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ABSTRACT 
 

Metropolitan area networks are experiencing unprecedented traffic growth. The provision of 

information and entertainment supported by cloud services, broadband video and mobile 

technologies such as long-term evolution (LTE) and 5G are creating a rapidly increasing demand 

for bandwidth. Although wavelength division multiplexing (WDM) architectures have been 

introduced into metro transport networks to provide significant savings over single-channel 

systems, to cope with the ever-increasing traffic growth, it is urgently required to deploy higher 

data rates (100 Gb/s and beyond) for each WDM channel. 

In comparison to dual-polarization digital coherent transceivers, single-polarization and single 

photodiode-based direct-detection (DD) transceivers may be favourable for metropolitan, inter-

data centre and access applications due to their use of a simple and low-cost optical hardware 

structure. Single sideband (SSB) quadrature amplitude modulation (QAM) subcarrier modulation 

(SCM) is a promising signal format to achieve high information spectral density (ISD). However, 

due to the nonlinear effect termed signal-signal beat interference (SSBI) caused by the square-law 

detection, the performance of such SSB SCM DD systems is severely degraded. Therefore, it is 

essential to develop effective and low-complexity linearization techniques to eliminate the SSBI 

penalty and improve the performance of such transceivers. 

Extensive studies on SSB SCM DD transceivers employing a number of novel digital 

linearization techniques to support high capacity (≥ 100 Gb/s per channel) and spectrally-efficient 

(net ISD > 2 b/s/Hz) WDM transmission covering metropolitan reach scenarios (up to 240 km) are 

described in detail in this thesis. Digital modulation formats that can be used in DD links and the 

corresponding transceiver configurations are firstly reviewed, from which the SSB SCM signalling 

format is identified as the most promising format to achieve high data rates and ISDs. Following 

this, technical details of the digital linearization approaches (iterative SSBI cancellation, single-

stage linearization filter and simplified non-iterative SSBI cancellation, two-stage linearization 

filter, Kramers-Kronig scheme) considered in the thesis are presented. Their compensation 

performance in a dispersion pre-compensated (Tx-EDC) 112 Gb/s per channel 35 GHz-spaced 

WDM SSB 16-QAM Nyquist-SCM DD system transmitting over up to 240 km standard single-

mode fibre (SSMF) is assessed. Net ISDs of up to 3.18 b/s/Hz are achieved. Moreover, we also 

show that, with the use of effective digital linearization techniques, further simplification of the 

DD transceivers can be realized by moving electronic dispersion compensation from the 

transmitter to the receiver without sacrificing performance. The optical ISD limit of SSB SCM DD 

system finally explored through experiments with higher-order modulation formats combined with 

effective digital linearization techniques. 168 Gb/s per channel WDM 64-QAM signals were 

successfully transmitted over 80 km, achieving a record net optical ISD of 4.54 b/s/Hz. Finally, 

areas for further research are identified. 
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IMPACT STATEMENT 
 

The goal of the research work presented in this thesis is to explore the performance limits of 

spectrally-efficient and low-cost direct-detection transceiver technologies for optical fibre 

communications to cope with the ongoing rapid growth in network traffic due to increasing use of 

internet services. The knowledge, analysis, and results presented in this thesis could be of interest 

to readers in the areas of direct-detection optical communication systems and spectrally-efficient, 

low-cost metro, inter-data centre, back-haul and access networks.   

In this research work, a number of simple and effective digital signal processing (DSP) 

techniques (e.g. non-iterative beating interference estimation and cancellation, two-stage 

linearization filter and the Kramers-Kronig algorithm) to mitigate the nonlinearities introduced by 

direct photodetection have been demonstrated experimentally for the first time. The first two of 

these techniques were proposed by the author. 112 Gb/s/λ wavelength division multiplexing 

(WDM) transmission over a 240 km link at a net information spectral density (ISD) of 3.1 b/s/Hz 

and 168 Gb/s/λ WDM transmission over a 80 km link at a net ISD of 4.5 b/s/Hz were both 

experimentally achieved, which were both the capacity records for single photodiode, single-

polarization direct-detection transceivers at the time of publication.  

This research work has led to fifteen first authored research papers in high impact journals and 

leading international conferences. Two journal papers are invited papers by IEEE/OSA Journal of 

Lightwave Technology and two conference papers are top scoring papers in the Optical Fiber 

Communication Conference (OFC) and European Conference on Optical Communications 

(ECOC) respectively.  

A variety of prestigious international awards have also been received during the production of 

this thesis, including the best paper awards in OFC 2017 (Grand Prize) and ECOC 2016 (Runner-

Up), ECOC 2017 (Runner-Up), the 2017 IEEE Photonics Society Graduate Student Fellowship (1 

of 10 worldwide), the 2017 IET Postgraduate Prize (1 of 5 worldwide), and the 2016 SPIE Optics 

and Photonics Education Scholarship.  

The demonstrated transceiver designs employ low complexity digital signal processing 

algorithms, which are expected to require low chip area and operate with low power consumption, 

and consequently has generated significant attention and research interest, both across academia 

and industry internationally. 
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CHAPTER 1 

INTRODUCTION 
Optical fibre communication is a method of transmitting information from one position to another 

by sending modulated optical signals through optical fibres. The implementation of optical fibre 

communication systems is one of the greatest engineering achievements of the past century. 

Advances made in fibre technology have revolutionised society, allowing, initially, low-cost, high-

quality voice communications, and, more recently, the development of the internet. Generally, 

modern optical fibre communication systems include an optical transmitter, which converts the 

electrical signal into optical form, an optical channel, which carries the signal to its destination, 

and an optical receiver, which converts the optical signal at the output end of the optical channel 

back into electrical form. Optical fibre communication offers a number of attractive merits and 

special features over conventional copper cable-based communications, such as enormous 

potential bandwidth, small size and weight, electrical isolation, immunity to interference and 

crosstalk, signal security, low transmission loss, ruggedness and flexibility, system reliability and 

ease of maintenance, and potentially low cost. Because of its advantages over copper cable-based 

transmission, optical fibres have largely replaced copper wires in core networks  around the world. 

The development of optical fibre communication systems can be grouped into several distinct 

generations: the first generation, which became available commercially in 1980, operated at 

wavelengths near 0.8 μm and used GaAs semiconductor lasers and multi-mode fibre. They 

operated at a bit rate of up to 100 Mb/s and allowed repeater spacing of up to 10 km [1]. Towards 

the end of the decade, the second-generation systems, operating near 1.3 μm and using single-mode 

fibres increased the bit rates up to 1.7 Gb/s with a repeater spacing of about 50 km. The main 

limitation of the repeater spacing of these systems was the silica fibre losses at 1.3 μm (typically 

0.5 dB/km). In the third generation, introduced from around 1990, the systems operated near 1.55 

μm with the minimum fibre loss of 0.2 dB/km, and were capable of achieving bit rates of up to 10 

Gb/s with electronic repeaters (3R repeaters performing re-amplification, re-shaping and re-

timing) spaced apart typically by 60-70 km by using dispersion-shifted fibres (DSF) or dispersion 

compensation. In the mid-1990s, the fourth-generation systems made use of two techniques, 

optical amplification, particularly the erbium-doped fibre amplifier (EDFA) to enhance the 

repeater spacing and wavelength-division multiplexing (WDM) to increase the bit rate, leading to 

doubling of the system capacity every 6 months or so [1].  

The current research interest of the fifth-generation systems is concerned with extending the 

WDM simultaneous operating wavelength range from conventional wavelength window (C-band) 

to both the long- and short-wavelength sides (L- and S- band) using new amplification techniques 

(e.g. Raman amplification) and new fibres (e. g. dry fibre, where the fibre losses are low over the 

entire wavelength region extending from 1.30 to 1.65 μm) to enable optical fibre communication 

systems with thousands of WDM channels [2]. At the same time, digital signal processing (DSP), 

forward error correction (FEC) and coherent optical detection have been introduced in this 

generation of optical fibre communication systems. In DSP-based advanced modulation formats, 

both the amplitude and phase of the optical carrier are used to encode the information [3], thus 

enabling the more efficient use of the optical bandwidth and leading to increases in the information 
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spectral density (ISD) of WDM systems. The highest ISDs have increased from 0.8 (b/s)/Hz in the 

fourth-generation systems to more than 8 (b/s)/Hz in the current dual-polarisation systems [4]. 

The main motivation behind this series of innovations and developments is the commercial and 

consumer demand for high capacity communications, especially after the development of the 

Internet (email and World Wide Web) in the 1990s. Fig. 1.1 shows the trend in global Internet 

traffic between 2000 and 2020. During the past 30 years (1985 – 2015), total global Internet and 

IP traffic increased from 15 Gigabytes to 42.4 Exabytes (1 Exabyte = 1018 bytes) per month, an 

increase by a factor of 2.7 billion [5]. Furthermore, the forecasts of communication technology 

analysts suggest that annual global Internet and IP traffic will grow to 2.0 Zettabyte per year (1 

Zettabyte = 1021 bytes) by 2019 [6]. The biggest contribution to Internet and IP traffic is made by 

video-centric network applications (video-on-demand (VOD)), which is increasing with mobile 

data usage, in particular with wireless fidelity (Wi-Fi) internet access and 4G/Long Term Evolution 

(LTE) cellular networks enabling the streaming/downloading of videos with smart phones or 

tablets at any time. Thus, further increases in the capacity of optical fibre communication systems 

are needed to continue to meet this demand.   

 

Fig. 1.1: The trend in Internet (IP and mobile) traffic [6] 

1.1 Architectural Overview of an Optical Network Structure 

Fig. 1.2 depicts an overview of a fibre-optic network structure. It is worth noting that a public 

optical network in a real scenario is very extensive with a very complex structure because it is run 

by different service providers and network operators at different parts of the network. The network 

nodes are central offices or other locations where the respective carrier has a point of presence 

(POP) and can create a hub where fibres can be interconnected. The links between the nodes can 

be single optical fibres, fibre pairs, or multiple fibre pairs, typically deployed in underground ducts 

[7]. Generally, optical networks can be classified within three different categories, namely the long-

haul (or core) part, a metropolitan (metro or regional) part and an access part, as shown in Fig. 1.2. 
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Each network has different technical and operational requirements, such as transmission reach 

(distance), capacity, and cost. 
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Fig. 1.2: Overview of an optical fibre network structure [7]. 

The long-haul links/networks interconnect different regions and countries, often covering 

transoceanic distances (> 800 km). Amplification and regeneration of the transmitted optical 

signals at intermediate points are required for such long distances. The most important factors in 

such applications are achieving long transmission reach, high capacity and high ISD. In long-haul 

optical networks, multi-level and multi-dimensional modulation techniques, such as polarization 

division multiplexed quadrature amplitude modulation (QAM) in which the data is modulated on 

amplitude, phase and polarization dimensions, and detected using coherent receivers [8] have been 

used to enhance the system capacity. Thus, the system capacity has been already upgraded from a 

bit rate of 10 Gb/s to ≥ 100 Gb/s per wavelength. This is mainly because coherent detection gives 

the ability to capture all the dimensions of the transmitted light information, namely the amplitude, 

phase and state of polarization (SoP), and subsequently to recover the full optical field which 

allows high spectral efficiency and the capability to mitigate transmission impairments by utilizing 

advanced DSP implemented on high-speed complementary metal oxide silicon (CMOS) digital 

circuits [9]. Therefore, currently, polarization- and phase-diverse coherent receivers have become 

the standard in long-haul communication links. 

Metro, inter-data centre networks comprise interconnections between the central offices or data 

centres in a large city or cities in a region, the typical transmission distances being around 80-100 
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km up to 500-800 km. It has been reported that the data traffic in metropolitan (metro) and inter-

data centre networks surpassed the traffic of the long-haul (> 800 km) networks in 2014, and will 

comprise 62% of total data traffic by 2019 since it is currently growing almost two times faster 

than long-haul traffic [6]. This rapid increase is mainly due to the important role of caching and 

content delivery networks (34% in 2014 and predicted to be 62% by 2019) which constitute a large 

portion of the Internet content accessing today, including web and downloadable objects (files, 

software, applications, etc.), scientific and cloud computing, and social networks. Therefore, metro 

and inter-data centre application scenarios in which link lengths of between 80 km and 800 km are 

becoming more and more essential and have attracted much attention by the optical 

communications research community.  

Access networks, finally, contain the links from nodes in the metro networks out to the 

subscriber premises, such as data-centres, large enterprises or campuses, or individual users of a 

telecom service, referred to as Fibre to the Node, Curb, Building or Home (FTTx). Typically, the 

access links are a few tens of kilometres (< 80 km). Typical classification of different WDM 

systems based on transmission distances are listed in Table. 1.1.  

Table 1.1: Classification of WDM systems based on transmission distances [27] 

Class System Distance (km) 

Short-haul Interconnects < 10 km 

Short-haul Data centres < 40 km 

Medium-haul Access < 80 km 

Medium-haul Metro & Inter-data centre 80 – 300 km 

Medium-haul Regional 300 – 800 km 

Long-haul Terrestrial 800 – 3000 km 

Ultra long-haul Submarine & Transoceanic > 3000 km 

 

Unlike long-haul applications, the primary requirement for short- and medium- haul links is 

cost-effectiveness, a requirement that can be met using direct-detection transceiver technology. In 

contrast to the coherent detection scheme which requires complex transceiver hardware, including 

local oscillator, polarization beam splitters, 90o optical hybrids, balanced detectors and multiple 

analogue-to-digital converters (ADCs), the single polarization direct-detection (DD) scheme 

utilizes a simpler receiver structure consisting of a single photodiode and a single ADC. DD also 

relaxes the laser linewidth requirements, and simplifies the receiver DSP complexity. Recently, in 

order to fulfil the unprecedented traffic growth in short- and medium-haul applications, service 

providers have started to build 100 Gb/s (4 × 28 Gb/s optical duobinary) metro optical solutions 
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using DD technology [10], mainly due to these advantages provided by the use of single-

polarization direct-detection WDM systems. 

1.2 Thesis Motivation  

In long-haul applications, multi-level and multi-dimensional modulation techniques, combined 

with phase- and polarization-diverse coherent receivers have been well established and are able to 

achieve the high capacity and high net ISDs [11-15]. On the other hand, due to the constraints of 

tight budget and footprint, intensity modulation direct detection (IM-DD) systems, in which a 

double-sideband signal is generated by a directly modulated laser (DML) and detected by a single 

photodiode, have been extensively used for short- haul links [16-18]. In medium-haul applications 

such as metro, back-haul and inter-data centre networks, since a massive number of transceivers 

are utilized, cost-effectiveness is still the primary requirement. In contrast to the polarization 

multiplexed coherent transceivers with high cost optical components, the DD transceivers are still 

more favourable. At the same time, due to the unprecedented traffic growth within such 

applications, the transceivers implemented are expected to offer high data rate (≥ 100 Gb/s per 

channel), spectral efficiency (> 2 b/s/Hz) and tolerance to noise and fibre impairments over metro 

transmission reaches (80 – 300 km). However, because of the severe power fading introduced 

following the transmission and direct photodetection, the IM-DD systems’ performance is 

seriously impaired, and the achievable system capacity is limited [19, 20]. 

In order to avoid the power fading impairment and therefore improve the performance of DD 

systems, single-sideband (SSB) DD systems have been demonstrated [21]. A digital SSB signal is 

initially generated and an optical carrier is added using an externally modulated transmitter (the 

optical carrier is obtained by biasing the modulator above the null point). Following transmission 

and photodetection, the amplitude and phase of the SSB signal can be recovered through the 

carrier-signal beating terms. The achievable ISD can be further increased by implementing the 

subcarrier modulation (SCM) technologies, including orthogonal frequency division multiplexing 

(OFDM) [21, 22] and Nyquist-pulse shaped subcarrier modulation (Nyquist-SCM) [23, 24]. A 

drawback of the SSB SCM DD technique (both OFDM and Nyquist-SCM) is that, in addition to 

the wanted carrier-signal beating terms, signal-signal beating products are also generated during 

the square-law detection, which interfere with the desired carrier-signal beating terms. This 

nonlinear effect is known as signal-signal beat interference (SSBI) and causes a significant 

degradation in the receiver sensitivity [25]. Since the SSBI level is at a maximum at low 

frequencies and falls to zero at a point equal to the bandwidth of the subcarrier, placing a spectral 

guard band (≥ signal baudrate) between the optical carrier and the subcarrier signal [26] is the 

simplest method to avoid the SSBI penalty. However, this method is not suitable for spectrally-

efficient WDM system since the spectral efficiency is halved and approximately 50% of the 

electrical and optical components’ bandwidth is wasted. We wish to reduce the guard band, and at 

the same time minimize the penalty due to SSBI.  Consequently, it is desirable to develop effective 

compensation/linearization techniques to cancel or mitigate the nonlinearities caused by square-

law detection. 

Therefore, the key aim of the research described in this thesis is to study whether the SSB SCM 

DD system are capable to support high data rate (≥ 100 Gb/s per channel) and spectrally-efficient 

(net ISD > 2 b/s/Hz) WDM transmissions covering the metropolitan reach (up to 300 km) through 
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employing effective linearization technologies. Moreover, the development of novel linearization 

schemes, with either reduced DSP complexity or improved compensation performance, was also 

an important aim. 

1.3 Thesis Outline 

The remainder of this thesis is organized as follows: Chapter 2 focuses on the requisite theory for 

the work discussed in this thesis including optical fibre transmission impairments (fibre 

attenuation, chromatic dispersion, amplified spontaneous emission noise and fibre nonlinearities) 

and SSB SCM DD techniques (including the theory of the noise and its management in such 

systems). In addition, digital subsystems employed at the transceiver including digital sideband 

filtering for SSB signal generation, electronic dispersion compensation (EDC) and digital 

equalization are also described. 

Chapter 3 gives an overview of the techniques applied for DD systems. Digital modulation 

formats that can be used for DD links are first described. Their corresponding transceiver 

configurations, achieved ISDs, and capacity versus transmission distance performance are also 

presented. Following this, the characteristics of a number of previously proposed optical and digital 

linearization techniques to eliminate the SSBI penalty within SSB SCM DD systems are also 

described. 

Chapters 4, 5, 6 and 7 present the technical details of the proposed and demonstrated digital 

linearization techniques in this study (namely, iterative SSBI cancellation, the single-stage 

linearization filter and simplified non-iterative SSBI cancellation, the two-stage linearization filter, 

and the Kramers-Kronig scheme). Their experimental performance in a dispersion pre-

compensated (Tx-EDC) 112 Gb/s per channel 35 GHz-spaced WDM SSB 16-QAM Nyquist-SCM 

DD system transmitting over distances of up to 240 km of standard single-mode fibre (SSMF) is 

presented.  

Chapter 8 presents experimental evaluations of electronic dispersion post-compensation (Rx-

EDC) in SSB SCM DD systems for the cases without and with digital linearization. The 

experimental assessments were carried out on a 112 Gb/s per channel 37.5 GHz-spaced WDM 

SSB 16-QAM Nyquist-SCM DD system with transmission over up to 240 km SSMF. 

Chapter 9 covers a simulation-based study on the fundamental performance of different 100 G 

transceiver structures studied in the previous chapters, comparing them with that of direct detection 

systems with optical linearization, and coherent systems (both homodyne and heterodyne) and 

recently obtained experimental results for beyond 100 G (168 Gb/s per channel) SSB 64-QAM 

SCM DD transceivers operating over a typical metro link length (80 km) are presented  

Finally, Chapter 10 draws conclusions based on the results described in this study and some 

possible future directions of this work are proposed. 

1.4 Papers Published in the Production of this Thesis 

The following list cites the publications arising from the work presented in this thesis: 
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CHAPTER 2 

THEORY 
This chapter focuses on the requisite theory for the work presented in this thesis. Section 2.1 

describes the impairments suffered by signals in transmission through an optical fibre. It firstly 

covers the linear impairments: fibre attenuation, chromatic dispersion (CD) and amplified 

spontaneous emission (ASE)-noise. Following this, fibre nonlinear effects are described. In Section 

2.2, direct-detection technology is discussed, and is compared with coherent detection techniques. 

Furthermore, since the single-sideband subcarrier modulation (SSB OFDM and SSB Nyquist-

SCM) technique employing direct detection is the system studied throughout this thesis, the theory 

and management of optical noise in SSB SCM DD systems are explained. Section 2.3 covers the 

digital subsystems implemented within the transceiver, including the discrete Hilbert transform 

(HT) filter for single-sideband modulation, electronic dispersion compensation (EDC) and digital 

equalization for time recovery.  

2.1 Optical Fibre Transmission Impairments 

In the first part of this section, optical fibre impairments, namely fibre attenuation, CD and ASE-

noise that exhibit linear behaviour during the transmission over fibre are explained. Following this, 

fibre nonlinear impairments, self-phase modulation (SPM), cross-phase modulation (XPM) and 

four-wave mixing (FWM), incurred by the Kerr effect are briefly described. Note that, since 

polarization mode dispersion (PMD) is generally low in short- and medium-haul links, a 

description of PMD is not included in this chapter. 

2.1.1 Linear Optical Impairments 

Fibre Attenuation 

In optical fibre transmission, the fibre loss reduces the signal power reaching the optical receiver. 

Since the receivers require a certain minimum amount of optical power for accurate signal 

recovery, the fibre attenuation, which results from mainly material absorption and Rayleigh 

scattering, inherently limits the performance of optical communication systems. Changes in the 

amplitude, A, of a signal propagating through an optical fibre are governed by the equation [1]: 

 ���� + �2 � = 0 (2.1) 

where α is the attenuation coefficient, and z represents the propagation direction. The solution of 

this first-order differential equation is: 

 	
�� = 	
�����−��� (2.2) 

where Pin is the optical launch power at the input of an optical fibre with length L, and Pout is the 

output power. It is customary to express the attenuation coefficient, α, in units of dB/km based on 

the relation: 
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 ����/��� = − 10� ���� !	
��	
� " ≈ 4.343� (2.3) 

Fibre attenuation depends on the wavelength of the transmitted light and it reaches its minimum 

value of only about 0.2 dB/km between 1460 and 1625 nm for silica fibre. Therefore, today’s 

optical fibre communication systems operate in the S-band (short-wavelength band) from 1460 to 

1530nm, C- band (conventional wavelength band) from 1530 to 1565 nm and L- band (long 

wavelength band) from 1565 to 1625 nm, according to International Telecommunication Union 

(ITU) standards. Throughout the thesis, the optical fibre transmission studies consider only the C- 

band, with EDFAs employed for optical amplification. 

Chromatic Dispersion 

In medium- and long-haul optical fibre communication systems, fibre group-velocity dispersion 

(GVD) represents another limiting factor because it broadens optical pulses as they propagate along 

the fibre. This pulse broadening leads to a power reduction at the pulse peaks [2], and, as shown in 

Fig. 2.1, in the time domain, the broadened pulses start to interfere with pulses in the neighbouring 

symbol slots (shaded regions), an effect referred to as inter-symbol interference (ISI) which causes 

errors when using threshold-based symbol decisions at the receiver. Considering the effect of GVD 

in the frequency domain, different frequency components of a signal travel at different group 

velocities, thus making the GVD a wavelength/frequency-dependent shift (walk-off). Furthermore, 

if linear shift with frequency is assumed, the optical phase shift (φ) is quadratic with respect to the 

frequency. The impact of GVD scales quadratically with the symbol rate. For instance, the 

dispersion-limited distance of a 28 Gbaud signal is 16 times lower than that of a 7 Gbaud signal.  
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Fig. 2.1: Dispersion effect on a time (a) and frequency (b) domain signal. 

If the frequency dependent pulse propagation term, β(ω), is included in Eq. 2.1, with this term 

expanded in a Taylor series around the carrier frequency and terms up to the third order retained, 

Eq. 2.1 is replaced by [3]: 

 ���� + �2 � + '� ���( + )'*2 �*��(* − '+6 �+��(+ = 0 (2.4) 

where β1 is inversely proportional to the group velocity vg (β1=1/ vg), β2 is the GVD coefficient and 

β3 is the GVD slope coefficient. β1 can be written as: 

 '� = 1-. = 1/ !0 + 1 �0�1" (2.5) 

where c is the speed of light in vacuum, n is the linear refractive index of the optical fibre and ω is 

the angular optical frequency. In order to simplify Eq. 2.4, the β1 term can be eliminated under the 
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assumption of a frame of reference moving with the pulse at the group velocity, vg. Moreover, if 

β2 is sufficiently high, as is the case with SSMF at the wavelength of 1550 nm [4], the β3 term can 

be neglected for a single channel. In such cases, the β2 term is the main coefficient that leads to 

pulse broadening, and thus, Eq. 2.4 can be simplified as: 

 ���� + �2 � + )'*2 �*��(* = 0 (2.6) 

where the β2 term is defined as: 

 '* = �'��1 = ��1 21/ !0 + 1 �0�1"3 = 1/ 42 �0�1 + 1 �*0�1*5 (2.7) 

In addition, the dispersion parameter of SSMF, DSMF, which is defined as the first derivative of 

the β1 term with respect to the wavelength λ, can be denoted as: 

 6789 = �'��: = �;1/-.<�: = ��: 21/ !0 + 1 �0�1"3 = −2=/:* '* (2.8) 

Therefore, for a linear and lossless fibre, the solution of Eq. 2.6, in the frequency domain, is 

given by:  

 >�1, �� = ��� !− @2 '*1*�" = exp !−@ 67894=c : *1*�" (2.9) 

where H(ω, L) is the channel response due to the chromatic dispersion, λ0 is the carrier wavelength, 

DSMF is the dispersion parameter at λ0 and is expressed in units of ps/(km∙nm).  

There are two main contributions to the total chromatic dispersion of a SSMF, material 

dispersion and waveguide dispersion. Material dispersion occurs because the refractive index of 

silica changes with the optical wavelength, while waveguide dispersion results from the 

wavelength-dependence of the optical waveguide propagation coefficient. A general technique to 

compensate the dispersion optically is to design dispersion modified (e.g. dispersion-shifted, 

dispersion-flattened, dispersion-decreasing or dispersion-compensating) fibres [5-8]. This involves 

the use of multiple cladding layers and a tailoring of the refractive index profile of the fibres. On 

the other hand, the accumulated chromatic dispersion can also be compensated digitally with EDC 

either at the transmitter or at the receiver. A detailed discussion of EDC will be presented in Section 

2.3.2 in this chapter. 

Amplified Spontaneous Emission (ASE) Noise 

It is necessary to compensate the fibre loss by using optical amplifiers to prevent the signal from 

becoming too weak to be detected. All optical amplifiers degrade the signal-to-noise ratio (SNR) 

of the amplified signal due to the amplified spontaneous emission that adds noise to the signal 

during the amplification [1]. Generally, the ASE-noise introduced by EDFAs is the ultimate 

limiting factor in amplified optical transmission systems. The Erbium ions are first excited so that 

higher-energy states become more populated than the lower-energy state, termed population 

inversion. While the excited ions are returning to a lower-energy state to reach the equilibrium 

state, they transfer their energy to the optical signal field in the form of additional photons with the 
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identical frequency, phase, polarization and direction, through the process of stimulated emission. 

