1,023 research outputs found

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Study and RTDS implementation of some controllers for performance and power quality improvement of an induction motor drive system

    Get PDF
    The present research work is directed to study of some controllers for design, modelling, simulation and RTDS implementation of induction motor (IM) drive system to identify suitable controller for high performance.Initially dynamic modelling and simulation of a feedback linearization scheme for high performance IM drive is carried out. The flux measurement required in this scheme is achieved using flux estimator rather sensor to simplify the system. The complexity and calculation involved in reference frame transformation is taken care by implementing the scheme in stationary reference frame. Two linear and independent subsystems: (i) Electrical and (ii) Mechanical are created by linearizing control scheme. The systematic design of closed loop control scheme using Proportional Integral (PI) controller is developed for implementation. To take care of uncertainties in the system the Fuzzy controller is added to speed controller. Sliding Mode (SM) controller considered to be a robust control strategy is designed and developed for IM drive. A procedure of finding gain and bandwidth of the controller is developed to take care of model inaccuracies, load disturbances and rotor resistance variation. During practical implementation of this controller for IM leads to oscillations and of state variable chattering due to presence of limiter and PWM inverter in the system. Iterative Learning controller (ILC) introduced in recent time is gaining popularity due to capability to take care of short comings of Sliding Mode controller. Feedback and feed forward Iterative Learning controller combining fuzzy logic is designed and developed. The MATLAB/SIMULINK model of IM drive with controllers designed are simulated under various possible operating conditions. A comparative study of three controllers is carried out in similar situation and the response of the drive system is presented.Normally we neglect stability aspect of IM while investigating procedure for performance improvement of IM drive. Stability study of IM in open loop and closed vii loop conditions using Lyapunov criteria and also considering the power balance equation are presented

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Recent advances in model predictive and sliding mode current control techniques of multiphase induction machines

    Get PDF
    Multiphase machines have attracted the attention of the research and industrial communities due to their advantages, namely better power distribution and fault-tolerant capabilities without extra hardware. However, the multiphase machine requires high-performance control strategies to take advantage of these features. From this perspective, the field-oriented control with the inner current control loop that uses using an explicit modulation stage has been considered the benchmark solution thanks to the reduced harmonic distortion obtained with this regulation strategy. Nevertheless, nonlinear controllers, thanks to their inherent nature, allow exploiting the extra multiphase capabilities in a simplified manner. Consequently, this paper aims to concentrate and discuss the latest developments on nonlinear current control of two of the most popular multiphase electric drive configurations, five-phase and six-phase. Then, this paper covers mainly finite-control-set model predictive control and their variations. Moreover, sliding-mode control is also explained. Finally, this paper includes experimental assessments of the most recent nonlinear current control techniques considering steady-state and transient conditions, stability and performance analysis.Agencia Estatal de Investigación | Ref. PID2019-105612RB-I0

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Induction Motor Performance Improvement using Super Twisting SMC and Twelve Sector DTC

    Get PDF
    Induction motor (IM) direct torque control (DTC) is prone to a number of weaknesses, including uncertainty, external disturbances, and non-linear dynamics. Hysteresis controllers are used in the inner loops of this control method, whereas traditional proportional-integral (PI) controllers are used in the outer loop. A high-performance torque and speed system is consequently needed to assure a stable and reliable command that can tolerate such unsettled effects. This paper treats the design of a robust sensorless twelve-sector DTC of a three-phase IM. The speed controller is conceived based on high-order super-twisting sliding mode control with integral action (iSTSMC). The goal is to decrease the flux, torque, the current ripples that constitute the major conventional DTC drawbacks. The phase current ripples have been effectively reduced from 76.92% to 45.30% with a difference of 31.62%. A robust adaptive flux and speed observer-based fuzzy logic mechanism are inserted to get rid of the mechanical sensor. Satisfactory results have been got through simulations in MATLAB/Simulink under load disturbance. In comparison to a conventional six-sector DTC, the suggested technique has a higher performance and lower distortion rate

    Performance enhancement of direct torque control induction motor drive using space vector modulation strategy

    Get PDF
    Purpose. The main objective of this work is to demonstrate the advantages brought by the use of space vector modulation technique in the direct torque control of the induction motor. To achieve this purpose, two different direct torque control approaches (with space vector modulation) are proposed and studied from a comparative aspect with each other and with the conventional direct torque control. The novelty of this work consists in the employment of an Integral-Proportional (IP) speed controller in the two proposed direct torque control approaches and a more in-depth evaluation for their performance mainly the switching frequency of inverter semiconductor components and motor torque ripples. Methods. Two different direct torque control approaches that use the space vector modulation strategy and/or fuzzy-logic control, are described in detail and simulated with IP speed controller. The simulation experiments are carried out using Matlab/Simulink software and/or fuzzy-logic tools. Results. Practical value. Comparison results show that the two proposed direct torque control structures (with space vector modulation) exhibit a large reduction in torque ripples and can also avoid random variation problem of switching frequency (over a wide range of speed or torque control). On the other hand, the use of IP speed regulator ensured good dynamic performance for the drive system as well as considerably minimized peak overshoot in the speed response. Practically all of these benefits are achieved while retaining the simplicity and the best dynamic characteristics of the classical direct torque control, especially with the modified direct torque control approach in which the design or implementation requires minimal computational effort.Мета. Основна мета даної роботи – продемонструвати переваги використання методу модуляції просторового вектора при прямому регулюванні крутного моменту асинхронного двигуна. Для досягнення цієї мети запропоновано два різних підходи до прямого управління крутним моментом (з модуляцією просторового вектора), які досліджуються з порівняльної точки зору  одного з іншим, а також зі звичайним прямим керуванням крутним моментом. Новизна роботи полягає у використанні інтегрально-пропорційного (IП) регулятора швидкості в двох запропонованих підходах до прямого регулювання крутного моменту та більш поглибленій оцінці їх ефективності, головним чином, частоти перемикань напівпровідникових компонентів інвертора та пульсації крутного моменту двигуна. Методи. Два різних підходи до прямого керування крутним моментом, які використовують стратегію модуляції просторового вектора та/або керування нечіткою логікою, детально описані та змодельовані за допомогою ІП-регулятора швидкості. Обчислювальні експерименти проводяться з використанням програмного забезпечення Matlab/Simulink та/або інструментів нечіткої логіки. Результати. Практична цінність. Результати порівняння показують, що дві запропоновані структури прямого керування крутним моментом (з модуляцією просторового вектора) демонструють значне зниження пульсації крутного моменту, а також можуть уникнути проблеми випадкових змін частоти перемикання (у широкому діапазоні регулювання швидкості або крутного моменту). З іншого боку, використання ІП-регулятора швидкості забезпечило хороші динамічні характеристики для приводної системи, а також значно знизило пікове перевищення швидкості. Практично всі ці переваги досягаються при збереженні простоти та найкращих динамічних характеристик класичного прямого керування крутним моментом, особливо з модифікованим підходом прямого керування крутним моментом, при якому проектування або впровадження вимагає мінімальних обчислювальних витрат
    corecore