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Abstract 

 
In this paper, we obtain the approximate solution for 2-dimensional Boussinesq equation with 

initial condition by Adomian's decomposition and homotopy perturbation methods and 

numerical results are compared with exact solutions. 
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1. Introduction 

 
One of the equation describing the propagation of long waves on shallow water is the Boussinesq 

one which first appeared. The author was the first to explain scientifically the effect of the 

existence of solitary waves or solitons discovered in 1834 by Scott-Russell. Boussinesq equation 

can be written in the form 
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,)(= 2

xxxxxxxxtt uuuu  
 

 

where ),( txu  is an elevation of the free surface of fluid and the coefficients .=, Rconst  

The Boussinesq equation was proposed earlier than Korteweg-de Vries one, but the 

mathematical theory for it is not as complete as for the latter one. 

 

The one-dimensional in space Boussinesq equation and its generalization 

 

 
xxxxxxxxtt ufuuu ))((=  

 
 

have been studied in many papers. The two-dimensional version of the generalized Boussinesq 

equation 
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has been proposed by Ablowitz et al. (1997). This equation is motivated by considerations 

underlying the derivation of the Kadomtsev-Petviashvili type equations and models slow 

transverse variations balanced by longitudinal dispersion and weak nonlinearity. 

 

In this study, we also consider the 2-dimensional Boussinesq equation 

 

 
0,=)3( 2

xxxxxxxxtt uuuu                                                                                                  (1)
 

 

subject to initial conditions 
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2. The Adomian Decomposition Method (ADM) 
 

The ADM was first introduced by Adomian in the beginning of 1980's. The method is useful 

obtaining both a closed form and the explicit solution and numerical approximations of linear or 

nonlinear differential equations and it is also quite straighforward to write computer codes. This 

method has been applied to obtain a formal solution to a wide class of stochastic and 

deterministic problems in science and engineering involving algebraic, differential, integro-

differential, differential delay, integral and partial differential equations Lesnic et al. (1999) and 

Dehghan (2004). The convergence of ADM for partial differential equations was presented by 

Cherruault (1990). Application and convergence of this method for nonlinear partial differential 

equations are found in Ngarhasta et al. (2002) and Hashim et al. (2006). 
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In general, it is necessary to contruct the solution of the problems in the form of a decomposition 

series solution. In the simplest case, the solution can be developed as a Taylor series expansion 

about the function not the point at which the initial condition and integration right hand side 

function of the problem are determined the first term 
0u  of the decomposition series for 0.n  

The sum of the ,,, 210 uuu terms are simply the decomposition series Adomian (1989), 

Adomain (1994), Adomain (1998), and Dehghan (2004). 

 

 

   .,=,
0=

txutxu n

n


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   (3) 

 

Suppose that the differential equation operator including both linear and nonlinear terms, can be 

formed as  

 

  ,,= txFNuRuLu    (4) 

 

with initial condition 

 

    ,=,0 xgxu   (5) 

 

where L  is the higher-order derivative which is assumed to be invertible, R  is a linear 

differential operator of order less than ,L  N  is the nonlinear term and  txF ,  is a source term. 

We next apply the inverse operator 
1L  to both sides of equation (4) and using the given 

condition (5) to obtain 

 

          ,,=, 11 NuLRuLtxfxgtxu     (6) 

 

where the function  txf ,  represents the terms arising from integrating the source term  txF ,  

and from using the given conditions, all are assumed to be prescribed. The nonlinear term can be 

written as El-Sayed (2002), Inc (2006), and Inc (2007). 
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where nA  are the Adomian polynomials. These polynomials are defined as 
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For example, 

 

 
 ,= 00 uNA  
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and so on, the other polynomials can be constructed in a similar way, Wazwaz (2002). As 

indicated before, Adomian method defines the solution u  by an infinite series of components 

given by equation (4) and the components ,,, 210 uuu  are usually recurrently determined. Thus, 

the formal recursive relation is defined by 
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which are obtained all components of .u  As a result, the terms of the series ,,, 210 uuu  are 

identified and the exact solution may be entirely determined by using the approximation 
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where 
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 (13) 

