2,098 research outputs found

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Feedback Linearization Based Nonlinear Control of SynRM Drives Accounting for Self- and Cross-Saturation

    Get PDF
    This article proposes a nonlinear controller based on feedback linearization (FL) for synchronous reluctance motor (SynRM) drives which takes into consideration the magnetic saturation. The proposed nonlinear FL control based control technique has been developed starting from the theoretical definition of an original dynamic model of the SynRM taking into consideration both the self- and the cross-saturation effects. Such a control technique permits the dynamics of both the speed and axis flux loops to be maintained constant independently from the load and the saturation of the iron core in both constant flux and variable direct axis flux operating conditions. Finally, sensitivity of the performance of the proposed FL control versus the variation of the main motor parameters has been verified. The proposed technique has been tested experimentally on a suitably developed test setup. The proposed FL control has been further compared with the classic field-oriented control (FOC) in both constant flux and variable flux working conditions

    Adaptive Feedback Linearization Control of SynRM Drives With On-Line Inductance Estimation

    Get PDF
    This article proposes an adaptive input-output Feedback Linearization Control ( FLC ) techniques for Synchronous Reluctance Motor ( SynRM ) drives, taking into consideration the iron losses. As a main original content, this work proposes a control law based on a new dynamic model of the SynRM including iron losses as well as the on-line estimation of the static inductances. The on-line estimation of the SynRM static inductances permits to inherently take into consideration the magnetic saturation phenomena occuring on both axes. As a major result, it permits a null stator current steady state tracking error even with a proportional derivative controller. The estimation law is obtained thanks to a Lyapunov-based analysis and thus the stability of the entire control system, including the estimation algorithm, is intrinsically guaranteed. The proposed adaptive FLC technique, has been tested experimentally on a suitably developed test set-up, and compared experimentally with its non-adaptive versions in both tuned and detuned working conditions. Moreover, a sensitivity analysis of the performance of the adaptive FLC to the variations of the stator resistance at low speed has been made. Finally, an analysis of the effects of the iron losses on the control performance and stability at high speed in the field weakening region at medium/high loads has been made

    Nonlinear transient and steady state analysis for self-excited single-phase synchronous reluctance generator

    Get PDF
    With today\u27s trend for distributed generation and the need for alternative and renewable energy sources, self-excited induction and synchronous reluctance generators have attracted more attention for wind, tidal and hydro power generation applications. Compared to synchronous and DC generators, they have the advantages: they are brushless, they are robust, they do not need DC excitation and they are relatively low cost.;Compared with SEIG, the self-excited reluctance generator (SERG) not only has the advantages of simplicity and ruggedness, but can also have enhanced steady-state characteristics and high efficiency over a wide range of operation. Moreover, its output frequency is determined only by the prime mover speed, rather than by both the load and the prime mover speed as in an induction generator, so SERG can be easily integrated with power electronic devices to implement a control scheme.;Most of the current analyses deal with three-phase reluctance generators, but insufficient attention has been paid to single-phase self-excited reluctance generators (SPSERG). Their unbalanced loads make their analysis more difficult. This research is motivated by the fact that SPSERG provides a good alternative to single-phase induction generators used in stand-alone generation applications. A general methodology is suggested for transient response prediction and steady state performance analysis for the SPSERG type of electric machine.;To establish a design environment, finite element method is an effective tool, which can be integrated in machine modeling to obtain good performance prediction. In this work, an off-line FEM approach is proposed to obtain the saturation characteristics for state space simulation. During the process, transformation between instantaneous inductance and average inductance is investigated. Off-line FEM + SS approach is proved to be a simple and economic method and can fit the experimental results in good accuracy.;Moreover, a steady state model has to be built to reveal the parametric dependence and provide good design guidance. However, because of the unbalanced load and nonlinear feature of the machine, existing models are not suitable for analysis. In this dissertation, a novel inductance-oriented steady state model based on the harmonic balance technique is introduced. The idea is that starting from the inductance determination under certain load, the fluxes can be attained by a nonlinear relationship, after that, the machine variables can be solved according to the fluxes. Comparison between simulation and experiment validates this approach

    “Field Weakening Operation of AC Machines for Traction Drive Applications.”

    Get PDF
    The rising cost of gasoline and environmental concerns have heightened the interest in electric/hybrid-electric vehicles. In passenger vehicles an electric traction motor drive must achieve a constant power speed range (CPSR) of about 4 to 1. This modest requirement can generally be met by using most of the common types of electric motors. Heavy electric vehicles, such as tanks, buses and off-road equipment can require a CPSR of 10 to 1 and sometimes much more. Meeting the CPSR requirement for heavy electric vehicles is a significant challenge. This research addresses the CPSR capability and control requirements of two candidates for high CPSR traction drives: the permanent magnet synchronous motor (PMSM) and the switched reluctance motor (SRM). It is shown that a PMSM with sufficiently large winding inductance has an infinite CPSR capability, and can be controlled using a simple speed control loop that does not require measurement of motor phase currents. Analytical and experimental results confirm that the conventional phase advancement method charges motor winding with required current to produce the rated power for the speed range where the back-EMF normally prevents the generation of the rated power. A key result is that for the PMSM, the motor current at high speed approaches the machine rating independent of the power produced. This results in poor partial load efficiency. The SRM is also shown to have infinite CPSR capability when continuous conduction is permitted during high speed operation. Traditional high speed control is of discontinuous type. It has been shown that this discontinuous conduction itself is the limiter of CPSR. Mathematical formulas have been developed relating the average current, average power, and peak current required producing the desired (rated) power to machine design parameters and control variables. Control of the SRM in the continuous conduction mode is shown to be simple; however, it does require measurement of motor current. For the SRM the motor current at high speed is proportional to the power produced which maintains drive efficiency even at light load conditions

    Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection

    Get PDF
    This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation

    High efficiency sensorless fault tolerant control of permanent magnet assisted synchronous reluctance motor

    Get PDF
    In the last decades, the development trends of high efficiency and compact electric drives on the motor side focused on Permanent Magnet Synchronous Machines (PMSMs) equipped with magnets based on the rare-earth elements. The permanent magnet components, however, dramatically impact the overall bill of materials of motor construction. This aspect has become even more critical due to the price instability of the rare-earth elements. This is why the Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM) concept was brought to the spotlight as it gives comparable torque density and similar efficiencies as PMSM although at a lower price accredited for the use of magnets built with ferrite composites. Despite these advantages, PMaSynRM drive design is much more challenging because of nonlinear inductances resulting from deep cross saturation effects. It is also true for multi-phase PMSM motors that have gained a lot of attention as they proportionally split power by the increased number of phases. Furthermore, they offer fault-tolerant operation while one or more phases are down due to machine, inverter, or sensor fault. The number of phases further increases the overall complexity for modeling and control design. It is clear then that a combination of multi-phase with PMaSynRM concept brings potential benefits but confronts standard modeling methods and drive development techniques. This Thesis consists of detailed modeling, control design, and implementation of a five-phase PMaSynRM drive for normal healthy and open phase fault-tolerant applications. Special emphasis is put on motor modeling that comprises saturation and space harmonics together with axial asymmetry introduced by rotor skewing. Control strategies focused on high efficiency are developed and the position estimation based on the observer technique is derived. The proposed models are validated through Finite Element Analysis (FEA) and experimental campaign. The results show the effectiveness of the elaborated algorithms and methods that are viable for further industrialization in PMaSynRM drives with fault-tolerant capabilities.En últimas décadas, las tendencias de desarrollo de accionamientos eléctricos compactos y de alta eficiencia en el lado del motor se centraron en las maquinas síncronas de imanes permanentes (PMSM) equipadas con imanes basados en elementos de tierras raras. Sin embargo, los componentes de imán permanente impactan dramáticamente en el coste de construcción del motor. Este aspecto se ha vuelto aún más crítico debido a la inestabilidad de precios de los elementos de tierras raras. Esta es la razón por la que el concepto de motor de reluctancia síncrona asistido por imán permanente (PMaSynRM) se ha tomado en consideración, ya que ofrece una densidad de par comparable y eficiencias similares a las de PMSM, aunque a un precio más bajo acreditado para el uso de imanes construidos con compuestos de ferritas. A pesar de drive PMaSynRM resulta muy complejo debido a las inductancias no lineales que resultan de los efectos de saturación cruzada profunda. Esto también es cierto para los motores PMSM polifásicos que han ganado mucha atención en los últimos años, en los que se divide proporcionalmente la potencia por el mayor número de fases. Además, ofrecen operación tolerante a fallas mientras una o más fases están inactivas debido a fallas en la máquina, el inversor o el sensor. Sin embargo, el número de fases aumenta aún más la complejidad general del diseño de modelado y control. Está claro entonces que una combinación de multifase con el concepto PMaSynRM tiene beneficios potenciales, pero dificulta los métodos de modelado estándar y las técnicas de desarrollo del sistema de accionamiento. Esta tesis consiste en el modelado detallado, el diseño de control y la implementación de un drive PMaSynRM de cinco fases para aplicaciones normales en buen estado y tolerantes a fallas de fase abierta. Se pone especial énfasis en el modelado del motor que comprende la saturación y los armónicos espaciales junto con la asimetría axial introducida por la inclinación del rotor. Se desarrollan estrategias de control enfocadas a la alta eficiencia y se deriva la estimación de posición basada en la técnica del observador. Los modelos propuestos se validan mediante Análisis de Elementos Finitos (FEA) y resultados experimentales. Los resultados muestran la efectividad de los algoritmos y métodos elaborados, que resultan viables para la industrialización de unidades PMaSynRM con capacidades tolerantes a fallas.Postprint (published version

    In-wheel motor vibration control for distributed-driven electric vehicles:A review

    Get PDF
    Efficient, safe, and comfortable electric vehicles (EVs) are essential for the creation of a sustainable transport system. Distributed-driven EVs, which often use in-wheel motors (IWMs), have many benefits with respect to size (compactness), controllability, and efficiency. However, the vibration of IWMs is a particularly important factor for both passengers and drivers, and it is therefore crucial for a successful commercialization of distributed-driven EVs. This paper provides a comprehensive literature review and state-of-the-art vibration-source-analysis and -mitigation methods in IWMs. First, selection criteria are given for IWMs, and a multidimensional comparison for several motor types is provided. The IWM vibration sources are then divided into internally-, and externally-induced vibration sources and discussed in detail. Next, vibration reduction methods, which include motor-structure optimization, motor controller, and additional control-components, are reviewed. Emerging research trends and an outlook for future improvement aims are summarized at the end of the paper. This paper can provide useful information for researchers, who are interested in the application and vibration mitigation of IWMs or similar topics
    corecore