectroscopy.

MRSI Magnetic Resonance Spectroscopy Imaging.

NCC Normalized Cross-Correlation.

NGF Normalized Gradient Field.

NMI Normalized Mutual Information.

PDE Partial Differential Equation.

PDMD Phase Difference Movement Detection .

PET Positron Emission Tomography.

PK Pharmacokinetic.

PPV Positive Predictive Value.

PWI Perfusion-Weighted Images.

PZ Peripheral Zone.
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ROC Receiver Operating Characteristic.

ROI Region-of-Interest.

RF Radio Frequency.

SD Standard Deviation.

SPECT Single Photon Emission Computed Tomography.

SEN Sensitivity.

SNR Signal-to-Noise Ratio.

SPE Specificity.

SVM Support Vector Machine.

TIC Time-Intensity Curve.

TN True Negative.

TZ Transition Zone.

TP True Positive.

TRUS Transrectal Ultrasound.

US Ultrasound.
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APPENDIX II

A. NOMENCLATURE

The following convention is used throughout the dissertation

• T1 is the spin-lattice (longitudinal) relaxation time of an MRI scan.

• T2 is the spin-spin (transverse) relaxation time of an MRI scan.

• Ktrans is the volume transfer constant of the contrast agent from the blood

plasma to the interstitial space.

• Kep is the reverse transfer constat of the contrast agent from the interstitial

space to the blood plasma.

• (x, y)-denotes the cartesian coordinates of points (pixels) in the image plane.

• t denotes the continuous time.

• τ denotes a time step.

• n denotes a discrete time instant.

• ∇ =
[

∂
∂x
, ∂
∂y
, ∂
∂z

]
is the differential Operator.

• Vn(x, y) is the deformable model speed function at each pixel location.

• Q is the number of gray levels.
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• Q = {0, . . . , Q− 1} denote sets of gray levels q.

• K = {1, . . . , K} denotes sets of region labels k.

• R denotes a 2-D (x,y)- arithmetic lattice.

• m denote binary region maps.

• g denote gray level images.

• K is the number of image modes (number of classes).

• P (g,m) is a joint two-level probability model of a gray scale images and their

region maps.

• P (g|m) is a conditional distribution of images, given the map.

• Ps(m) is an unconditional probability distribution of maps.

• Psp(m) is shape prior probability of region maps.

• p(q) is the estimated density for the mixed gray level distribution.

• p(q|k) is the estimated marginal density for a class k.

• ψ(q|θ) is a Gaussian density with a shorthand notation θ ≡ (µ, σ2) for its

mean, µ, and variance, σ2.

• Φθ(q) is a cumulative Gaussian probability function with a shorthand nota-

tion θ = (µ, σ2) for its mean, µ, and variance, σ2.

• Cp is the number of positive Gaussian kernel for the estimated mixed density.

• Cn is the number of negative Gaussian kernel for the estimated mixed den-

sity.

• wp,. is the mixed weight of positive Gaussian kernel.

• wn,. is the mixed weight of negative Gaussian kernel.

127



• a is the Euclidean distance between two pixel locations.

• A = {1,
√
2,
√
3} denotes a set of Euclidean distances.

• N is the neighborhood system.

• |CN| is the cardinality of the neighborhood system.

• Z is the normalizing factor or partition function.

• Va = {Va,eq, Va,eq} denotes the Gibbs potentials.

• fa,eq(.) denotes the relative frequency of the equal label pairs in the equivalent

pixel pairs in a certain neighborhood.

• ξ is the shift in x-direction.

• η is the shift in y-direction.

• Ω1:x,y is the combined shape, spatial, and intensity probabilities of the object.

• Ω0:x,y is the combined shape, spatial, and intensity probabilities of the back-

ground.

• κ is the contour curvature.

• γ denotes a scalar field.

• Ex is the gradient vector in x-direction.

• Ey is the gradient vector in y-direction.

• G denotes the expert, ground truth segmented region.

• C denotes the model segmented region.

• Az denotes the area under the curve.

• Π denotes a lattice of control points.
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• ⌊ε⌋ denotes the integer part of a real-valued number ε.

• (s, t): s = x−⌊x⌋ ∈ [0, 1) and t = y−⌊y⌋ ∈ [0, 1), is the relative position of the

cartesian point (x, y) with respect to the four nearest lattice points (u, v), (u+

1, v), (u, v + 1), (u+ 1, v + 1)

• βj(.), j = −1, . . . , 2, is the uniform cubic B-spline basis function.