 

Equation (1) can be rewritten in an operator form  

 

 
0,=)3( 2 uLuuLuL xxxxxt 

  
 (14) 

 

where the linear differential operators tL , xL  and xxL  are given by 
22/ t , 22/ x  and ,/ 44 x  

respectively. Assuming the inverse of the operator 
1L  exists and it can conveniently be taken as 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 3, Art. 1

https://digitalcommons.pvamu.edu/aam/vol5/iss3/1



AAM: Intern. J., Special Issue No. 1 (August 2010)  5 

 

the definite integral with respect to t  from 0  to ,t  that is,   ..=
00

1 dtdtL
tt




 The decomposition 

method suggests that the unknown functions u  be decomposed by an infinite series 
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and the nonlinear terms   nnxxn AutxA 


0=

2 =)(=, . In here, 
nA  are the so-called Adomian 

polynomials and these polynomials can be calculated as 

 

 
,)3(= 2
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 1 0 1= 3(2 ) ,xxA u u
  

(16) 
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Thus, applying the inverse operator 
1L  to (14) yields  

 

 
 .)3(= 211 uLuuLLuLL xxxxxt 

  
 (17) 

 

Therefore, equations (1) are transformed into a set of recursive relations given by 
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3. The Homotopy Perturbation Method 

 
The homotopy perturbation method (HPM) was first proposed by He (1998), He (2004),  He 

(2004),  He (2004),  He (2005),  He (2005), He (2006). The HPM does not depend on a small 

parameter in the equation. Using homotopy technique in topology, a homotopy is constructed 

with an embedding parameter  0,1p  which is considered as a  " small parameter". 

 

The HPM was successfully applied to nonlinear oscillators with discontinuities He (2004) and 

bifurcation of nonlinear problems He (2004). In He (2004), a comparison of HPM and homotopy 

analysis method was made, revealing that the former is more powerful than the latter. The HPM 

was proposed to search for limit cycles or bifurcation curves of nonlinear equations He (2005). 

In He (2005), heuristical example was given to illustrate the basic idea of the HPM. Also this 

method was applied to solve boundary value problems He (2006) and heat radiation equations 

Ganji et al. (2006) and Noor et al. 
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When implementing the HPM, we get the explicit solutions of the two-dimensional parabolic 

equation without using any transformation method. The method presented here is also simple to 

use for obtaining numerical solution of the equations without using any discretization techniques. 

Furthermore, we will show that considerably better approximations related to the accuracy level 

can be obtained. 

 

To illustrate the basic ideas of this method, we consider the following nonlinear differential 

equation: 

 

     ,0,=  rrfuA   (19) 

 

with the boundary conditions of 

 

   ,0,=/,  rnuuB   (20) 

 

where A  is a general differential operator, B  a boundary operator,  rf  a known analytical 

function and   is the boundary of the domain   and 
n


 on denotes differentiation along the 

normal vector drawn outwards from  . 

 

Generally speaking, the operator A  can be divided into two parts which are L  and N , where L  

is linear, but N  is nonlinear. Equation (10) can therefore be rewritten as follows: 

 

       0.=rfuNuL    (21) 

 

By the homotopy technique, we construct a homotopy RH  0,1]:  which satisfies: 

 

 
             0, = 1 [ , , ] [ , ] = 0, 0,1 , ,H V p p L V r L u r p A V r f r p r     

   
(22) 

 

or 

 

 
           0 0, = , , , [ , ] = 0,H V p L V r L u r p L u r p N V r f r   

  
(23) 

 

where  0,1p  is an embedding parameter, 
0u  is an initial approximation of equation (1), which 

satisfies the boundary conditions. Obviously, from equations (21) and (22) we will have: 

 

 
      0,=,,=,0 0 ruLrVLVH    (24) 

 

       0.=,=,1 rfrVAVH    (25) 

