17 research outputs found

    SSBI Mitigation and the Kramers-Kronig Scheme in Single-Sideband Direct-Detection Transmission With Receiver-Based Electronic Dispersion Compensation

    Get PDF
    The performance of direct-detection transceivers employing electronic dispersion compensation combined with DSP-based receiver linearization techniques is assessed through experiments on a 4 × 112 Gb/s wavelength-division multiplexing direct-detection single-sideband 16 quadratic-amplitude modulation Nyquist-subcarrier-modulation system operating at a net optical information spectral density of 2.8 b/s/Hz in transmission over standard single mode fiber links of up to 240 km. The experimental results indicate that systems with receiver-based dispersion compensation can achieve similar performance to those utilizing transmitter-based dispersion compensation, provided it is implemented together with an effective digital receiver linearization technique. The use of receiver-based compensation would simplify the operation of a fiber link since knowledge of the link dispersion is not required at the transmitter. The recently proposed Kramers-Kronig receiver scheme was found to be the best performing among the receiver linearization techniques assessed. To the best of our knowledge, this is the first experimental demonstration of the Kramers-Kronig scheme

    Digital Linearization of High Capacity and Spectrally Efficient Direct Detection Optical Transceivers

    Get PDF
    Metropolitan area networks are experiencing unprecedented traffic growth. The provision of information and entertainment supported by cloud services, broadband video and mobile technologies such as long-term evolution (LTE) and 5G are creating a rapidly increasing demand for bandwidth. Although wavelength division multiplexing (WDM) architectures have been introduced into metro transport networks to provide significant savings over single-channel systems, to cope with the ever-increasing traffic growth, it is urgently required to deploy higher data rates (100 Gb/s and beyond) for each WDM channel. In comparison to dual-polarization digital coherent transceivers, single-polarization and single photodiode-based direct-detection (DD) transceivers may be favourable for metropolitan, inter-data centre and access applications due to their use of a simple and low-cost optical hardware structure. Single sideband (SSB) quadrature amplitude modulation (QAM) subcarrier modulation (SCM) is a promising signal format to achieve high information spectral density (ISD). However, due to the nonlinear effect termed signal-signal beat interference (SSBI) caused by the square-law detection, the performance of such SSB SCM DD systems is severely degraded. Therefore, it is essential to develop effective and low-complexity linearization techniques to eliminate the SSBI penalty and improve the performance of such transceivers. Extensive studies on SSB SCM DD transceivers employing a number of novel digital linearization techniques to support high capacity (≥ 100 Gb/s per channel) and spectrally-efficient (net ISD > 2 b/s/Hz) WDM transmission covering metropolitan reach scenarios (up to 240 km) are described in detail in this thesis. Digital modulation formats that can be used in DD links and the corresponding transceiver configurations are firstly reviewed, from which the SSB SCM signalling format is identified as the most promising format to achieve high data rates and ISDs. Following this, technical details of the digital linearization approaches (iterative SSBI cancellation, single-stage linearization filter and simplified non-iterative SSBI cancellation, two-stage linearization filter, Kramers-Kronig scheme) considered in the thesis are presented. Their compensation performance in a dispersion pre-compensated (Tx-EDC) 112 Gb/s per channel 35 GHz-spaced WDM SSB 16-QAM Nyquist-SCM DD system transmitting over up to 240 km standard single-mode fibre (SSMF) is assessed. Net ISDs of up to 3.18 b/s/Hz are achieved. Moreover, we also show that, with the use of effective digital linearization techniques, further simplification of the DD transceivers can be realized by moving electronic dispersion compensation from the transmitter to the receiver without sacrificing performance. The optical ISD limit of SSB SCM DD system finally explored through experiments with higher-order modulation formats combined with effective digital linearization techniques. 168 Gb/s per channel WDM 64-QAM signals were successfully transmitted over 80 km, achieving a record net optical ISD of 4.54 b/s/Hz. Finally, areas for further research are identified

