92 research outputs found

    Applying in silico Tools to the Discovery of Novel CXCR4 Inhibitors

    Get PDF
    International audienceThe process of HIV entry begins with the binding of the viral envelope glycoprotein gp120 to both the CD4 receptor and one of the CXCR4 or CCR5 chemokine coreceptors. There is currently considerable interest in developing novel ligands which can bind to these coreceptors and hence block virus-cell fusion. This article reviews the use of different in silico structure-based and ligand-based virtual screening (VS) tools for the discovery of potential HIV entry inhibitors for the CXCR4 receptor. More specifically, it discusses homology modelling, de novo design, docking, QSAR analyses, pharmacophore modelling, and similarity searches. Results from retrospective VS of a library of known CXCR4 inhibitors taken from the literature and from prospective VS of a combinatorial virtual library are reviewed. The structures of active compounds found by these approaches, as well as CXCR4 inhibitors currently in development are also discussed

    Estudio y cribado virtual de compuestos químicos antivirales (VIH). Estudio de la modulación alostérica de agonistas y antagonistas del receptor celular CXCR4

    Get PDF
    Els mètodes de descobriment de nous fàrmacs han evolucionat recentment gràcies a la resolució de les estructures proteiques que actuen com a dianes terapèutiques responsables de malalties o desregulacions biològiques. Aquestes estructures proteiques tridimensionals, juntament amb el desenvolupament de noves tècniques computacionals permeten el desenvolupament accelerat de nous compostos candidats a esdevenir fàrmacs. El present treball s’inicia proposant un nou mètode que millora l’elecció de compostos candidats a ser inhibidors d’una “diana difícil”, però ben coneguda com és el receptor VEGFR-2, a partir de la seva estructura tridimensional cristal·litzada, així com de compostos inhibidors coneguts de l’esmentada diana. La resolució tridimensional de l’estructura CXCR4 mitjançant cristal•lografia de raigs X a l’any 2010, ha esdevingut un avenç important a l’hora de millorar el disseny de compostos inhibidors del VIH, així com compostos antitumorals, malalties en les que intervé de forma determinant el receptor CXCR4. Així doncs, els models de cribratge virtual desenvolupats abans del 2010 dins el laboratori de disseny molecular de l’IQS (GEM) han estat generats a partir de models creats per homologia vers a altres proteïnes GPCRs i/o s’han basat solament en la forma de lligands coneguts. D’aquesta forma, a partir de les diferents estructures proteiques publicades de CXCR4, s’ha avaluat quina d’aquestes estructures presenta la conformació que distingeix millor els compostos antagonistes actius dels compostos inactius. A més, s’han avaluat múltiples mètodes de cribratge virtual de CXCR4 basats en l’estructura, en la forma del lligand i mitjançant models farmacofòrics. Una vegada obtinguda la millor estructura de CXCR4 i els millors mètodes de cribratge virtual retrospectiu, es realitzen cribratges virtuals prospectius d’una nova quimioteca generada de forma combinatòria, basada en estructures anàlogues prèviament desenvolupades al laboratori de disseny molecular de l’IQS. Addicionalment, s’ha estudiat el comportament al·lostèric del receptor CXCR4 davant de moduladors antagonistes petits i moduladors al·lostèrics agonistes de naturalesa pèptica. CXCR4 és qualificada com a una “diana difícil” per la gran mida del seu lloc actiu ortostèric, així com per l’ampli número de funcions reguladores en les que intervé el receptor. Per això la modulació al·lostèrica en CXCR4 s’ha estudiat utilitzant diferents aproximacions com són el docking cec, docking proteïna-proteïna, docking per subllocs d’unió i dinàmica molecular.Los métodos de descubrimiento de nuevos fármacos han evolucionado recientemente gracias a la resolución de las estructuras proteicas las cuales actúan como dianas terapéuticas responsables de enfermedades o desregulaciones biológicas. Estas estructuras proteicas tridimensionales, conjuntamente con el desarrollo de nuevas técnicas computacionales están permitiendo el desarrollo acelerado de nuevos compuestos candidatos a convertirse en fármacos. El presente trabajo se inicia proponiendo un nuevo método que permita mejorar la elección de compuestos candidatos a ser