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Abstract. In this note, small amplitude free vibration of a double-beam system in presence of inner layer 
nonlinearity is investigated. The nonlinearity is due to inner layer material and is not related to large amplitude 
vibration. At first, frequencies of a double-beam system with linear inner layer are studied and categorized as 
synchronous and asynchronous frequencies. It is revealed that the inner layer does not affect higher modes 
significantly and mainly affects the first frequency. Then, equation of motion in the presence of cubic nonlinearity 
in the inner layer is derived and transformed to the form of Duffing equation. Using an analytical solution, the 
effect of nonlinearity on the frequency for simply-supported and clamped boundary conditions is analyzed. Results 
show that the nonlinearity effect is not significant and, in small amplitude free vibration analysis of a double-beam 
system, the material nonlinearity of the inner layer could be neglected. 
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1. Introduction 

Sandwich beams have wide applications in different industries, especially in the production of light weight structures which 
are essential elements in aircraft and ship manufacturing. Such beams are made of three layers: two faces which are thin and 
highly strong and an inner layer which is thick and has a light and a low stiffness. Desirable structural properties like high 
stiffness and low weight are achieved by combining the strong face with a thick and low-density core. A double-beam system 
made of two parallel beams connected together through an elastic layer is considered as an approximate model for the 
sandwich beam. Another important application of a double-beam system is in vibration mitigation, where an external load is 
applied to one of the beams as the main structure and the other beam is designed to reduce undesired vibration as an auxiliary 
device. The common model for the inner layer is the well-known Winkler model which considers an elastic layer as a series of 
closely-spaced and mutually-independent linear elastic springs in which the vertical displacement is assumed to be 
proportional to the contact pressure at an arbitrary point. The dynamic characteristics of the double-beam system with Winkler 
inner layer have been investigated in several studies [1-14]. For instance, Oniszczuk [1] investigated free vibration of double-
beam systems continuously joined by a Winkler elastic layer with simply-supported boundary conditions and presented 
analytical formulation for the natural frequencies. De Rosa and Lippiello [4] studied the free vibration of parallel double-
beams joined by a Winkler-type elastic layer by means of the differential quadrature method. The double-beam has vertical 
translation and rotation elastic constraints to the ends. Mirzabeigy and Madoliat [5] investigated the free vibration of a 
partially-connected double-beam system which was a model for damage in the inner layer. In another work, Mirzabeigy et al. 
[6] studied the free vibration of a double-beam system in which stiffness of Winkler inner layer varied along the length of the 
beam. Kozic et al. [7] applied Kerr-type or the three-parameter model for an elastic inner layer. This model was made of two 
Winkler layers with different stiffness values connected together through a shear layer. Vu et al. [8] considered a viscoelastic 
inner layer made of parallel springs and dampers and studied the forced vibration of the system. Li et al. [9] applied a semi-
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analytical method to study the free and forced vibration of a double-beam system having a viscoelastic inner layer. Palmeri and 
Adhikari [10] proposed a Galerkin-type state-space for transverse vibrations of a double-beam with a viscoelastic inner layer. 
Their viscoelastic model was the standard linear solid model made of a spring in parallel with Maxwell’s element, where 
Maxwell’s element is given by a spring in series with a damper. 

There are two different sources considered for nonlinear vibration of structures. One of them is the large amplitude motion 
which yields nonlinear terms in the equation of motion. Another source is the nonlinear behavior of materials. Several studies 
have been conducted on the nonlinear vibration of a single beam from the macro to the micro scale. There are three studies 
regarding nonlinear vibration in double-beam systems. Bochicchio et al. [12] applied the nonlinear model of Woinowsky-
Krieger for beams in which the inner layer was considered as the linear elastic Winkler model. Koziol [13] studied the dynamic 
behavior of a double-beam system with viscoelastic inner layer under the action of a moving load. In this paper, the double 
system was resting on a nonlinear foundation. Rahman and Lee [14] studied vibration of a double-beam system with elastic 
Winkler inner layer under harmonic excitation. They assumed one of the beams would undergo a large amplitude due to 
excitation while the other would remain linear with a small amplitude of vibration.  

As stated, different problems related to the vibration of a double-beam system have been studied. There is no report about 
the effect of a nonlinear inner layer. In this study, the effect of a nonlinear Winkler inner layer on free vibration with small 
amplitude was investigated. At first, the well-known solutions for frequencies of double-beam systems were applied and it was 
revealed that the elastic inner layer mainly affected the fundamental frequency. Then the equation of motion in presence of 
cubic nonlinearity in the elastic inner layer was derived using the first mode of vibration. The governing equations of motion 
were transformed into Duffing equations and the analytical solution was applied to study the effect of nonlinearity in the elastic 
layer. 

