15,909 research outputs found

    Global hypothesis test to compare the likelihood ratios of multiple binary diagnostic tests with ignorable missing data

    Get PDF
    In this article, a global hypothesis test is studied to simultaneously compare the likelihood ratios of multiple binary diagnostic tests when in the presence of partial disease verification the missing data mechanism is ignorable. The hypothesis test is based on the chi-squared distribution. Simulation experiments were carried out to study the type I error and the power of the global hypothesis test when comparing the likelihood ratios of two and three diagnostic tests respectively. The results obtained were applied to the diagnosis of coronary stenosis.This research was supported by the Spanish Ministry of Science, Grant Number MTM 2012-35591

    Global hypothesis test to compare the likelihood ratios of multiple binary diagnostic tests with ignorable missing data

    Get PDF
    In this article, a global hypothesis test is studied to simultaneously compare the likelihood ratios of multiple binary diagnostic tests when in the presence of partial disease verification the missing data mechanism is ignorable. The hypothesis test is based on the chi-squared distribution. Simulation experiments were carried out to study the type I error and the power of the global hypothesis test when comparing the likelihood ratios of two and three diagnostic tests respectively. The results obtained were applied to the diagnosis of coronary stenosis.Peer Reviewe

    Adjusting for verification bias in diagnostic accuracy measures when comparing multiple screening 2 tests - an application to the IP1-PROSTAGRAM study

    Get PDF
    Introduction Novel screening tests used to detect a target condition are compared against either a reference standard or other existing screening methods. However, as it is not always possible to apply the reference standard on the whole population under study, verification bias is introduced. Statistical methods exist to adjust estimates to account for this bias. We extend common methods to adjust for verification bias when multiple tests are compared to a reference standard using data from a prospective double blind screening study for prostate cancer. Methods Begg and Greenes method and multiple imputation are extended to include the results of multiple screening tests which determine condition verification status. These two methods are compared to the complete case analysis using the IP1-PROSTAGRAM study data. IP1-PROSTAGRAM used a paired84 cohort double-blind design to evaluate the use of imaging as alternative tests to screen for prostate 85 cancer, compared to a blood test called prostate specific antigen (PSA). Participants with positive imaging (index) and/or PSA (control) underwent a prostate biopsy (reference). Results When comparing complete case results to Begg and Greenes and methods of multiple imputation there is a statistically significant increase in the specificity estimates for all screening tests. Sensitivity estimates remained similar across the methods, with completely overlapping 95% confidence intervals. Negative predictive value (NPV) estimates were higher when adjusting for verification bias, compared to complete case analysis, even though the 95% confidence intervals overlap. Positive predictive value (PPV) estimates were similar across all methods. Conclusion Statistical methods are required to adjust for verification bias in accuracy estimates of screening tests. Expanding Begg and Greenes method to include multiple screening tests can be computationally intensive, hence multiple imputation is recommended, especially as it can be modified for low prevalence of the target condition

    Comparison of the Average Kappa Coefficients of Two Binary Diagnostic Tests with Missing Data

    Get PDF
    The average kappa coefficient of a binary diagnostic test is a parameter that measures the average beyond‐chance agreement between the diagnostic test and the gold standard. This parameter depends on the accuracy of the diagnostic test and also on the disease prevalence. This article studies the comparison of the average kappa coefficients of two binary diagnostic tests when the gold standard is not applied to all individuals in a random sample. In this situation, known as partial disease verification, the disease status of some individuals is a missing piece of data. Assuming that the missing data mechanism is missing at random, the comparison of the average kappa coefficients is solved by applying two computational methods: the EM algorithm and the SEM algorithm. With the EM algorithm the parameters are estimated and with the SEM algorithm their variances‐covariances are estimated. Simulation experiments have been carried out to study the sizes and powers of the hypothesis tests studied, obtaining that the proposed method has good asymptotic behavior. A function has been written in R to solve the proposed problem, and the results obtained have been applied to the diagnosis of AlzheimerÊčs disease