Consequently, the incoming optical signal is amplified in this process. However, some erbium ions 

in the excited energy state release their energy to the optical signal field in the form of photons 

with random frequency, phase, polarization and direction, through spontaneous emission. These 

photons are emitted in all different phases and directions, with some captured by the fibre and 

interacting with the other dopant ions. Therefore, stimulated emission amplifies the other photons 

in the same manner as the signal [9]. Since the amplified spontaneous emission noise has random 

frequency and phase, the optical signal-to-noise power ratio (OSNR) value is reduced during 

amplification. The ASE-noise can be modelled as an independent and identically distributed 

Gaussian random process and its spectral density, SASE(v) is nearly constant (white noise), which is 

given by: 

 FG7H�-� = 0IJℎ- �L − 1� (2.10) 

where nsp is the spontaneous emission factor (or population-inversion factor), h is Planck’s 

constant, v0 is the frequency of the signal being amplified and G is the gain of the amplifier (G = 

P0 / Pi, where P0 and Pi are output and input powers of the signal being amplified). The ASE-noise 

is unpolarised, i.e., equal power in both polarizations ([PASEX, PASEY]), and it affects both the in-

phase (I) and quadrature (Q) components of the optical signal in both polarizations in the same 

way.  Therefore, the ASE-noise tolerance of a given modulation format can be measured based on 

the closest Euclidean distance between the symbols, because it appears as a symmetrical spread 

around symbol points on the constellation in all degrees of freedom of an incoming light. 

ReceiverEDFA1 ...Transmitter

P0Pi

SSMF
EDFA2

G G

PASE PASE

SSMF
EDFAN

Lspan Lspan

 

Fig. 2.2: Structure of a typical point-to-point optical transmission link using distributed amplification 
(cascaded EFDAs) scheme.  

The structure of a typical point-to-point optical transmission link using cascaded EDFAs is 

shown in Fig. 2.2. ASE-noise accumulates from one amplifier to another and gradually reduces the 

OSNR. The OSNR is defined as the ratio of optical output signal power (P0) to the ASE-noise 

power (PASE) resulted from an EDFA. For large amplifier gains (G ≫ 1), OSNR can be given as 

follows: 

 NFOP = 	 	G7H = L	
20IJℎ- �L − 1��QRSI ≈ 	
20IJℎ- �QRSI (2.11) 

The ASE-noise power is defined for a given resolution bandwidth (BWres) in the OSNR value 

(typically 0.1 nm). By including the values of hv0 and BWres, the OSNR in decibel can be written 

as: 

 NFOP���� ≈ 58 + 	
����� − OV���� (2.12) 

where NF is the noise figure of the amplifier. In a point-to-point optical transmission system as 

shown in Fig. 2.2, assuming each EDFA is identical and compensates exactly the loss of each 
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SSMF span, for the link with N EDFAs and N - 1 SSMF spans, the OSNR at the end of the whole 

link is: 

 NFOP���� ≈ 58 + 	
����� − OV���� − 10���� �O� (2.13) 

2.1.2 Nonlinear Optical Impairments (Kerr Effect) 

The refractive index of a silica optical fibre was assumed to be power independent in the discussion 

in Section 2.1.1. However, in reality, silica, like all materials, behaves nonlinearly at high 

intensities and its refractive index increases with intensity. This effect is called the Kerr effect, and 

its physical origin lies in the enharmonic response of electrons to optical fields, leading to a 

nonlinear susceptibility [10]. To account for the nonlinear refraction effect, the refractive index of 

an optical fibre can be described by: 

 0W = 0 + 0*;	/�SXX< (2.14) 

where n2 is the nonlinear-index coefficient, P is the optical power propagating along the fibre, and 

Aeff is the effective mode area. The value of n2 is approximately 2.6 × 10-20 m2/W for silica optical 

fibres and varies with the dopants used inside the core. Although the nonlinear part of the refractive 

index is relatively small (< 10-12 at a power level of 1 mW in SSMF), it affects optical fibre 

communication systems considerably over transmission distances of more than a few hundred 

kilometres, or where the launch power is particularly high (e.g. in extended reach repeaterless 

links). In particular, it results in the nonlinear phenomena of self- and cross- phase modulation and 

four wave mixing. 

Self-Phase Modulation 

The intensity dependence of the refractive index produces a time-dependent nonlinear phase shift. 

Since the resulting nonlinear phase modulation is self-induced, the phenomenon responsible for it 

is known as self-phase modulation (SPM). SPM leads to an instantaneous frequency chirping of 

optical pulses depending on the optical intensity, and causes additional signal bandwidth 

broadening, thus limiting the system performance. 

Cross-Phase Modulation 

The Kerr effect also leads to another nonlinear phenomenon termed cross-phase modulation 

(XPM). XPM occurs when two or more optical channels are transmitted simultaneously through 

the optical fibre utilizing the WDM technique. In WDM systems, the nonlinear phase shift for a 

specific channel not only depends on the optical intensity of the propagating channel of interest 

but also on the optical intensity of the signals propagating in the other channels. 

Four-Wave Mixing 

If three optical fields (A1, A2 and A3) with carrier frequencies ωc1, ωc2 and ωc3 co-propagate through 

the fibre simultaneously, the Kerr nonlinearity results in the generation of a fourth field (A4) whose 

frequency ωc4 is related to other frequencies by a relation ωc4 = ωc1 ± ωc2 ± ωc3. It is possible in 

principle for several frequencies to be generated, corresponding to different plus and minus sign 

combinations. In practice, most of these combinations do not build up because of a phase-matching 
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requirement [3]. These generated frequency components overlap with the channel of interest, thus 

impacting the system performance. 

The nonlinear propagation of signals and noise are described by the nonlinear Schrödinger 

equation (NLSE), Eq. 2.6 extended to include the nonlinear effects [3]: 

 ���� + �2 � + )2 '* �*��(* = )Y|�|*� (2.15) 

where the nonlinear coefficient γ depends inversely on the effective mode area and can be written 

as: 

 Y = 0*1/�SXX (2.16) 

If the optical field of each WDM channel is simulated as separate vectors, Eq. 2.15 can be 

extended as follows: 

 ����� + �2 �� + )2 '* �*���(* = )Y|��|*��[\\]\\^7_8 + 2)Y�|�*|* + |�+|*���[\\\\\\]\\\\\\^`_8 + )Y�**�+∗[\]\̂9b8  (2.17) 

However, the computational complexity of this operation is significantly increased in numerical 

simulations. Therefore, to simplify the simulations, Eq. 2.15 is utilized in simulations throughout 

the thesis. 

2.2 Direct-detection Technology 

An optical receiver converts the optical signal received at the output of the optical fibre into an 

electrical signal. Fundamentally, there are three types of optical detection technique, known as 

direct (square-law) detection, balanced detection and coherent detection. Since the single-sideband 

subcarrier modulation (SSB SCM) technique employing direct-detection is the main technique 

studied throughout the thesis, due to its relative simplicity compared with coherent and balanced 

detection, this section provides a detailed description of direct-detection receivers. The noise 

theory and noise management in SSB SCM DD systems are discussed in the following subsections. 

Balanced detection will be briefly discussed in Chapter 3 as a method to compensate nonlinear 

beating interference introduced by square-law detection, while the performance of the developed 

direct-detection transceiver technology is compared with that of balanced detection and coherent 

detection in Chapter 9. 

2.2.1 Principles of Operation 

The single-polarisation direct-detection receiver considered throughout this thesis consists of an 

optical band-pass filter (OBPF) or wavelength demultiplexer, to select the WDM channel of 

interest, a single photodiode (PD) and an analogue-to-digital converter (ADC), as shown in Fig. 

2.3.  The PD detects the transmitted optical signal at THz optical carrier frequency and down-

converts it to an electrical baseband signal. The output photocurrent of the PD is based on the 

received optical power and the normalized detected signal, VDD(n) can be written as: 
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 cdd�0� = P ∙ ;f7�0� ∙ f7∗�0�<  = P ∙ g�7�0��hij��hkjl ∙ g�7�0��mhij��mhkjl  = P ∙ �7*�0� 

(2.18) 

where R is the PD responsivity, ES(n) is the optical field of the photodiode input signal, * signifies 

complex conjugate, n is the discrete time index, AS(n) is the time dependent signal amplitude, and 

ωS and ϕS are the angular frequency and phase, respectively. It can be seen that the optical phase 

information is lost following the square-law detection. 
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Fig. 2.3: A schematic of a direct-detection receiver. 

The most straightforward DD transceiver is the intensity modulation direct detection (IM-DD) 

TRx, in which a double-sideband (DSB) real-valued signal is generated by a directly-modulated 

laser (DML) and detected by a single photodiode. However, since the performance of IM-DD 

system is significantly affected by dispersion–induced channel fading effect, such transceivers are 

not capable of supporting high capacity transmission over metro distances unless optical dispersion 

compensation is used [11, 12]. In contrast, the single-sideband subcarrier modulation direct-

detection transceiver uses a CW laser and an external modulator (either an IQ-modulator or a dual-

drive Mach-Zehnder modulator (DD MZM)). A digital SSB signal is generated together with an 

optical carrier, offering a number of advantages: it enables limitations due to fibre dispersion to be 

avoided using EDC, and allows higher spectral efficiency due to the use of a single sideband 

carrying a high-order modulation format. SSB SCM DD transceivers can therefore support higher 

transmission capacity [13]. Regarding the modulation formats that are used for direct detection, 

the simplest modulation formats are binary: on-off keying (OOK) [14-20] and duobinary [21-23]. 

However, the achievable ISD is limited to 1 b/s/Hz. To achieve ISD of more than 2 b/s/Hz, multiple 

amplitude levels need to be employed, such as pulse amplitude modulation (PAM) [24-27]. 

However, the performance of PAM systems is significantly degraded because of only one degree 

of freedom being used. In contrast, the SSB SCM signalling (SSB OFDM and SSB Nyquist-SCM) 

enables the use of quadrature amplitude modulation (QAM) in DD links, and consequently, higher 

ISDs can be achieved [28-29]. Different modulation formats used for DD system will be discussed 

in Chapter 3 in detail. Therefore, due to its advantages of more robust transmission performance 

and higher achievable spectral efficiency, the SSB SCM DD system is a promising solution for 

high capacity and spectrally-efficient metro applications. 

2.2.2 Noise Theory of SSB SCM DD System 

The square-law detection photodiode can be modelled as producing a photocurrent proportional to 

the square of the sum of all optical fields in an arbitrarily-chosen polarization, plus the square of 

the sum of all optical fields in the orthogonal polarization. This subsection explains the detection 

process in SSB SCM DD systems (both SSB OFDM and SSB Nyquist-SCM) considering a noisy 

channel.  
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In a SSB SCM DD system, the signal field, E0(n), is added to a real-valued optical carrier, 

Ecarrier(n) during the electrical-to-optical conversion. Assuming the accumulated chromatic 

dispersion is fully compensated by using either an optical or digital method and the effect of fibre 

nonlinearity is insignificant due to a relatively short transmission distance and low launch power, 

the system performance is mainly limited by ASE-noise. The ASE-noise spectrum is assumed to 

be white but band-limited by an OBPF before the detection, to filter out the out-of-band noise and 

at the same time demultiplex the WDM channels. The ASE-noise is unpolarised, with equal power 

in the polarization aligned to the signal (EASEX(n)) and its orthogonal component (EASEY(n)). 

Therefore, the optical field of the photodiode input signals in both polarizations, ESX(n) and ESY(n) 

are described as: 

 f7`�0� = fnoRR
SR�0� + f �0� + fG7H`�0� f7p�0� = fG7Hp�0� 
(2.19) 

The optical spectra of ESX(n) and ESY(n) are shown in Fig. 2.4 (left), with a subcarrier(s) 

bandwidth of Bsc, and a spectral guard band, Bgap, between the optical carrier and the subcarrier(s). 

After square-law detection, the normalized detected real-valued DSB signal, VDD(n) in Eq. 2.18 is 

given by: 

 cdd�0� = f7`�0� ∙ f7∗̀ �0� + f7p�0� ∙ f7p∗ �0� = fnoRR
SR* �0� + 2P�qfnoRR
SR�0� ∙ f �0�r[\\\\\\\]\\\\\\\^s7t_ + |f �0�|*[\]\̂77tu+ 2P�qfnoRR
SR�0� ∙ fG7H`�0�r[\\\\\\\\]\\\\\\\\^sGtu + 2P�qf �0�∗ ∙ fG7H`�0�r[\\\\\\]\\\\\\^7Gtu+ |fG7H`�0�|* + |fG7Hp�0�|*[\\\\\\\]\\\\\\\^GGtu  

(2.20) 

where Re[x] signifies the real part of x. The components of the optical spectrum beat with each 

other to produce the electrical beating products which can also be observed in Fig. 2.4 (middle) 

and (right). It should be mentioned that, for simplification of the noise analysis, the OBPF is 

assumed to be an ideal brickwall filter with the bandwidth of BOBPF = Bgap + Bsc. Thus, the extra 

beating products caused by the ASE-noise in the negative frequency range can be neglected.  
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Fig. 2.4: Schematics of direct-detection process: receiver input optical spectrum (left), optical spectrum 
components which contribute to beating (middle) and the resulted beating products (right) [30].  

The resulting electrical beating products (a)-(e) are [30, 31]: 

(a) Carrier-Subcarrier beating product (CSBP), 2Re[Ecarrier(n)·E0(n)]: This is the desired 

electrical subcarrier signal, with the bandwidth of Bsc.  

(b) Subcarrier-Subcarrier beating interference (SSBI), |E0(n)|2: This produces an unwanted 

nonlinear distortion, which is maximum close to zero frequency and falls to zero at the 

frequency equal to the bandwidth Bsc in the frequency domain (a triangular-shaped 

spectrum). In currently demonstrated SSB SCM DD system, the SSBI can either be 

avoided by leaving a spectral guard band with Bgap ≥ Bsc between the optical carrier and 

the subcarrier band [32] or can be compensated by using optical [33, 34] or digital methods 

[35-40].  

(c) Carrier-ASE beating interference (CABI) (one polarization), 2Re[Ecarrier(n)·EASEX(n)]: The 

optical carrier, and the component of the ASE noise in the same polarization as the carrier, 

beat with each other, with the resulting products falling across the full bandwidth of the 

signal (BOBPF = Bgap + Bsc).  

(d) Subcarrier-ASE beating interference (SABI) (in the same polarization), 

2Re[E0(n)*·EASEX(n)]: This is more complex than the CABI penalty due to ASE-noise and 

subcarrier(s) both occupying a finite bandwidth. Based on the convolution in the frequency 

domain, the SABI is maximum between 0 and Bgap frequency (rectangular-shaped) and it 



32 
 

falls to zero at a point equal to the bandwidth of the ASE-noise (triangular-shaped between 

Bgap and BOBPF). 

(e) ASE-ASE beating interference (AABI) (either polarization), |EASEX(n)|2 or |EASEY(n)|2: The 

band-limited ASE-noise beats with itself, producing products with maximum power close 

to zero frequency and falling to zero at the bandwidth of the signal (triangle shaped with a 

bandwidth of BOBPF). This beating interference becomes significant at low OSNRs and can 

be neglected at higher OSNRs. 

In an ideal SSB SCM DD system, if the SSBI effect is eliminated, the CABI effect becomes 

the dominant noise source affecting the SNR of the received electrical signal. However, even when 

SSBI is present, the penalty due to CABI remains an additional significant nonlinear penalty which 

degrades the receiver sensitivity, in comparison to the effects of SABI and AABI. Discussions 

about the relationship between these penalties will be presented in the following subsection. 

2.2.3 Noise Management of SSB SCM DD System 

In spectrally-efficient WDM SSB SCM DD system, a narrow or zero frequency guard band (Bgap 

< Bsc) should be used between the optical carrier and the SSB SCM to minimize the signal 

bandwidth. In this case, all the beating interference effects discussed in the above subsection may 

occur in the signal spectral region. The system performance can be evaluated by measuring the 

detected electrical signal-to-noise power ratio (SNR), which is given by: 

 FOP = 	vSI
RSv	v
I�
R�

� = 	s7t_	77tu + 	sGtu + 	7Gtu + 	GGtu (2.21) 

where Pdesired and Pdistortion are the powers of desired signal (CSBP) and interfering products, (SSBI, 

CABI, SABI and AABI) respectively. According to the theory of beating in square-law detection, 

the CSBP and CABI are optical carrier related beating terms; their impacts are proportional to the 

applied optical carrier. Thus, a parameter termed the carrier-to-signal power ratio (CSPR) is 

utilized to determine the detected electrical SNR expressed in Eq. 2.21. The CSPR is defined as: 

 wF	P = 	noRR
SR	I�xnoRR
SR�I� (2.22) 

Fig. 2.5 shows the relationship between the system performance (measured by bit-error-ratio 

(BER)) and the employed CSPR value with two different OSNRs (OSNR1 < OSNR2). It can be 

seen that there is a trade-off between the system distortions, thus leading to an optimum CSPR 

value which offers the best system performance. Signals with lower CSPR suffer more from higher 

nonlinear distortions, contributed by the SSBI, SABI and AABI, while high CSPR leads to a high 

required OSNR value due to excessive optical carrier power, which is included in the OSNR 

calculation. In addition, for different OSNR values, the contributions of the ASE noise-related 

beating terms (CABI, SABI and AABI) change, leading to a noise-dependent trade-off between 

these interferences. The optimum CSPR of system operating at higher OSNR (OSNR2 in Fig. 2.5) 

is higher than that for system employing lower OSNR (OSNR1). Consequently, it is important that 

the CSPR is re-optimized for each OSNR value. Furthermore, if beating interference compensation 

techniques are applied to the system, due to the reduction in the impact of the nonlinear beating 

terms, the optimum CSPR value reduces to a lower value. In the situation where the optical guard 



33 
 

band is sufficiently narrow and the OSNR is sufficiently high, the impact of SABI and AABI are 

insignificant, and the trade-off is mainly between the SSBI and CABI penalties. The selection of 

the optimum CSPR value and its reduction in compensated systems will be described in detail in 

Chapters 4-7 and 9. 

dominated by 
SSBI

dominated by 
CABI

 

Fig. 2.5: Schematic of BER versus CSPR at two different OSNR values (OSNR1 < OSNR2). The dashed 
black line indicates the shift in the optimum CSPR value. 

2.3 Subsystems for cost-effective and spectrally-efficient 

direct-detection systems 

In this section, the digital subsystems used for SSB SCM DD transceivers are discussed. It covers 

the single-sideband (SSB) signal generation using the Hilbert transform, the EDC technology to 

mitigate the accumulated dispersion along the fibre transmission and digital equalization 

techniques to recover the clock and minimise BER. Overall system designs showing the SSB SCM 

modulation and demodulation can be found in Chapter 3, Section 3.1.4. 

2.3.1 Discrete Hilbert Transform (HT) for Single-Sideband Filtering 

Double sideband (DSB) SCM is possible. However, this halves the achievable optical ISD [41]. 

Since both signal sidebands carry the same information, it is preferable to perform SSB modulation 

in order to double the ISD without any loss of information. A digital discrete Hilbert transform 

(HT) filter can be applied to generate the SSB signal electrically. In the HT, all negative frequency 

components of the signal are phase-advanced by 90o whereas all positive ones are phase-delayed 

by 90o. The amplitude of the signal spectrum remains unchanged [42, 43]. In other words, the HT 

introduces an 180o phase difference between the negative and positive frequency components of 

an input signal. The HT frequency response (HHT(ω)) is described as: 

 >yz�ω� = | �mh}* , ω > 0    0,             ω = 0    �h}* ,          ω < 0  (2.23) 

where ω is the angular frequency.  The output of the HT is phase shifted by θ (multiplied by e jθ) 

and added to the original DSB signal to cancel the negative frequency components, thus creating 

a SSB signal, as shown in Fig. 2.6. 
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Fig. 2.6: Schematic of digital Hilbert transform sideband filter. 

Analytically, the I and Q components (EI(t) and EQ(t)) of the filter output signal, Eout(t), can be 

written as:  

 fu�(� = �q1 + Y cos�1In(�r f��(� = �q1 + Y cos�1In( − =/2�r�h� 
(2.24) 

where A is the amplitude, γ denotes the modulation index and ωsc is the angular frequency of the 

SCM signal. According to Euler’s formula: cos��� = �* ��h� + �mh��, the filter output, which is 

the sum of the I and Q components, can be written as: 

 f
���(� = fu�(� + f��(� 
= � |1 + �h� + Y2 �hi���g1 + �h��m}/*�l

+ Y2 �mhi���g1 + �h���}/*�l � 
(2.25) 

In this equation, the lower or upper sideband of the input signal shown can be suppressed when 

the value of θ is chosen as π/2 or -π/2. 

Alternatively, the DSB-to-SSB conversion can be performed optically by employing an optical 

filter [44-46] or an optical HT based on a fibre Bragg grating (FBG) [47-49]. A drawback of using 

optical sideband filtering is the requirement of an optical filter with a very steep profile (transition 

bandwidth). In addition, the ISD is significantly reduced due to requirement of placing a spectral 

gap between the optical carrier and subcarrier signal. Sideband filtering using an optical HT based 

on a FBG suffers from the degradation of the receiver sensitivity due to the reflectivity [50] and 

relatively poor stability due to the wavelength drift of the FBG [47]. Hence, in our work, we employ 

digital HT-based sideband filtering and a complex (IQ- or dual drive Mach Zehnder) modulator. 

2.3.2 Electronic Dispersion Compensation (EDC) 

A key attribute of the transceiver in optical fibre communication systems is its tolerance to fibre 

chromatic dispersion (CD). For complexity and cost reasons, it is preferable to compensate the 

accumulated CD with digital method, referred to as electronic dispersion compensation (EDC), 

rather than the optical methods such as dispersion compensating fibre (DCF). The EDC technique 

was proposed in [51-53] and is carried out by linear convolution with the inverse of the linear 



35 
 

lossless channel response due to CD, either at the transmitter (Tx-EDC) or at the receiver (Rx-

EDC).  

  

Fig. 2.7: Schemetic of optical phase shift versus frequency.  

Fig. 2.7 shows a schematic of the optical phase shift with respect to frequency in a SSMF link 

and its inversion as a function of frequency. The inverse of the linear lossless channel response due 

to CD in the frequency domain, H-1 (ω), is calculated by simply inverting the sign of the dispersion 

parameter of a SSMF, DSMF as expressed in Eq. 2.9 (DEDC = -DSMF), thus, H-1(ω) can be written as: 

 >m��1� = exp !@ 6Hds4=c : *1*�" (2.26) 

The signal spectrum following the EDC, E(ω) is given by: 

 f�1� = f�1, ��>m��1�                                      = f�1, ��exp !@ 6Hds4=c : *1*�" 
(2.27) 

where E(ω, L) is the signal spectrum before the EDC. The EDC can be implemented efficiently in 

the frequency domain using Fast Fourier Transforms (FFTs) and the overlap-and-save method 

(discarding the output samples corrupted by time aliasing each frame, and overlapping the input 

frames by the same amount) [64]. Alternatively, time-domain finite impulse response (FIR) filters 

have been proposed.  A closed form solution for tap weights of the FIR filter with the bounds on 

the number of taps required for a given amount of dispersion is presented in [54]. 

In SSB SCM DD systems, transmitter-based electronic dispersion compensation (Tx-EDC) can 

be carried out using the complex (IQ- and dual-drive Mach-Zehnder) modulator and has shown 

very good performance [55-57], while the performance of the receiver-based EDC (Rx-EDC) is 

significantly impaired by the nonlinear effect known as SSBI caused by square-law detection [58]. 

However, the utilization of Tx-EDC also brings the drawback of increased system operation 

complexity due to the need for feedback from the receiver including the dispersion information. 

Our latest research results have shown that, the Tx and Rx-EDCs can achieve similar performance 

if the SSBI penalty is effectively suppressed with the utilization of receiver linearization 

techniques, which therefore simplifies the system operation [59]. Details of such comparisons 

between Tx and Rx-EDCs in the presence of different receiver linearization schemes on a SSB 

SCM DD system will be presented in Chapter 8. 
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2.3.3 Digital Equalization 

Due to the difference in the sampling rates between the transmitter and receiver, it is essential to 

apply digital synchronization for symbol re-timing to recover the transmitted symbols. The 

algorithms discussed in this section implement blind equalization (non data-aided) where the tap 

weights, expressed as h(n), are adaptively updated based on the received signal, expressed as x(n). 

The tap weights of the equalizer are updated based on the error signal (e) at each iteration. In 

general, the least mean squares (LMS) algorithm is used to update the filter taps, due to its stability, 

fast convergence rate and lower computational complexity compared with implementing the 

recursive least squares algorithm or a Kalman filter [60]. In the LMS algorithm, the tap weights 

are adapted by utilizing the steepest-descent algorithm based on the derivative of the cost (error) 

function with respect to the filter coefficients. For a single-input, single-output complex channel, 

the filter taps are adjusted as: 

 ℎ�0 + 1� = ℎ�0� − �∇���0� (2.28) 

where h(n) is the tap vector at instant n, μ is the step-size and ∇���0� is the estimated gradient of 

the cost surface with respect to h(n). The error signal, e(n) is often used to formulate the adaptation 

of a filter, which is given by: 

 ��0� =  − ��0���0�∗∇���0�  

��0� = ℎ�0�y��0� 

(2.29) 

where x(n) is the input vector at instant n, y(n) represents the instantaneous output of the equalizer 

at instant n, * signifies the complex conjugate and H is the Hermitian conjugate. According to Eq. 

2.29, the estimated gradient, ∇���0� is written as: 

 ∇���0� = ��0��∗�0���0� (2.30) 

Hence, Eq. 2.28 is re-written by: 

 ℎ�0 + 1� = ℎ�0� + ���0��∗�0���0� (2.31) 

As given in Eq. 2.29, the cost (error) function indicates the instantaneous symbol’s deviation 

with respect to the desired symbol. To compute the error signal and subsequently, update tap 

weights of the filter, two main cost functions being implemented are the constant modulus 

algorithm (CMA), proposed by Godard [61], and decision-directed LMS. In the CMA algorithm, 

it is assumed that all the input symbols have a constant modulus or power, such as M-PSK symbols, 

thus the error function, e(n) can be written as: 

 ��0� = P − |��0�|* (2.32) 

where R is the desired constant modulus that the equalizer attempts to approach. For M-QAM 

symbols (M > 2), which have more than one constant modulus, the CMA algorithm needs to be 

modified by adding decision boundaries between the modulus rings, and it should be done before 

the computation of the error function and the adaptation of tap weights, a method referred to as a 
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radius directed equalizer (RDE) [62]. Although operating on modulation formats with a constant 

modulus or power is a limitation of the CMA algorithm, it enables very fast convergence and high 

robustness. Therefore, the CMA algorithm can be applied for pre-convergence before switching to 

decision-directed mode to minimize the error function, thus leading to an improved SNR 

performance. 