2. Methodology 

Consider a double-beam system as depicted in Fig 1. The two beams are identical and simply-supported boundary 
conditions have been considered. The beam’s Young modulus is E , the density is  , the width of rectangular cross-section is 

w and the height is h . Also, the area and the cross-sectional moment of inertia are A  and I , respectively. The stiffness of 
the linear Winkler inner layer is Lk . This problem has been handled in different papers [1-3] and the synchronous frequencies 

have been derived as follows: 
 

 

Fig. 1. A schematic of double-beam system with elastic inner layer. 
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In synchronous motions, the beams’ motions have the same amplitude (because the beams are identical) and direction. 
Therefore, the potential energy is not stored in the inner layer. The asynchronous frequencies are as follows: 
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As can be seen, due to contrary motion direction of the beams, the effects of the inner layer are revealed in frequency. In 
the case of simply-supported boundary conditions, we have: 

i i     (3) 

In order to investigate the effect of the inner layer on frequencies of the system, we consider the following geometric and 
physical properties: 

32 , 0.1 , 0.05 , 70 , 2700L m w m h m E Gpa kg m      (4) 

To better show the effect of the inner layer, we define increase in frequency due to asynchronous motion rather than 
synchronous motion for the ith mode (IFAS) as follows: 
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In Table 1, the effect of different values of linear Winkler stiffness on natural frequencies has been investigated. As seen, 
the inner layer mostly affects the first asynchronous frequency and as the mode number is increased, the effect of the inner 
layer becomes smaller. Due to the great effect of inner layer on first frequency and the negligible effect on higher modes, we 
considered only the first mode in analysis of the double-beam system in presence of inner layer nonlinearity. 

Table 1. Effect of linear elastic inner layer on frequencies of the double-beam system. 

 50.5 10Lk    510Lk   55 10Lk    

 synchronous asynchronous IFAS asynchronous IFAS asynchronous IFAS 

1i   181.33694 200.72492 10.7% 218.39849 20.4% 327.04305 80.4% 

2i   725.34774 730.43601 0.7% 735.48906 1.4% 774.72797 6.8% 

3i   1632.0324 1634.3002 0.14% 1636.5649 0.28% 1654.5706 1.4% 

3. Free vibration with nonlinear inner layer 

Consider the double-beam system investigated in Section 2. In this section, the nonlinear behavior was considered for the 
Winkler inner layer as cubic nonlinearity which is shown by Nk . As mentioned earlier, the amplitude of motion is small and 

the nonlinear behavior of beams can be neglected. By assuming that the length of the beam is at least 10 times larger than its 
height, the thin or Euler-Bernoulli beam theory is applied to modeling the beams. Deflections of upper and lower beams are 
denoted by 1( , )y x t and 2 ( , )y x t , respectively. To derive the governing equations of motion, the potential and kinetic energies 

of the system are required. The potential energy of the system has two parts: one part from bending in beams and another part 
from the energy stored in the elastic inner layer. The potential energy of such a system from bending in beams is as follows: 

2 2
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The potential energy stored in the inner layer is as follows: 
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The kinetic energy of the system is as follows: 
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Using the Lagrangian of the system and invoking Hamilton’s principle, we have: 
2

1

( ) 0
t

Bending Inner Layert
T dt     (9) 

Substituting Eqs. (6-8) into Eq. (9) and performing the necessary algebra, the following partial differential equations are 
obtain for motion: 
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The governing equations of motion in Eqs. (10) and (11) can be solved using the Bernoulli-Fourier method [1-3] by 
assuming solutions as follows: 

1 1 2 2( , ) ( ) ( ), ( , ) ( ) ( )y x t x T t y x t x T t    (12) 

where 1( )T t and 2 ( )T t denote unknown time functions, and ( )x  is the known first mode shape function. Substituting 

Eq. (12) into Eqs. (10) and (11) yields: 
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By adopting the weighted residual Bubnov–Galerkin method, we have: 
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Finally, the nonlinear equations of motion in terms of unknown time functions are derived as follows: 
3
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In the case of simply-supported boundary conditions, the fundamental mode function is: 
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Consequently, the other parameters are calculated as follows: 
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In the case of clamped boundary conditions, the fundamental mode function is: 
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As a result, the other parameters are calculated as follows: 
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It is assumed that the midpoint of the beams is subjected to an initial displacement and zero initial velocity. Therefore, the 
initial conditions of nonlinear differential equations in Eqs. (17) and (18) become: 

1 1 1 2 2 2(0) , (0) 0, (0) , (0) 0T C T T C T      (24) 

To derive the analytical solution for Eqs. (17) and(18), intermediate variables are introduced as follows [15-18]: 