inhibidores de una “diana difícil” aunque bien conocida, como es el receptor VEGFR-2, partiendo de su estructura tridimensional cristalizada y de compuestos inhibidores conocidos de dicha diana. La resolución tridimensional de la estructura del receptor CXCR4 mediante cristalografía de rayos X, en el año 2010, ha supuesto un avance importante de cara a mejorar el diseño de compuestos inhibidores del VIH, así como de compuestos antitumorales, enfermedades en las que interviene de forma determinante el receptor CXCR4. Así pues, los modelos de cribado virtual desarrollados anteriormente al 2010 en el laboratorio de diseño molecular del IQS (GEM) han sido generados a partir de modelos creados por homología a otras proteínas GPCRs y/o basados únicamente en la forma de ligandos conocidos. De este modo, partiendo de las diferentes estructuras proteicas publicadas de CXCR4, se ha evaluado cuál de dichas estructuras presenta la conformación que distingue mejor los compuestos antagonistas activos de compuestos inactivos. Además, se han evaluado múltiples métodos de cribado virtual de CXCR4 basados en la estructura, en la forma del ligando y mediante modelos farmacofóricos. Una vez obtenida la mejor estructura de CXCR4 y los mejores métodos de cribado virtual retrospectivo, se realizan cribados virtuales prospectivos de una nueva quimioteca generada combinatoriamente, basada en análogos de estructuras previamente desarrolladas en el laboratorio de diseño molecular del IQS. Adicionalmente se ha estudiado el comportamiento alostérico del receptor CXCR4 frente a moduladores antagonistas de pequeño tamaño y moduladores alostéricos agonistas de naturaleza peptídica. CXCR4 se califica como “diana difícil” debido al gran tamaño del sitio activo ortostérico, juntamente con el amplio número de funciones reguladoras en las que interviene el receptor CXCR4. Por ello la modulación alostérica en CXCR4 se ha estudiado utilizando diferentes aproximaciones, como son: docking ciego, docking proteína-proteína, docking por subsitios y dinámica molecular.: Drug discovery methods have recently emerged thanks to the resolution of protein structures which act as therapeutic targets responsible for diseases or biological deregulations. These three dimensional structures in combination with the development of new computational techniques are accelerating the development of new candidates to become drug compounds. This work starts with the proposal of a new method that improves the selection of candidates to become inhibitors of a well-known “difficult target” such us VEGFR-2 receptor. This method is based on the crystal structure of the receptor and also by a number of inhibitors known for this target. CXCR4 crystal structure was solved in 2010 by X-ray crystallography and this has been an important event in order to improve the molecular design of HIV inhibitors, as well as anticancer compounds, diseases where CXCR4 receptor is involved. Therefore, virtual screening models developed in the laboratory of molecular design of IQS (GEM) were generated using homology models from other GPCRs and/or based on ligand shape techniques. In this sense, taking into consideration all published CXCR4 crystal structures, it has been evaluated which of them shows the most suitable conformation to distinguish antagonists actives from inactives. Moreover, different virtual screening methods have also been evaluated such us structure based methods, ligand based methods and pharmacophoric models. Once obtained the most suitable structure and the best retrospective virtual screening methods, a prospective virtual screening has been carried out using a new combinatorial library of chemical structures. This new library is based on analogous structures previously generated in the laboratory of molecular design of IQS (GEM). In addition, the allosteric behaviour of CXCR4 receptor has been studied versus small antagonist modulators and versus peptidomimetic agonist modulators. CXCR4 is classified as a “difficult target” due to the large size of its extracellular pocket that the orthosteric binding site is placed as well as the diverse number of biochemical regulations where the receptor mediates. Thus, the allosteric modulation of CXCR4 has been studied using different approaches such as blind docking, protein-protein docking, docking by subsites and molecular dynamics