    Optical signal phase retrieval with low complexity DC-value method

    Get PDF
    We propose a novel method to reconstruct the optical signal phase information using direct detection. The method is suitable for minimum phase signals and it enables low complexity, low latency, and low tone power operation. Moreover, the proposed method offers low optical complexity solution for the short-reach links compared with the concurrent phase retrieval techniques. We apply the method to M-ary signals with the transmitted power of as low as 3 dBm, and we are able to reach 70 km for 100 Gb/s quadrature phase shift keying (QPSK) system without optical amplification. Our method is based on the single sideband (SSB) and DC-Value property of the minimum phase signal. The SSB and DC-Value properties are iteratively imposed on the amplitude signal in the frequency domain to recover the full complex field from a directly detected optical signal. The normalized mean square error (NMSE) value between the available amplitude information and reconstructed minimum phase signal amplitude decreases after each iteration, providing global minimum convergence. A constant scaling factor is exploited to improve the convergence speed. The scaling factor provides 6 dB, 4.5 dB, and 2.5 dB error vector magnitude (EVM) gains with 4, 5, and 8 iterations, respectively.publishe

    Deep Learning-Based Phase Retrieval Scheme for Minimum-Phase Signal Recovery

    Get PDF
    We propose a deep learning-based phase retrieval method to accurately reconstruct the optical field of a single-sideband minimum-phase signal from the directly detected intensity waveform. Our method relies on a fully convolutional Neural Network (NN) model to realize non-iterative and robust phase retrieval. The NN is trained so that it performs full-field reconstruction and jointly compensates for transmission impairments. Compared to the recently proposed Kramers-Kronig (KK) receiver, our method avoids the distortions introduced by the nonlinear operations involved in the KK phase-retrieval algorithm and hence does not require digital upsampling. We validate the proposed phase-retrieval method by means of extensive numerical simulations in relevant system settings, and we compare the performance of the proposed scheme with the conventional KK receiver operated with a 4-fold digital upsampling. The results show that the 7% hard-decision forward error correction (HD-FEC) threshold at BER 3.8e-3 can be achieved with up to 2.8 dB lower carrier-to-signal power ratio (CSPR) value and 1.8 dB better receiver sensitivity compared to the conventional 4-fold upsampled KK receiver. We also present a comparative analysis of the complexity of the proposed scheme with that of the KK receiver, showing that the proposed scheme can achieve the 7% HD-FEC threshold with 1.6 dB lower CSPR, 0.4 dB better receiver sensitivity, and 36% lower complexity