In decision-directed mode, the error signal can be calculated by subtracting the instantaneous 

equalizer output, y(n) from the output signal following the hard decision: 

 ��0� = 6q��0�r − ��0� (2.33) 

where D[∙] signifies the operator of hard decision. For a QPSK signal, D[yQPSK(n)] is given by: 

 6q��_7��n�r = 1√2 q��0�P�q��0�r� + @��0���q��0�r�r (2.34) 

where sgn{∙} denotes the signum operator. Implementing the FIR filter with decision-directed 

LMS algorithm is used as the second equalization stage, in which the received symbols are 

converged to their hard decision levels. Hence, the symbol decision process can be simplified. 

However, a drawback of this method is that its convergence depends on making a sequence of 

successive correct symbol decisions, and consequently the convergence is slowed down or even 

sometimes blocked by incorrect decisions. Therefore, a decision-directed mode equalizer is always 

initiated with CMA to initialize the filter coefficients [63]. Note that, all the equalizers used 

throughout this thesis operate at 2 Sa/symbol. 
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CHAPTER 3 

LITERATURE REVIEW & STATE OF THE ART 
The purpose of this review is to give an overview of the techniques used for direct detection 

systems in short- and medium- haul applications. It consists of two sections: In the first section, 

digital modulation formats that can be used for DD links are described, and ISDs, capacities and 

transmission reaches achieved using them are presented. The second section focuses on a number 

of effective optical and digital linearization techniques to eliminate the nonlinearities introduced 

by square-law detection, aiming to improve the performance of the DD transceiver. 

3.1 Modulation Formats for Direct-Detection Transceiver 

In DD links, the electrical signal is first converted into an optical signal at the transmitter, the 

resulting optical signal is transmitted over the optical fibre and then detected by a DD receiver, 

carrying out square-law detection, which allows detection of only the intensity of the light. 

Therefore, the first step in the design of an optical fibre communication system is determining how 

to modulate the electrical signal onto an optical carrier. This section covers the modulation 

techniques that can be applied in short- and medium- haul links. 

Because of their implementation with a cost-effective transceiver architecture, binary 

modulation formats, e.g., on-off keying (OOK) and duobinary have, until recently, been used for 

most of the installed optical transmission links. In these formats, the simplest optical receiver, 

which only consists of a single photodiode without a delay-line interferometer (DLI), is employed 

to detect the transmitted signal. However, the achievable ISDs are limited up to 1 bit/s/Hz since 

only 1 bit is encoded per symbol. With the continuously increasing demand for high bandwidth 

transmission due to data intensive services such as IP video, scientific and cloud computing in 

access, inter-data centre, back-haul, metropolitan and regional optical links [1, 2], it is becoming 

challenging to meet this demand using binary modulation formats. Higher order modulation 

formats, which encode log2(M) bits per symbol (M ≥ 4), e.g., M-ary phase-shift keying (M-PSK) 

and M-ary quadrature amplitude modulation (M-QAM) inherited from digital wireless 

communications, enabling more efficient utilization of the available optical bandwidth, have 

attracted much research interest in the last decade. The M-PSK formats encode the data by 

modulating only the phase of an optical field, whereas M-QAM formats modulate the data in 

multiple dimensions (both amplitude and phase) [3]. It is preferable to use the M-QAM formats 

rather than M-PSK formats since they have a lower SNR requirement for the same value of M due 

to their larger Euclidean symbol spacing [4].  

M-QAM modulation formats with polarization multiplexing, utilizing coherent receivers and 

DSP-based fibre impairment mitigation techniques enable the highest bit rates with the highest 

ISDs [5-9], but require complex optical hardware structure. In contrast, single-polarization optical 

links with direct detection receivers use a simpler receiver structure and hence may be favourable 

for short- and medium-haul links; service providers have recently started using 100 Gb/s metro 

solutions based on 4 × 28 Gb/s using direct detection technology, with cost-effectiveness being the 



42 
 

primary requirement in such links [10]. Therefore, DD transceivers offering ISDs greater than 2 

b/s/Hz will be required in the near future. 

M-ary pulse amplitude modulation (M-PAM) is a simple multi-level amplitude modulation 

format that potentially offers ISD greater than 1 b/s/Hz with low transceiver hardware complexity 

and can be used as an alternative to binary modulation. However, in contrast to the complex 

modulation formats, since only one degree of freedom is used, the power efficiency of M-PAM is 

relatively low. Even so, it is still attractive for short-haul links, for instance, interconnects and data 

centres [11-14]. In comparison to M-PAM, M-ary differential phase-shift keying (DPSK) formats 

have been proposed to enable ISDs of more than 1 bit/s/Hz with better transmission performance. 

Nevertheless, the utilization of one or more balanced photodetectors (BPDs) combined with DLIs 

leads to an increased receiver complexity.  

Thanks to the ongoing development of silicon complementary metal oxide semiconductor 

(CMOS) technology, especially high-speed digital signal processing (DSP), digital-to-analogue 

converters (DACs) and analogue-to-digital converters (ADCs), much of the transceiver complexity 

can be moved from the optical domain to the electrical domain. This allows the use of multi-level 

and multi-dimensional coding in DD links with a single-ended photodiode and without the need 

for DLIs, consequently allowing higher ISDs with reasonable OSNR performance to be achieved 

using cost-effective optical transceiver designs. The subcarrier modulation (SCM) technique which 

enables the use of M-QAM signalling implemented using a DSP-based transceiver architecture 

with a simple single photodiode, is a potentially attractive and practical solution for low-cost, 

spectrally-efficient access, metro and regional links. Fig. 3.1 shows a brief overview of the signal 

modulation techniques for direct-detection optical transceivers. 

Modulation Formats for 
Direct-Detection Transceivers

Intensity 
Modulation

Differential Phase 
Modulation

• OOK
• Duobinary
• 4-PAM
• 8-PAM

• DBPSK
• DQPSK

High Order Multi-
level Modulation

• 16-QAM
• 64-QAM

Subcarrier 
Modulation (SCM)

• (SSB) OFDM
• (SSB) Nyquist-SCM

 

Fig. 3.1: Brief overview of the signal modulation techniques in direct-detection optical transceivers.  

This section focuses on the modulation techniques used for short- and medium-haul links 

employing direct-detection. First, intensity modulation formats are described, following which, 

differential phase modulation and multi-level modulation formats are introduced. The last 

subsection covers two subcarrier modulation (SCM) approaches: optical orthogonal frequency 

division multiplexing (OFDM) and Nyquist pulse-shaped subcarrier modulation (Nyquist-SCM). 

Note that only single polarization transmission systems are investigated, due to their lower 

complexity than those using polarization multiplexing. 

3.1.1 Intensity Modulation Formats 

On-Off Keying (OOK) 
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On-off keying (OOK) is the most primitive modulation format and the cheapest solution for optical 

fibre communications. The transmitter simply changes the signal power between two levels, 

sending high power to encode a ‘1’, and low power for a ‘0’ when transmitting a continuous wave 

(CW) lightwave. The transceiver design for signal generation and detection is shown in Fig. 3.2. 

At the transmitter, a single-drive modulator or directly modulated laser is used to modulate a series 

of bit sequences onto the intensity of an optical carrier. At the receiver, a single photodiode is 

applied to perform the optical to electrical conversion. 
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Fig. 3.2: Schematic of transceiver design for NRZ- and RZ-OOK signal generation and detection [15]. 

Time

R
Z

 s
ig

n
al

0
Time

01 1 1N
R

Z 
si

gn
al

0

(a)

(b)  

Fig. 3.3: Digital bit stream 010110… coded by using (a) RZ and (b) NRZ modulation formats. 

There are two formats for OOK, termed return-to-zero (RZ) and non-return-to-zero (NRZ). As 

shown in Fig. 3.3, in the RZ-OOK format, each optical pulse representing a ‘1’ is shorter than the 

bit slot, and its power level returns to the zero level before the bit duration is over. In the NRZ-

OOK format, the optical pulse remains on throughout the bit slot and its power level does not drop 

to zero between consecutive ‘1’ bits. A pulse carver, including an additional single-drive Mach-

Zehnder modulator (MZM) driven sinusoidal signal following the optical modulator can be used 

to generate the RZ-OOK pulses with duty cycles of 33%, 50% and 67%, the latter being termed 

carrier-suppressed RZ (CS-RZ) [15]. The different duty cycles of the RZ-OOK signal are 

determined by different amplitude and biasing point of the sinusoidal driving signals. Detailed 

discussions about RZ-OOK signal generation are presented in [15-17]. 

In contrast to NRZ, the duration of a RZ pulse is shorter than the bit slot which gives more 

transition points from bit one to bit zero. According to Fourier transform theory, if the duration of 

a pulse in time is shorter, the spectrum becomes wider in frequency [17]. Hence, the spectra of RZ 

formats are broader than those of NRZ formats, leading to its power spectral density (PSD) lower 

than NRZ. As a result of this reduced PSD, the system’s tolerance to fibre nonlinearities is 

improved [18], which is vitally necessary for long-haul applications (> 1000 km). However, since 

this characteristic also results in a reduced robustness to chromatic dispersion as well as a lower 

ISD (typically ≤ 0.5 b/s/Hz), it is not favourable for short- and medium- haul transmissions [19, 
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20].  The CS-RZ format provides the highest resilience to fibre nonlinearity compared to the other 

binary modulation formats. 

Experimental demonstrations of NRZ signalling without applying transmitter-based optical 

filtering have been presented for submarine links [21, 22], with achieved ISDs of less than 0.5 

b/s/Hz. Since the real-valued signal’s (DSB) spectrum is symmetric around the carrier frequency, 

one of the sidebands can be filtered out whilst preserving the full information content of the signal 

and square-law detectability. Vestigial sideband (VSB) signalling can be applied to partially 

suppress or completely remove one of the sidebands to further improve the achievable ISD as well 

as the resilience to chromatic dispersion. In VSB signalling, an optical filter with a defined roll-off 

and optical carrier frequency offset is used to partially suppress one of the sidebands. Hence, the 

real-valued DSB signal is transformed into a complex-valued VSB signal. However, a drawback 

of using VSB signalling is its requirement of optical filters with very steep profile [23, 24], which 

is not cost-effective.  The VSB-OOK techniques have been experimentally demonstrated at 40 and 

100 Gb/s per channel to achieve ISDs from 0.64 to 1 b/s/Hz [25-28]. In addition, utilizing VSB 

signalling to improve the dispersion robustness of CS-RZ has also been reported for 40 Gb/s per 

channel links to achieve ISDs of 0.8 and 1 b/s/Hz for transoceanic and metro applications 

respectively [29, 30].  

Duobinary 

OOK signalling (NRZ and RZ) has been utilized for decades in optical fibre links at up to 10 Gb/s 

per channel. However, due to the accumulated chromatic dispersion and polarization mode 

dispersion (PMD), significant penalties can be observed if the bit rate per channel is further 

increased to 40 or 100 Gb/s. Therefore, correlative coding, referred to as partial-response 

signalling, is employed to compress the optical signal spectrum [31] and the duobinary, which is a 

three-level modulation format, is the most widely used technique. Different approaches can be 

utilized to generate the duobinary signals, either utilizing an optical delay-and-add method, 

referred to as optical duobinary [32] or electrical or optical low-pass filtering method, called 

electrical or optical phase-shaped binary transmission (PSBT) [33, 34]. 

The duobinary transceiver design is shown in Fig. 3.4. At the transmitter, the binary data-stream 

(an) is combined with its predecessor (pn-1) using an XOR-gate and generates differential pre-coded 

data (bn). Following this, a delay-and-add circuit or a Bessel low-pass filter (BLPF) with a 3-dB 

bandwidth of 25% of the symbol rate (fs / 4) is applied to bn to obtain the duobinary signal. Finally, 

the generated 3-level duobinary signal is modulated by a push-pull MZM around its minimum 

transmission point (different transmitter configurations can be found in [35]). Since the phase 

information is lost upon square-law detection, the total system throughput is not increased by using 

this format. Nevertheless, this characteristic effectively improves the system’s dispersion tolerance 

compared to NRZ-OOK. This is mainly because the ‘0’ levels are preserved better due to the 

destructive interference of ‘+1’ and ‘-1’ levels [36]. The signal spectral compression of duobinary 

results from the smoother transitions between ‘-1’, ‘0’ and ‘+1’ levels in contrast to the sharper 

transitions between ‘-1’, ‘0’ and ‘+1’ levels in OOK. 
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Fig. 3.4: Schematic of transceiver design for duobinary signal generation and detection using (a) delay-
and-add circuit or (b) Bessel low-pass filter (BLPF) with a bandwidth of fs / 4 [15]. 

Compared with OOK, duobinary signalling offers advantages such as improved resilience to 

chromatic dispersion, higher achievable ISDs (though typically less than 1 b/s/Hz) due to narrower 

optical spectrum, and better receiver sensitivity due to the absence of an optical carrier, thus 

making it a favourable and widely-used cost-effective solution for dense wavelength-division-

multiplexing (DWDM) metro and core links at 40 Gb/s per channel [37]. As reported in [38, 39], 

duobinary signalling has been presented at 40 Gb/s per channel to achieve ISDs of 0.6 and 0.8 

b/s/Hz.  

Four-level Pulse Amplitude Modulation (4-PAM) 

To achieve ISDs of more than 1 bit/s/Hz, multiple amplitude levels should be employed. The 

Nyquist-pulse-shaped four-level pulse amplitude modulation (Nyquist 4-PAM) is a simple multi-

level modulation format that potentially offers increased ISDs with low transceiver hardware 

complexity and can be used as an alternative to binary modulations (OOK and duobinary). The 

transceiver design of Nyquist 4-PAM can be found in Fig. 3.5. At the transmitter, the bit sequence 

is input to a PAM encoder, and Nyquist pulse shaping is carried out using a Nyquist filter. 

Following this, the generated Nyquist 4-PAM signal is modulated by a MZM. At the receiver, the 

signal is detected by a single photodiode and is then passed through a second Nyquist filter for 

matched filtering. Finally, a 4-PAM decoder is used for signal recovery.  
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Fig. 3.5: Schematic of transceiver design for Nyquist 4-PAM signal generation and detection. 

Although the achievable ISDs of Nyquist 4-PAM can be increased by performing both multi-

level amplitude modulation and Nyquist pulse shaping, the OSNR performance of the Nyquist 4-

PAM signalling degrades significantly because of only one degree of freedom being used, i.e., 
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encoding data onto the amplitude of an optical field [11-14]. However, since complexity is critical 

in interconnects and data centres, and Nyquist 4-PAM offers the lowest implementation 

complexity of all the multilevel modulation format with spectral efficiency of 2 bits/s/Hz, it is still 

an appealing spectrally efficient and cost-effective short- haul optical links. The 4-PAM signalling 

has been demonstrated at up to 160 Gb/s for short reach (< 20 km) transmissions [40-46]. 

Moreover, 8-PAM signalling has been recently reported to achieve a further increased ISD with 

DD receiver [47]. 

3.1.2 Differential Phase Modulation Formats 

As discussed above, the intensity modulation formats modulate the data onto the intensity of the 

optical field alone, and the signal can be recovered by using a single photodiode. Although the 

achievable ISDs can be increased by applying M-PAM signalling, the problem of poor receiver 

sensitivity resulting from only one degree of freedom being utilized, makes this system only 

suitable for short-range optical links. In order to obtain ISDs of greater than 1 b/s/Hz as well as 

better receiver sensitivity leading to an enhanced transmission reach to medium-range, the phase 

information of the optical field should be utilized. Therefore, differential encoding schemes, which 

enables each symbol to behave as a phase reference for the subsequent symbols, with balanced 

detection receivers [48] can be applied to increase ISDs while at the same time retaining phase 

information upon square-law detection.  

Differential binary (M = 2) phase-shift keying (DBPSK) 

In this format, like duobinary, differential precoding is utilized to encode the binary data-stream 

(an) on the binary phase changes between adjacent bits. A ‘1’ bit is represented by a π phase shift 

and ‘0’ bit encoded with zero phase shift. It should be mentioned that, if the tested bit-stream is a 

pseudo-random binary sequence (PRBS), differential precoding has no effect on the PRBS, which 

has auto- and cross-correlation properties, and thus it can be bypassed in experimental 

demonstrations [49]. 

As shown in Fig. 3.6, a DBPSK signal can be generated by using the same transmitter design 

as the RZ- or NRZ-OOK format. The main difference is that the symbol spacing on the IQ-plane 

is increased from 1 for OOK to √2 for DBPSK at a fixed average optical power. At the receiver, 

for the purpose of recovering the phase information of the optical signal without applying a local 

oscillator (LO), it is desirable to convert phase modulation into intensity modulation before 

detection. This can be achieved by detecting the DBPSK signal with a single balanced 

photodetector (BPD) combined with a delay line interferometer (DLI). The transmitted DBPSK 

signal is first split into two paths by applying a 3-dB coupler. One path is delayed by a bit duration, 

e.g., 100 ps for a 10 Gb/s signal, and combined with the original signal with a 3-dB coupler. In this 

way, the preceding symbol in the DBPSK data stream is utilized as a phase reference based on the 

constructive or destructive relation between two adjacent symbols. Although a single-ended 

photodiode is sufficient for DBPSK signal detection, a BPD is usually applied because the 

increased symbol spacing allows DBPSK to accept √2 more Guassian noise which translates into 

a 3 dB gain over OOK in required OSNR at a given BER value [50].  
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Fig. 3.6: Schematic of transceiver design for DBPSK signal generation and detection [15]. 

Similar to other binary modulation format (OOK and duobinary), the maximum achievable ISD 

of DBPSK signalling is 1 b/s/Hz. Hence, DBPSK is not suitable for links operating beyond 40 Gb/s 

per channel due to the bandwidth limitations of optical and electrical components. In addition, it 

may not be the most cost-effective solution for metro and regional applications due to its increased 

optical receiver hardware complexity. However, some experiments have been reported for (ultra) 

long- haul applications to evaluate its fibre nonlinearity robustness. The nonlinear transmission 

performance of RZ-DBPSK over 13100 km submarine fibre was shown to be similar with OOK 

in terms of the optimum launch power levels at 10 Gb/s per channel with an ISD of 0.3 b/s/Hz [51]. 

Some other experiments operating at 40 Gb/s with an ISD of 0.8 b/s/Hz have demonstrated that 

RZ-DBPSK has greater tolerance to chromatic dispersion as well as intra-channel nonlinearities 

compared with OOK formats [52-54]. 

Differential quadrature (M =4) phase-shift keying (DQPSK) 

To achieve ISDs of greater than 1 b/s/Hz, higher order M-level modulation formats, which encode 

log2(M) bits per symbol (M ≥ 4) should be used. DQPSK, which is one of the simplest multi-level 

formats, was first proposed by Griffin and Carter [55]. It makes use of four optical phase shifts {0, 

+π/2, +π, −π/2} to modulate symbols {‘00’, ‘01’, ‘11’, ‘01’}, thus its symbol rate is half the total 

bitrate.  

As shown in Fig. 3.7, the transmitter design of DQPSK requires two 3 dB couplers (one for 

splitting the CW laser source into two paths of equal intensity and one for combing them into one 

path), two nested MZMs operated as amplitude modulator for in-phase (I) and quadrature (Q) 

components, referred to as an IQ- modulator, and one optical π/2 phase shifter applied in one path. 

Moreover, a pulse carver can be added to obtain a RZ-DQPSK signal [56-58] to improve system 

resilience to fibre nonlinearity in (ultra) long- haul applications. At the receiver, the incoming 

optical signal is first split into two paths and two DBPSK receivers are applied to separately detect 

the I and Q components of the signal. Since a DQPSK signal has the same optical bandwidth as a 

DBPSK signal, its achievable ISD is doubled compared with binary modulation formats, thus make 

it suitable for spectrally-efficient WDM systems. Nevertheless, as discussed above, this improved 

ISD is achieved at the expense of using complex optical transceiver designs (multiple BPDs 

combined with DLIs), which is not cost-effective.  
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Fig. 3.7: Schematic of transceiver design for DQPSK signal generation and detection [15]. 

The DQPSK techniques have been experimentally demonstrated at bit rates of 12.5 Gb/s, 20 

Gb/s, 40 Gb/s, 80 Gb/s and 100 Gb/s [59-63] to achieve ISDs of up to 1.6 b/s/Hz. However, since 

the symbol spacing dramatically decreases for higher order (M > 4) phase modulation formats, 

leading to an increased OSNR requirement at a given BER and reduced resilience to fibre 

nonlinearity, the transmission reach is consequently significantly reduced. 

3.1.3 High order Multi-level (> 2 bits per symbol) Modulation Formats 

To further increase the achievable ISDs, it is desirable to develop higher modulation formats. 

Thanks to the ongoing development of high-speed DAC/ADC technologies, DSP-based 

transceivers enables the generation of high order quadrature amplitude modulation, for example 

16-QAM or 64-QAM [64] signalling with minimum Euclidean symbol spacing, as shown in Fig. 

3.8 (a and b). An experimental demonstration of 16-QAM signalling has been presented for 

transmission over 160 km of uncompensated SSMF at a symbol rate of 10 GBaud using DACs 

[65].  

I

Q
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Q

(a) 16-QAM              (b) 64-QAM  

Fig. 3.8: Constellation diagrams for high order (a) 16-QAM and (b) 64-QAM modulaton formats. 

3.1.4 Subcarrier Modulation (SCM) Formats 

As discussed above, the use of cascaded modulators combined with one or more BPDs and DLIs 

to generate and detect high order modulation formats leads to increases in transceiver optical 

hardware complexity. Moreover, the implementation of dispersion compensating fibre (DCF) for 

chromatic dispersion mitigation further increases the cost. In order to overcome the above 

problems, DSP-based transceivers can be utilized for the implementation of high order modulation 
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formats instead of using cascaded modulators with BPDs and DLIs in short- and medium-haul 

links. Due to the ongoing development of CMOS technology and reduction of its size, cost and 

power consumption, it is expected that the utilization of high speed DACs and ADCs will be 

acceptable in future low-cost systems. Through the use of DSP, much of the transceiver complexity 

can be shifted from the optical domain to the electrical domain, making it possible to encode the 

M-QAM symbols with the minimum Euclidean spacing and to carry out electronic dispersion 

compensation. Therefore, the system OSNR requirement and robustness to chromatic dispersion 

are significantly improved without employing any DCFs or optical dispersion compensation (ODC) 

units.  

In the last few years, the subcarrier modulation, which enables the use of M-QAM signalling 

with the minimum Euclidean spacing based on DSP-based transceiver architecture with a single-

ended photodiode, has been proposed as a potentially attractive solution for low-cost, spectrally-

efficient access, metro and regional links. Although only a single photodiode is utilized, and the 

phase information is lost upon square law detection, the amplitude and phase of the subcarrier(s) 

can be recovered at the receiver through beating with the optical carrier, making it possible to 

utilize high order QAM signalling to achieve high ISDs. In addition, since the EDC technique can 

be implemented in such transceivers, the system’s resilience to chromatic dispersion can be 

improved as well. 

There are two SCM approaches being studied for DD systems: optical orthogonal frequency 

division multiplexing (OFDM) [66] and Nyquist-SCM [67, 68]. OFDM utilizes multiple 

subcarriers that are orthogonal to each other with minimum frequency spacing (also called Nyquist 

spacing), while Nyquist-SCM uses only a single subcarrier with digital Nyquist pulse shaping. In 

order to further increase the achievable ISDs, sideband filtering can be utilized to generate SSB 

OFDM or SSB Nyquist-SCM, which are favourable for low-cost direct-detection WDM 

transceivers offering dispersion tolerance and high ISDs. The following subsection mainly 

describes the signal characteristics, transceiver structure and notable experimental demonstrations 

of these two SCM schemes.  

Orthogonal Frequency Division Multiplexing (OFDM) 

In optical OFDM signalling, the main difference in contrast to the previous formats is the 

implementation of inverse fast Fourier transforms (IFFT) at the transmitter and fast Fourier 

transforms (FFT) at the receiver. OFDM is a spectrally efficient multiple carrier modulation 

technique in which a high-speed serial data stream is divided into a number of parallel low-speed 

streams and modulated onto multiple subcarrier at different frequencies for simultaneous 

transmission. Based on the fast IFFT/FFT algorithm, multicarrier modulation and demodulation 

are efficiently implemented with OFDM. If the IFFT input signal satisfies the Hermitian symmetry, 

the generated OFDM signal is real-valued and is referred to as discrete multi-tone (DMT).  

As shown in Fig. 3.9, the total signal frequency band is divided into a number of non-

overlapping or overlapping frequency subcarriers, referred to as FDM and OFDM respectively. It 

can be seen that the FDM signalling allows to eliminate inter-channel interference (ICI) but makes 

inefficient use of the bandwidth. In contrast, the OFDM signalling overlaps the spectra of 

individual subcarriers to achieve increased spectral efficiency and the ICI is minimized due to 

orthogonality between adjacent subcarriers [69]. 
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Fig. 3.9: Spectral efficient OFDM spectrum illustration. 

In OFDM signaling [70-77], no ICI occurs between the adjacent subcarriers because each 

subcarrier has a sinc-function (sin(x)/x)2 shaped spectrum that intercepts with the other sinc spectra 

at their null points. This orthogonality condition comes at the expense of strict time 

alignment/synchronization requirements between the generated OFDM symbols at the 

demultiplexing stage. Since OFDM signalling is highly susceptible to time and sampling frequency 

offset between the transmitter and receiver, proper management is also required, otherwise, the 

system suffers from significant performance degradation due to the crosstalk. Because of the much 

narrower bandwidth of each subcarrier compared to the total bandwidth, the OFDM signal’s 

resilience to multi-path propagation is increased. Since the data is transmitted on a number of 

different frequencies, unlike with single-carrier NRZ or M-QAM signalling, the symbol period of 

each OFDM symbol is much longer than that of a serial system. Inter-symbol interference (ISI) 

due to time skew (for example, caused by chromatic dispersion) can be eliminated using a cyclic 

prefix (CP) and frequency domain single-tap equalizers as demonstrated in [70, 71]. After applying 

an IFFT to the encoded signal, the CP, which is a copy of the last fraction of each OFDM symbol, 

is added to the start of the symbol. Thus, the extended symbol can combat the time skew due to 

dispersion along the channel up to the duration of the CP, because the signal remains periodic 

within the Fourier-Transform window at the receiver. Since it does not carry any information, the 

CP costs additional bandwidth, and hence impacts the achievable ISD. A detailed discussion about 

the use of the CP can be found in [72, 73]. There are two major groups of OFDM DD systems [74-

77], called intensity modulated (IM-) OFDM DD and SSB-OFDM DD. A drawback of IM-OFDM 

DD systems is that, since the modulated signal is DSB, the chromatic dispersion accumulated along 

the fibre transmission causes a relative phase rotation between the two sidebands, producing nulls 

in the carrier-signal beating terms at certain frequencies after square-law detection, termed 

dispersion induced power fading [78]. IM-OFDM DD and its comparison with OOK are described 

in detail in [79]. In order to avoid the power fading impairment and at the same time to increase 

the spectral efficiency, one of the signal sidebands can be removed either by optical filtering [80-

82] or driving the IQ- modulator with a OFDM signal and its HT [83], as described in Chapter 2.  