    Identification of Ligands with Tailored Selectivity: Strategies & Application

    Get PDF
    In the field of computer-aided drug design, docking is a computational tool, often used to evaluate the sterical and chemical complementarity between two molecules. This technique can be used to estimate the binding or non-binding of a small molecule to a protein binding site. The classical application of docking is to find those molecules within a large set of molecules that bind a certain target protein and modulate its biological activity. This setup can be considered as established for a single target protein. In contrast to this, the docking to multiple target structures offers new possible applications. It can be used, for example, to assess the binding profile of a ligand against a number of proteins. In this work, the applicability of docking is assessed in such a scenario where multiple target structures are used. The corresponding proteins mostly belong to the family of G protein-coupled receptors. This protein family is very large and numerous GPCRs have been identified as potential drug targets, explaining the their relevance in pharmaceutical research. The protein structures used herein have different relationships and thus represent different application scenarios. The first case study uses two structures belonging to different proteins. These proteins are CXCR3 and CXCR4, a pair of chemokine GPCRs. In this chapter, new ligands are identified that bind to these proteins and modulate their biological activity. More importantly, for each of these newly identified ligands it could be predicted using docking, whether this ligand binds only to one of the two target proteins or to both. This study proves the applicability of docking to identify ligands with tailored selectivity. In addition, these ligands show excellent binding affinities to their respective target or targets. In the following two studies, the docking to different structures of the same target protein is investigated. The first application aims at identifying ligands selective for either one of two isoforms of the zebrafish CXC receptor 4. Subsequently, multiple conformations of the chemokine receptor CCR5 are used to show that different starting structures can identify different ligands. Next to the plain identification of chemically new ligands, experimental hurdles to prove the biological activity of these molecules in a functional assay is discussed. These difficulties are based on the fact that docking evaluates the structural complementarity between molecules and protein structures rather than predicting the effect of these molecules on the proteins. In addition, GPCRs form a challenging set of target proteins, since their ligands can induce a variety of different effects. Finally, the general applicability of multi-target docking to a very large number of structures is investigated. For this evaluation, kinases are used as protein family since many more structures have been experimentally determined for these proteins compared to GPCRs as membrane proteins. First, using published experimental data, a dataset is created consisting of several hundred kinase structures and a set of small-molecule kinase inhibitors. This dataset is characterised by the availability of experimental binding data for each single kinase-inhibitor combination. These experimental data were subsequently compared to the docking results of each ligand into each single kinase structure. The results indicate that a reliable selectivity prediction for a ligand is highly demanding in such a large-scale setup and beyond current possibilities. However, it can be shown that the prediction accuracy of docking can be improved by normalising the docking scores over multiple ligands and proteins. Based on these findings, the idea of "protein decoys" is developed, which might in the future allow more accurate predictions of selectivity profiles using docking