    Transmissores-recetores de baixa complexidade para redes óticas

    Get PDF
    Traditional coherent (COH) transceivers allow encoding of information in both quadratures and the two orthogonal polarizations of the electric field. Nevertheless, such transceivers used today are based on the intradyne scheme, which requires two 90o optical hybrids and four pairs of balanced photodetectors for dual-polarization transmission systems, making its overall cost unattractive for short-reach applications. Therefore, SSB methods with DD reception, commonly referred to as self-coherent (SCOH) transceivers, can be employed as a cost-effective alternative to the traditional COH transceivers. Nevertheless, the performance of SSB systems is severely degraded. This work provides a novel SCOH transceiver architecture with improved performance for short-reach applications. In particular, the development of phase reconstruction digital signal processing (DSP) techniques, the development of other DSP subsystems that relax the hardware requirement, and their performance optimization are the main highlights of this research. The fundamental principle of the proposed transceiver is based on the reception of the signal that satisfies the minimum phase condition upon DD. To reconstruct the missing phase information imposed by DD, a novel DCValue method exploring the SSB and the DC-Value properties of the minimum phase signal is developed in this Ph.D. study. The DC-Value method facilitates the phase reconstruction process at the Nyquist sampling rate and requires a low intensity pilot signal. Also, the experimental validation of the DC-Value method was successfully carried out for short-reach optical networks. Additionally, an extensive study was performed on the DC-Value method to optimize the system performance. In the optimization process, it was found that the estimation of the CCF is an important parameter to exploit all advantages of the DC-Value method. A novel CCF estimation technique was proposed. Further, the performance of the DC-Value method is optimized employing the rate-adaptive probabilistic constellation shaping.Os sistemas de transcetores coerentes tradicionais permitem a codificação de informação em ambas quadraturas e em duas polarizações ortogonais do campo elétrico. Contudo, estes transcetores utilizados atualmente são baseados num esquema intradino, que requer dois híbridos óticos de 90o e quatro pares de foto detetores para sistemas de transmissão com polarização dupla, fazendo com que o custo destes sistemas seja pouco atrativo para aplicações de curto alcance. Por isso, métodos de banda lateral única com deteção direta, também referidos como transcetores coerentes simplificados, podem ser implementados como uma alternativa de baixo custo aos sistemas coerentes tradicionais. Contudo, o desempenho de sistemas de banda lateral única tradicionais é gravemente degradado pelo batimento sinal-sinal. Nesta tese foi desenvolvida uma nova arquitetura de transcetor coerente simplificada com um melhor desempenho para aplicações de curto alcance. Em particular, o desenvolvimento de técnicas de processamento digital de sinal para a reconstrução de fase, bem como de outros subsistemas de processamento digital de sinal que minimizem os requerimentos de hardware e a sua otimização de desempenho são o foco principal desta tese. O princípio fundamental do transcetor proposto é baseado na receção de um sinal que satisfaz a condição mínima de fase na deteção direta. Para reconstruir a informação de fase em falta causada pela deteção direta, um novo método de valor DC que explora sinais de banda lateral única e as propriedades DC da condição de fase mínima é desenvolvido nesta tese. O método de valor DC facilita a reconstrução da fase à frequência de amostragem de Nyquist e requer um sinal piloto de baixa intensidade. Além disso, a validação experimental do método de valor DC foi executada com sucesso em ligações óticas de curto alcance. Adicionalmente, foi realizado um estudo intensivo do método de valor DC para otimizar o desempenho do sistema. Neste processo de otimização, verificou-se que o fator de contribuição da portadora é um parâmetro importante para explorar todas as vantagens do método de valor DC. Neste contexto, é proposto um novo método para a sua estimativa. Por último, o desempenho do método de valor DC é otimizado recorrendo a mapeamento probabilístico de constelação com taxa adaptativa.Programa Doutoral em Engenharia Eletrotécnic