The transceiver design to implement SSB-OFDM DD signalling is shown in Fig. 3.10 [84]. In 

the transmitter digital signal processing (DSP), asymmetric zero padding is performed on the 

parallel QAM symbols to carry out frequency upconversion, the CP is then inserted after the IFFT 

to combat the dispersion.  After the parallel-to-serial conversion, the SSB OFDM signal is 

generated. Since the relative phases of the OFDM subcarriers can add constructively, leading to 

high peak-to-average power ratio (PAPR), clipping needs to be performed to reduce the PAPR. 

Following this, a linear field modulation is carried out by biasing the IQ-modulator within its linear 
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regime (at or close to the quadrature point) and an optical carrier is added to the SSB OFDM signal. 

At the receiver, a single photodiode is utilized to detect the signal [85]. In the receiver DSP, after 

the serial to parallel conversion, the CP is first removed from the detected signal. Then, the FFT is 

applied and consequently frequency domain single-tap equalization with complex multiplication 

is performed for dispersion compensation. Finally, the QAM demapped parallel data carried by the 

subcarriers are converted to serial data.  
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Fig. 3.10: Schematic of transceiver design for SSB OFDM DD signal generation and detection. 

As discussed in Chapter 2, to avoid the distortion caused by SSBI on the desired CSBP, two 

methods can be applied: either the use of a sufficient spectral guard band between the sideband 

signal and the optical carrier, or the employment of linearization techniques. The first method 

halves the achievable ISD and wastes approximately 50% of the bandwidth of the electrical and 

optical components, such as DACs/ADCs, optical modulator(s), and photodiode(s). Thus it is not 

a spectrally-efficient solution and the bandwidth requirements for such components are nearly 

doubled. In contrast, the use of effective linearization techniques, removing the signal-signal beat 

products, enables the use of a narrower or zero guard band with improved system performance, 

making it attractive for spectrally-efficient applications. A number of recently proposed SSBI 

compensation techniques will be discussed in detail in Section 3.2. 

SSB-OFDM DD technology has attracted much research attention for short- and medium-haul 

applications due to its robustness to chromatic dispersion, higher receiver sensitivity and 

achievable ISDs of greater than 1 b/s/Hz. Experimental demonstrations of WDM SSB-OFDM DD 

systems have been reported, with transmission over SSMF at ISDs of up to 2 b/s/Hz at 10, 20, 40 

and 100 Gb/s per channel [86-89]. 

Nyquist-pulse-shaped subcarrier modulation (Nyquist-SCM) 

As mentioned above, the main disadvantage of OFDM signalling is the high PAPR, thus causing 

a degradation in system performance. Clipping and other techniques for reducing the PAPR have 

been discussed, but they all have drawbacks such as increased complexity or overheads, resulting 

in nonlinear distortion and penalties [76, 77]. Alternatively, single subcarrier modulation, 

introduced in wireless infrared communications [90, 91], can be used for high order modulation 

with direct direction [92]. In this technique, the baseband signal is electrically modulated onto a 

single RF-subcarrier, in contrast to the multiple subcarriers used in OFDM. The lower PAPR due 

to the use of only a single RF-subcarrier reduces the quantization noise from the DACs/ADCs and, 

at the same time, offers a lower optimum carrier-to-signal power ratio (CSPR), thus potentially 

providing a better OSNR performance compared to OFDM signalling [93]. 
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In order to maximize the spectral efficiency, high-order QAM encoding, Nyquist pulse shaping, 

and a subcarrier frequency lower than the symbol rate can be implemented, a technique called 

intensity-modulated Nyquist-SCM DD signalling [94-98]. To further improve the robustness to 

dispersion induced power fading, digital sideband filtering is implemented for generating the SSB 

Nyquist-SCM DD signalling. Fig. 3.11 shows the transceiver design of SSB Nyquist-SCM DD 

system. In the transmitter DSP, digital root-raised-cosine (RRC) filters are applied to the I- and Q- 

components of the baseband QAM signal to perform Nyquist pulse shaping. Then the filtered I- 

and Q-components are up-converted to an RF-subcarrier frequency (fsc) and added to each other to 

generate a DSB Nyquist-SCM signal. A digital HT sideband filter (as discussed in Chapter 2) is 

applied to remove the lower frequency sideband (sideband suppression ratio > 30 dB) and, by 

biasing the IQ-modulator, an optical carrier is transmitted along with the sideband. The electrical 

and optical spectra in the generation process of SSB Nyquist-SCM signalling are shown in Fig. 

3.12 (a) and (b) respectively. At the receiver, the transmitted signal is detected by a single 

photodiode. In the receiver DSP, down-conversion to baseband and matched filtering with a RRC 

filter are performed. Finally, the QAM symbol demapping is carried out following the equalization 

stage. Similar to SSB OFDM DD signalling, in order to improve system’s robustness to the SSBI 

effect, either a sufficient frequency guard-band or an effective linearization scheme needs to be 

applied.   
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Fig. 3.11: Schematic of transceiver design for SSB Nyquist-SCM DD signal generation and detection. 
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Fig. 3.12: Schematics of SSB Nyquist-SCM signal generation: (a) Digital signal spectra: Nyquist pulse 
shaping, up-conversion to the subcarrier frequency and sideband filtering. (b) Optical signal spectrum. 

A number of experimental demonstrations have shown that Nyquist-SCM with direct detection 

is a promising and practical spectrally-efficient modulation technique for access, metro and 

regional networks. DD single-cycle QPSK, RZ-DQPSK and 16-QAM SCM in which fsc is set equal 

to the symbol rate (fb) have been demonstrated in [94-96], respectively. To further increase the 

spectral efficiency, half-cycle subcarrier modulation with and without Nyquist pulse shaping were 

demonstrated in back-to-back and transmission over VCSEL-based short optical links (up to 20 
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km) in [97, 98]. WDM DD SSB Nyquist-SCM combined with transmitter-based EDC to mitigate 

chromatic dispersion have been reported, transmitting over 800 km and 320 km at bit rates of 14 

and 25 Gb/s per channel with ISDs of up to 2 b/s/Hz [99, 100].  

3.2 Linearization Techniques for Single-Sideband Direct-

Detection Transceiver 

As described in Chapter 2, nonlinear distortion arises in SSB SCM DD schemes (both SSB OFDM 

and SSB Nyquist-SCM) from signal-signal beating during the square-law detection, generating 

unwanted mixing products which interfere with the desired signal-carrier beat terms. Among all 

these unwanted mixing products, the effect known as SSBI, which falls within the bandwidth of 

the subcarrier signal, causes the most significant degradation in the system’s OSNR performance 

[101]. In order to avoid the SSBI penalty, two methods can be utilized: either the use of a sufficient 

spectral guard band (Bgap ≥ Bsc) or employment of linearization techniques. Since the first method 

has the significant drawback of halving the spectral efficiency, it is necessary to develop effective 

techniques to cancel the SSBI and thus allows to use a narrow or zero guard band with improved 

system performance. 

Recently, a number of linearization techniques have been investigated for both SSB OFDM and 

SSB Nyquist-SCM systems, including the use of beating interference cancellation balanced 

receiver, digital iterative SSBI cancellation, digital single-stage linearization filter, digital iterative 

linearization filter, digital two-stage linearization filter and the Kramers-Kronig DSP scheme. The 

principle of operation and characteristics of all these techniques are described in this section. 

Additionally, the advantages and drawbacks of each technique are also discussed. 

3.2.1 Beat Interference Cancellation Balanced Receiver (BICBR) 

The beat interference cancellation balanced receiver (BICBR) was first demonstrated for a SSB-

OFDM DD system in [102-104]. The experimental results showed that the BER is significantly 

improved compared to the conventional DD receiver in transmission over SSMF, and a reduction 

of the frequency guard band can consequently be achieved. 

The receiver structure of a BICBR is shown in Fig. 3.13 and its operation can be described as 

follows: (a) An optical 3 dB coupler splits the transmitted optical SSB SCM signal into two parallel 

branches. (b) The upper branch is sent directly to a photodiode (PD1) yielding both the desired 

CSBP and SSBI; while the lower branch suppressing the optical carrier with a carrier suppression 

filter (CSF) results in only SSBI after the square-law detection by PD2. (c) By simply subtracting 

the output of the lower branch from that of the upper branch, the desired signal without SSBI can 

be obtained at the output of the balanced detector, thus potentially allowing to achieve SSB SCM 

signalling with a smaller frequency guardband. 
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Fig. 3.13: Working principle of the BICBR technique. CSF: carrier suppression filter. SSB SCM 
DEMOD: single-sideband subcarrier modulation signal demodulation. 

The key advantage of this technique is that, in the ideal case, in which the CSF can fully remove 

the optical carrier and at the same time does not affect the SSB signal, the signal-signal beating 

products can be fully constructed in the lower branch and the unwanted SSBI terms can be fully 

mitigated by subtraction. Moreover, this BICBR cancels out not only the SSBI, but also part of 

other unwanted beating interferences, e.g., SABI and AABI and can therefore provide superior 

linearization performance. However, this scheme has the drawback of the significantly increased 

complexity of the receiver optical hardware, requiring a balanced receiver which includes two 

single-ended photodiodes and a very narrow optical filter (<1 GHz) to suppress the optical carrier 

from the transmitted signal. 

3.2.2 Digital Iterative SSBI Estimation and Cancellation 

As an alternative to the complex optical linearization technique described above, digital 

linearization techniques have also been proposed and demonstrated. This subsection describes the 

digital iterative SSBI estimation and cancellation (E&C) schemes implemented either at the 

transmitter or at the receiver. 

Transmitter-based Digital Iterative SSBI Estimation and Cancellation 

The transmitter-based digital iterative SSBI E&C or digital iterative SSBI pre-distortion technique 

was proposed for virtual SSB (VSSB) OFDM [105, 106] and then applied to VSSB Nyquist-SCM 

[107]. The experimental results have shown receiver sensitivity improvements after applying such 

technique. 

As shown in Fig. 3.14, the principle of this iterative pre-distortion technique can be described 

as follows: The transmitted signal is pre-distorted so that the received signal is as close as possible 

to the desired ideal signal, through the following digital processing steps within the transmitter.  

(a) After QAM mapping, the signal waveform is first stored in memory, and a sampled 

representation of an optical SSB SCM signal is generated. (b) The linear modulator and single-

ended photodetector are digitally represented by applying a DC term and a square-law calculation, 

and an approximation of the waveform of the detected signal including the unwanted SSBI is 

obtained. (c) The signal is demodulated to QAM symbols and an accurate calculation of the 

interference terms is carried out by comparing the detected signal with the ideal QAM symbols. 
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(d) The calculated interference is then subtracted from the stored waveform to obtain the newly 

updated signal. Then, the original signal in the memory is replaced with this updated signal; (e) 

This compensation process is repeated iteratively until the constellation of the received symbols 

converges. (f) Finally, the generated pre-distorted electrical signal is sent to the DACs. 
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Fig. 3.14: DSP design of the literative SSBI predistortion technique. SSB SCM MOD&DEMOD: single-
sideband subcarrier modulation signal demodulation and modulation. 

This digital iterative SSBI pre-distortion technique can effectively compensate for SSBI and 

only requires a single-ended photodetector leading to a simpler receiver structure compared with 

the BICBR technique discussed in the above subsection. However, the use of iterative pre-

distortion leads to increased PAPR and imperfect SSBI cancellation due to the introduction of extra 

unwanted beating products after square-law detection, which potentially impair the system 

performance. Furthermore, since this technique requires accurate CSPR estimation and the use of 

multiple (typically more than three) iterations to achieve saturated compensation performance, the 

digital hardware complexity at the transmitter is significantly increased. 

Receiver-based Digital Iterative SSBI Estimation and Cancellation 

A receiver-based digital iterative SSBI E&C technique has been proposed and investigated for 

VSSB OFDM DD systems [108, 109], and this technique has been refined and extended to the 

SSB Nyquist-SCM system in our work [110-112]. The principle of the technique is shown in Fig. 

3.15.  

 | • | 2
Synchronisation 

& Scaling

Decision

SSB  SCM 
MOD

Data 
Output+

-
∑ADC

PD

SSB SCM 
DEMOD

f

Carrier-Signal 
Beating + SSBI

0 fsc

DC Offset 
Removal

f

Sideband 
Signal

0 fscf

Reconstructed 
SSBI

0

Iterative (N ≥ 4) SSBI E&C

 

Fig. 3.15: DSP design of the receiver-based iterative SSBI estimation and cancellation technique. SSB 
SCM MOD&DEMOD: single-sideband subcarrier modulation signal demodulation and modulation. 



56 
 

The operation can be described as follows: (a) The detected signal waveform, which includes 

both the desired signal (CSBP) and the unwanted SSBI term, is stored in memory, and then SSB 

SCM demodulation and equalization stages are applied to the detected signal; (b) after making 

symbol decisions, a digital representation of the ideal SSB QAM SCM signal, with the received 

symbol sequence, is re-generated, and an approximation of the waveform of the signal-signal beat 

products is obtained by implementing the square-law detection process on this ideal re-generated 

SSB QAM SCM signal without the optical carrier; (c) after synchronization and amplitude scaling, 

the reconstructed signal-signal beating products’ waveform is then subtracted from the stored 

received signal to partially eliminate the SSBI; (d) this compensation process is iteratively repeated 

until saturation of the compensation performance is reached. Note that, the scaling factor controls 

the compensation effectiveness of such technique, thus needs to be swept and set to an optimum 

value to minimize the BER. The compensation effectiveness is degraded if incorrect symbol 

decisions are made. 

As for the digital SSBI pre-distortion scheme described above, the receiver-based digital 

iterative SSBI E&C technique only requires a single photodiode, and thus also has the advantage 

of lower optical hardware complexity compared with the above-mentioned BICBR technique. In 

addition, since the technique does not cause an increase in the PAPR or unwanted extra interfering 

beating products, it offers a potentially better compensation performance over the SSBI pre-

distortion scheme. However, the drawback of this technique is that the digital hardware complexity 

of the receiver is high due to the requirement of multiple (typically more than four) iterations, i.e. 

multiple demodulation and modulation operations. Further technical details and performance 

assessments of this technique are presented in Chapter 4. 

3.2.3 Receiver-based Digital Single-stage Linearization Filter 

Since the iterative SSBI E&C scheme includes symbol decision-based SSBI reconstruction with 

multiple demodulation and modulation operations, its performance has a high dependency on the 

accuracy of symbol decision making and suffer from significantly increased DSP complexity. A 

receiver-based digital single-stage linearization filter was proposed for SSB-OFDM DD system 

[113] and has shown effective compensation performance with very simple digital hardware 

structure. 
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Fig. 3.16: DSP design of the receiver-based digital single-stage linearization filter. SSB SCM DEMOD: 
single-sideband subcarrier modulation signal demodulation. SF: sideband filter. 

Fig. 3.16 shows the DSP design of the single-stage linearization filter. The detected DSB (real-

valued) signal is passed through the single-stage linearization filter: a SSB signal is first generated 
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using a sideband filter (SF), which is performed by an ideal digital Hilbert transform filter (details 

can be found in Chapter 2), and an approximation of the signal-signal beating products is calculated 

based on the filtered SSB signal, which is then subtracted from the original SSB signal to partially 

compensate the SSBI. Note that, this technique aims to replicate the process of generating signal-

signal beating products from the transmitted SSB signal. The use of the SF avoids unwanted 

beating products which would otherwise be generated by the negative frequency part of the 

detected DSB signal spectrum. DC offset removal is performed to ensure the re-generation of only 

the signal-signal beating products. The amplitude scaling factor (η1) controls the effectiveness of 

the single-stage linearization filter and is inversely proportional to the utilized CSPR value, hence 

needs to be optimally adjusted to maximise its effectiveness. 

The advantage of this scheme is its use of a very simple DSP structure. Moreover, unlike the 

above-mentioned iterative SSBI E&C schemes, such scheme avoids the symbol decision-based 

compensation process. However, as the calculation of the signal-signal beating products is based 

on the received distorted signal, this technique itself introduces extra unwanted beating 

interferences (shown as the dark green spectrum in Fig. 3.16), thus limiting the compensation gain. 

Additionally, in the real-time digital circuit implementation, the performance of this technique has 

a strong dependence on the SF filter design, hence the performance may be degraded due to limited 

symbol length utilized. Further technical details and performance evaluations of such scheme can 

be found in Chapter 5. 

3.2.4 Receiver-based Digital Iterative Linearization Filter 

As mentioned above, the compensation performance of the single-stage linearization filter is 

limited by its introduced extra beating interference. To achieve further improved compensation 

performance, the single-stage linearization filter can be iteratively repeated, a technique which has 

been demonstrated for SSB Nyquist-SCM signalling in [114, 115].  
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Fig. 3.17: DSP design of the receiver-based digital iterative linearization filter. SSB SCM DEMOD: 
single-sideband subcarrier modulation signal demodulation. SF: sideband filter. 

Fig. 3.17 shows the DSP design with the iterative linearization filter, and its working principle 

is described as follows: the waveform of the detected signal is first stored in memory, and the 

signal-signal beating products are calculated based on the filtered SSB signal, which are then 

subtracted from the stored signal waveform in the memory, to mitigate the SSBI. It can be seen 

that if no iterative update is carried out, this technique is the same as the process in the single-stage 

linearization filter, as described in the above subsection. Since the signal-signal beating products 

are approximated by performing the square-law calculation on the filtered detected signal, 

inaccuracies occur due to the inclusion of the SSBI term in the detected signal. However, this 
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process can be repeated multiple times in order to reduce the inaccuracies and achieve the 

maximum compensation gain. 

This iterative linearization filtering technique improves the performance of the single-stage 

linearization filter by using the stored received signal waveform and iteratively repeating the SSBI 

reconstruction process until the performance improvement saturates. Due to the multiple (four 

times or more) iterations performed, its DSP complexity is significantly increased, however. It 

should be mentioned that the sideband filter has to stay inside of the iterative process to keep the 

input signal of each iteration being single sideband, and the value of the optimum scaling factor is 

fixed once it is optimally adjusted in the first iteration. 

3.2.5 Receiver-based Digital Two-stage Linearization Filter 

An alternative method to further improve the compensation performance of the single-stage 

linearization filter is to utilize a two-stage linearization filter, which has been proposed and 

demonstrated for SSB Nyquist-SCM system in our latest works [116, 117]. 
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Fig. 3.18: DSP design of the receiver-based digital two-stage linearization filter. SSB SCM DEMOD: 
single-sideband subcarrier modulation signal demodulation. SF: sideband filter. 

The DSP design with the two-stage linearization filter is shown in Fig. 3.18. There are two 

linearization stages in such scheme, the first linearization stage is the same as the single-stage 

linearization filter discussed in the subsection 3.2.3. With the optimum adjustments of the two 

scaling factors (η1 and η2), the SSBI penalty and majority of the unwanted beating interference 

(mainly the signal-SSBI beating terms) introduced by the first linearization stage can be removed 

in each of the two linearization stages respectively. Note that, the utilization of sideband filters in 

both of the linearization stages suppresses the unwanted beating products generated at negative 

frequencies and thus improves the accuracy of beating interference reconstruction. 

Compared with the single-stage linearization filter, such scheme offers enhanced compensation 

performance. Since the two-stage linearization filter avoids the utilization of multiple iterations 

such as the iterative SSBI E&C and iterative linearization filter mentioned in subsections 3.2.2 and 
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3.2.4, although the digital hardware complexity is more than twice of the single-stage linearization 

filter, it is still relatively lower than the other approaches. Therefore, the two-stage linearization 

filter can be a good tradeoff between the compensation effectiveness and the digital hardware 

complexity. Further technical details and experimental assessments of this technique can be found 

in Chapter 6. 

3.2.6 Kramers-Kronig (KK) Receiver 

It can be seen that the above-mentioned digital linearization approaches (SSBI E&C, single-stage 

linearization filter, iterative linearization filter and two-stage linearization filter) treat the SSBI 

terms as a perturbation to the signal. The system compensation works by calculating these 

perturbations and subtracting them from the detected signal. In contrast, a recently proposed 

technique, termed the Kramer-Kronig (KK) scheme, reconstructs the optical phase of the 

transmitted signal from the detected amplitude waveform, making use of the assumption that it is 

an ideal single-sideband and minimum phase signal. The KK scheme digitally reconstructs the 

transmitted optical SSB signal before the detector, and is therefore immune to the SSBI penalty. It 

was first proposed and assessed by simulations in [118, 119] and was further demonstrated by 

experiments for SSB Nyquist-SCM and SSB OFDM systems in [120, 121]. 
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Fig. 3.19: DSP design of the receiver-based Kramers-Kronig scheme. SSB SCM DEMOD: single-
sideband subcarrier modulation signal demodulation. SF: sideband filter. 

The DSP design of the receiver-based KK scheme is shown in Fig. 3.19. The minimum phase 

condition ensures that the phase of the signal can be uniquely extracted from its intensity [131]. 

We consider a complex valued signal s(n), whose spectrum is symmetric and has a frequency range 

between -B/2 and B/2. The transmitted optical single sideband signal, h(n) can be written as: 

 ℎ�0� = � + ��0�exp �−)=�0� (3.1) 

where n is the discrete time index, A is a positive bias (optical carrier) value that serves to ensure 

non-negative values of h(n). In order to fulfil the condition of minimum phase, the optical carrier 

is required to have an amplitude larger than that of the sideband signal (|A| > |s(n)|). When h(n) is 

a minimum phase signal, its phase φ(n) and absolute value |h(n)| are uniquely related by the Hilbert 

transform: 

 ��0� = 1= �. -. � �0W ���q|ℎ�0W�|r0 − 0W�
m�  (3.2) 
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where p.v. is the principle value. Eq. 3.2 is termed the Kramers-Kronig relation [122]. By utilizing 

the Kramers-Kronig relation, the phase of the transmitted signal is linked to its intensity. Hence, 

following direct detection of the total field intensity, the complex-valued electric field of the SSB 

signal is extracted from the measured photocurrent. Note that, due to the high bandwidth resulting 

from the square-root and logarithm (ln(|h(n)|)) operations, a relatively higher oversampling rate 

(typically 4 samples per symbol or more) needs to be utilized in this part of the DSP. With 

sufficiently high oversampling rate, the KK scheme provides superior linearization effectiveness 

over the other currently demonstrated beating interference mitigation schemes. Technical details 

and performance evaluations of the KK scheme can be found in Chapter 7. 

3.2.7 Other Linearization Techniques 

A number of other optical or digital SSBI mitigation techniques have been proposed to improve 

the system performance and achieve increased ISD [123-130]. One approach is to modulate the 

envelope of the optical signal instead of the field, a technique known as compatible SSB (cSSB) 

OFDM [123]. However, significant degradation in the OSNR performance can be observed when 

implementing this technique due to the high required optical carrier power to avoid clipping at the 

receiver thus preventing the system from operating at the optimum CSPR value. Another SSBI 

cancellation technique is to utilize an interleaver combined with turbo coding, which requires 

approximately 30% overhead, thus introducing extra bandwidth redundancy [124-126]. 

Furthermore, nonlinear equalization by using a Volterra nonlinear filter have also been proposed 

[127, 128] but the computational complexity of using this technique is significantly increased. 
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CHAPTER 4 

ITERATIVE SIGNAL-SIGNAL BEAT 

INTERFERENCE ESIMATION AND 

CANCELLATION 
This chapter focuses on the technical details and performance evaluation of the receiver-based 

digital iterative SSBI estimation and cancellation (E&C) technique. Section 4.1 presents a 

mathematical description of its principle of operation. The experimental test-bed for system 

evaluation, a dispersion pre-compensated 112 Gb/s per channel spectrally-efficient WDM SSB 16-

QAM Nyquist-SCM direct detection system with transmission over straight-line multi-span 

uncompensated SSMF links of up to 240 km, is described in Section 4.2. Section 4.3 presents the 

obtained experimental results on its back-to-back and transmission performance. Section 4.4 

summarises this work. 
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Fig. 4.1: Schematic diagram of the direct-detection system architecture. Tx & Rx DSP: Transmitter and 
receiver DSP, DAC: Digital-to-analogue converter, MOD: Optical modulator, SSMF: Standard single-

mode fibre, EDFA: Erbium-doped fibre amplifier, OBPF: Optical band-pass filter, PD: Photodiode, ADC: 
Analog-to-digital converter. 

The schematic diagram of the direct-detection system architecture is shown in Fig. 4.1.  In the 

transmitter DSP, the SSB subcarrier modulated signal, E0(n), is generated by modulation DSP 

(MOD DSP), where n is the discrete time index. Afterwards, digital transmitter-based electronic 

dispersion compensation (EDC) [1] and pre-emphasis are implemented to mitigate the 

accumulated dispersion of the fibre and the low-pass filtering effects of the transceiver electronics. 

Following digital to analogue conversion, electrical to optical conversion is carried out, during 

which the real-valued optical carrier, Ecarrier(n), is added to the SSB SCM signal by optimally 

biasing the IQ-modulator. Following transmission over the fibre, direct detection and analogue to 

digital conversion, the detected DSB signal after direct current (DC) offset removal, VDD(n), can 

be written as [2]: 

 cdd�0� = �q|fnoRR
SR�0� + f �0�|*r = 2P�qfnoRR
SR�0� ∙ f �0�r + |f �0�|* 
(4.1) 

where Κ[∙] signifies the DC offset removal operator, and Re[x] represents the real part of x. In the 

RHS of this equation, the first term is the desired carrier signal beating product (CSBP), and the 

second term is the unwanted SSBI term. Following this, the linearization scheme is applied to the 

waveform of VDD(n). 
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4.1 Principle of Operation 

The receiver-based iterative SSBI E&C technique can be utilized for SSB SCM (both OFDM and 

Nyquist-SCM) DD systems [3-5] and its working principle has been functionally described in 

Chapter 3, Section 3.2.2. This section presents a more detailed mathematical description of its 

operation.  