    Correction of Verication Bias using Log-Linear Models for a Single Binaryscale Diagnostic Tests

    Get PDF
    In diagnostic medicine, the test that determines the true disease status without an error is referred to as the gold standard. Even when a gold standard exists, it is extremely difficult to verify each patient due to the issues of costeffectiveness and invasive nature of the procedures. In practice some of the patients with test results are not selected for verification of the disease status which results in verification bias for diagnostic tests. The ability of the diagnostic test to correctly identify the patients with and without the disease can be evaluated by measures such as sensitivity, specificity and predictive values. However, these measures can give biased estimates if we only consider the patients with test results who also underwent the gold standard procedure. The emphasis of this paper is to apply the log-linear model approach to compute the maximum likelihood estimates for sensitivity, specificity and predictive values. We also compare the estimates with Zhou’s results and apply this approach to analyze Hepatic Scintigraph data under the assumption of ignorable as well as non-ignorable missing data mechanisms. We demonstrated the efficiency of the estimators by using simulation studies

    Bias in trials comparing paired continuous tests can cause researchers to choose the wrong screening modality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the diagnostic accuracy of two continuous screening tests, a common approach is to test the difference between the areas under the receiver operating characteristic (ROC) curves. After study participants are screened with both screening tests, the disease status is determined as accurately as possible, either by an invasive, sensitive and specific secondary test, or by a less invasive, but less sensitive approach. For most participants, disease status is approximated through the less sensitive approach. The invasive test must be limited to the fraction of the participants whose results on either or both screening tests exceed a threshold of suspicion, or who develop signs and symptoms of the disease after the initial screening tests.</p> <p>The limitations of this study design lead to a bias in the ROC curves we call <it>paired screening trial bias</it>. This bias reflects the synergistic effects of inappropriate reference standard bias, differential verification bias, and partial verification bias. The absence of a gold reference standard leads to inappropriate reference standard bias. When different reference standards are used to ascertain disease status, it creates differential verification bias. When only suspicious screening test scores trigger a sensitive and specific secondary test, the result is a form of partial verification bias.</p> <p>Methods</p> <p>For paired screening tests with bivariate normally distributed scores, we give formulae and programs to quantify the effect of <it>paired screening trial bias </it>on a paired comparison of area under the curves. We fix the prevalence of disease, and the chance a diseased subject manifests signs and symptoms. We derive the formulas for true sensitivity and specificity, and those for the sensitivity and specificity observed by the study investigator.</p> <p>Results</p> <p>The observed area under the ROC curves is quite different from the true area under the ROC curves. The typical direction of the bias is a strong inflation in sensitivity, paired with a concomitant slight deflation of specificity.</p> <p>Conclusion</p> <p>In paired trials of screening tests, when area under the ROC curve is used as the metric, bias may lead researchers to make the wrong decision as to which screening test is better.</p

    Semiparametric Estimation of the Covariate-Specific ROC Curve in Presence of Ignorable Verification Bias

    Get PDF
    Covariate-specific ROC curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this paper, we propose a semiparametric estimation method for the covariate-specific ROC curves with a partial missing gold standard. A location-scale model is constructed for the test result to model the covariates\u27 effect, but the residual distributions are left unspecified. Thus the baseline and link functions of the ROC curve both have flexible shapes. With the gold standard missing at random (MAR) assumption, we consider weighted estimating equations for the location-scale parameters, and weighted kernel estimating equations for the residual distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based, inverse probability weighted and doubly robust estimators. We derive the asymptotic normality of the estimated ROC curve, as well as the analytical form the standard error estimator. The proposed method is motivated and applied to the data in an Alzheimer\u27s disease study

    A hybrid Bayesian hierarchical model combining cohort and case–control studies for meta-analysis of diagnostic tests: Accounting for partial verification bias

    Get PDF
    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented
    • 

    corecore