    Diverse computational tools towards the understanding of HIV targets and design of potential drug candidates.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.HIV/AIDS still remains to be a challenging epidemic infecting millions of individuals worldwide. The morbidity and mortality rates of HIV-infected patients has been well documented over the years. Despite on-going HIV/AIDS research and access to antiretroviral therapy, to date still no cure exists for this deliberating disease. In recent years, computational approaches have emerged as close counterparts to experiments in modern drug discovery process and in understanding complex biological phenomena. An array of in-silico computational techniques were implemented ranging from molecular dynamic (MD) simulations, de-novo design, hybrid structure-based and pharmacophore-based virtual screening, quantitative structure-activity relationship (QSAR), homology modeling, principle component analysis (PCA), residue interaction network analysis (RIN), substrate envelope analysis (SEA), to molecular mechanics and quantum mechanics. The first report (Chapter 4), demonstrated a unique strategy for developing dual acting inhibitors against HIV-1 protease (PR) and reverse transcriptase (RT). The designed targets exhibited binding affinities and dual inhibiting activity comparable to, and in some cases better than, known active reference drugs. The second study (Chapter 5), reported the activity of flexible hydroquinone-based compounds as non-nucleoside reverse transcriptase inhibitors (NNRTIs), as proposed by Bruccoleri, where no experimental or computational work supported his proposal. Results concluded that the novel flexible hydroquinone-based compounds showed improved binding affinity as compared to FDA-approved prototype drugs and more specifically potent potential mutant-resistant NNRT inhibitor activity. The third report (Chapter 6), explored the activity of novel CCR5 antagonists as potential HIV- 1 entry inhibitors. Ten scaffolds were identified as novel CCR5 antagonists or potential HIV-1 entry inhibitors. Furthermore, from the generated atom-based 3D-QSAR model, all of the parameters showed certain reliability and feasible predictability to help us design new and high selectivity CCR5 inhibitors. The fourth study (Chapter 7), explored the atomistic basis of why the M184I single mutation renders complete resistance of HIV-1 RT to lamivudine. Multiple molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA) and residue interaction network (RIN) analyses adequately clarified the effect of the M184I mutation on drug resistance to lamvudine. Results presented in this study verified that M184I mutation decreased drug binding affinity, distorted ligand optimum orientation in RT active site and affected the overall protein conformational landscape. The results also provided some potential clues for further design of novel inhibitors that are less susceptible to drug resistance. In the fifth study (Chapter 8), we identified potential HIV-Nef inhibitors by exploiting the structural features of B9 using an integrated computational tools framework. The top identified hit compounds demonstrated comparatively better binding affinities and relatable binding modes compared to the prototype antagonist, B9. Top identified hits were proposed as new potential novel leads targeting HIV-Nef with a detailed analysis of their respective binding modes. The sixth report (Chapter 9), aimed to reveal the dimer packing and unpacking phenomena of HIV-Nef in its apo and inhibitor bound conformations using molecular dynamic simulations. Results verified a more conformational flexible nature of HIV-Nef dimer in the absence of an inhibitor.as compared to B9 bound conformation of HIV-Nef, which was found to be more conformationally rigid with a lesser inter-dimeric association. We believe that the results obtained from these several studies could be of great benefit in the development of more effective therapeutic interventions for the treatment and cure of HIV/AIDS