    Enhanced PON Infrastructure Enabled by Silicon Photonics

    Get PDF
    Les systèmes de courte portée et de détection directe sont le dernier/premier kilomètre de la fourniture des services Internet d'aujourd'hui. Deux cas d'application sont abordés dans cette thèse, l'un concerne l'amélioration des performances des services Internet par la Fibre-To-TheHome ou les réseaux optiques passifs (PONs). L'autre est le radio access network (RAN) pour le fronthaul. Notre objectif pour RAN est de superposer les signaux 5G sur une infrastructure PON. Nous démontrons expérimentalement la génération d'un signal de répartition multiplexée de fréquences orthogonales (OFDM) à bande latérale unique en utilisant un modulateur IQ sur puce basé sur les photoniques au silicium à micro-anneau. Il s'agit d'une solution à coût bas permettant aux PONs d'augmenter les débits de données grâce à l'utilisation d'OFDM. Nous avons généré un signal OFDM à large bande avec un ratio de suppression de bande latérale de plus de 18 dB. Afin de confirmer la robustesse de la dispersion chromatique (CD), nous transmettons le signal généré OFDM SSB dans plus de 20 km de fibre de monomode standard. Aucun fading induit par la CD n'a été observé et le taux d'erreur sur les bits était bon. Nous proposons une solution de photoniques au silicium pour un réseau optique passif afin de mitiger l'interférence de battement signal-signal (SSBI) dans la transmission OFDM, et de récupérer une partie des porteuses de la liaison descendante pour une utilisation dans la liaison montante. Le sous-système recrée les interférences à une entrée du détecteur équilibré ; le signal de données corrompu par SSBI est à la deuxième entrée. L'annulation se produit via la soustraction dans la détection équilibrée. Comme notre solution de photoniques au silicium (SiP) ne peut pas filtrer les signaux idéalement, nous examinons un facteur d'échelle introduit dans la détection équilibrée qui peut balancer les effets de filtrage non idéaux. Nous montrons expérimentalement l'annulation de l'interférence donne de bonnes performances même avec une porteuse faible, soit pour un ratio porteuse/signal ultra bas de 0 dB. Bien que notre solution soit sensible aux effets de la température, notre démonstration expérimentale montre que le réglage de la fréquence résonante peut dériver jusqu'à 12 GHz de la valeur ciblée et présenter toujours de bonnes performances. Nous effectuons des simulations extensives du schéma d'annulation SSBI proposé, et suggérons une diverse conception polarisée pour le sous-système SiP. Nous examinons via la simulation la vulnérabilité à la variation de température et introduisons une nouvelle métrique de performance : Q-facteur minimum garanti. Nous nous servons de cette métrique pour évaluer la robustesse d'annulation SSBI contre la dérive de fréquence induite par les changements de température. Nous maximisons l'efficacité spectrale sous différentes conditions du système en balayant les paramètres de conception contrôlables. Finalement, les résultats de la simulation du système fournissent des indications sur la conception du résonateur micro-anneau, ainsi que sur le choix de la bande de garde et du format de modulation pour obtenir la plus grande efficacité spectrale. Finalement, nous nous concentrons sur la superposition des signaux 5G sur une infrastructure PON pour RAN. Nous expérimentalement validons un sous-système photonique au silicium conçu pour les réseaux optiques passifs avec réutilisation de porteuses et compatibilité radiosur-fibre (RoF) analogique 5G. Le sous-système permet la détection simultanée des signaux RoF et du signal PON transmis dans une seule tranche assignée de longueur d'onde. Tout en maintenant une qualité suffisante de détection des signaux RoF et PON, il n'y a que la puissance minimale de la porteuse qui est extraite pour chaque détection, ce qui conserve ainsi la puissance de la porteuse pour la modulation de liaison montante. Nous réalisons une suppression efficace du signal de liaison descendante en laissant une porteuse propre et forte pour la remodulation. Nous démontrons expérimentalement le signal RoF de liaison montante via un modulateur à micro-anneau. Nous avons détecté avec succès un signal à large bande de 8 GHz et cinq signaux RoF de 125 MHz simultanément. Et deux signaux RoF de 125 MHz sont remodulés sur la même porteuse. Le signal RoF de liaison montante généré est de 13 dB de plus que les signaux de liaison descendante, ce qui indique leur robustesse contre la diaphonie des signaux résiduels de la liaison descendante.Short reach, direct detection systems are the last/first mile of today's internet service provision. Two use cases are addressed in this thesis, one is for enhancing performance of Internet services on fiber-to-the-home or passive optical networks (PON). The other is radio access networks (RAN) for fronthaul. Our focus for RAN is to overlay 5G signals on a PON infrastructure. We experimentally demonstrate the generation of a single-sideband orthogonal frequency division multiplexed (OFDM) signal using an on-chip silicon photonics microring-based IQ modulator. This is a low cost solution enabling PONs to increase data rates through the use of OFDM. We generated a wideband OFDM signal with over 18 dB sideband suppression ratio. To confirm chromatic dispersion (CD) robustness, we transmit the generated SSB OFDM signal over 20 km of standard single mode fiber. No CD-induced fading was observed and bit error rate was good. We propose a silicon photonics solution for a passive optical network to mitigate signal-signal beat interference (SSBI) in OFDM transmission, and to recuperate a part of the downlink carrier for use in the uplink. The subsystem recreates the interference at one balanced detector input; the data signal corrupted with SSBI is at the second input. Cancellation occurs via subtraction in the balanced detection. As our silicon photonics (SiP) solution cannot filter the signals ideally, we examine a scaling factor to be introduced to the balanced detection that can trade-off the non-ideal filtering effects. We show experimentally that the interference is cancelled, allowing good performance even with a weak carrier, that is, for ultra low carrier to signal ratio of 0 dB. Although our solution is sensitive to temperature effects, our experimental demonstration shows the tuning of the resonant frequency can drift by as much as 12 GHz from the targeted value and still provide good performance. We perform extensive simulations of the proposed SSBI cancellation scheme, and suggest a polarization diverse design for the SiP subsystem. We examine via simulation the vulnerability to temperature variation and introduce a new performance metric: minimum guaranteed Qfactor. We use this metric to evaluate the SSBI cancellation robustness against the frequency drift induced by temperature changes. We maximize the spectral efficiency under different system conditions by sweeping the controllable design parameters. Finally the system simulation results provide guidance on the microring resonator design, as well as choice of guard band and modulation format to achieve the highest spectral efficiency. Finally, we turn to focus on overlay 5G signals on a PON infrastructure for RAN. We experimentally validate a silicon photonic subsystem designed for passive optical networks with carrier reuse and 5G analog radio-over-fiber (RoF) compatibility. The subsystem enables the simultaneous detection of RoF signals and a PON signal transmitted in a single assigned wavelength slot. While maintaining sufficient quality of RoF and PON signal detection, only the minimum carrier power is leached off for each detection, thus conserving carrier power for uplink modulation. We realize effective downlink signal suppression to leave a clean and strong carrier for remodulation. We demonstrate experimentally the RoF uplink signal via a micro ring modulator. We successfully detected an 8 GHz broadband signal and five 125 MHz RoF signals simultaneously. And two 125 MHz radio over fiber signals are remodulated onto the same carrier. The generated uplink RoF signal is 13 dB over the downlink signals, indicating their robustness against the crosstalk from residual downlink signals