1 : ,T v     2 1 :T T u   (25) 

by applying the introduced variables, Eqs. (17) and (18) are transformed into: 
3 0v v u u       (26) 

3 0u v u v u u           (27) 

by combining Eqs. (26) and (27), we have: 
3( 2 ) 2 0,u u u       2 1 2 1(0) (0) (0) , (0) 0u T T C C C u       (28) 

Eq. (28) is the well-known nonlinear Duffing equation with cubic nonlinearity. Several methods have been proposed and 
applied to analytically solving nonlinear differential equations [19-29]. For nonlinear Duffing equation in the following form: 

3
1 2 0, (0) , (0) 0q q q q A q        (29) 

different methods have been applied to derive the analytical amplitude-frequency relationship for Eq. (29). One relation 
was obtained using energy balance method based on Galerkin-Petrov (EGP) approach as follows [18]: 

2
1 2

7

10EGP A     (30) 

Another relation was obtained using homotopy perturbation method (HPM) as follows [30]: 

2
1 2

3

4HPM A     (31) 

When the amplitude is not large, the solutions in Eqs. (30) and (31) yield good accuracy in comparison with exact solutions 
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from integration. By analogy between Eq. (28) and Eq. (29), frequency-amplitude relationships for Eq. (30) are obtain as 
follows: 

27
2

5EGP C       (32) 

23
2

2HPM C       (33) 

By substituting the obtained values for , ,    into Eqs. (32) and (33), the nonlinear frequencies of the double-beam 

system with simply-supported boundary conditions are derived as follows: 
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In order to compare the two analytical nonlinear frequencies of the system, linear stiffness of the inner layer is assumed to 
be 510Lk  . As stated before, the amplitude of motion is not large. Considering the length of beams ( 2L m ), the maximum 

value of amplitude will be 0.2. The results are presented in Table 2. As can be seen, the results are very similar and both 
methods can be used to study the system. Therefore, we used the homotopy perturbation solution. 

Table 2. Comparison between different solutions for nonlinear frequency in the case of simply-supported boundary conditions. 

C  
0.5N Lk k  0.75N Lk k  N Lk k  

EGP  HPM  EGP  HPM  EGP  HPM  

0.05 218.42074 218.422333 218.43187 218.434255 218.44299 218.446177 

0.1 218.48750 218.493857 218.53199 218.541527 218.57647 218.589186 

0.2 218.75432 218.779719 218.93202 218.970087 219.10958 219.160289 

 
In the case of clamped boundary conditions, the nonlinear frequency using homotopy perturbation method was derived as 

follows: 

4
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To investigate the effect of inner layer nonlinearity on the asynchronous frequency, we defined increase in frequency due to 
inner layer nonlinearity (IFLN) as follows: 

0
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C
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 

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
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For numerical analysis, the values of parameters in Eq. (4) were considered and the linear stiffness of the inner layer was 
assumed to be 510Lk  and the maximum value of amplitude was considered to be 0.2. In Fig. 2, the effects of inner layer 

nonlinearity and the amplitude of motion on the frequency of system with simply-supported boundary conditions are depicted 
using IFLN. Moreover, Fig. 3 shows the effects of inner layer nonlinearity and the amplitude of motion on the frequency of 
system with clamped boundary conditions using IFLN. It is obvious that the inner layer nonlinearity in the form of cubic 
nonlinear term does not greatly affect the free vibration frequency of a double-beam system when the amplitude is not large. 

 
Fig. 2. Effect of nonlinearity in inner layer on frequency of double-beam system with simply-supported boundary conditions 
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Fig. 3. Effect of nonlinearity in inner layer on frequency of double-beam system with clamped boundary conditions. 

4. Conclusion 

In this note, the effect of nonlinearity in an inner elastic layer on the frequency of a double-beam system in small amplitude 
vibration was investigated. At first, by making a distinction between synchronous and asynchronous motions of beams, the 
effect of linear inner layer was investigated and the results showed that the inner layer mainly affected the first mode 
asynchronous frequency, having little effect on higher mode frequency. Then, the equations of motion by considering cubic 
nonlinearity in the inner layer and small amplitude vibration were derived. By introducing intermediate variables, the equations 
of motion were transformed to the well-known Duffing equation. Using the amplitude-frequency relationship of Duffing 
equation, the effect of inner layer nonlinearity on frequency in small amplitude free vibration was investigated. The results 
showed that the effect is not significant, although this effect is larger for simply-supported boundary conditions than the 
clamped boundary conditions. If the amplitude of motion becomes large, the inner layer nonlinearity has obvious effects on 
frequency. We conclude that in small amplitude free vibration of a double-beam system, if the inner layer nonlinearity is 
neglected, the calculated frequency is valid with high accuracy. 
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