• C(., .) is the similarity metric between the reference and target images.

• H(.) is the Shannon’s entropy of the image signals.

• H(., .) is the joint entropy of the image signals.

• N is the number of images in the training data.

• α is the shape model mixing weights.

• ρ is the normalized cross correlation.

129



CURRICULUM VITAE

Ahmad A. Firjani
BioImaging Laboratory

Paul C. Lutz Hall, Room 304
University of Louisville, Louisville, KY,

USA
E-mail: aafirj01@louisville.edu

github.com/elmargb
Tel: (502) 852–4032

Education
2008–2014 PhD Student,Computer Engineering and Computer Science Depart-

ment, University of Louisville, Louisville, KY 40292
Ph.D. Dissertation: A NON-INVASIVE IMAGE BASED SYSTEM FOR
EARLY DIAGNOSIS OF PROSTATE CANCER.

2000–2002 M.Sc., in Computer and Communications Engineering, University of
Putra Malaysia, Serdang, Malaysia.
M.Sc. Thesis: A Web-Based Control and Monitoring System.

1994–1999 B.S. in Electronics and Communications Engineering, Al Mergeb Uni-
versity, Al-Khums, Libya.
Sr. Project: DSP-based Software Radio for FM Demodulation.

Teaching Experience
2011– Present Graduate teaching assistants , Dep. of Computer Engineering and

Computer Science (CECS), University of Louisville, KY, USA.
2014–Present Adjunct Professor of Computer Science, Bellarmine University,

Louisville, KY, USA.
2014–Present Adjunct Faculty, Sullivan University, Louisville, KY, USA.
2002–2007 Lecturer, Department of Communications and computer Engineering,

Al-Mergeb University, Al-Khoms, Libya.
Work Experience

2013– Present Software Engineer, Research MRI Center, Department of Radiology,
University of Louisville Hospital, Louisville, KY, USA.

2008–2009 Software Engineer, Sleep and Neurobiology, Kosairs Children Hospital
Research Institute, Division of Pediatric Sleep Medicine, Department of
Pediatric, School of Medicine, University of Louisville, Louisville, KY,
USA.

2001–2002 Research Assistant, Institute of Multimedia and Software , University
Putra Malaysia, Serdang, Malaysia.

130



Professional Affiliations and Training

• Member, Institute of Electrical and Electronics Engineers (IEEE).

Awards and Recognition

• Graduate Deans Citation Prize in recognition of excellent achievement as a candi-
date for advanced degree in the University of Louisville, December 2014.

• PhD Dissertation Completion Award, University of Louisville, 2014.

• Won third place in Engineering Expo competition, 2014.

• CECS Arthur M. Riehl Award, University of Louisville for excellent academic per-
formance and creativity in research 2013.

• Citation Paper Award from the Society of UroRadiology (SUR), 2011.

• University of Louisville Travel Award 2010 and 2011.

• Scholarship for Graduate Study, 2007-2011, Ministry of Higher Education and Sci-
entific Research, Libya.

Invited Talks

• A. Firjani, “Novel Stochastic Framework for Accurate Segmentation of Prostate in
Dynamic Contrast Enhanced MRI. ,” University of Louisville, CECS department, Septem-
ber 5, 2014.

• A. Firjani, “MRI Based Diagnostic System for Early Detection of Prostate Cancer,”
University of Louisville, Radiology department, April, 2014.

• A. Firjani, “Medical Image Analysis,” Bellarmine university, Louisville, USA, Septem-
ber, 2014.

Publications

During my PhD. (Fall 2008Fall 2014), I have authored or co-authored more than 15 tech-
nical publications that have appeared in world-renown journals; book chapters; top-rank
international conferences and workshops (including Medical Image Computing and
Computer-Assisted Intervention (MICCAI), International Symposium on Biomedical Imag-
ing (ISBI), and International Conference on Image Processing (ICIP)) and abstracts.

131



• Book Chapters

1. A. Firjani, F. Khalifa, A. Elnakib, G.L. Gimel’farb, M. Abou El-Ghar, A. El-
magharby, and A. El-Baz, ”A Novel Image-based Approach for Early Detec-
tion of Prostate Cancer using DCE-MRI,” Computational Intelligence in Biomedi-
cal Imaging, K. Suzuki, Springer-Verlag, New York, 2014, ch. 3, pp. 55–82, doi:
10.1007/978-1-4614-7245-23.

• Journal Articles

1. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, “(2013) A diffusion-weighted imaging based diagnostic system
for early detection of prostate cancer,” Journal of Biomedical Science and Engineer-
ing, vol. 6, pp. 346-356.