    Analytical study of optical SSB-DMT with IMDD

    Get PDF
    We theoretically study the performance of single sideband discrete multitone (SSB-DMT) in the C -band with intensity modulation and direct detection. Our analysis allows us to quantify the impact of different noise sources such as signal-to-signal beating interference, phase-to-amplitude noise, attenuation, and receiver sensitivity on SSB-DMT. Our analytical tools also allow us to optimize the signal-to-carrier power ratio to maximize SSB-DMT throughput. We provide equations to calculate bit error rate of bit allocated SSB-DMT. Finally, we examine various system parameters (laser linewidth, system bandwidth, and fiber length) to determine their impact on the performance of zero guard band SSB-DMT

    Complex Field Modulation in Direct Detection Systems

    Get PDF
    Even though fiber optics communication provides a high bandwidth channel to achieve high-speed data transmission, there is still demand for higher spectral efficiency, faster data processing speeds with reduced resource requirements due to ever increasing data and media traffic. Also, lately the demand for online streaming because of remote working has increased significantly. Various multilevel modulation and demodulation techniques are used to improve spectral efficiency. Although spectral efficiency is improved, there are other challenges that arise. Such as requirements for high speed electronics, receiver sensitivity degradation, chromatic dispersion, operational flexibility, effects of nonlinearity impairments etc. Here, we investigate complex bandwidth efficient field modulation and coding techniques to improve spectral efficiency while reducing the digital signal processing (DSP) resources required for implementations using FPGAs or ASICs and compensation for linear and nonlinear impairments that appear in fiber optic communication systems. In this dissertation we investigated and developed solutions for various limitations and impairments in a direct-detection transmission system with complex field modulated optical signal. The solutions that we developed to compensate the fiber optical impairments can be implemented using DSP either at transmitter side or the receiver. By employing DSP based approach to mitigate the optical impairments and limitations we can achieve more flexibility in the optical transceivers while achieving higher spectral efficiency. We proposed and demonstrated digital-analog hybrid subcarrier multiplexing (SCM) technique which can reduce the speed requirement of high-speed digital electronics such as ADC and DAC, while providing wideband capability, high spectral efficiency, operational flexibility and controllable data-rate granularity. Hybrid SCM is a modular approach in which multiple digitally generated subcarriers are aggregated through RF oscillators and IQ mixers for frequency up- and down-conversions. Next, to achieve maximum spectral efficiency with conventional Quadrature Phase Shift Keying (QPSK) we need highly spectral efficient Nyquist filters which require large amount of FPGA resources for digital signal processing (DSP). Hence, we investigated Quadrature Duobinary (QDB) modulation as a solution to reduce the FPGA resources required for DSP while achieving spectral efficiency of 2bits/s/Hz. We compared QDB with QPSK in a digital-analog hybrid subcarrier multiplexing system and we show that with minor changes in transmitter design we can achieve 2bits/s/Hz spectral efficiency, which is same as the Nyquist QPSK with relaxed resource requirements for DSP. We investigated and developed a solution to digitally compensate the nonlinearities introduced by semiconductor optical amplifiers (SOA). In a field modulated direct-detection system, due to square-law detection of the photodiode, leads to an interference called signal-signal beat interference (SSBI). To eliminate SSBI we can use Kramers-Kronig (KK) receiver as we can retrieve the phase information from the direct detected optical signal for the class of signals called as minimum phase signals. However, it is under the assumption that the entire transfer function of our optical transmission system is linear except for photodiode. However, when the system transfer function is non-linear due to SOA nonlinearities when operated in gain saturation region. By using electrical forward propagation method for pre-compensation of nonlinearities caused by SOA we show that we can simultaneously restore the efficiency of KK receiver and as well achieve electronic dispersion post-compensation