 

Changing process of p  from zero to unity is just that  prV ,  changes from  ru0  to  ru .  In 

topology, this is called deformation, and    ruLrVL ,, 0  and    rfrVA ,  are called 

homotopy. 
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According to the HPM, we can first use the embedding parameter p  as a " small parameter" , 

and assume that the solution of equation (13) and (14) can be written as a power series in p: 

 

 
.= 2

2

10  VppVVV
  

(26) 

 

Setting 1=p  results in the approximate solution of equation (1): 

 

 
.=lim= 210

1



VVVVu

p   
 (27) 

 

The combination of the perturbation method and the homotopy method is called the homotopy 

perturbation method (HPM), which has eliminated the limitations of the traditional perturbation 

methods. On the other hand, this technique can have full advantage of the traditional perturbation 

techniques. The series (26) is convergent for most cases He (1998, 2004, 2005, 2006). 

  

To investigate the traveling wave solution of equation (1), we first construct a homotopy as 

follows: 
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 (28) 

 

where " primes" denote differentiation with respect to x, and " dot" denotes differentiation with 

respect to t. Substituting equation (14) and arranging the coefficients of p  powers we have 

 

 00

4

4

3

3

2

210 upuYpYpYpYpY   '''''''''' YpYpYpYppY 4

5

3

4

2

3

1

2

0   

       
2 2 2 2 4 3

1 1 0 0 1 2 0 23 6 3 6 6'' '' '' '' '' '' '' ''p Y p Y Y pY p Y Y p Y Y                                                        (3) 

             
'''''''''''''' YYpYYpYYpYp 40

5

30

4

31

52

2

5 6663 
 

                  
( ) 2 ( ) 3 ( ) 4 ( ) 5 ( )

0 1 2 3 4 = 0.IV IV IV ' IV ' IVpY p Y p Y p Y p Y     
 

 

In order to obtain the unknownsof ),( txYi , 1,2,3,4,=i  we must construct and solve the 

following system which includes five equations with five unknowns, considering the initial 

condition of ,0)(=,0)( xuxY  and having the initial approximations of equation (1): 
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4. Test the Example 
  

In this section, we present the 2-dimensional Boussinesq equation with analytical solutions to 

show the efficiency of methods described in the previous section. 

 

We shall consider equation (1) with the following initial conditions. These gives the exact 

solution 
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First we apply the ADM to equation (1). To construct the correction functional, it is sufficient to 

use Eqs.(16) and (18). 
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and so on, in this manner the other components of the decomposition series (15) were obtained 

of which u  was evaluated to have the following expansions:  
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We now apply the HPM to equation (1), we obtained in succession ,, 32,1 uuu  etc. by using 

equation (30) as 
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   
and so on, in the same manner the other components can be obtained using the Mathematica 

package. 

 

Table 1. Error between the ADM using 6 terms and exact solutions of ),( txu  for 1.=c  