    Mechanistic insights and in silico studies on selected G protein-coupled receptors implicated in HIV and neurological disorders.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.G protein-coupled receptors (GPCRs) are the largest membrane protein receptor superfamily involved in a wide range of physiological processes. GPCRs form the major class of drug targets for a diverse array of pathophysiological conditions. Consequently, GPCRs are recognised as drug targets for the treatment of various diseases, including neurological disorders, cardiovascular conditions, oncology, diabetes, and HIV. The recent advancement in GPCR structure resolutions has provided novel avenues to understand their molecular basis of signal transduction, ligand recognition and ligand-receptor interactions. These advances provide a framework for the structure-based discovery of new drugs in targeting GPCRs implicated in the pathogenesis of various human diseases. In this thesis, the interactions of inhibitors at two dopamine receptor subtypes and C-C chemokine receptor 5 (CCR5) of the Class A GPCR family were investigated. Dopamine receptors and CCR5 are validated GPCR targets implicated in neurological disorders and HIV disease, respectively. The lack of structural information on these receptors limited our comprehension of their antagonists’ structural dynamics and binding mechanisms. The recently solved crystal structures for these receptors have necessitated further investigations in their ligand-receptor interactions to obtain novel insights that may assist drug discovery towards these receptors. This thesis comprehensively investigated the binding profiles of atypical antipsychotics (class I and class II) at the first crystal structure of the D2 dopamine receptor (D2DR). The class I antipsychotics exhibited binding poses and dynamics different from the class II antipsychotics with disparate interaction mechanistic at D2DR active site. The class II antipsychotics were remarkably observed to establish a recurrent and vital interaction with Asp114 via strong hydrogen bond interactions. Furthermore, compared to class I antipsychotics, the class II antipsychotics were found to engage favourably with the deep hydrophobic pocket of D2DR. In addition, the structural basis and atomistic binding mechanistic of the preferential selective inhibition at D3DR over D2DR were explored. This study investigated two small molecules (R-VK4-40 and Y-QA31) with substantial selectivity (> 180-fold) for D3DR over D2DR. The selective antagonists adopted shallow binding modes at D3DR while demonstrating a deep hydrophobic pocket binding at D2DR. Also, the vital roles and contribution of critical residues to the selective binding of R-VK4-40 and Y-QA31were identified in D3DR. Structural and binding free energy analyses further discovered distinct stabilising effects of the selective antagonists on the secondary architecture and binding profiles of D3DR relative to D2DR. Furthermore, the atomistic molecular interaction mechanism of how slight structural modification between novel derivatives of 1-heteroaryl-1,3-propanediamine (Compd-21 and - 34) and Maraviroc significantly affects their binding profiles toward CCR5 were elucidated. This study utilised explicit lipid bilayer molecular dynamics (MD) simulations and advanced analyses to explore these inhibitory disparities. The thiophene moiety substitution common to Compd-21 and -34 was found to enhance their CCR5-inhibitory activities due to complementary high-affinity interactions with residues critical for the gp120 V3 loop binding. The study further highlights the structural modifications that may improve inhibitor competitiveness with the gp120 V3 loop. Finally, structure-based virtual screening of antiviral chemical database was performed to identify potential compounds as HIV-1 entry inhibitors targeting CCR5. The identified compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding. Their predicted in silico physicochemical and pharmacokinetic descriptors were within the acceptable range for drug-likeness. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of novel HIV-1 therapy. The studies presented in this thesis provide novel mechanistic and in silico perspective on the ligand-receptor interactions of GPCRs. The findings highlighted in this thesis may assist in further research towards the identification of novel drug molecules towards CCR5 and D2-like dopamine receptor subtypes.List of thesis publications on page vi-vii. Research Output on page viii-ix

    Structure-based design of inhibitors of CXCR4.

    Get PDF
    Metastasis is a complex process requiring directed migration of metastatic cells to favorable microenvironments. Increased CXCR4 expression has been implicated in more invasive, aggressive and metastatic tumor phenotypes and poor patient survival in twenty-three forms of cancer. CXCR4 has been linked to cancer metastasis and CXCR4 expression on the cell surface of tumor cells has been linked to increased migration and homing of neoplastic cells to sites where stromal cells express the chemokine CXCL 12 such as the lung and bone marrow. In this dissertation, we will utilize structure based drug design to identify inhibitors of CXCR4 targeting the extracellular surface of the receptor, as well as the intracellular interface between the GPCR and G-protein. Our screens of the extracellular surface identified one compound, ECLVS14, which inhibits chemotaxis with an IC50 value of 5 j..IM, and is highly selective for CXCR4 without significant cytotoxicity. Subsequent QSAR analysis of the structure of this inhibitor reveals the importance of the 1-[bis (phenyl methyl) amino] methyl moiety and the fact that electronegative modifications of the terminal benzene enhance activity. Subsequent Molecular dynamics simulations of the compound in complex with CXCR4 reveal that the compound induces significant modifications of the receptor structure. Our intracellular screens represent a novel screening strategy targeting the intracellular region of CXGR4 interacting with Gai, which identified ten compounds selectively inhibiting GXGR4 with IG50 values of 10 IJM or less. Three of the most active compounds from the extracellular and intracellular screens were tested in an in vivo anti-metastatic animal model, successfully demonstrating the anti-metastatic activity of these compounds. In total this work demonstrates that structure based drug design utilizing in silico analysis in combination with in vitro and in vivo testing can be utilized to develop novel lead compounds which can function as anti-metastatics