    Spectral Properties of Phase Noises and the Impact on the Performance of Optical Interconnects

    Get PDF
    The non-ending growth of data traffic resulting from the continuing emergence of Internet applications with high data-rate demands sets huge capacity requirements on optical interconnects and transport networks. This requires the adoption of optical communication technologies that can make the best possible use of the available bandwidths of electronic and electro-optic components to enable data transmission with high spectral efficiency (SE). Therefore, advanced modulation formats are required to be used in conjunction with energy-efficient and cost-effective transceiver schemes, especially for medium- and short-reach applications. Important challenges facing these goals are the stringent requirements on the characteristics of optical components comprising these systems, especially laser sources. Laser phase noise is one of the most important performance-limiting factors in systems with high spectral efficiency. In this research work, we study the effects of the spectral characteristics of laser phase noise on the characterization of lasers and their impact on the performance of digital coherent and self-coherent optical communication schemes. The results of this study show that the commonly-used metric to estimate the impact of laser phase noise on the performance, laser linewidth, is not reliable for all types of lasers. Instead, we propose a Lorentzian-equivalent linewidth as a general characterization parameter for laser phase noise to assess phase noise-related system performance. Practical aspects of determining the proposed parameter are also studied and its accuracy is validated by both numerical and experimental demonstrations. Furthermore, we study the phase noises in quantum-dot mode-locked lasers (QD-MLLs) and assess the feasibility of employing these devices in coherent applications at relatively low symbol rates with high SE. A novel multi-heterodyne scheme for characterizing the phase noise of laser frequency comb sources is also proposed and validated by experimental results with the QD-MLL. This proposed scheme is capable of measuring the differential phase noise between multiple spectral lines instantaneously by a single measurement. Moreover, we also propose an energy-efficient and cost-effective transmission scheme based on direct detection of field-modulated optical signals with advanced modulation formats, allowing for higher SE compared to the current pulse-amplitude modulation schemes. The proposed system combines the Kramers-Kronig self-coherent receiver technique, with the use of QD-MLLs, to transmit multi-channel optical signals using a single diode laser source without the use of the additional RF or optical components required by traditional techniques. Semi-numerical simulations based on experimentally captured waveforms from practical lasers show that the proposed system can be used even for metro scale applications. Finally, we study the properties of phase and intensity noise changes in unmodulated optical signals passing through saturated semiconductor optical amplifiers for intensity noise reduction. We report, for the first time, on the effect of phase noise enhancement that cannot be assessed or observed by traditional linewidth measurements. We demonstrate the impact of this phase noise enhancement on coherent transmission performance by both semi-numerical simulations and experimental validation
    corecore