t/x      20      25       30     35                       40 

0.1 -1.13536×10
-
¹¹ -7.65003×10

-
¹ -5.15455×10

-
¹ -3.47311×10

-
¹ -2.34016×1

-
² 

0.2 -4.54354×10
-
¹¹ -3.06141×10

-
¹³ -2.06276×10

-
¹ -1.38988×10

-
¹ -9.36493×10

-
¹ 

0.3 -1.02534×10
-
¹¹¹

 
-6.90868×10

-
¹³ -4.65504×10

-
¹ -3.13654×10

-
¹ -2.11338×10

-
¹ 

0.4 -1.83324×10
-
¹ -1.23523×10

-
¹² -8.32291×10

-
¹ -5.60793×10

-
¹ -3.77859×10

-
¹ 

0.5 -2.88913×10
-
¹ -1.94668×10

-
¹² -1.31166×10

-
¹ -8.83791×10

-
¹ -5.95494×10

-
¹ 

0.6 -4.20881×10
-
¹ -2.83588×10

-
¹² -1.91081×10

-
¹ -1.28749×10

-
¹ -8.67501×10

-
¹ 

0.7 -5.81331×10
-
¹ -3.91698×10

-
¹² -2.63924×10

-
¹ -1.77831×10

-
¹ -1.19821×10

-
¹ 

0.8 -7.72935×10
-
¹ -5.20801×10

-
¹² -3.50912×10

-
¹ -2.36443×10

-
¹ -1.59314×10

-
¹ 

0.9 -9.98996×10
-
¹ -6.73118×10

-
¹² -4.53544×10

-
 -3.05595×10

-
¹ -2.05908×10

-
¹ 

1.0 -1.26352×10
-
 -8.51353×10

-
¹² -5.73637×10

-
¹ -3.86513×10

-
¹ -2.60431×10

-
¹ 

 

Table 2. Error between the ADM using 6 terms and exact solutions of ),( txu  for 2.=c  

t/x       20       25      30      35     40 

0.1 -6.87025×10⁻¹⁵ -5.83508×10⁻¹⁸ -4.95588×10⁻²¹ -4.20916×10⁻²⁴ -3.57495×10⁻²⁷ 
0.2 -2.85325×10⁻¹⁴ -2.42334×10⁻¹⁷ -2.05821×10⁻²⁰ -1.74808×10⁻²³ -1.48469×10⁻²⁶ 
0.3 -6.64626×10⁻¹⁴ -5.64484×10⁻¹⁷ -4.79431×10⁻²⁰ -4.07193×10⁻²³ -3.45839×10⁻²⁶ 
0.4 -1.22546×10⁻¹³ -1.04082×10⁻¹⁶ -8.83993×10⁻²⁰ -7.50798×10⁻²³ -6.37672×10⁻²⁶ 
0.5 -1.99512×10⁻¹³ -1.69451×10⁻¹⁶ -1.43918×10⁻¹⁹ -1.22234×10⁻²² -1.03816×10⁻²⁵ 
0.6 -3.01246×10⁻¹³ -2.55856×10⁻¹⁶ -2.17305×10⁻¹⁹ -1.84563×10⁻²² -1.56754×10⁻²⁵ 
0.7 -4.33107×10⁻¹³ -3.67849×10⁻¹⁶ -3.12423×10⁻¹⁹ -2.65349×10⁻²² -2.25368×10⁻²⁵ 
0.8 -6.02288×10⁻¹³ -5.11538×10⁻¹⁶ -4.34463×10⁻¹⁹ -3.69001×10⁻²² -3.13402×10⁻²⁵ 
0.9 -8.182872×10⁻¹³ -6.94979×10⁻¹⁶ -5.90264×10⁻¹⁹ -5.01326×10⁻²² -4.25789×10⁻²⁵ 
1.0 -1.09342×10⁻¹⁶ -9.28671×10⁻¹⁶ -7.77844×10⁻¹⁹ -6.69901×10⁻²² -5.68964×10⁻²⁵ 
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Table 3. Error between the HPM using 6 terms and exact solutions of ),( txu  for 1.=c  

