7 research outputs found

    Numerical Studies for Solving Fractional Riccati Differential Equation

    Get PDF
    In this paper, finite difference method (FDM) and Pade\u27-variational iteration method (Pade\u27- VIM) are successfully implemented for solving the nonlinear fractional Riccati differential equation. The fractional derivative is described in the Caputo sense. The existence and the uniqueness of the proposed problem are given. The resulting nonlinear system of algebraic equations from FDM is solved by using Newton iteration method; moreover the condition of convergence is verified. The convergence\u27s domain of the solution is improved and enlarged by Pade\u27-VIM technique. The results obtained by using FDM is compared with Pade\u27-VIM. It should be noted that the Pade\u27-VIM is preferable because it always converges to the solution even for large domain

    Splitting Decomposition Homotopy Perturbation Method To Solve One -Dimensional Navier -Stokes Equation

    Get PDF
    We have proposed in this  research a new scheme to find analytical  approximating solutions for Navier-Stokes equation  of  one  dimension. The  new  methodology depends on combining  Adomian  decomposition  and Homotopy perturbation methods  with the splitting time scheme for differential operators . The new methodology is applied on two problems of  the test: The first has an exact solution  while  the other one has no  exact solution. The numerical results we  obtained  from solutions of two problems, have good convergent  and high  accuracy   in comparison with the two traditional Adomian  decomposition  and Homotopy  perturbationmethods .&nbsp

    On Numerical Solutions of Two-Dimensional Boussinesq Equations by Using Adomian Decomposition and He\u27s Homotopy Perturbation Method

    Get PDF
    In this paper, we obtain the approximate solution for 2-dimensional Boussinesq equation with initial condition by Adomian\u27s decomposition and homotopy perturbation methods and numerical results are compared with exact solutions

    A New HPM for Integral Equations

    Get PDF
    Homotopy perturbation method is an effective method for obtaining exact solutions of integral equations. However, it might perform poorly on ill-posed integral equations. In this paper, we introduce a new version of the homotopy perturbation method that efficiently solves ill-posed integral equations. Finally, several numerical examples, including a system of integral equations, are presented to demonstrate the efficiency of the new method

    A Note on Free Vibration of a Double-beam System with Nonlinear Elastic Inner Layer

    Get PDF
    In this note, small amplitude free vibration of a double-beam system in presence of inner layer nonlinearity is investigated. The nonlinearity is due to inner layer material and is not related to large amplitude vibration. At first, frequencies of a double-beam system with linear inner layer are studied and categorized as synchronous and asynchronous frequencies. It is revealed that the inner layer does not affect higher modes significantly and mainly affects the first frequency. Then, equation of motion in the presence of cubic nonlinearity in the inner layer is derived and transformed to the form of Duffing equation. Using an analytical solution, the effect of nonlinearity on the frequency for simply-supported and clamped boundary conditions is analyzed. Results show that the nonlinearity effect is not significant and, in small amplitude free vibration analysis of a double-beam system, the material nonlinearity of the inner layer could be neglected

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte

    Comparison between Adomian's method and He's homotopy perturbation method

    No full text
    In this paper, it is revealed that modified form of He's homotopy perturbation method corresponds to Adomian's decomposition method for certain nonlinear problems. © 2008 Elsevier Ltd. All rights reserved
    corecore