    An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals

    Get PDF
    The activation of the G-protein coupled receptor CXCR4 by its ligand CXCL12\u3b1 is involved in a large variety of physiological and pathological processes, including the growth of B cells precursors and of motor axons, autoimmune diseases, stem cell migration, inflammation, and several neurodegenerative conditions. Recently, we demonstrated that CXCL12\u3b1 potently stimulates the functional recovery of damaged neuromuscular junctions via interaction with CXCR4. This result prompted us to test the neuroregeneration activity of small molecules acting as CXCR4 agonists, endowed with better pharmacokinetics with respect to the natural ligand. We focused on NUCC-390, recently shown to activate CXCR4 in a cellular system. We designed a novel and convenient chemical synthesis of NUCC-390, which is reported here. NUCC-390 was tested for its capability to induce the regeneration of motor axon terminals completely degenerated by the presynaptic neurotoxin \u3b1-Latrotoxin. NUCC-390 was found to strongly promote the functional recovery of the neuromuscular junction, as assayed by electrophysiology and imaging. This action is CXCR4 dependent, as it is completely prevented by AMD3100, a well-characterized CXCR4 antagonist. These data make NUCC-390 a strong candidate to be tested in human therapy to promote nerve recovery of function after different forms of neurodegeneratio

    Computational Approaches for the Characterization of the Structure and Dynamics of G Protein-Coupled Receptors: Applications to Drug Design

    Get PDF
    G Protein-Coupled Receptors (GPCRs) constitute the most pharmacologically relevant superfamily of proteins. In this thesis, a computational pipeline for modelling the structure and dynamics of GPCRs is presented, properly combined with experimental collaborations for GPCR drug design. These include the discovery of novel scaffolds as potential antipsychotics, and the design of a new series of A3 adenosine receptor antagonists, employing successful combinations of structure- and ligand-based approaches. Additionally, the structure of Adenosine Receptors (ARs) was computationally assessed, with implications in ligand affinity and selectivity. The employed protocol for Molecular Dynamics simulations has allowed the characterization of structural determinants of the activation of ARs, and the evaluation of the stability of GPCR dimers of CXCR4 receptor. Finally, the computational pipeline here developed has been integrated into the web server GPCR-ModSim (http://gpcr.usc.es), contributing to its application in biochemical and pharmacological studies on GPCRs

    Herramientas de cribado virtual aplicadas a inhibidores de entrada del VIH. Diseño de nuevos compuestos anti-VIH