Rx DSP:

∑
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Fig. 4.2: Receiver DSP design with the receiver-based iterative SSBI E&C technique. MOD & DEMOD 
DSP: SSB SCM signal generation and demodulation. 

The receiver DSP design with the receiver-based iterative SSBI E&C approach is shown in Fig. 

4.2. Within the iterative E&C process at the receiver, after demodulation and symbol decision 

making, modulation DSP is used to generate a digital representation of the ideal SSB SCM signal 

(without the optical carrier), E0’(n), and an approximation of the waveform of the signal-signal 

beating products is obtained by implementing the square-law detection process: 

 cn
�I�R�n��0� = |f W �0�|* (4.2) 

where Vconstruct(n) is the reconstructed signal-signal beating products. This is then subtracted from 

the stored received signal waveform, VDD(n), partially cancelling the distortion due to signal-signal 

beating.  Since the symbol decisions, and, consequently, Vconstruct are not accurate for all the 

symbols, multiple iterations of the demodulation/modulation and SSBI cancellation are required 

until no further significant gains are observed. The amplitude scaling factor value utilized within 

such technique needs to be optimized to minimize the BER value and is fixed for all the iterations. 

When the performance improvement saturates (no further reduction of the BER is observed), E0’(n) 

≈ E0(n), and the compensated signal, Vcompensate(n) is written as: 

 cn
£JS�Io�S�0� = cdd�0� − cn
�I�R�n��0� ≈ 2P�qfnoRR
SR�0� ∙ f �0�r (4.3) 

Therefore, the effect of SSBI is almost fully eliminated and the compensated signal only 

contains the desired CSBP. In contrast to the optical methods such as the beating interference 

cancellation balanced receiver [6-8], this approach only requires a single photodiode and avoids 

the need for a narrow optical bandpass filter, and consequently significantly reduces optical 

hardware complexity. At the same time, since all the digital compensation is carried out at the 

receiver, there is no introduction of unwanted extra beating interferences caused by SSBI pre-

distortion [9-11], and this technique offers potentially improved compensation performance. 

However, the iterative SSBI E&C scheme typically requires more than four iterations to reach the 

maximum compensation gain, and it is impossible to reuse the same digital hardware iteratively 

for continuous transmitted data. The DSP complexity is directly related to the number of applied 

iterations and is therefore significantly increased. In addition, another limitation of this technique 



69 
 

is its dependency on the accuracy of the symbol decision making, thus noticeably degrading its 

compensation performance at lower OSNR levels. 

4.2 Experimental Setup 

As shown in Fig. 4.3, in order to assess the performance of DD transceivers with the above-

mentioned receiver-based digital iterative SSBI E&C scheme and later the other digital 

linearization schemes in the following chapters, transmission experiments were carried out. The 

optical transmission test-bed consists of a 4 × 112 Gb/s SSB 16-QAM Nyquist-SCM transmitter, 

a straight-line standard single-mode fibre (SSMF) link and an optical bandpass filter (OBPF) 

followed by a single-ended photodiode-based direct-detection receiver to select and recover the 

channel of interest. 

 

Fig. 4.3: Experimental test-bed for 4 × 112 Gb/s WDM DD SSB 16-QAM Nyquist-SCM transmission 
with multiple-span transmission link structures. Insets: WDM signal spectra with (I) 50 GHz, (II) 37.5 

GHz and (III) 35 GHz channel spacing; (IV) detected digital signal spectrum. 

At the transmitter, two high-speed arbitrary-waveform generators (Keysight M8196A AWG) 

operating at a 92 GSa/s sampling rate and with 33 GHz 3-dB bandwidth were used to drive each 

IQ-modulator. The I- and Q- components of the SSB 16-QAM Nyquist-SCM signals were 

generated offline using MATLAB, and subsequently, uploaded to the AWGs to serve as the IQ-

modulators’ driving signals. The modulation DSP generating the SSB Nyquist-SCM signal is 

described in detail in Chapter 3. Four 215 de Bruijn bit sequences were encoded onto a 16-QAM 

signal at 112 Gb/s (a symbol rate (fs) of 28 GBd). A pair of root-raised cosine (RRC) filters with a 

roll-off factor (β) of 0.01 were utilized to carry out Nyquist pulse shaping on the I- and Q- 

components of the signal. Note that, to limit the size of the pulse shaping filter and matched filter, 

the roll-off factor was chosen to be 0.01 rather than 0. The filtered components were up-converted 

to a subcarrier frequency of 14.28 GHz (fsc = 0.51· fs) and added to each other to obtain a DSB 

Nyquist-SCM signal. The subcarrier frequency and β were selected such that the spectral guard-
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band between the signal and the optical carrier was negligible. Following this, the lower frequency 

sideband was removed using a digital Hilbert transform sideband filter to generate a SSB Nyquist-

SCM signal. Finally, to mitigate the accumulated chromatic dispersion, EDC was applied. 

Four external cavity lasers (ECLs) with a linewidth of 100 kHz grouped around a wavelength 

of 1550 nm were utilized to generate odd and even channels. After passing through the IQ-

modulators with the addition of optical carriers, the modulated odd and even channels were 

multiplexed to generate a 4 × 112 Gb/s WDM signal. The WDM channel spacing was set to three 

different values: 50 GHz, 37.5 GHz and 35 GHz, corresponding to gross optical ISDs of 2.2 

(b/s)/Hz, 3.0 (b/s)/Hz and 3.2 (b/s)/Hz, respectively. The insets (I – III) of Fig. 4.3 show the optical 

WDM spectra, measured with an optical spectrum analyser (OSA) at a 0.01 nm resolution. The 

peak and asymmetric shapes of the optical spectra show the optical carriers and SSB signals, 

respectively. Note that, the optimization of the carrier-to-signal power ratio (CSPR) is crucial to 

achieve the optimum performance of SSB SCM DD systems. In the experiment, the optical carrier 

was generated by biasing the IQ-modulators above the null point and the biases were adjusted to 

achieve the desired CSPR values. 

The transmission scenario investigated in the transmission experiments was a straight-line 

multiple span fibre link, consisting of spans of 80 km SSMF followed by erbium-doped fibre 

amplifiers (EDFAs) with a 5 dB noise figure. 

At the receiver, an OBPF (Yenista Optics XTM50-Ultrafine) with an adjustable bandwidth was 

used to demultiplex the channel of interest and remove the out of band ASE noise. Note that the 3-

dB bandwidth of the filter was set to 31 GHz for optimum system performance. The filtered signal 

was then detected using a single-ended PIN photodiode. The detected electrical signal was pre-

amplified and digitized by a single ADC (Agilent DSA-X 96204Q) operating at 80 GSa/s. The 

received digital spectrum is plotted in the inset (IV) of Fig. 4.3. In the receiver DSP, following the 

DC offset removal, the digital linearization scheme was applied to eliminate the SSBI penalty. In 

the demodulation DSP (DEMOD DSP), frequency down-conversion and matched filtering with a 

RRC filter (β = 0.01) were carried out. For symbol synchronisation, a 5-tap constant modulus 

algorithm with least mean square (CMA-LMS) finite impulse response (FIR) filter was initially 

carried out for fast convergence before switching to decision-directed LMS mode. The adopted 

step size was set to 1.0 × 10-3
 and a pilot tone was not used for synchronisation. Finally, the signal 

was demodulated and the BER and error-vector-magnitude (EVM) [13] were calculated, the 

former by error counting over 218 bits.  

4.3 Experimental Results 

Both the optical back-to-back and WDM transmission evaluations were carried out with the 

experimental test-bed described in Section 4.2. System performance  with different WDM channel 

spacing, transmitting over the multiple span SSMF link structures is presented in this section. Due 

to the similar performance of all WDM channels, one of the central channels (channel #2) was 

used as the channel under test in the case of WDM measurements here, and throughout the 

measurements described in this thesis. Four iterations were utilized in the iterative SSBI E&C 

approach to achieve the maximum compensation gain (no further BER reduction was observed 

after four iterations). 
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4.3.1 WDM Back-to-Back Performance Evaluation 

Initially, the optical back-to-back performance was evaluated by performing ASE-noise loading at 

the receiver, with the experimental results plotted in Figs. 4.4 to 4.7.  

To determine the minimum WDM channel spacing for the highest achievable optical ISD, 

initially, the channel spacing was varied from 33 to 50 GHz and the required OSNR at the hard-

decision forward-error-correction (HD-FEC) BER threshold of 3.8 × 10-3 was monitored without 

carrying out any linearization (Fig. 4.4). In order to maintain the linear crosstalk penalty caused by 

neighbouring channel at less than 1 dB, the minimum WDM channel spacing was set to 35 GHz, 

yielding a gross ISD of 3.2 (b/s)/Hz.  

 

Fig. 4.4: Required OSNR at BER = 3.8 × 10-3 versus WDM channel spacing without digital receiver 
linearization scheme. 

At a channel spacing of 35 GHz, to show the sensitivity of the systems to the applied CSPR 

value, BER versus CSPR without and with the iterative SSBI E&C approach at 31 dB OSNR was 

plotted in Fig. 4.5.  A tradeoff between the system penalties can be observed, signals with lower 

CSPR values suffered more from high nonlinear distortion, contributed by the SSBI, while high 

CSPR led to a high required OSNR value duer to excessive optical carrier power, which is included 

in the numerator of the OSNR calculation. Due to the change in this tradeoff by using the iterative 

SSBI E&C scheme, the optimum CSPR value was reduced by approximately 3 dB with respect to 

the case without performing any linearization. 
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Fig. 4.5: BER versus CSPR without and with iterative SSBI E&C scheme at OSNR = 31 dB. 

An assessment of the dependence of the optimum CSPR value on the OSNR level using the 

iterative SSBI E&C scheme was carried out by plotting the optimum CSPR as a function of OSNR, 

as shown in Fig. 4.6. The optimum performance was achieved by sweeping the CSPR value from 

2 dB to 20 dB and setting it to the optimum value for each OSNR level, as described in Chapter 2, 

Section 2.2. The optimum CSPR value increased with the OSNR, as described in Chapter 2, 

Section 2.2. In comparison to the uncompensated case, the optimum CSPR values was reduced 

when the iterative SSBI E&C scheme was applied. Since the compensation effectiveness relies on 

the accuracy of symbol decision making, the reduction was 3 dB for high OSNRs (≥ 27 dB), 

gradually reducing to 1.5 dB for low OSNRs (≤ 21 dB).   

 

Fig. 4.6: Optimum CSPR versus OSNR without and with iterative SSBI E&C scheme in back-to-back 
operation. 

The BER versus OSNR for the cases without and with the receiver-based iterative SSBI E&C 

scheme was plotted in Fig. 4.7, the optimum CSPR values at each OSNR were obtained from the 

results shown in Fig. 4.6.  It can be seen that the required OSNR at the HD-FEC threshold (BER 

= 3.8 × 10-3) was 33.5 dB without using linearization, reduced to 26.4 dB (7.1 dB gain) by applying 

the iterative SSBI E&C technique.  
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Fig. 4.7: BER versus OSNR at 35 GHz WDM channel spacing without and with receiver-based digital 
iterative SSBI E&C scheme. 

4.3.2 WDM Transmission Performance Evaluation 

In the transmission experiments using multiple span fibre link (Fig. 4.3), BER versus optical launch 

power per channel at 35 GHz channel spacing was plotted in Fig. 4.8, illustrating the transmission 

performance at different optical launch powers at 240 km WDM transmission. It can be seen that 

the optimum optical launch power was reduced by up to 1 dB after applying the iterative SSBI 

E&C scheme. The optimum CSPR remained the same for all the optical launch powers, at 12 dB 

without using linearization and 9 dB using the iterative scheme. 

 

Fig. 4.8: BER versus optical launch power per channel at 35 GHz channel spacing without and with the 
iterative SSBI E&C scheme over 240 km WDM transmission. 

As mentioned before, the accuracy of the symbol decisions needs to be improved by carrying 

out multiple iterations in the compensation DSP. The plot of BER versus the applied number of 

iterations in the receiver DSP at 240 km transmission was shown in Fig. 4.9. It can be seen that, 

more than four iterations were required in order to achieve the maximum compensation gain. 

Additionally, the number of iterations required varies with the transmission distance due to the 
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variation in accuracy of the symbol decision making; fewer iterations are required for shorter 

transmission distances. 

 

Fig. 4.9: BER versus receiver iteration numbers with the iterative SSBI E&C scheme over 240 km WDM 
transmission. 

The BER (at the optimum optical launch power and CSPR) versus transmission distances from 

80 km to 240 km multiple span (N = 1, 2 and 3) without and with the iterative SSBI E&C scheme 

was plotted in Fig. 4.10. It can be observed that the WDM transmission performance was 

significantly improved at all distances, and the BER at 240 km was decreased from 1.2 × 10-2 to 

2.8 × 10-3 using the iterative SSBI E&C scheme. Since the tradeoff between the ASE-noise and 

fibre nonlinearity remained unchanged in multiple span fibre links, the optimum launch power was 

found to be 1.5 dBm for all three transmission distances. To observe the compensation 

effectiveness, the received constellation diagrams, without and with the iterative SSBI E&C 

scheme after transmission over 240 km, were plotted in the insets (a) and (b). It can be seen that 

after the iterative SSBI E&C scheme, the compensated constellation was significantly less distorted 

than the uncompensated one, especially in the four points in the corners, which were mostly 

affected by the SSBI due to their high symbol energies. The EVM was decreased from 21.2 % to 

17.1% with this compensation method. 
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(a)

(b)  

Fig. 4.10: BER versus transmission distance at 35 GHz WDM channel spacing without and with the 
iterative SSBI E&C scheme. Insets: Received constellation diagrams over 240 km WDM transmission, 

(a) without (21.2%), and (b) with iterative SSBI E&C scheme (17.1%). 

Finally, the performance of all four WDM channels was shown in Fig. 4.11 at a distance of 240 

km. The average BER for all the channels was decreased from 1.1 × 10-2 without SSBI cancellation, 

to 2.5 × 10-3 (nearly one-order magnitude) using the iterative SSBI E&C approach. To calculate 

the theoretical upper bound on the achievable net optical ISD, based on the theoretical hard-

decision decoding bound for the binary symmetric channel [14] at 2.5 × 10-3 BER (p), the 

maximum code rate (r) is given by: 

 ¤ = 1 + � ∙ ���*� + �1 − �� ∙ ���*�1 − �� (4.4) 

The value of r was found to be 0.97, hence the net bit rate per channel was 109 Gb/s, and the 

achieved maximum net optical ISD was 3.11 (b/s)/Hz. 

 

Fig. 4.11: BERs for each WDM channel without and with the iterative SSBI E&C scheme over 240 km 
transmission. 
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4.4 Summary 

Technical details and experimental performance evaluations of the receiver-based digital iterative 

SSBI E&C technique were presented in this chapter. Both theoretical analysis and practical 

experimental assessments indicated that the digital iterative SSBI E&C approach can effectively 

eliminate the SSBI penalty by iteratively reconstructing the signal-signal beating products 

according to the symbol decision making, and then subtracting them from the detected signal. Since 

such scheme avoids the utilization of complex balanced receiver-based SSBI mitigation, the optical 

hardware complexity is significantly reduced. However, due to requirement of multiple iterations 

in the compensation DSP, the dramatically increased digital hardware complexity becomes the 

main drawback of this scheme. Moreover, the SSBI estimation is affected by the accuracy of the 

symbol decision making, and noticeable degradation of the compensation effectiveness can be 

observed at lower OSNR levels as a consequence. 
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CHAPTER 5 

RECEIVER-BASED DIGITAL SINGLE-STAGE 

LINEARIZAITON FILTER 
As discussed in Chapter 4, the digital iterative SSBI E&C technique includes symbol decision-

based SSBI reconstruction with multiple demodulation and modulation operations, its 

compensation performance has a high dependency on the accuracy of symbol decision making and 

it comes with significantly increased DSP complexity. In this chapter, a simple structured receiver-

based digital linearization filter is demonstrated. In Section 5.1, its operating principle and its 

further application as a non-iterative SSBI E&C scheme are first described mathematically. In 

Section 5.2, the experimental performance including optical back-to-back and WDM transmission 

is assessed in a dispersion pre-compensated 35 GHz-spaced 112 Gb/s per channel spectrally-

efficient WDM SSB 16-QAM Nyquist-SCM DD system operating over SSMF links of up to 240 

km. Section 4.3 summaries this chapter. 

5.1 Principle of Operation 

The digital single-stage linearization filter studied in this section was recently proposed and 

demonstrated for SSB OFDM DD system in [1] and has shown effective compensation 

performance with very simple digital hardware structure. The functional description of such 

scheme has been presented in Chapter 3, Section 3.2.3. In this section, its working principle is 

further described with mathematical expressions. 
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Fig. 5.1: Receiver DSP design with the receiver-based single-stage linearization filter. SF: sideband filter. 
DEMOD DSP: SSB SCM signal  demodulation. 

The receiver DSP design with the single-stage linearization filter is shown in Fig. 5.1. 

Following the square-law detection, the detected DSB signal after the DC offset removal, VDD(n) 

(expressed in Eq. 4.1) is passed through the single-stage linearization filter. The signal after the 

sideband filter, VSF1(n), and the output of the single-stage linearization filter, VLin1(n), are written 

as follows: 

 c79��0� = � ∙ f �0� + Λq|f �0�|*r (5.1) 

 c¦
���0� = c79��0� − §� ∙ |c79��0�|* =  � ∙ f �0� +  Λq|f �0�|*r − �*§� ∙ |f �0�|* − 2�§�∙ P�gf ∗�0� ∙ Λq|f �0�|*rl − §� ∙ |Λq|f �0�|*r|* 

(5.2) 
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where α is an amplitude scaling factor inversely proportional to the optical carrier value, Λ[∙] is the 

SF operator, and η1 is a second amplitude scaling factor which controls the effectiveness of the 

single-stage linearization filter. In the RHS of Eq. 5.2, the first term is the desired SSB CSBP; since 

we only demodulate the signal spectrum in the positive frequency domain, the second term (SSBI) 

can be partially eliminated by the third term with the optimum adjustment of η1. On the other hand, 

since the introduced fourth (signal-SSBI beating) and fifth (SSBI-SSBI beating) terms are 

comparatively lower than the SSBI term, the nonlinear penalty is reduced with respect to the case 

without implementing this single-stage linearization filter [2]. It should be mentioned that, the use 

of the SF avoids unwanted beating products which would otherwise be generated by the negative 

frequency part of the detected DSB signal spectrum. DC offset removal is performed to ensure the 

re-generation of only the signal-signal beating products. 

An advantage of this single-stage linearization filter is its use of a very simple DSP structure. 

In addition, in comparison with the iterative SSBI E&C approach [3-5] discussed in Chapter 4, the 

single-stage linearization filter does not carry out symbol decision-based compensation, and hence 

its performance does not reply on the accuracy of the decision making. However, as shown in Eq. 

5.2, as the calculation of the signal-signal beating products is based on the received distorted signal, 

this scheme itself introduces extra unwanted beating interference, thus preventing the filter from 

achieving the maximum compensation performance. 

Another application of the single-stage linearization filter is to combine it with the SSBI E&C 

scheme described in the previous chapter, to realise a non-iterative SSBI E&C scheme. Results of 

our simulation and experimental studies have indicated that this non-iterative SSBI E&C scheme 

offers compensation performance matching the iterative scheme [6]. Fig. 5.2 shows the receiver 

DSP with the non-iterative SSBI E&C technique. 
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Fig. 5.2: Receiver DSP design with the receiver-based non-iterative SSBI E&C technique. SF: sideband 
filter. MOD & DEMOD DSP: SSB SCM signal generation and demodulation. 

Two copies of the detected DSB signal waveform, VDD(n) are made with one being stored in 

memory and the other being passed through the single-stage linearization filter to partially 

eliminate the SSBI terms. Following this, non-iterative SSBI E&C is performed. Since symbol 

decisions are significantly more accurate due to the preceding single-stage linearization filtering 

stage, multiple iterations of the signal demodulation and modulation are not required to achieve 

the maximum compensation gain, thus leading to a speed-up of the convergence process and 

reduction of the DSP complexity. Moreover, unlike the single-stage linearization filter, no 

additional beating interferences (fourth and fifth terms in Eq. 5.2) are introduced, and hence it 

offers potentially better compensation performance, especially at high OSNR levels. However, 

similarly to the iterative SSBI E&C approach, the performance of this technique is also noticeably 

degraded at lower OSNR levels, resulting from its dependency on the accuracy of the symbol 

decision making. 
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5.2 Experimental Results 

Experimental assessments of the system performance in both WDM back-to-back and transmission 

operations with the single-stage linearization filter and the non-iterative SSBI E&C scheme were 

carried out on the transmission test-bed discussed in Chapter 4, Section 4.2. Their compensation 

performance was also compared with that of the iterative SSBI E&C technique, with four iterations 

being utilized for the latter to achieve the maximum possible effectiveness. 

5.2.1 WDM Back-to-Back Performance Evaluation 

In the WDM optical back-to-back assessment, the BER with respect to CSPR at an OSNR of 31 

dB was plotted in Fig. 5.3 for the system without and with the different digital linearization 

schemes. In comparison to the system without linearization, optimum CSPR value of the system 

utilizing single-stage linearization filter was reduced by approximately 2 dB, which was 1 dB lower 

than the cases with SSBI E&C schemes. The difference in the reduction of the optimum CSPR 

values is mainly because the SSBI E&C schemes offer stronger capability in suppressing the SSBI 

penalty over the single-stage linearization filter at such OSNR level. 

 

Fig. 5.3: BER versus CSPR without and with digital single-stage linearization filter, iterative and non-
iterative SSBI E&C schemes at OSNR = 31 dB. 

Following this, the dependence of the optimum CSPR values on the OSNR level was assessed 

by plotting the optimum CSPR versus OSNR, as shown in Fig. 5.4. In comparison to the 

uncompensated case, the optimum CSPR values were reduced by 2 dB for all the OSNRs for the 

single-stage linearization filter, while the SSBI E&C schemes exhibited greater reduction (3 dB) 

at high OSNRs (≥ 27 dB) and less reduction (1.5 dB) for low OSNRs (≤ 21 dB) because the 

compensation effectiveness of such schemes is determined by the accuracy of the decision 

makings.  

lo
g

1
0
(B

E
R

)



81 
 

 

Fig. 5.4: Optimum CSPR versus OSNR without and with digital single-stage linearization filter, iterative 
and non-iterative SSBI E&C schemes in back-to-back operation. 

To show the sensitivity of the systems to the applied amplitude scaling factors (η1, ηdB = 10 × 

log10(ηlinear)) in the single-stage linearization filter, BER versus applied amplitude scaling factor at 

31 dB OSNR and 11 dB CSPR was plotted in Fig. 5.5. It can be seen that the value of η1 controlled 

the compensation effectiveness of the single-stage linearization filter and needed to be adjusted to 

the optimum value (-10 dB in this figure). Reduced compensation effectiveness can be observed 

with low values of η1, while the high valued η1 leads to overcompensation. It should be mentioned 

that, the optimum η1 is inversely proportional to the utilized CSPR value [2]. Therefore, the 

optimum η1 varies with OSNR, transmission distances and launch powers due to the utilization of 

different CSPRs.  

 

Fig. 5.5: BER versus scaling factor (η1) with digital single-stage linearization filter at OSNR = 31 dB, 
CSPR = 11 dB. 
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 Furthermore, the BER versus OSNR was plotted in Fig. 5.6 for the cases without and with the 

single-stage linearization filter, iterative and non-iterative SSBI E&C schemes. The CSPR was 

adjusted to the optimum value at each OSNR level, as shown in Fig. 5.4. It can be seen that, the 

required OSNR at the 3.8 × 10-3 BER threshold was 28.2 dB for the case with single-stage 

linearization filter (5.3 dB total compensation gain) and was reduced to 26.4 dB by utilizing the 

non-iterative SSBI E&C. As discussed in Section 5.1, the single-stage linearization filter introduces 

extra unwanted beating interference, thus its compensation performance is limited. On the other 

hand, by combining it with the single-stage linearization filter, the non-iterative SSBI E&C offers 

the same performance as the iterative scheme without the requirement for multiple demodulation 

and modulation operations, and its digital circuit design is therefore significantly simpler. In 

addition, due to improved approximation of the signal-signal beating terms, the SSBI E&C 

schemes provide the best compensation performance at high OSNRs, although its performance is 

degraded at lower OSNR levels due to the increased number of inaccurate symbol decisions. 

 

Fig. 5.6: BER versus OSNR without and with receiver-based digital single-stage linearization filter, 
iterative and non-iterative SSBI E&C schemes. 

5.2.2 WDM Transmission Performance Evaluation 

WDM transmission evaluations were also carried out. BER versus optical launch power per 

channel over 240 km WDM transmission was plotted in Fig. 5.7. It can be seen that the system 

performance was improved at all optical launch powers and the optimum launch power was 

reduced by approximately 1 dB by applying these linearization schemes. The optimum CSPR was 

10 dB with the single-stage linearization filter and 9 dB with the non-iterative SSBI E&C approach, 

which corresponded to reductions of 2 dB and 3 dB compared to the uncompensated case 

respectively. 
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Fig. 5.7: BER versus optical launch power per channel without and with digital single-stage linearization 
filter, iterative and non-iterative SSBI E&C schemes over 240 km WDM transmission. 

Furthermore, the BER was plotted versus the number of iterations employed in the 

compensation DSP for WDM transmission over 240 km in Fig. 5.8 for the cases with these three 

approaches. It can be seen that, the non-iterative SSBI E&C scheme offered better performance 

than the single-stage linearization filter and similar performance to that of the iterative approach 

whilst the need to perform multiple (approximately four times in the figure) iterations was avoided.  

 

Fig. 5.8: BER versus receiver iteration numbers with digital single-stage linearization filter, iterative and 
non-iterative SSBI E&C schemes over 240 km WDM transmission. 

In addition, the BER (at the optimum launch power and CSPR) versus transmission distance 

was plotted in Fig. 5.9. It can be observed that both the single-stage linearization filter and the non-

iterative SSBI E&C scheme improved the system performance at all transmission distances from 

80 km to 240 km. The non-iterative SSBI E&C scheme exhibited better compensation performance 

(BER of 3.0 × 10-3 over 240 km transmission) than single-stage linearization filter (BER = 5.8 × 

10-3), and similar compensation performance with the iterative scheme.  
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(a)
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Fig. 5.9: BER versus transmission distance without and with digital single-stage linearization filter, 
iterative and non-iterative SSBI E&C schemes. Insets: Received constellation diagrams over 240 km 

WDM transmission, (a) without (21.2%), (b) with sinlge-stage linearization filter (17.4%), (c) with non-
iterative SSBI E&C scheme (17.1%). 