• Peer-Reviewed Conference Proceedings

1. A. Firjani, A. Elmaghraby, and A. El-Baz, “MRI Based Diagnostic System for
Early Detection of Prostate Cancer,“ In: Proc. of Biomedical Science and Engineer-
ing Conference (BSEC2013), Oak Ridge,Tennessee, May 21-23, 2013, pp. 1–4.

2. F. Khalifa, G. Beache, A. Firjani, K. Welch, G. Gimel’farb, and A. El-Baz, “A
New Nonrigid Registration Approach For Motion Correction of Cardiac First-
Pass Perfusion MRI,” In: Proc. IEEE International Conference on Image Processing
(ICIP’12), Orlando, Florida, September 30 -October 3, 2012, pp. 1665–1668.

3. A. Firjani, F. Khalifa, A. Elnakib, G.L. Gimel’farb, M. Abou El-Ghar, A. El-
magharby, and A.El-Baz “A Novel Image-Based Approach for Early Detection
of Prostate Cancer using Diffusion Weighted MRI,” In: Proc. of IEEE Interna-
tional Conference on Image Processing (ICIP’12), Orlando, Florida, September 30
-October 3, 2012, pp. 2849–2852.

4. A. Firjani ,F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, “Non-invasive image-based approach for early detection
of prostate cancer,” In: Proc. The Fourth International Conference on Developments
in eSystems Engineering (DeSE’11), Dubai, UAE, December 6-8, 2011, pp. 172–
177.

5. A. Firjani, F. Khalifa, A. Elnakib, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, “A new 3D automatic segmentation framework for early diag-
nosis of prostate cancer,” In: Proc. IEEE International Conference on Image Pro-
cessing (ICIP’11), Brussels, Belgium, September 11–14, pp. 2333–2336.

6. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, A. Elmaghraby,
and A. El-Baz, “A new 3D automatic segmentation framework for accurate
extraction of prostate from diffusion imaging,” In: Proc. 2011 Biomedical Sci-
ence and Engineering Conference - Image Informatics and Analytics in Biomedicine
(BSEC’11, Knoxville, Tennessee, USA, March 15–17, 2011, pp. 1–4.

7. A. Firjani, A. Elnakib, F. Khalifa, G. Gimel’farb, M. Abo El-Ghar, J. Suri, A.
Elmaghraby, and A. El-Baz, “A new 3D automatic segmentation framework
for accurate extraction of prostate from DCE-MRI,” In: Proc. IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI’11), Chicago, Illi-
nois, USA, 30 March – 2 April, 2011, pp. 1476–1479.

132



8. A. Firjani, A. Elnakib, F. Khalifa , A. El-Baz, G. Gimel’farb, M. Abo El-Ghar,
and A. Elmaghraby, “A novel 3D segmentation approach for segmenting the
prostate from dynamic contrast enhanced MRI using current appearance and
learned shape prior,” In: Proc. IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT’10), Luxor, Egypt, December 15–18, 2010, pp.
137–143.

9. A. Firjani, A. Elnakib, A. El-Baz, G. Gimel’farb, M. Abo El-Ghar, and A. El-
maghraby, “Novel Stochastic Framework for Accurate Segmentation of Prostate
in Dynamic Contrast Enhanced MRI,” In: Proc. of International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI’10), Bei-
jing, China, September 20 - 24, 2010, pp. 121–130.

10. Ahmed Abdusalam, Abd Rahman R., and Liakot A., “Real Time Data Acqui-
sition and Remote Controlling,” In: Proc. of Student Conference on Research and
Development, (SCOReD 2002), Selangor, Malaysia, pp. 256-259.

11. Ahmed Abdusalam, Abd Rahman R.,Nor Kamariah N., and Liakot A., “Eval-
uation of Power Line Communications Performance in CEBus Protocols,” In:
Proceedings of World Engineering congress, Sarawak, Malaysia, July 2002, pp. 21-
24.

• Abstracts Published in Proceedings

1. M. Abou El-Ghar, A. El-Baz, F. Khalifa, A. Elnakib, A. Firjani, and T. El-Diasty
Non-invasive image-based approach for early diagnosis of prostate cancer, In:
Proceedings of the European Society of Urogenital Radiology Symposium
(ESUR11), Dubrovnik, Croatia, October 1316, 2011. (Citation paper award).

133


	A non-invasive image based system for early diagnosis of prostate cancer.
	Recommended Citation

	tmp.1432908174.pdf.P8Jkc