    Get PDF
    Els inhibidors d'entrada del VIH han sorgit recentment com una nova generació de fàrmacs antiretrovirals, els quals bloquegen la unió del virus als co-receptors de membrana CXCR4 i CCR5. S'han desenvolupat diverses molècules petites antagonistes d'aquests co-receptors, algunes de les quals estan actualment en fase d'assaig clínic. No obstant això, donat que no existeixen estructures cristal·logràfiques per aquests co-receptors proteics, és necessari analitzar els modes d'unió d'inhibidors coneguts a la cavitat d'unió extracel·lular dels co-receptors mitjançant experiments de mutagènesi dirigida i estudis computacionals. En general, l'objectiu d'aquestes aproximacions computacionals és cribar un gran nombre de compostos candidats a fàrmacs ràpidament. El cribatge virtual s'ha convertit recentment en un complement útil dels mètodes de cribatge experimentals high-throughput screening per a grans llibreries de compostos. Per tant, en aquesta tesi s'ha portat a terme un protocol de cribatge virtual, mitjançant aproximacions basades en el receptor i en lligands actius coneguts, amb la finalitat de trobar antagonistes de CXCR4 i CCR5 que puguin servir com a potencials inhibidors d'entrada del VIH.Per al cribatge virtual basat en el receptor, s'han millorat els models dels co-receptors CXCR4 i CCR5 construïts a la secció de disseny molecular de l'IQS, i s'han portat a terme assajos preliminars de mode d'unió utilitzant aquests models i lligands coneguts d'elevada afinitat. Així mateix, s'ha analitzat el comportament en el cribatge virtual i en el post-processat de resultats de docking de diferents fingerprints d'interacció en comparació amb els resultats obtinguts per un nou fingerprint d'interacció (APIF) desenvolupat a la secció de disseny molecular de l'IQS.Per al cribatge virtual basat en lligands, s'han comparat models farmacofòrics i diverses aproximacions basades en la forma i propietats moleculars utilitzant lligands d'elevada afinitat com a molècules de referència. A més, s'ha desenvolupat una nova aproximació basada en la forma molecular, la qual s'ha utilitzat per a estudiar en profunditat la hipòtesi de la multi-regió d'unió de la cavitat d'unió extracel·lular del co-receptor CCR5.Tots els mètodes, ja siguin basats en el receptor o en lligands coneguts, s'han aplicat en primer lloc de manera retrospectiva utilitzant una extensa base de dades d'inhibidors de CXCR4/CCR5 i suposats inactius, similars en propietats als actius, recopilada en aquesta tesi. Per a cada receptor, la quimioteca ha estat cribada utilitzat inhibidors coneguts, S'han analitzat els factors d'enriquiment i la diversitat a les llistes finals de hits. A més, s'han portat a terme anàlisis ROC per a ambdós inhibidors de CXCR4 i CCR5 amb la finalitat de comparar l'habilitat del nou algoritme basat en la igualtat de formes de lligands amb la resta d'aproximacions de cribatge utilitzades.Una vegada validades les diferents aproximacions de cribatge i seleccionats els millors paràmetres per a cadascuna d'elles, s'han aplicat les eines de cribatge virtual de manera prospectiva sobre una quimioteca combinatòria dissenyada a la secció de disseny molecular de l'IQS, així com tècniques de disseny de novo de lligands per tal d'identificar nous bloquejadors de l'entrada del VIH a les cèl·lules.Los inhibidores de entrada del VIH han surgido recientemente como una nueva generación de fármacos antiretrovirales, los cuales bloquean la unión del virus con los co-receptores de membrana CXCR4 y CCR5. Se han desarrollado diversas moléculas pequeñas antagonistas de estos co-receptores, algunas de las cuales están actualmente en fase de ensayo clínico. Sin embargo, dado que no existen estructuras cristalográficas para estos co-receptores proteicos, es necesario analizar los modos de unión de inhibidores conocidos a la cavidad de unión extracelular de los co-receptores mediante experimentos de mutagénesis dirigida y estudios computacionales. En general, el objetivo de estas aproximaciones computacionales es cribar un gran número de compuestos candidatos a fármacos rápidamente. El cribado virtual se ha convertido recientemente en un complemento útil de los métodos de cribado experimentales high-throughput screening para grandes librerías de compuestos. Por lo tanto, en esta tesis se ha llevado a cabo un protocolo de cribado virtual, mediante aproximaciones basadas en el receptor y en ligandos activos conocidos, con el fin de encontrar antagonistas de CXCR4 y CCR5 que puedan servir como potenciales inhibidores de entrada del VIH.Para el cribado virtual basado en el receptor, se han mejorado los modelos de los co-receptores CXCR4 y CCR5 construidos en la sección de diseño molecular del IQS, y se han llevado a cabo ensayos preliminares de