Fig. 5.10 showed all four WDM channels’ performance at the optimum optical launch power 

at a distance of 240 km. Since the two centre channels suffer from higher FWM, as they each have 

two direct neighbouring channels, the BERs for these channels are relatively higher than those for 

the remaining two channels. The average BER for all the channels was reduced to 5.1 × 10-3 using 

the single-stage linearization filter and was further reduced to 2.6 × 10-3 using the non-iterative 

SSBI E&C, similar to that of the iterative approach. According to the theoretical hard-decision 

decoding bound, the achieved maximum net optical ISDs were 3.05 (b/s)/Hz and 3.11 (b/s)/Hz 

respectively. 

 

Fig. 5.10: BERs for each WDM channel without and with digital single-stage linearization filter, iterative 
and non-iterative SSBI E&C schemes over 240 km transmission. 

5.3 Summary 

This chapter focused on the receiver-based digital single-stage linearization filter and its 

application to avoid the requirement for multiple iterations in the SSBI E&C scheme. The working 

principles were mathematically described, followed by experimental evaluations of a dispersion 
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pre-compensated 35 GHz-spaced 112 Gb/s per channel spectrally-efficient WDM SSB 16-QAM 

Nyquist-SCM DD system transmitting over SSMF links of up to 240 km. Both the theoretical 

analysis and the experimental results indicated that the single-stage linearization filter can partially 

compensate the SSBI with a very simple DSP structure. However, as this technique itself 

introduces extra beating interference, its compensation performance is limited. On the other hand, 

a non-iterative SSBI E&C scheme was also proposed and demonstrated by combining it with the 

single-stage linearization filter. This scheme offers compensation performance similar to the 

iterative SSBI E&C technique and avoids the requirement for multiple (typically more than four) 

symbol decision-based SSBI reconstruction processes. Therefore, it offers significantly reduced 

DSP complexity in contrast to the iterative SSBI E&C. Since the non-iterative SSBI E&C is still 

symbol decision-based, its compensation performance is noticeably degraded at lower OSNR 

values. 
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CHAPTER 6 

RECEIVER-BASED DIGITAL TWO-STAGE 

LINEARIZATION FILTER 
As mentioned in Chapter 5, in the single-stage linearization filter [1], inaccuracies in the 

approximation of SSBI terms occur due to the inclusion of the SSBI terms in the detected signal, 

VSF1(n), the compensation effectiveness of the single-stage linearization filter being limited by the 

resulting additional beating interference. In order to achieve improved compensation performance, 

one solution is to iteratively repeat the single-stage linearization filtering process, using an iterative 

linearization filter [2, 3]. Its DSP design can be found in Chapter 3, Section 3.2. This technique 

improves the performance of the single-stage linearization filter by using the stored received signal 

waveform and iteratively repeating the SSBI estimation. However, as discussed in Chapter 4, the 

DSP complexity is directly related to the number of iterations used because it is impossible to reuse 

the same digital hardware in the iteration for continuous transmitted data. Carrying out multiple 

(more than four) iterations leads to its DSP complexity being significantly increased [4]. 

This chapter focuses on an alternative method to enhance the performance of the single-stage 

linearization filter, through the use of a two-stage linearization filter. This technique has been 

shown to offer similar performance to the iterative linearization filter and at the same time does 

not require the implementation of a complex iterative compensation process, thus offering a good 

tradeoff between the compensation effectiveness and the digital circuit design complexity. Its 

working principle is first described mathematically in Section 6.1. Section 6.2 presents the obtained 

experimental results on the dispersion pre-compensated 35 GHz-spaced 112 Gb/s per channel 

spectrally-efficient WDM SSB 16-QAM Nyquist-SCM DD system in transmission over SSMF 

links of up to 240 km and Section 6.3 concludes this chapter. 

6.1 Principle of Operation 

The two-stage linearization filter was proposed for SSB Nyquist-SCM DD systems in [5-7].  Its 

working principle is explained in detail in this section. 

Rx DSP:

VDD(n)

Detected 
Signal   | •••• | 2

+

-
Scaling (η1)

1st Stage Linearization

SF

VSF1(n)

DC Offset 
Removal

VLin1(n)

DEMOD 
DSP

Data
 Output

∑ SF

  | •••• | 2 SF

  ( •••• ) *

× Scaling (ηηηη2)Re[ •••• ]

+

+
∑

2nd  Stage Linearization

VLin2(n)VSF2(n)

Two-Stage Linearization Filter

 

Fig. 6.1: Receiver DSP design with the two-stage linearization filter. SF: sideband filter. DEMOD DSP: 
SSB SCM signal  demodulation. 

The receiver DSP design with the two-stage linearization filter is shown in Fig. 6.1. A second 

linearization stage is applied to remove the majority of the unwanted beating interference 

introduced by the first stage. The operation principle can be described as follows: In the first 

linearization stage, which is the same as the single-stage linearization filter described in Chapter 

5, with optimum adjustment of η1, the SSBI penalty is removed and the remaining terms are the 
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signal-SSBI (fourth term) and SSBI-SSBI (fifth) beating terms, as described in Eq. 5.2. Following 

this, the output signal passes through the second linearization stage to compensate the signal-SSBI 

beating interference introduced by the first stage, as follows: 

 c79*�0� = � ∙ f �0� − 2�§� ∙ Λ ©P�gf ∗�0� ∙ Λq|f �0�|*rlª − §�∙ Λq|Λq|f �0�|*r|*r (6.1) 

 c¦
�*�0� = c79*�0� + §* ∙ P�gc79*∗ �0� ∙ Λq|c79*�0�|*rl (6.2) 

where VSF2(n) is the filtered SSB signal, and VLin2(n) is the output of the second linearization stage. 

The scaling factor η2 can be optimized to achieve the maximum compensation gain. Since the input 

of the second linearization stage VLin2(n) is mainly the desired CSBP, the estimation of the signal-

SSBI beating is significantly improved and the majority of the signal-SSBI beating interference 

can be compensated in this stage, thus further enhancing the compensation performance. It is worth 

noting that, since the SSBI-SSBI beating term results in a very small penalty in contrast to the 

signal-SSBI beating term, it is left uncompensated in order to keep the DSP simple. Note that DC 

offset removal is performed to ensure the re-generation of only the signal-signal beating products. 

In contrast to the single-stage linearization filter, the two-stage linearization filter offers the 

advantage of enhanced compensation performance. Compared with the other digital SSBI 

compensation schemes such as the above-mentioned iterative linearization filter or the SSBI 

estimation and cancellation schemes [8-11] described in Chapter 4, this technique avoids the 

requirement for multiple iterations or multiple modulation and demodulation DSP operations. 

Hence, although the DSP complexity is more than twice that of the single-stage linearization filter, 

it is still relatively low compared to the iterative linearization filter and the SSBI E&C schemes. 

6.2 Experimental Results 

The performance of both WDM optical back-to-back and transmission implementing the two-stage 

linearization filter was assessed using the experimental test-bed described in Chapter 4, Section 

4.2. Its performance was compared with the single-stage linearization filter and non-iterative SSBI 

E&C. 

6.2.1 WDM Back-to-Back Performance Evaluation 

BER versus carrier to signal power ratio (CSPR) at an OSNR of 31 dB was plotted in Fig. 6.2 to 

show the sensitivity of the systems to the applied CSPR value. Compared with the system without 

linearization, the optimum CSPR value was reduced by approximately 3 dB after utilizing the two-

stage linearization filter, which was 1 dB higher than the case with the single-stage linearization 

filter. This can be explained by the second linearization stage of the filter eliminating the additional 

distortion introduced by the first stage, hence achieving enhanced compensation effectiveness 

compared to the single-stage linearization filter. In addition, the range of the CSPRs at which the 

BER values are below the HD-FEC threshold for the system with the two-stage linearization filter 

was approximately 1 dB wider than that with non-iterative SSBI E&C approach. 
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Fig. 6.2: BER versus CSPR without and with receiver-based digital single-stage linearization filter, two-
stage linearization filter and non-iterative SSBI E&C scheme at OSNR = 31 dB. 

Fig. 6.3 showed the variations of the optimum CSPR values with respect to the OSNRs. It can 

be observed that, in comparison to the uncompensated case, the optimum CSPR values needed to 

be reduced by 3 dB at all values of OSNR when using the two-stage linearization filter, which was 

1 dB higher than that achieved using the single-stage linearization filter. In contrast to the non-

iterative SSBI E&C approach, this optimum CSPR reduction was up to 1.5 dB higher for low 

OSNRs (≤ 21 dB), and gradually became the same for high OSNRs (≥ 27 dB). 

 

Fig. 6.3: Optimum CSPR versus OSNR without and with receiver-based digital single-stage linearization 
filter, two-stage linearization filter and non-iterative SSBI E&C scheme in back-to-back operation. 

As shown in Fig. 6.1, there are two amplitude scaling processes in the DSP design of the two-

stage linearization filter. It is therefore crucial to optimize these two applied scaling factors to 

achieve the maximum compensation gain. Fig. 6.4 showed the BER versus applied amplitude 

scaling factors (η1 and η2) at 31 dB OSNR and 10 dB CSPR. The BER was initially reduced by 

optimum adjustment of the scaling factor η1 (with η2 set to zero), following which it was further 

decreased by optimizing η2. The plot showed the sensitivity of the system to the scaling factor 

values. The optimum value of η1 (-10 dB) was found to be 2 dB lower than η2 (-8 dB). Note that, 
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the values of the scaling factors are inversely proportional to the utilized CSPR, and do not change 

with the optical signal power. 

 

Fig. 6.4: BER versus scaling factor (η1 and η2) with digital two-stage linearization filter at OSNR = 31 
dB, CSPR = 10 dB. 

Furthermore, the BER with respect to OSNR for the cases without and with single-stage 

linearization filter, two-stage linearization filter and non-iterative SSBI E&C scheme was plotted 

in Fig. 6.5. It can be seen that, by implementing the two-stage linearization filter, the required 

OSNR at HD-FEC threshold, assumed to be BER = 3.8 × 10-3, was reduced to 25.9 dB. In contrast 

to the case without linearization, the achieved compensation gain was 7.6 dB, which is higher than 

the 5.4 dB and 7.1 dB using the single-stage linearization filter and non-iterative SSBI E&C 

approach, respectively. Furthermore, it can also be observed that, the two-stage linearization filter 

offered noticeably better compensation gain than the non-iterative SSBI E&C approach at low 

OSNR levels (< 25 dB), because the performance of this technique does not rely on the accuracy 

of the symbol decision making. 

 

Fig. 6.5: BER versus OSNR without and with receiver-based digital single-stage linearization filter, two-
stage linearization filter and non-iterative SSBI E&C scheme. 
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6.2.2 WDM Transmission Performance Evaluation 

Following the WDM optical back-to-back assessment, the WDM transmission experiments were 

carried out. BER versus optical launch power per channel over 240 km WDM transmission without 

and with the single-stage linearization, the two-stage linearization filter and the non-iterative SSBI 

E&C scheme was plotted in Fig. 6.6. It can be seen that the two-stage linearization filter offered 

the widest range of optical launch powers at which the BER is below the FEC threshold, and a 1 

dB reduction of the optimum launch power can be observed. The optimum CSPR was 9 dB (a 3 

dB reduction in comparison to the uncompensated case) when using the two-stage linearization 

filter. 

 

Fig. 6.6: BER versus optical launch power per channel without and with receiver-based digital single-
stage linearization filter, two-stage linearization filter and non-iterative SSBI E&C scheme over 240 km 

WDM transmission. 

Following this, the BER (at the optimum launch power and CSPR) versus transmission distance 

was plotted in Figs. 6.7. The BER at 240 km transmission was 1.8 × 10-3 with the two-stage 

linearization filter, which achieved better transmission performance than both the single-stage 

linearization filter and the non-iterative SSBI E&C scheme. Insets (a-d) showed the received signal 

constellation diagrams with corresponding EVM values following transmission over 240 km.  
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Fig. 6.7: BER versus transmission distance without and with receiver-based digital single-stage 
linearization filter, two-stage linearization filter and non-iterative SSBI E&C scheme. Insets: Received 

constellation diagrams over 240 km WDM transmission, (a) without (21.2%), (b) with single-stage 
linearization filter (17.4%), (c) with non-iterative SSBI E&C scheme (17.1%) and (d) with two-stage 

linearization filter (15.8%). 

Finally, the performance of all four WDM channels at the optimum launch power after 

transmission over 240 km was plotted in Fig. 6.8. The average BER value with two-stage 

linearization filter was found to be 1.6 × 10-3 and the achieved maximum net optical ISD was 3.15 

(b/s)/Hz. 

 

Fig. 6.8: BERs for each WDM channel without and with receiver-based digital single-stage linearization 
filter, two-stage linearization filter and non-iterative SSBI E&C scheme over 240 km transmission. 

6.3 Summary 

The receiver-based digital two-stage linearization filtering scheme was described and 

demonstrated in this chapter. The working principles were first described mathematically, and its 

performance in a dispersion pre-compensated 35 GHz-spaced 112 Gb/s per channel spectrally-

efficient WDM SSB 16-QAM Nyquist-SCM DD system transmitting over up to 240 km of SSMF 

was experimentally assessed. The results suggest that the two-stage linearization filter enhances 

the compensation performance of the single-stage linearization by adding one additional 
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linearization stage to eliminate the majority of the unwanted extra beating interference introduced 

by the single-stage linearization filter. In contrast to the iterative compensation approaches, this 

technique avoids the requirement for multiple compensation processes, and the DSP therefore has 

significantly reduced complexity. Furthermore, since the two-stage linearization filter does not 

reply on the accuracy of the symbol decision making, this technique offers noticeably better 

compensation performance than the non-iterative SSBI E&C scheme at the lower OSNR levels. 

References 

[1] S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF 

using single-sideband modulation with novel interference-cancellation scheme,” in European Conference and Exhibition on 

Optical Communication (ECOC 2015), paper Mo.4.5.2. 

[2] K. Zou, Y. Zhu, F. Zhang and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle 

subcarrier modulation and direct-detection,” Opt. Lett. 41(12), 2767-2770 (2016). 

[3] K. Zou, Y. Zhu, and F. Zhang, “800Gb/s (8×100Gb/s) Nyquist half-cycle single sideband modulation direct detection 

transmission over 320km SSMF at C-band,” J. Lightw. Technol., 35(10), 1900-1905 (2017). 

[4] Z. Li, M. S. Erkilinc, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, " Comparison of Digital Signal-Signal Beat 

Interference Compensation Techniques in Direct-Detection Subcarrier Modulation Systems", Opt. Express, 24(25), 29176-

29189 (2016). 

[5] Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Two-stage linearization filter 

for direct-detection subcarrier modulation", IEEE Photon. Technol. Lett. 28(24), 2838-2841 (2016). 

[6] Z. Li, M.S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B.C. Thomsen, P. Bayvel, and R.I. Killey, "112 Gb/s/λ WDM direct-

detection Nyquist-SCM transmission at 3.15 (b/s)/Hz over 240 km SSMF enabled by novel beating interference compensation", 

in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2017), paper 

Tu3I.4.  

[7] Z. Li, M.S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B.C. Thomsen, P. Bayvel, and R.I. Killey, "Improvement of digital 

chromatic dispersion post-compensation by utilizing beating interference mitigation for direct-detection SSB Nyquist-SCM", in 

Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2017), paper 

Th3D.2. 

[8] Z. Li, M. S. Erkilinc, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, " Comparison of digital signal-signal beat 

interference compensation techniques in direct-detection subcarrier modulation systems", Opt. Express, 24(25), 29176-29189, 

(2016). 

[9] W. Peng, X. Wu, K. Feng, V.R. Arbab, B. Shamee, J. Yang, L.C. Christen, A.E. Willner, and S. Chi, “Spectrally efficient direct-

detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11) 9099-9111 

(2009). 

[10] J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI 

reduction DSP,” IEEE Photon. Technol. Lett. 28(2), 119-122 (2016). 

[11] Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Reach enhancement for WDM 

direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation", in European 

Conference and Exhibition on Optical Communication (ECOC 2016), paper M 2.B.1. 

  



93 
 

CHAPTER 7 

RECEIVER-BASED DIGITAL KRAMERS-
KRONIG SCHEME 

As described in Chapters 4, 5 and 6, the techniques including digital SSBI E&C schemes, single-

stage and two-stage linearization filters treat the signal-signal beating terms as a perturbation to 

the signal. The compensation process works by calculating these terms and subtracting them from 

the detected signal. However, due to the inaccuracy of the SSBI approximation (either caused by 

inaccurate symbol decision making in the SSBI E&C approaches or the introduction of additional 

distortion by the linearization filters), these techniques all have the drawback of limited 

effectiveness. This chapter focuses on the technical details and performance evaluations of a 

recently proposed receiver-based digital compensation techniques, termed the Kramer-Kronig 

(KK) scheme, and demonstrates its superior performance compared to the other digital 

linearization schemes. Section 7.1 explains the principles of its operation, including a mathematical 

model of the scheme. Section 7.2 presents the results of experimental evaluations on a dispersion 

pre-compensated 4 × 112 Gb/s spectrally-efficient WDM SSB 16-QAM Nyquist-SCM DD system 

transmitting over uncompensated SSMF links of up to 240 km. Section 7.3 summarises the work 

in this chapter. 

7.1 Principle of Operation 

The digital Kramers-Kronig scheme has been demonstrated for SSB DD systems through 

numerical simulations [1, 2] and experiments [3, 4], confirming its potential superiority in 

minimising the nonlinear penalty compared to the other digital linearization schemes. As discussed 

in Chapter 3, if the transmitted signal is single-sideband and fulfils the condition of minimum phase, 

the KK scheme enables the optical phase to be reconstructed digitally from the measurement of 

the optical signal’s envelope (making the assumption that the optical signal is single-sideband). To 

fulfil the minimum phase condition, the optical carrier is required to have an amplitude larger than 

that of the signal. Fig. 7.1 shows the receiver DSP design including the KK scheme.  

√√√√ ( · ) ln (| · |) FFT

i*sign(ω)

IFFT exp{i( · )} DEMOD 
DSP

Re-
sampling

Re-
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h(n)VDD(n) φ(n) VKK(n)

Data
 Output

 

Fig. 7.1: Receiver DSP design with the Kramers-Kronig scheme. 

Based on the Kramers-Kronig relation, the phase of the transmitted SSB signal is linked to its 

intensity [5], and therefore, following direct detection of the total field intensity, the complex-

valued electric field of the SSB signal can be extracted from the measured photocurrent. The KK 

scheme being utilized to recover the complex waveform of the optical signal can be written as: 
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 ℎ�0� = «cdd�0� (7.1) 

 ��0� = ℱm�­) ∙ �)�0�1�ℱ��0q|ℎ�0�|r�® (7.2) 

 c���0� = ℎ�0� ∙ ����)��0�� (7.3) 

where VDD(n) is the DSB real-valued signal obtained after direct detection of the optical SSB signal, 

Eq. 7.2 is the frequency domain implementation of the KK relation given by Eq. 3.2, sign(ω) is the 

sign function, which is equal to 1 for ω > 0, to 0 for ω = 0, and to -1 for ω < 0, and Ƒ-1{∙} and Ƒ{∙} 

are the inverse Fourier and Fourier transform operators. In addition, since the nonlinear operations 

(i.e. square-root and logarithm (ln(|h(n)|))) in the KK scheme introduces signal bandwidth 

broadening, it is necessary to utilize a relatively high oversampling rate (typically more than 4 

samples per symbol) in the KK scheme’s DSP. With a sufficiently high oversampling rate, the KK 

scheme allows the accurate reconstruction of the transmitted SSB signal, which avoids the 

nonlinear penalties caused by square-law detection. Additionally, similarly to the EDC techniques, 

the KK scheme’s real time implementation can be potentially implemented in the frequency 

domain using FFTs and the overlap-and-save method, although the performance and complexity 

of this solution is yet to be evaluated. 

7.2 Experimental Results 

Experimental assessments of the system performance with the KK scheme were carried out using 

the transmission test-bed described in Chapter 4, Section 4.2. The joint optimization of CSPR value 

utilized at the transmitter and the resampling rate in the KK scheme’s DSP was first discussed. 

Following this, the performance of the KK scheme was compared with that of the previously 

investigated digital linearization techniques, including the single-stage linearization filter [6] and 

the two-stage linearization filter [7, 8]. 

7.2.1 WDM Back-to-Back Performance Evaluation 

In the WDM optical back-to-back operation, the required OSNR at the HD-FEC BER threshold of 

3.8 × 10-3 versus CSPR at different resampling rates (varying from 2 Sa/symbol to 7 Sa/symbol) 

was plotted in Fig. 7.2. At a fixed resampling rate, a trade-off between the system penalties can be 

clearly observed. Signals operating at lower CSPR values suffered from large nonlinear penalty, 

since the minimum phase condition was not met, while high CSPR values led to higher required 

OSNR, due to the inclusion of excessive optical carrier power, which is included in the numerator 

of the OSNR calculation. On the other hand, the required OSNR values increased at lower 

resampling rates, especially at those less than 4 Sa/symbol, due to their failure to meet the Nyquist 

criterion for the spectrally broadened signals generated within the KK algorithm. The optimum 

CSPR shifted to higher values at lower sampling rates [9]. 
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Fig. 7.2: Required OSNR at BER = 3.8 × 10-3 versus CSPR with different KK scheme resampling rate. 

The required OSNR values at the optimum CSPR values over a range of resampling rates were 

plotted in Fig. 7.3. When the resampling rate was lower than 4 Sa/symbol (112 GSa/s), a significant 

increase in the required OSNR (from 24 dB at 4 Sa/symbol to 34.4 dB at 2 Sa/symbol) can be 

observed; the performance converged asymptotically to a required OSNR of 23.4 dB when 

utilizing 6 Sa/symbol (168 GSa/s) or more. 

 

Fig. 7.3: Required OSNR at the optimum CSPR value versus KK scheme resampling rate. 

The BER versus OSNR without and with the KK scheme at different resampling rates was 

plotted in Fig. 7.4. The required OSNR at the 3.8 × 10-3 BER threshold was found to be 33.5 dB 

without using receiver linearization scheme, reducing by 10.1 dB to 23.4 dB with the KK scheme 

operating at 6 Sa/symbol.  
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Fig. 7.4: BER versus OSNR with different KK scheme resampling rate. 

In order to compare the KK scheme with other digital linearization techniques, Fig. 7.5 showed 

the optimum CSPR versus OSNR. It can be seen that, for the KK receiver, the optimum CSPR 

value was 5 dB lower than that for the case without linearization, for OSNRs above 23 dB (c.f. 2 

dB lower with single-stage linearization filter and 3 dB with two-stage linearization filter). This is 

because the KK scheme has the strongest capability in suppressing the nonlinearities caused by 

square law detection. However, the optimum CSPR value was fixed at 4 dB for OSNR levels 

between 19 dB and 23 dB, since with lower CSPR values, the minimum phase condition was not 

fulfilled. Note that 6 Sa/symbol was utilized in the KK scheme to achieve the maximum 

effectiveness. 

 

Fig. 7.5: Optimum CSPR versus OSNR without and with receiver-based digital single-stage linearization 
filter, two-stage linearization filter and KK scheme in back-to-back operation. 

Fig. 7.6 plotted the optical back-to-back BER performance of systems without linearization and 

with single-stage linearization filter, two-stage linearization filter and with KK scheme. It can be 

observed that the KK scheme provided the best performance of all the techniques in the back-to-

back operation.  
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Fig. 7.6: BER versus OSNR without and with receiver-based digital single-stage linearization filter, two-
stage linearization filter and KK scheme. 

7.2.2 WDM Transmission Performance Evaluation 

Next, the WDM transmission performance was assessed. Fig. 7.7 presented the BER at the 

optimum launch power (1.5 dBm) versus CSPR following transmission over 240 km. A trade-off 

between the system penalties can still be observed. With the lower resampling rates, the KK 

scheme’s performance was degraded and the optimum CSPR values was increased. In contrast to 

the back-to-back operation in Fig. 7.2, the optimum CSPR was increased by approximately 2 dB 

at 6 Sa/symbol, this was because lower noise levels (BER < 10-3) led to the high required CSPR. 

 

Fig. 7.7: BER at the optimum optical launch power versus CSPR with different KK scheme resampling 
rate in WDM transmission over 240 km. 

Fig. 7.8 showed the BER (at the optimum launch power and CSPR value) versus the utilized 

resampling rate at transmission distances of 80, 160 and 240 km. The BERs were significantly 

decreased when resampling rates were increased from 2 Sa/symbol to 4 Sa/symbol, and converged 

for rates of 6 Sa/symbols and above, with the minimum BERs found to be 1.5×10-5, 9.9×10-5 and 

5.5×10-4 at 80 km, 160 km and 240 km respectively. Since the tradeoff between the ASE-noise and 
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fibre nonlinearity remained unchanged in multiple span fibre links, the optimum launch power was 

found to be the same, at 1.5 dBm, for all the transmission distances. 

 

Fig. 7.8: BER at the optimum optical launch power versus KK scheme resampling rate at 80, 160 and 240 
km WDM transmisisons. 

To compare the performance of different digital linearization techniques, BER versus optical 

launch power per channel for 240 km WDM transmission and the BER versus transmission 

distance were plotted in Figs. 7.9 and Fig. 10 respectively. As can be observed in Fig. 7.9, the KK 

scheme (operating at 6 Sa/symbol) offered the best performance at all optical launch powers. Note 

that the optimum CSPR was 7 dB (5 dB reduction in contrast to the uncompensated case) when 

using the KK scheme with 6 Sa/symbol. Furthermore, in Fig. 7.10, it can be seen that the KK 

scheme also provided the best performance at all transmission distances. The received constellation 

diagrams with corresponding EVM values were shown in insets (a-d).  

 

Fig. 7.9: BER versus optical launch power per channel without and with receiver-based digital single-
stage linearization filter, two-stage linearization filter and KK scheme over 240 km WDM transmission. 
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(a)

(c)

(b)

(d)  

Fig. 7.10: BER versus transmission distance without and with receiver-based digital single-stage 
linearization filter, two-stage linearization filter and KK scheme. Insets: Received constellation diagrams 
over 240 km WDM transmission, (a) without (21.2%), (b) with sinlge-stage linearization filter (17.4%), 

(c) with two-stage linearization filter (15.8%) and (d) with KK scheme (13.6%). 

After transmission over 240 km, the BER values for all four WDM channels were measured 

(Fig. 7.11). The average BER value achieved with the KK scheme was found to be 5.2 × 10-4, 

resulting in a net optical SE of 3.18 b/s/Hz based on the theoretical hard-decision decoding bound. 

This value is currently the highest reported net ISD over this transmission distance at the time of 

publication. 