t/x      20       25      30      35      40 

0.1 -7.22418×10⁻¹¹ -4.86762×10⁻¹³ -3.27977×10⁻¹⁵ -2.20989×10⁻¹⁷ -1.48902×10⁻¹⁹ 
0.2 -1.38051×10⁻¹⁰ -9.30179×10⁻¹³ -6.26749×10⁻¹⁵ -4.22301×10⁻¹⁷ -2.84544×10⁻¹⁹ 
0.3 -1.98351×10⁻¹⁰ -1.33648×10⁻¹² -9.00512×10⁻¹⁵ -6.06761×10⁻¹⁷ -4.08832×10⁻¹⁹ 
0.4 -2.53882×10⁻¹⁰ -1.71064×10⁻¹² -1.15262×10⁻¹⁴ -7.76631×10⁻¹⁷ -5.23289×10⁻¹⁹ 
0.5 -3.05244×10⁻¹⁰ -2.05674×10⁻¹² -1.38581×10⁻¹⁴ -9.33747×10⁻¹⁷ -6.29154×10⁻¹⁹ 
0.6 -3.52932×10⁻¹⁰ -2.37803×10⁻¹² -1.60231×10⁻¹⁴ -1.07963×10⁻¹⁶ -7.27446×10⁻¹⁹ 
0.7 -3.97359×10⁻¹⁰ -2.67738×10⁻¹² -1.80401×10⁻¹⁴ -1.21553×10⁻¹⁶ -8.19017×10⁻¹⁹ 
0.8 -4.38873×10⁻¹⁰ -2.95711×10⁻¹² -1.99248×10⁻¹⁴ -1.34252×10⁻¹⁶ -9.04586×10⁻¹⁹ 
0.9 -4.77772×10⁻¹⁰ -3.21921×10⁻¹² -2.16908×10⁻¹⁴ -1.46152×10⁻¹⁶ -9.84762×10⁻¹⁹ 
1.0 -5.14311×10⁻¹⁰ -3.46539×10⁻¹² -2.33496×10⁻¹⁴ -1.57329×10⁻¹⁶ -1.06007×10⁻¹⁹ 

 

 

Table 4. Error between the HPM using 6 terms and exact solutions of ),( txu  for 2.=c   

t/x     20      25      30      35       40 

0.1 -5.88421×10⁻¹⁴ -4.99761×10⁻¹⁷ -4.24461×10⁻²⁰ -3.60505×10⁻²³ -3.06186×10⁻²⁶ 
0.2 -9.53984×10⁻¹⁴ -8.10243×10⁻¹⁷ -6.88161×10⁻²⁰ -5.84472×10⁻²³ -4.96407×10⁻²⁶ 
0.3 -1.13251×10⁻¹⁴ -9.61872×10⁻¹⁷ -8.16943×10⁻²⁰ -6.93851×10⁻²³ -5.89305×10⁻²⁶ 
0.4 -1.15063×10⁻¹⁴ -9.77259×10⁻¹⁷ -8.30012×10⁻²⁰ -7.04501×10⁻²³ -5.98732×10⁻²⁶ 
0.5 -1.03015×10⁻¹⁴ -8.74932×10⁻¹⁷ -7.43102×10⁻²⁰ -6.31136×10⁻²³ -5.36041×10⁻²⁶ 
0.6 -7.90375×10⁻¹⁴ -6.71286×10⁻¹⁷ -5.70141×10⁻²⁰ -4.84235×10⁻²³ -4.11273×10⁻²⁶ 
0.7 -4.49351×10⁻¹⁴ -3.81645×10⁻¹⁷ -3.24141×10⁻²⁰ -2.75301×10⁻²³ -2.33821×10⁻²⁶ 
0.8 -2.45251×10⁻¹⁵ -2.08298×10⁻¹⁷ -1.76913×10⁻²⁰ -1.50257×10⁻²³ -1.27617×10⁻²⁶ 
0.9 4.66915×10⁻¹⁴ 3.96563×10⁻¹⁷ 3.36811×10⁻²⁰  2.80662×10⁻²³  2.42961×10⁻²⁶ 
1.0 1.00792×10⁻¹³ 8.56056×10⁻¹⁷ 7.27071×10⁻²⁰  6.15752×10⁻²³  5.24475×10⁻²⁶ 

 

 

5. Conclusion 

 
Thus, we have illustrated how Adomian decomposition method and homotopy perturbation 

method can be used to solve of Boussinesq equation. The accuracy of the numerical solutions 

investigated that the methods is well suited for the solution of the nonlinear equations. The 

results of numerical example is presented and only few terms are required to obtain accurate 

solutions. In Table 1 and 2 shows that the error, between the exact value of u  and the 

approximation of u . The errors obtained by using the approximate solution given in using only 

few terms iterations of the decomposition method. In Table 3 and 4 show that the exact and 

numerical solutions are for only few terms by using Homotopy perturbation method. 
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