modo de unión utilizando estos modelos y ligandos conocidos de elevada afinidad. Asimismo, se ha analizado el comportamiento en el cribado virtual y en el post-procesado de resultados de docking de diferentes fingerprints de interacción en comparación con los resultados obtenidos por un nuevo fingerprint de interacción (APIF) desarrollado en la sección de diseño molecular del IQS.Para el cribado virtual basado en ligandos, se han comparado modelos farmacofóricos y diversas aproximaciones basadas en la forma y propiedades moleculares utilizando ligandos de elevada afinidad como moléculas de referencia. Además, se ha desarrollado una nueva aproximación basada en la forma molecular, la cual se ha utilizado para estudiar en profundidad la hipótesis de la multi-región de unión de la cavidad de unión extracelular del co-receptor CCR5.Todos los métodos, ya sean basados en el receptor o en ligandos conocidos, se han aplicado en primer lugar de manera retrospectiva utilizando una extensa base de datos de inhibidores de CXCR4/CCR5 y supuestos inactivos, similares en propiedades a los activos, recopilada en esta tesis. Para cada receptor, la quimioteca ha sido cribada utilizando inhibidores conocidos, Se han analizado los factores de enriquecimiento y la diversidad en las listas finales de hits. Además, se han llevado a cabo análisis ROC para ambos inhibidores de CXCR4 y CCR5 con el fin de comparar la habilidad del nuevo algoritmo basado en la igualdad de formas de ligandos con el resto de aproximaciones de cribado utilizadas.Una vez validadas las diferentes aproximaciones de cribado y seleccionados los mejores parámetros para cada una de ellas, se han aplicado las herramientas de cribado virtual de manera prospectiva sobre una quimioteca combinatoria diseñada en la sección de diseño molecular del IQS, así como técnicas de diseño de novo de ligandos para identificar nuevos bloqueadores de la entrada del VIH a las células.HIV entry inhibitors have emerged as a new generation of antiretroviral drugs that block viral fusion with the CXCR4 and CCR5 membrane co-receptors. Several small molecule antagonists for these co-receptors have been developed, some of which are currently in clinical trials. However, because no crystal structures for the co-receptor proteins are available, the binding modes of the known inhibitors within the co-receptor extracellular pockets need to be analyzed by means of site-directed mutagenesis and computational experiments. Generally, the objective of these computational approaches is to screen large numbers of candidate drug compounds rapidly. Virtual screening has recently become a useful complement to laboratory-based high-throughput screening methods for large libraries of compounds. Hence, in this thesis, a virtual screening protocol, using several receptor-based and ligand-based approaches, has been performed to find CXCR4 and CCR5 antagonists that could potentially serve as HIV entry inhibitors.For receptor-based virtual screening, homology models of CXCR4 and CCR5 co-receptors built in our research group have been improved, and preliminary binding mode analyses using these models and high affinity known ligands have been carried out. Also, the performance in virtual screening and docking post-processing of different interaction fingerprints, compared to the results obtained with a new interaction fingerprint (APIF) developed in our research group, has been analysed.For ligand-based virtual screening, pharmacophore modelling and several shape-based and property-based molecular comparison approaches have been compared, using high-affinity ligands as query molecules. Also, a novel consensus shape-based virtual screening approach has been developed and used to investigate and add further evidence for multiple binding sites within the CCR5 extracellular pocket hypothesis.All the receptor-based and ligand-based methods have been firstly applied in a retrospective virtual screening, using a large database of known CXCR4/CCR5 inhibitors and similar presumed inactive molecules assembled in this thesis. For each receptor, the library has been queried using known binders, and the enrichment factors and diversity of the resulting virtual hit lists have been analyzed. Moreover, receiver-operator-characteristic analyses for both CXCR4 and CCR5 inhibitors have been carried out in order to compare the performance of the new consensus shape matching algorithm with the other screening approaches used. Once the different virtual screening approaches have been validated and the best parameters for each one have been selected, prospective virtual screening of a combinatorial library designed by our research group and de novo design methods have been applied to identify new HIV entry blockers
    corecore