 

Fig. 7.11: BERs for each WDM channel without and with receiver-based digital single-stage linearization 
filter, two-stage linearization filter and KK scheme over 240 km transmission. 

7.3 Summary 

The technical details and performance evaluations of the receiver-based digital Kramers-Kronig 

scheme were presented in this chapter. Both theoretical analysis and practical experimental 

assessments indicate that the digital Kramers-Kronig scheme offers the possibility of fully 

reconstructing the transmitted signal from the detected signal’s amplitude, and thus can provide 

superior linearization effectiveness compared to the other digital linearization techniques studied. 

In order to deal with the broadened bandwidth resulting from the square-root and logarithm 
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operations within the KK scheme, it is required to perform digital upsampling prior to the KK 

scheme, which leads to significantly increased DSP complexity. Good performance is achieved at 

4 Sa/symbol, with optimum performance at ≥ 6 Sa/symbol. As high resampling rate leads to 

increased DSP complexity, the sampling rate utilized in practical implementation of KK scheme 

may be lower than the theoretical optimum of 6 Sa/symbol. 
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CHAPTER 8 

LINEARIZATION TECHNIQUES IN SINGLE-
SIDEBAND DIRECT-DETECTION 

TRANSMISSION WITH RECEIVER-BASED 

ELELCTRONIC DISPERSION COMPENSATION 
For complexity and cost reasons, it is preferable to compensate the accumulated dispersion of the 

fibre link digitally, a technique referred to as electronic dispersion compensation (EDC), rather 

than by utilizing optical compensation methods such as the through the use of dispersion 

compensating fibre (DCF). EDC can be performed at the transmitter (Tx-EDC) using the complex 

modulator to fully eliminate the accumulated dispersion [1]. However, the nonlinearity introduced 

by square-law photodetection can significantly impair the performance of direct-detection systems 

with receiver-based EDC (Rx-EDC). One proposal to overcome this limitation is to use optical 

single-sideband signalling, with the aim of preserving the optical phase waveform of the signal in 

the electrical domain after detection, allowing the use of Rx-EDC. This approach was demonstrated 

with the SSB PAM-2 signal format in [2]. However, even in the case of SSB signalling, the system 

performance with Rx-EDC is limited by the SSBI caused by square-law detection. In SSB OFDM 

and SSB Nyquist-SCM demonstrations to date, the dispersion is compensated by either a cyclic 

prefix (CP) to achieve dispersion tolerance [3-5] or by performing transmitter-based EDC (Tx-

EDC) [6, 7]. However, the disadvantages include the reduction in the achievable spectral efficiency 

due to the CP, or increased complexity of the system operation due to the required knowledge of 

the link’s cumulative dispersion at the transmitter and hence the need for feedback from the 

receiver. Moreover, the increase of peak-to-average power ratio (the change of the transmitted 

signal waveform causes peaks in the amplitude due to constructive interference) caused by Tx-

EDC may lead to larger quantization noise from the digital-to-analogue converters with limited 

number of resolution levels and modulation nonlinearities. Thanks to the recent development of 

digital linearization techniques [8-15], the nonlinear SSBI distortion can be partially compensated 

or avoided. As suggested in [8], effective linearization techniques offer the possibility of 

performing the compensation of linear optical effects, such as dispersion, at the receiver with 

similar performance to systems with pre-compensation. 

In this chapter, we assess the performance of Rx- and Tx-EDC schemes, both in theory and 

experiments, in the presence of the four proposed receiver-based digital linearization techniques 

described in the previous chapters, namely the single-stage linearization filter and the non-iterative 

SSBI E&C technique (Chapter 5), the two-stage linearization filter (Chapter 6), and the Kramers-

Kronig scheme (Chapter 7). The experimental demonstrations were carried out using a 37.5 GHz-

spaced 4 × 112 Gb/s spectrally-efficient WDM SSB 16-QAM Nyquist-SCM DD system over 

transmission distances of 80 km, 160 km and 240 km. The performance of both Tx- and Rx-EDC 

schemes were compared for the cases without and with the linearization techniques. Experimental 

results indicate that the difference in system performance between Tx- and Rx-EDC depends 

strongly on the performance of the linearization scheme being used, and that they can achieve 
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similar performance provided an effective linearization technique is performed prior to dispersion 

compensation at the receiver [16, 17]. 

8.1 Principle of Operation 

Mod DSP CD-1( • ) E/O Conversion CD( • ) O/E Conversion (DD) SSBI Cancellation DeMod DSP

Mod DSP E/O Conversion CD( • ) O/E Conversion (DD) SSBI Cancellation DeMod DSPCD-1( • )

(a)

(b)

Tx DSP

VDD1(n) VRx1(n)

VDD2(n) VRx2(n)

Rx DSP

 

Fig. 8.1: Direct-detection system diagram with (a) Tx-EDC and (b) Rx-EDC combined with SSBI 
cancellation. Mod & Demod DSP: Modulation and demodulation DSP for SSB Nyquist-SCM signal. O/E 

conversion consists of an optical band-pass filter follwed by a single-ended photodiode. 

In order to assess the effectiveness of Rx- and Tx-EDC combined with linearization techniques, 

the two DD systems shown in Figs. 8.1(a) and 8.1(b) are considered. For the first configuration 

(Fig. 8.1(a)), the SSB QAM SCM signal E0(n) is generated at the transmitter, following the 

modulation DSP. Tx-EDC, denoted as (HCD
-1(•)), is performed by pre-distorting the signal with the 

inverse of the linear lossless channel response due to chromatic dispersion in the frequency 

domain, as proposed in [1], and details of EDC operation can be found in Section 2.3.2. Following 

this, the optical carrier, Ecarrier(n) is added during the electrical-to-optical conversion using an IQ-

modulator. After the transmission and square-law detection, the normalized detected double-

sideband (DSB) signal, VDD(n) can be written as: 

 cdd��0� = ¯>sd °fnoRR
SR�0� + >sdm�;f �0�<±¯* = fnoRR
SR* �0� + 2P�qfnoRR
SR�0� ∙ f �0�r + |f �0�|* 
(8.1) 

where Re[x] signifies the real part of x. In the RHS of Eq. 8.1, the first and second terms are the 

direct current (DC) and the desired carrier-signal beating products (CSBP), the third term is the 

signal-signal beating term. Assuming that the third term can be completely removed by performing 

digital receiver linearization, the received signal prior to the demodulation DSP, VRx1(n) only 

includes the DC and the desired CSBP terms and can be re-written as follows: 

 c²���0� ≈ fnoRR
SR* �0� + 2P�qfnoRR
SR�0� ∙ f �0�r (8.2) 

For the second configuration shown in Fig. 8.1(b), if Rx-EDC is used instead of Tx-EDC, the 

detected signal VDD2(n) is given by: 

 cdd*�0� = fnoRR
SR* �0� + 2P�gfnoRR
SR�0� ∙ >sd;f �0�<l + ³>sd;f �0�<³*
 (8.3) 

In contrast to Eq. 8.1, it can be seen that the second and third terms become the beating products 

between the dispersed signal with the optical carrier and with itself, respectively. If Rx-EDC, as 

proposed in [2], is performed without linearizing the receiver, the frequency-dependent phase 

rotation of the SSBI terms due to dispersion, denoted as HCD
-1(|HCD(E0(n))|2), prevents the Rx-EDC 

from accurately recovering the undispersed signal. Therefore, the performance of Rx-EDC is 

significantly degraded in comparison to that of Tx-EDC. However, assuming that the third term 
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can be removed to a large extent by performing digital linearization and Rx-EDC is utilized 

afterwards, the signal before the demodulation DSP VRx2(n) becomes: 

 c²�*�0� ≈ >sdm�;fnoRR
SR* �0� + 2P�gfnoRR
SR�0� ∙ >sd;f �0�<l< ≈ fnoRR
SR* �0� + 2P�qfnoRR
SR�0� ∙ f �0�r (8.4) 

By comparing Eq. 8.2 and Eq. 8.4, it can be seen that the Rx-EDC can achieve similar 

performance to Tx-EDC provided the SSBI term is removed. Therefore, it can be concluded that 

the performance of Rx-EDC depends on the effectiveness of the linearization achieved through the 

beating interference compensation scheme. It should be noted that, in this study, both Tx- and Rx-

EDC is carried out by linear convolution with the inverse of the channel response, as described in 

Chapter 2. 

8.2 Experimental Results 

An optical transmission test-bed, shown in Fig. 4.3, Chapter 4, Section 4.2, was used to 

experimentally assess the performance of the transceiver designs discussed in Section 8.1. Unlike 

the experimental results shown in Chapters 4 – 7, which utilize a WDM channel spacing of 35 GHz 

to achieve the maximum achievable optical ISDs, this work was carried out with a 37.5 GHz WDM 

channel spacing (a potential standard channel spacing for 100 G solution), leading to a gross optical 

ISD of 3.0 (b/s)/Hz. The performance of the transceiver with Rx-EDC was compared with that 

using Tx-EDC for the case of no linearization and with different linearization techniques, including 

the single-stage linearization filter, two-stage linearization filter, non-iterative SSBI E&C and the 

KK scheme. 

8.2.1 Without Receiver Linearization 

As discussed in Section 8.1, if Rx-EDC is performed without compensating the beating 

interference, the introduced additional distortion prevents the receiver from recovering the 

dispersed signal. A comparison of the performance of Rx-EDC and Tx-EDC without beating 

interference compensation was plotted in Figs. 8.2 and 8.3. Significant performance differences 

can be observed between the Rx-EDC and Tx-EDC. As shown in Fig. 8.2, for transmission 

distances from 80 km to 240 km, the BER ranged from 6.3×10-3 to 2.4×10-2 for Rx-EDC whereas 

much lower BER values were obtained with Tx-EDC (from 1.3×10-3 to 9.3×10-3), as predicted by 

the analysis in Section 8.1; the nonlinear beating interference prevented the Rx-EDC from 

accurately recovering the undispersed signal. Fig. 8.3 showed a comparison of both EDC schemes 

through plots of BER versus optical launch power per channel. Obvious performance differences 

between Rx-EDC and Tx-EDC can be observed at all optical launch power values. 
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(a)

(b)  

Fig. 8.2: BER vs transmission distance with Tx-EDC and Rx-EDC without beating interference 
mitigation.Inset: Received constellation with (a) Rx-EDC (EVM = 23.0%) and (b) Tx-EDC (EVM = 

20.7%).  

 

Fig. 8.3: BER vs launch power per channel with Tx-EDC and Rx-EDC at 240 km without beating 
interference mitigation. 

8.2.2 With Single-Stage Linearization Filter 
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Fig. 8.4: Receiver DSP including single-stage linearization filter and Rx-EDC. Demod DSP: 
Conventional demodulation DSP for SSB Nyquist-SCM signal. SF: Sideband filter.  

Fig. 8.4 showed the Rx DSP design using the single-stage linearization filter followed by Rx-EDC. 

In the single-stage linearization filter (details of which can be found in Chapter 5), a digital SSB 

signal is first generated from the detected signal using a sideband filter (SF), and an approximation 

of the waveform of the signal-signal beating products is calculated based on this SSB signal, which 

is then subtracted from the signal to partially compensate the SSBI. The advantage of this technique 
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is its use of a very simple DSP structure. However, as the calculation of signal-signal beating 

products is based on the received distorted signal, this technique itself introduces extra beating 

interference, thus limiting the compensation performance. The performance difference between 

Rx- and Tx-EDC schemes combined with single-stage linearization filter was shown in Figs. 8.5 

and 8.6. It can be observed that the BER was reduced and also the performance difference between 

Rx-EDC and Tx-EDC was reduced. Fig. 8.5 showed that from 80 km to 240 km, BER ranged from 

1.9×10-4 to 4.0×10-3 for Rx-EDC and from 7.5×10-5 to 2.1×10-3 for Tx-EDC, BERs being 

approximately halved with the use of Tx-EDC. Furthermore, the transmission performance of both 

EDC schemes over a range of launch powers was also improved, as plotted in Fig. 8.6. 

(a)

(b)  

Fig. 8.5: BER vs transmission distance with Tx-EDC and Rx-EDC using the single-stage linearization 
filter. Inset: Received constellation with (a) Rx-EDC (EVM = 18.5%) and (b) Tx-EDC (EVM = 16.9%). 

 

Fig. 8.6: BER vs launch power per channel with Tx-EDC and Rx-EDC at 240 km using the single-stage 
linearization filter. 
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8.2.3 With Two-Stage Linearization Filter 
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Fig. 8.7: Receiver DSP using the two-stage linearization filter and Rx-EDC. Demod DSP: Conventional 
demodulation DSP for SSB Nyquist-SCM signal. SF: Sideband filter.  

The Rx DSP design using the two-stage linearization filter followed by Rx-EDC was shown in Fig. 

8.7. In the two-stage linearization filter (Chapter 6), a second linearization stage is applied to 

remove the majority of the unwanted beating interference (mainly signal-SSBI beating products) 

introduced by the first linearization stage, the latter being identical to the above-mentioned single-

stage linearization filter. Consequently, the second stage further enhances the compensation gain. 

Comparisons between both EDC schemes utilizing the two-stage linearization filter were shown 

in Figs. 8.8 and 8.9 respectively. Further improvement of BERs was achieved and Rx-EDC and 

Tx-EDC offered very similar performance. As can be seen from Fig. 8.8, from 80 km to 240 km, 

the BER ranged from 4.8×10-5 to 1.5×10-3 when using Rx-EDC and from 3.4×10-5 to 1.2×10-3 with 

Tx-EDC, which was marginally lower. The slight difference in obtained BER values shown in 

Figs. 8.8 and 8.9 was mainly due to the residual uncompensated beating terms introduced by the 

second-stage of the linearizing filter.  

(a)

(b)  

Fig. 8.8: BER vs transmission distance with Tx-EDC and Rx-EDC using the two-stage linearization filter. 
Inset: Received constellation with (a) Rx-EDC (EVM = 15.7%) and (b) Tx-EDC (EVM = 15.3%).  
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Fig. 8.9: BER vs launch power per channel with Tx-EDC and Rx-EDC at 240 km using the two-stage 
linearization filter. 

8.2.4 With Non-iterative SSBI Estimation and Cancellation 
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Fig. 8.10: Receiver DSP using the non-iterative SSBI estimation and cancellation and Rx-EDC. Mod & 
Demod DSP: Conventional modulation and demodulation DSP for SSB Nyquist-SCM signal. SF: 

Sideband filter.  

The Rx DSP including the non-iterative SSBI E&C technique and Rx-EDC was shown in Fig. 

8.10. The non-iterative SSBI E&C technique (Chapter 5) is an updated version of the previously 

proposed iterative SSBI E&C scheme (Chapter 4); it offers compensation performance similar to 

the iterative SSBI E&C technique and avoids the requirement for multiple (typically three or four) 

symbol decision-based SSBI reconstruction processes, which requires multiple IFFT/FFT pairs 

(the same digital hardware in the iteration cannot be reused for continuous transmitted data, thus 

each iteration requires its own dedicated DSP hardware). Unlike the linearization filtering schemes, 

this technique does not introduce additional unwanted beating products, and thus it offers 

potentially better compensation gain especially at higher OSNR levels. However, the limitation of 

this technique is its dependency on the accuracy of the symbol decision making, which noticeably 

degrades its performance at lower OSNR values. Performance comparisons between both EDC 

schemes with the non-iterative SSBI E&C technique were carried out (Figs. 8.11 and 8.12). Again, 

very similar performance can be observed. Fig. 8.11 showed that from 80 km to 240 km, BER 

ranged from 1.9×10-5 to 2.4×10-3 for Rx-EDC and from 2.2×10-5 to 2.2×10-3 for Tx-EDC. Similar 

performance was also observed over a range of optical launch powers at 240 km transmission, as 

shown in Fig. 8.12. It should be mentioned that, in contrast to the case of Tx-EDC, if Rx-EDC is 

performed, it is required to apply chromatic dispersion to the reconstructed signal-signal beating 

terms in the non-iterative SSBI E&C process, because the transmitted signal prior to the square-

law detection has been chromatically dispersed. 
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Fig. 8.11: BER vs transmission distance with Tx-EDC and Rx-EDC using the non-iterative SSBI 
estimation and cancellation. Inset: Received constellation with (a) Rx-EDC (EVM = 17.2%) and (b) Tx-

EDC (EVM = 16.8%).   

 

Fig. 8.12: BER vs launch power per channel at 240 km with Tx-EDC and Rx-EDC with non-iterative 
SSBI estimation and cancellation. 

8.2.5 With Kramers-Kronig Scheme 
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Fig. 8.13: Receiver DSP using the Kramers-Kronig algorithm and Rx-EDC. Mod & Demod DSP: 
Conventional modulation and demodulation DSP for SSB Nyquist-SCM signal. SF: Sideband filter.  

The recently-proposed Kramers-Kronig scheme (Chapter 7) was also tested with Rx-EDC in the 

experiment. Fig. 8.13 showed the corresponding Rx DSP. When the KK algorithm was applied in 

system, Tx- and Rx-EDC schemes were found to achieve the same performance while, at the same 

time, the achieved BER was lower than all other linearization schemes. As shown in Figs. 8.14 and 

8.15, the BER ranged from 1.0×10-5 to 3.6×10-4 for Rx-EDC and from 1.4×10-5 to 4.0×10-4 for Tx-

(a)

(b)
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EDC, and both EDC schemes offered the same performance over the investigated range of launch 

powers. Note that, a relatively high oversampling rate (4 Sa/symbol) was used in the KK DSP to 

achieve good compensation performance. However, as discussed in Chapter 7, more than 6 

Sa/symbol are needed for the optimum performance. 

(a)

(b)
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Fig. 8.14: BER vs transmission distance with Tx-EDC and Rx-EDC using the Kramers-Kronig algorithm. 
Inset: Received constellation with (a) Rx-EDC (EVM = 13.2%) and (b) Tx-EDC (EVM = 13.3%).   

 

Fig. 8.15: BER vs launch power per channel at 240 km with Tx-EDC and Rx-EDC with KK scheme.  

8.2.6 Comparsion of Different Schemes 

Finally, all four WDM channels were tested with Rx-EDC over a transmission distance of 240 km, 

with similar performance across all channels being observed (Fig. 8.16). Assuming a HD-FEC 

overhead of 7%, allowing a pre-FEC BER = 3.8×10-3, the net information spectral density of the 

WDM signal was calculated to be 2.8 b/s/Hz.  
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Fig. 8.16: BER versus WDM channel index with Rx-EDC in case of without beating interference 
compensation, and by applying different linearization techniques after 240 km transmission. 

8.3 Summary 

In this chapter, both theoretical and experimental studies were presented, analysing the 

effectiveness of performing electronic dispersion compensation (EDC) either at the transmitter 

(Tx-EDC) or at the receiver (Rx-EDC) in SSB SCM DD transceivers combined with different 

receiver linearization techniques. The four different digital linearization techniques described in 

the previous chapters, including the single-stage linearization filter, the two-stage linearization 

filter, the non-iterative SSBI E&C technique and the Kramers-Kronig scheme all operating with 

either Tx- or Rx-EDC were assessed. The performance of the EDC schemes was experimentally 

evaluated in a 37.5 GHz-spaced 4×112 Gb/s spectrally-efficient (2.8 b/s/Hz net ISD) WDM direct-

detection single-sideband 16-QAM Nyquist-SCM DD system over reaches of up to 240 km of 

uncompensated SSMF. The experimental results indicate that the performance difference of Tx 

and Rx-EDC depends on the effectiveness of the linearization scheme that is used, and that they 

can achieve similar performance provided the beating interference is effectively suppressed. 

Therefore, it becomes possible to perform the EDC at the receiver rather than at the transmitter, 

which simplifies the system operation since knowledge of link dispersion is not required at the 

transmitter. Due to the reduction in complexity, the proposed solution increases the suitability of 

WDM DD SSB SCM signalling for short- and medium-reach applications such as metro networks, 

back-haul, access and inter-data centre links.  

References 

[1] R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion 

using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., 17(3), 714-716 (2005). 

[2] M. Sieben, J. Conradi, and D.E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion 

compensation” J. Lightw. Technol., 17(10), 1742-1749 (1999). 

[3] Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G.N. Liu and X. Xu, “C-band 56Gbps transmission over 80-km single mode 

fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in European Conference and 

Exhibition on Optical Communication (ECOC 2014), paper P.5.19. 

lo
g

1
0
(B

E
R

)



111 
 

[4] L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G.N. Liu, and X. Xu. "Beyond 100-Gb/s transmission over 80-km SMF using 

direct-detection SSB-DMT at C-band." J. Lightw. Technol., 34(2), 723-729 (2016). 

[5] S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF 

using single-sideband modulation with novel interference-cancellation scheme,” in European Conference and Exhibition on 

Optical Communication (ECOC 2015), paper Mo.4.5.2. 

[6] M.S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, B.C. Thomsen, P. Bayvel, and R.I. Killey, “Spectrally-efficient WDM Nyquist-

pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. Technol., 33(15), 3147-3155 

(2015). 

[7] K. Zou, Y. Zhu, F. Zhang and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle 

subcarrier modulation and direct-detection,” Opt. Lett., 41(12), 2767-2770 (2016). 

[8] A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica, 3(11), 1220-1227 (2016). 

[9] Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter 

for direct-detection subcarrier modulation,” IEEE Photon. Technol. Lett., 28(24), 2838-2841 (2016). 

[10] Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Reach enhancement for WDM 

direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation", in 

European Conference and Exhibition on Optical Communication (ECOC 2016), paper M.2.B.1. 

[11] W.R. Peng, X. Wu, K. Feng, V.R. Arbab, B. Shamee, J. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient 

direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express, 17(11), 9099-

9111 (2009). 

[12] Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B.C. Thomsen, P. Bayvel, and R.I. Killey, “Signal-signal beat 

interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” 

Opt. Express, 23(18), 23694-23709 (2015). 

[13] C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal waveforms in 

IM/DD systems,” Opt. Express, 22(6), 7269-7283 (2014). 

[14] C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain 

Volterra series equalizer” J. Lightw. Technol., 33(23), 4997-5006 (2015). 

[15] Z. Li, M.S. Erkilinc, L. Galdino, K. Shi, B.C. Thomsen, P. Bayvel, and R.I. Killey, “Comparison of digital signal-signal beat 

interference compensation techniques in direct-detection subcarrier modulation systems,” Opt. Express, 24(25), 29176-29189 

(2016). 

[16] Z. Li, M.S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B.C. Thomsen, P. Bayvel, and R.I. Killey, “SSBI mitigation and Kramer-

Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. 

Lightw. Technol., 35(10), 1887-1893 (2017). 

[17] Z. Li, M.S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B.C. Thomsen, P. Bayvel, and R.I. Killey, "Improvement of digital 

chromatic dispersion post-compensation by utilizing beating interference mitigation for direct-detection SSB Nyquist-SCM", in 

Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2017), paper 

Th3D.2. 

  



112 
 

CHAPTER 9 

FUNDEMENTAL PERFORMANCE LIMIT OF 

100G TRANSCEIVERS AND FURTHER 

DEVELOPMENTS 
As mentioned in the previous chapters, it may be favourable to utilize direct detection systems for 

metro applications because of the lower-cost optical hardware structure [1, 2]. However, the 

performance of the DD systems is severely degraded because of SSBI. Recently, a beating 

interference cancellation balanced receiver (BICBRx) has been proposed to offer superior 

performance to overcome the SSBI penalty [3, 4], but its receiver optical hardware complexity is 

significantly increased due to the requirement for two single-ended photodiodes and a very narrow 

optical filter (<1 GHz) to suppress the optical carrier. On the other hand, since the SSBI products 

fall over a bandwidth equal to that of the original subcarrier signal (Bsc), an alternative solution to 

avoid the SSBI penalty is to leave a sufficient spectral guard-band (Bgap ≥ Bsc) between the optical 

carrier and the subcarrier signal [5, 6]. However, drawbacks such as halving the achievable optical 

ISD and wasting of approximately 50% of the electrical and optical components’ bandwidths make 

it very challenging to achieve high ISD (≥ 3 (b/s)/Hz) with this approach. Fortunately, as described 

in Chapters 4-7, recently demonstrated digital SSBI compensation techniques have been shown to 

be an effective approach, allowing the use of narrow or even no guard-band without requiring a 

change to the optical hardware design [7-17]. 

In this chapter, we first present a theoretical assessment of different 112 Gb/s per channel 

system architectures through numerical simulations. The transceivers being studied include the 

coherent (homodyne and heterodyne) and DD systems without and with different optical or digital 

linearization techniques. Following this, in Section 9.2, some further developments of this work 

are described. We explore the optical ISD limits of the SSB SCM DD transceiver, through 

experiments with higher-order QAM modulation format. We successfully transmitted four WDM 

channels with 35 GHz channel spacing to achieve a record net ISD of 4.54 b/s/Hz over 80 km 

(exceeding the previous record of 3.58 b/s/Hz for this distance [21]) using 168 Gb/s per channel 

SSB 64-QAM Nyquist-SCM. 

9.1 Performance Assessment of Different 100 G Transceiver 

Structures 

This section presents the theoretical performance comparisons of different 112 Gb/s/λ coherent 

and direct-detection transceiver structures based on simulations of ideal transceivers. Fig. 9.1 

shows a schematic diagram of the different receiver architectures. The coherent receivers 

considered include conventional homodyne and heterodyne structures [18, 19] (shown in Figs. 

9.1(a) and 9.1(b)), while the direct-detection receiver structures include a balanced receiver-based 

BICBRx (Fig. 8.1(c)) [3, 4], a single-ended photodiode-based system with a guard-band 
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sufficiently large to avoid SSBI [5, 6] (Fig. 9.1(d)), and systems without guard-band but with 

digital receiver linearization techniques (Fig. 9.1(e)) [7, 8, 17].  
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Fig. 9.1: Schematic diagrams of different 100G receiver architectures.  (a) Coherent homodyne, (b) 
coherent heterodyne, (c) beating interference cancellation balanced receiver (BICBRx), (d) DD with 

guard-band and (e) DD without guard-band and with digital linearization technique: OBPF: Optical band-
pass filter, PC: Polarization controller, LO: Local oscillator, CSF: Carrier suppression filter, PD: 

Photodiode, TIA: Transimpedance amplifier, ADC: Analogue-to-digital converter, DEMOD DSP: 
Demodulation DSP for baseband Nyquist (coherent homodyne systems) signal or SSB Nyquist-SCM 

signal (coherent heterodyne and DD systems).  

In order to assess the performance difference between these transceiver architectures, 

simulations of ideal systems were carried out. Practical limiting parameters such as digital-to-

analogue converter (DAC)/analogue-to-digital convertor (ADC) quantization noise and electrical 

low-pass filtering effects were neglected. Moreover, an ideal rectangular (“brickwall-shaped”) 

optical band-pass filter was assumed, and the carrier suppression filter (CSF) used in the BICRx 

had a 1MHz 3-dB bandwidth to remove the optical carrier completely. The modulation formats 

being used in all cases were 112 Gb/s baseband 16QAM Nyquist signals for coherent systems and 

SSB 0.51×cycle (nearly half-cycle) 16QAM Nyquist-SCM for DD systems, generated using root-

raised cosine (RRC) filters with a roll-off parameter of 0.01. The reason for using SSB half-cycle 

QAM Nyquist-SCM modulation format for DD system was that the QAM signalling, SSB, Nyquist 

pulse shaping, and no spectral guard-band increase the achievable ISD whilst Nyquist-SCM 

exhibits lower peak-to-average power ratio (PAPR in the range of 7 dB) than that of orthogonal 

frequency division multiplexing (OFDM) due to a single subcarrier being utilized. The digital 

receiver linearization techniques being used were single-stage, two-stage linearization filters and 

the Kramers-Kronig scheme, due to their performance and implementation advantages over the 

other compensation schemes, as discussed in Chapters 4-7.   

The back-to-back system performance was evaluated by amplified spontaneous emission 

(ASE) noise loading, and bit error ratio (BER) as a function of optical signal-to-noise ratio (OSNR 

at a resolution of 0.1 nm) was plotted in Fig. 9.2. Note that, since an optical carrier is added at the 

transmitter to recover the signal from the carrier-signal beating products in the case of the direct 

detection systems, it is important to optimize the optical CSPR value at each OSNR for the DD 

systems. The coherent homodyne results shown in this figure were based on simulations of a 

single-polarization 112 Gb/s homodyne coherent transceiver. For polarization multiplexed 112 

Gb/s (2 × 56 Gb/s) homodyne coherent transceiver, the required OSNR would be the same but 

with doubled spectral efficiency. 
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Fig. 9.2: Theoretical BER versus OSNR with different coherent and DD transceiver architectures.  

It can be seen that there was an approximately 15.7 dB (from 15.3 dB to 31.0 dB) difference in 

the required OSNR at the HD-FEC threshold (BER = 3.8×10-3) between the homodyne coherent 

system and the DD system with no guard-band and no linearization applied. The required OSNR 

was reduced to 25.6 dB (5.4 dB gain) and 23.3 dB (7.7 dB gain) by applying a single-stage 

linearization filter (further details can be found in Chapter 5) and a two-stage linearization filter 

(Chapter 6), respectively. Moreover, by utilizing the Kramers-Kronig scheme (Chapter 7), the 

required OSNR was found to be 21.5 dB (9.5 dB gain), which was only 0.8 dB higher than that for 

the case of DD with sufficient guard-band (1.5 × cycle). Finally, with the use of an optical method 

to mitigate the SSBI (BICBRx), the required OSNR was 19.1 dB, which was 0.9 dB worse than 

the case with heterodyne coherent detection, due to the utilization of a low power optical carrier. 

This can be explained by the presence of the optical carrier with the BICRx, which is not needed 

in the case of coherent detection. The optical CSPR was swept, and the optimum value, for the 

BICRx, was found to be -6 dB at all values of OSNR. Since the system noise level is halved by 

using the coherent homodyne detection, the required OSNR of the coherent homodyne system is 

approximately 3 dB less than that of the coherent heterodyne system.  It can be observed that the 

performance difference between the coherent and DD systems is significantly reduced if effective 

optical and digital receiver linearization schemes are utilized. However, as shown in Fig. 9.1, 

although the direct-detection system with BICBRx had potentially only a 3.8 dB higher required 

OSNR than the coherent homodyne system, the optical hardware complexity is significantly higher 

compared to the other direct-detection approaches due to the requirement for a balanced receiver 

and an optical carrier suppression filter (CSF). On the other hand, if only a single-ended photodiode 

was utilized, the DD system with sufficient guard-band offered similar performance to the BICRx 

scheme, but is wasteful of spectrum. The difference in the required OSNR between the heterodyne 
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coherent receiver and the DD receiver employing the digital Kramers-Kronig scheme without 

guard-band was only 3.3 dB. 

Since the optimization of the CSPR value is crucial to achieve the optimum performance of DD 

systems, further analysis of CSPR optimization and its impact on system performance was carried 

out by plotting optimum CSPR versus OSNR and required OSNR (assuming BER = 3.8×10-3) 

versus CSPR, as shown in Figs. 9.3 and 9.4 respectively. 

3 dB
2 dB

5 dB

 

Fig. 9.3: Theoretical optimum CSPR versus OSNR with different DD transceiver architectures.  

Nonlinear 

Region

Linear Region

 

 Fig. 9.4: Theoretical required OSNR (assuming BER = 3.8×10-3) versus CSPR with different DD 
transceiver architectures. 

Fig. 9.3 showed the optimum CSPR value as a function of OSNR for each DD system. For the 

DD system with no guard-band and no linearization technique, it can be seen that the optimum 

CSPR value increased with OSNR; every 2 dB increase in OSNR corresponded to an 

approximately 1 dB increase in the optimum CSPR value. The optimum CSPR increased from 7 

dB to 16 dB over the OSNR range 18 dB to 36 dB. Moreover, for each value of OSNR, the optimum 

CSPR value was reduced by 2 dB to obtain the maximum compensation gain with the single-stage 

linearization filter and by 3 dB with the two-stage linearization filter. For the case with the 

Kramers-Kronig scheme, the optimum CSPR value was reduced by 5 dB over the OSNR range 20 
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dB to 36 dB and was fixed to 3 dB to fulfil the requirement of the signal being a minimum phase 

one [17]. In the case of the DD system with sufficient guard-band, the optimum CSPR remained 

at 0 dB for all the OSNR levels, which matches with the description in [20]. The sensitivity of the 

system performance to CSPR optimization and the CSPR reductions after implementing different 

SSBI compensation schemes were further presented in Fig. 9.4. It can be observed that there was 

a tradeoff between the SSBI and the optical carrier power. Signals operating at lower CSPR values 

suffered from large SSBI effect (nonlinear region), while higher CSPR value led to high required 

OSNR due to the high power in the carrier (linear region). Since utilization of the linearization 

techniques significantly reduced the nonlinear SSBI effect, the tradeoff was changed, and 

therefore, the optimum CSPR value was reduced to a lower value. Due to the different capabilities 

in suppressing the SSBI, the two-stage linearization filter provided further reduction in the 

optimum CSPR compared with the single-stage linearization filter. The KK scheme achieved the 

biggest reduction in the optimum CSPR, but its performance was dramatically degraded at lower 

CSPR values (< 4 dB) because the minimum phase condition was not met.  

9.2 168 Gb/s/λ Single-sideband Subcarrier Modulation Direct-

Detection Transmission System  

To assess the performance of direct detection transmission system at data rates beyond 100 Gb/s, 

the performance of 4 × 168 Gb/s SSB 64-QAM Nyquist-SCM DD system was assessed with the 

experimental test-bed described in Chapter 4, Section 4.2. In the transmitter DSP, 28 Gbaud (168 

Gb/s) 0.51 cycle SSB 64-QAM Nyquist-SCM signal was generated. Four WDM channels were 

transmitted, with the channel spacing set to 35 GHz, giving a gross optical ISD of 4.8 b/s/Hz. 

Transmission experiments were carried out by utilizing an 80-km single-span SSMF. The channel 

of interest was demultiplexed and detected with a single PIN photodiode. In the receiver DSP, 

digital linearization was first implemented. The two-stage linearization filter [8, 22] and the 

Kramers-Kronig scheme [17, 23-25] (operating at 6 Sa/symbol) were utilized due to their strong 

capabilities in suppressing the SSBI penalty, in comparison with the single-stage linearization 

filter, as discussed in Chapters 6 and 7. Technical details of such linearization schemes can be 

found in Chapter 6 and Chapter 7 respectively. Moreover, as demonstrated in Chapter 8, both Tx-

EDC and Rx-EDC offer similar performance when combined with these two linearization 

approaches, and Rx-EDC was therefore carried out for simplification of the system operations. 

Both the WDM back-to-back and transmission performance were plotted in Figs. 9.5 to 9.7. As 

shown in Fig. 9.5, the optical back-to-back performance was evaluated by measuring BER versus 

OSNR using ASE-noise loading at the receiver for WDM without and with receiver linearization. 

The results were compared with those of simulations using the KK scheme, assuming ideal 

transceivers using ideal electrical and optical components, i.e. no quantization or other electrical 

noise, no phase noise, a linear modulator and an ideal ‘rectangular’ shaped OBPF. The optimum 

system performance was achieved by sweeping the CSPR and setting it at the optimum value at 

each OSNR level. In all WDM back-to-back and transmission experiments, compared with the 

system without linearization, the optimum CSPR values were found to be approximately 3 dB and 

5 dB lower for the cases with the two-stage linearization filter and the KK scheme respectively. It 

can be seen that, compared to the ideal system simulations (shown as ‘Theory’ in Fig. 9.5), the 64-
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QAM system is sensitive to implementation penalties such as transceiver noise and crosstalk from 

neighbouring WDM channels. Such implementation penalties also causes the difference in the 

slopes of the theoretical and practical curves. The BER at 36 dB OSNR was decreased from 2.5 × 

10-2 to 7.1 × 10-3 and 2.2 × 10-3, and the corresponding optimum CSPR value was reduced from 14 

dB to 11 dB and 9 dB using the two-stage linearization filter and the KK scheme respectively. 

 
Fig. 9.5: BER versus OSNR without and with receiver-based digital two-stage linearization filter and KK 

scheme. 

As shown in Fig. 9.6, in WDM transmission over 80 km SSMF, system performance was 

improved at all optical launch powers after applying linearization. The BER at the optimum launch 

power was reduced from 3.2 × 10-2 to 1.1× 10-2 and 6.9 × 10-3 with the optimum launch power 

reduced by 0.5 dB and by 2 dB with the two-stage linearization filter and KK scheme respectively. 

The received constellation diagrams, without linearization and with the KK scheme over 80 km 

were plotted in the insets (a) and (b). Significantly less distortion can be observed after applying 

the KK scheme. The EVM was decreased from 23.1% to 13.8%. 
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Fig. 9.6: BER versus optical launch power per channel without and with receiver-based digital two-stage 
linearization filter and KK scheme over 80 km WDM transmission. Insets: Received constellations (a) 

without receiver linearization (EVM = 23.1%) and (b) with KK scheme (EVM = 13.8%). 

The BER of all four WDM channels after 80 km transmission was plotted in Fig. 9.7. The 

average BER across the channels was decreased from 3.1×10-2 to 6.1×10-3 giving an achieved net 
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optical information spectral density (based on the theoretical hard-decision decoding bound) of 

4.54 b/s/Hz, to the best of our knowledge, the highest reported net optical ISD for a single-

polarization single-photodiode based DD transceiver for metro reach transmission at the time of 

publication. 

 
Fig. 9.7: BERs for each WDM channel without and with receiver-based digital two-stage linearization 

filter and KK scheme over 80 km transmission. 

9.3 Summary 

This chapter first presented a theoretical assessment of different 112 Gb/s per channel transceiver 

designs including the coherent (homodyne and heterodyne) and DD systems without and with 

different optical or digital linearization techniques through ideal simulations. The results show that 

the single-ended photodiode based 16-QAM DD transceiver can achieve a required OSNR at the 

HD-FEC threshold (BER = 3.8 × 10-3) only 5.4 dB higher than the homodyne coherent system if a 

sufficient spectral guard-band is utilized to avoid SSBI penalty. However, this leads to a halving 

in the ISD. The recently-proposed digital linearization schemes avoid the requirement for the 

spectral guard-band, and achieve a required OSNR increase by 6.2 dB (relative to the homodyne 

coherent system) whilst avoiding the reduction in the achievable optical ISD. Following this, the 

optical ISD limit of the SSB SCM DD transceiver was explored with higher QAM modulation 

format by experiments. 4 × 168 Gb/s WDM SSB 64-QAM Nyquist-SCM signals was successfully 

transmitted over 80 km at a record net ISD of 4.54 b/s/Hz. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 
Single-sideband subcarrier modulation direct-detection transmission systems employing a number 

of digital linearization techniques to support high data rate (≥ 100 Gb/s per channel) and spectrally-

efficient (net ISD > 2 b/s/Hz) WDM transmission covering metropolitan reach scenarios (up to 

240 km) have been extensively studied in this thesis. The key results and technical achievements 

from this study are summarized in Sections 10.1 and 10.2, and topics that can be potentially 

valuable to investigate in the future are discussed in Section 10.3. 

10.1 Summary of Research  

Due to their simplicity and relatively low cost, single-polarization direct-detection (DD) 

transceivers may be an attractive technology for short and medium reach optical fibre transmission 

systems, for example in metropolitan, back-haul, access and inter-data centre applications.  

Considering the ongoing development of complementary metal oxide silicon (CMOS) 

technology, especially the high-speed digital-to-analogue and analogue-to-digital converters 

(DACs and ADCs), much of the transceiver complexity can be moved from the optical to the 

electrical domain. It allows the use of multi-level and multi-dimensional coding in DD links with 

a single-ended photodiode and without the requirement for delay-line interferometers (DLIs)), and 

consequently, higher information spectral densities (ISDs) with reasonable receiver sensitivity can 

be achieved using cost-effective transceiver designs. The single-sideband (SSB) subcarrier 

modulation (SCM) format which enables the use of M-ary quadrature amplitude modulation 

(QAM) signalling with minimum Euclidean symbol spacing implemented using a digital signal 

processing (DSP)-based transceiver architecture with a simple single photodiode is a potentially 

attractive and practical solution. However, the performance of such transceivers is severely 

degraded because of a nonlinear effect introduced by the square-law detection, referred to as signal-

signal beat interference (SSBI). Therefore, it is essential to develop effective and low-cost 

linearization techniques for improved system performance.  

Chapter 4 described an effective receiver-based digital iterative SSBI estimation and 

cancellation (E&C) technique and experimentally tested this technique on a dispersion pre-

compensated 112 Gb/s per channel spectrally-efficient WDM SSB 16-QAM Nyquist-SCM direct 

detection system in transmission over a straight-line multiple span (up to 240 km) uncompensated 

SSMF link. In optical back-to-back operation, the use of this SSBI compensation technique led to 

reductions of the required OSNR at the hard-decision forward-error-correction (HD-FEC) 

threshold, and reductions in BER after transmission over uncompensated SSMF. However, 

although this iterative SSBI post-compensation scheme compensates the SSBI with low receiver 

optical hardware complexity, the digital hardware complexity of the receiver is very high due to 

the multiple (more than four) iterations required to achieve the maximum compensation gain. In 

addition, the performance of this technique depends on the accuracy of the symbol decision 

making, thus noticeably degrading its effectiveness at lower OSNR levels. 
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In Chapter 5, a simple structured receiver-based digital single-stage linearization filter was 

assessed. It enables to compensate the SSBI with very simple DSP structure and its performance 

does not rely on the accuracy of the decision making. However, as this technique itself introduces 

extra unwanted beating interference, it cannot achieve the maximum compensation performance. 

However, this technique can also be applied to upgrade the iterative SSBI E&C into non-iterative 

SSBI E&C, since the symbol decisions are significantly more accurate due to the preceding 

linearization filtering stage. Hence, multiple iterations are not required to achieve the maximum 

compensation gain, thus leading to a significant reduction in DSP complexity. The experimental 

results indicated that the non-iterative approach achieves similar performance to the iterative E&C 

approach. 

Chapter 6 focused on a receiver-based digital two-stage linearization filter, which enhances the 

performance of the single-stage linearization filter. A second linearization stage is applied to 

remove the majority of the unwanted beating interference introduced by the single-stage 

linearization filter. Unlike the other digital linearization approaches, this technique avoids the 

requirement for multiple iterations or symbol decision-based SSBI reconstruction. Hence, it 

requires relatively low DSP complexity in contrast to the other approaches. This technique offers 

a good tradeoff between compensation performance and digital hardware complexity. In the 

experimental evaluations, the results have shown that the two-stage linearization filter achieves 

better transmission performance than the single-stage linearization filter and the SSBI E&C 

scheme. 

The recently proposed receiver-based digital Kramer-Kronig (KK) scheme was experimentally 

demonstrated, as described in Chapter 7. The digital KK scheme offers the possibility of fully 

reconstructing the transmitted signal from the detected signal’s amplitude, and thus can provide 

superior linearization effectiveness in comparison to the other digital linearization techniques. 

Since the KK scheme introduces signal bandwidth broadening in the DSP algorithm, it is necessary 

to utilize a relatively high oversampling rate not required in the other digital linearization 

techniques, which may lead to increased hardware complexity. Experimental results indicated that 

good compensation performance is achieved at 4 Sa/symbol, with optimum performance at ≥ 6 

Sa/symbol. 

Chapter 8 presented a study on the effectiveness of performing electronic dispersion 

compensation (EDC) either at the transmitter (Tx-EDC) or at the receiver (Rx-EDC) in SSB SCM 

DD transceivers combined with different receiver linearization techniques. The four different 

digital linearization techniques introduced in the previous chapters, including the single-stage 

linearization filter, the two-stage linearization filter, the non-iterative SSBI E&C technique and the 

Kramers-Kronig scheme were assessed. The experimental results showed that differences in the 

performance of Tx and Rx-EDC depend on the effectiveness of the utilized linearization scheme, 

and that they can achieve similar performance if the beating interference is effectively suppressed. 

Hence, it becomes possible to perform the EDC at the receiver rather than at the transmitter, which 

simplifies the system operation. Due to the reduction in complexity, the proposed solution further 

increases the suitability of WDM DD SSB SCM signalling for short- and medium-reach 

transmission systems. 



123 
 

In Chapter 9, a theoretical assessment of different 112 Gb/s per channel system designs was 

presented, performed through ideal numerical simulations (neglecting transceiver noise and non-

ideal optical filtering). The transceivers studied included the coherent (homodyne and heterodyne) 

and direct detection systems without and with different optical or digital linearization approaches. 

The simulation results indicated that the single-ended photodiode based 16-QAM DD transceiver 

can achieve a required OSNR at the HD-FEC threshold (BER = 3.8 × 10-3) only 5.4 dB higher than 

the homodyne coherent system if a sufficiently wide spectral guard-band is utilized between the 

signal and the optical carrier to avoid SSBI penalty. However, the use of a guard-band leads to a 

halving in the spectral efficiency. The recently-proposed digital linearization schemes avoid the 

requirement for the spectral guard-band, and achieve a required OSNR only 6.2 dB above that of 

the homodyne coherent system.  Some further developments of this work were also presented. By 

utilizing effective digital linearization techniques (two-stage linearization filter and the KK 

scheme) and applying Rx-EDC, the optical ISD limits of the SSB SCM DD transceiver were 

explored through experiments with higher-order QAM modulation formats and narrow channel 

spacing. 35 GHz-spaced WDM 168 Gb/s per channel SSB 64-QAM Nyquist-SCM signal was 

successfully transmitted over 80 km of uncompensated SSMF, a record net optical ISD of 4.54 

b/s/Hz for this distance with single polarisation direct detection.  

10.2 Key Technical Achievements  

To sum up, the key achievements presented in this thesis are: 

1. It was experimentally confirmed that the performance of SSB SCM DD transceivers is 

severely degraded by SSBI penalty introduced by square-law photodetection. 

2. A number of novel and effective digital linearization techniques were proposed for the 

first time, including the non-iterative SSBI E&C, two-stage linearization filter. The first 

experimentally demonstrated digital Kramers-Kronig receiver was described, and its 

superior performance was confirmed. 

3. By implementing the digital linearization approaches, we experimentally achieved the 

transmission of dispersion pre-compensated 112 Gb/s per channel spectrally-efficient 

WDM SSB 16-QAM Nyquist-SCM signals over a 240 km uncompensated SSMF link, at 

a record optical net optical ISD of 3.18 b/s/Hz, a record at this distance at the time of 

publication. The demonstrated techniques allow to triple the achievable transmission 

distance at this bit rate. 

4. We also showed that, with the use of digital linearization, further simplification of the DD 

transceivers can be realized by moving electronic dispersion compensation from the 

transmitter to the receiver without sacrificing performance.  

5. The optical ISD limit of DD transceiver was further explored through experiments with 

higher-order modulation formats and narrow channel spacing. 168 Gb/s per channel WDM 

64-QAM signals were successfully transmitted over 80 km, achieving a record net optical 

ISD of 4.54 b/s/Hz over this distance.  
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Although the above-mentioned studies throughout this thesis can still be improved, the 

techniques demonstrated may be potential solutions for future links operating at 400 G (4 × 100 

G) and higher over metropolitan distances. 

10.3 Future Work 

Despite all the work presented in this thesis, there remain a number of research and development 

milestones that need to be reached before the technology is ready for commercialisation: 

10.3.1 Real-time Digital Circuit Designs for Receiver Linearization  

As described in this thesis, a number of effective digital linearization techniques have been 

proposed and demonstrated, and techniques such as the single-stage linearization filter [1], the two-

stage linearization filter [2, 3] and the Kramers-Kronig scheme [4-7] have demonstrable 

advantages concerning either the hardware structure or the SSBI compensation effectiveness. 

However, the key questions concern how to implement these linearization techniques in real-time 

and the corresponding complexity of these circuit designs. 

In the next stage of this research work, the viability of the proposed DSP schemes in practical 

applications could be tested through the use of real-time circuits implemented with field 

programmable gate arrays (FPGAs). Either overlap-and-add or overlap-and-save method [8, 9] 

frequency domain filters would be utilized in the real-time circuit design. The power consumption 

and DSP complexity could be both calculated. After performing the real-time circuit design, the 

compensation performance of such digital linearization approaches could be compared and the 

technique which offers the optimum tradeoff between the compensation effectiveness and digital 

hardware complexity chosen for DD transceivers in metro applications. 

10.3.2 Beyond 200 Gb/s/λ DD Transceiver Designs for Metropolitan 

Scenarios 

In this thesis, DD transceivers supporting 100 Gb/s per channel WDM transmission have been 

demonstrated to cover the typical transmission reach of metropolitan area networks. However, it 

is still very challenging to achieve transmission rate of beyond 200 Gb/s per channel using SSB 

SCM DD transceivers. Another potential research area following the work described in this thesis 

is to explore whether SSB SCM DD transceivers are capable to support WDM transmission with 

≥ 200 Gb/s per channel. This research goal may be achieved by using new digital signal processing 

techniques to improve the SSB SCM DD system’s robustness to linear or nonlinear penalties or 

develop other novel DD transceiver designs which can provide potentially better performance than 

the SSB SCM DD system. At the same time, the ongoing development in the speed and power of 

CMOS technology will enable data converters and digital signal processing to achieve further 

increases in channel data rates. 
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ACRONYMS 

 
DSF dispersion-shifted fibres 

EDFA erbium-doped fibre amplifier 

WDM wavelength-division multiplexing 

DSP digital signal processing 

FEC forward error correction 

ISD information spectral density 

VOD video-on-demand 

Wi-Fi wireless fidelity 

POP point of presence 

QAM quadrature amplitude modulation 

SoP state of polarization 

CMOS complementary metal oxide silicon 

ADC analogue-to-digital converter 

DD direct-detection 

IM/DD intensity modulation/direct detection 

DML direct modulated laser 

SSB single-sideband 

SCM subcarrier modulation 

OFDM orthogonal frequency division multiplexing 

Nyquist-SCM Nyquist pulse-shaped subcarrier modulation 

SSBI signal-signal beat interference 

EDC electronic dispersion compensation 

Tx-EDC transmitter-based electronic dispersion compensation 

Rx-EDC receiver-based electronic dispersion compensation 

SSMF standard single mode fibre 

CD chromatic dispersion 

ASE amplified spontaneous emission 

HT Hilbert transform 

SPM self-phase modulation 
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XPM cross-phase modulation 

FWM four-wave mixing 

ITU International Telecommunication Union 

GVD group-velocity dispersion 

ISI inter-symbol interference 

SNR signal-to-noise power ratio 

I in-phase 

Q quadrature 

LSE linear Schrödinger equation 

NLSE nonlinear Schrödinger equation 

OBPF optical bandpass filter 

PD photodiode 

DSB double-sideband 

DD MZM dual-drive Mach-Zehnder modulator 

OOK  on-off keying 

PAM pulse amplitude modulation 

CSBP Carrier-Subcarrier beating product 

CABI Carrier-ASE beating interference 

SABI Subcarrier-ASE beating interference 

AABI ASE-ASE beating interference 

CSPR carrier-to-signal power ratio 

BER bit-error-ratio 

OSNR optical signal-to-noise power ratio 

FT Fourier transform 

FBG fibre Bragg grating 

DCF dispersion compensating fibre 

FIR finite impulse response 

LMS least mean squares 

CMA constant modulus algorithm 

RDE radius directed equalizer 

DLI delay-line interferometer 

M-PSK M-ary phase-shift keying 
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M-QAM M-ary quadrature amplitude modulation 

M-PAM M-ary pulse amplitude modulation 

DPSK differential phase-shift keying 

BPD balanced photodetector 

DAC digital-to-analogue converter 

CW continuous wave 

RZ return-to-zero 

NRZ non-return-to-zero 

MZM Mach-Zehnder modulator 

CS- carrier-suppressed 

PSD power spectral density 

VSB Vestigial sideband 

PMD polarization mode dispersion 

PSBT phase-shaped binary transmission 

BLPF Bessel low-pass filter 

DWDM dense wavelength-division-multiplexing 

DB duobinary 

PRBS pseudo-random binary sequence 

ASK amplitude-shift keying 

DPSK differential phase-shift keying 

QASK quaternary ASK 

PM phase modulator 

ODC optical dispersion compensation 

IFFT inverse fast Fourier transform 

FFT fast Fourier transform 

DMT discrete multitone 

MSM multiple carrier modulation 

ICI inter-channel interference 

CP cyclic prefix 

RRC root-raised-cosine 

BICBR beat interference cancellation balanced receiver 

CSF carrier suppression filter   
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E&C estimation and cancellation 

VSSB-OOFDM virtual SSB optical OFDM 

SF sideband filter 

KK Kramers-Kronig 

cSSB compatible SSB 

MOD DSP modulation DSP 

DEMOD DSP demodulation DSP 

AWG arbitrary-waveform generator 

ECL external cavity laser 

OSA optical spectrum analyser 

VOA variable optical attenuator 

EVM error-vector-magnitude 

HD-FEC hard-decision forward-error-correction 

DC direct current 

FPGA field programmable gate array 

RAM random access memory 

VCSEL vertical-cavity surface-emitting laser  

PAPR peak-to-average power ratio 

LO local oscillator 

CAP carrierless amplitude/phase modulation 

MLSE maximum likelihood sequence estimation 

 

 

 

 

 

 

 

 

 

 

 
 

 

 


