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Abstract

To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, 

bivariate random effects models have been recommended to jointly model the sensitivities and 

specificities. As study design and population vary, the definition of disease status or severity could 

differ across studies. Consequently, sensitivity and specificity may be correlated with disease 

prevalence. To account for this dependence, a trivariate random effects model had been proposed. 

However, the proposed approach can only include cohort studies with information estimating 

study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a 

subset of samples to be verified by the reference test. It is known that ignoring unverified subjects 

may lead to partial verification bias in the estimation of prevalence, sensitivities and specificities 

in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In 

this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-

control studies and correcting partial verification bias at the same time. We investigate the 

performance of the proposed methods through a set of simulation studies. Two case studies on 

assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in 

detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission 

tomography in characterizing adrenal masses are presented.
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1 Introduction

Accurate diagnosis of a disease is often the first step toward its treatment and prevention. 

The growing number of assessment instruments, as well as a rapid escalation in costs has 
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generated an increasing need for scientifically rigorous comparisons of the diagnostic tests 

in clinical practice. In the presence of a gold standard measure of disease status, the 

performance of a binary diagnostic test is often measured by paired indices, such as 

sensitivity (Se) and specificity (Sp), positive and negative predictive values (PPV and NPV), 

or positive and negative diagnostic likelihood ratios (LR+ and LR−).1,2 Sensitivity and 

specificity are often regarded as intrinsic properties of a diagnostic test. However, it is well 

understood that Se and Sp may not reflect the clinical utility of a diagnostic test; such 

clinical utility depends on the prevalence of disease (π) in the population to which the 

instrument is applied.3 In particular, high NPV or a low LR− is necessary for a diagnostic 

test to be useful at ruling out disease, and high PPV or a high LR+ is necessary for a 

diagnostic test to be useful at confirming disease.

Meta-analysis of diagnostic tests is a useful tool to combine evidence on diagnostic 

accuracies from multiple studies. Compared to conventional meta-analyses of controlled 

clinical trials, it has several additional statistical challenges. Specifically, the paired indices 

are typically correlated and heterogeneous across studies due to differences in study design, 

population selection, or laboratory methods.4–13 Bivariate random effects models on 

sensitivities and specificities have been recommended to account for such correlation and 

heterogeneity in the literature and specifically by the Cochrane Diagnostic Methods 

group.8,10,11 In addition, because the classification of disease status is typically based on a 

continuum of measurable traits, and such continuous traits not only determine disease 

prevalence, but also misclassification rates (subjects with true levels close to the cut-point 

are more likely to be misclassified), sensitivities and specificities can be correlated with 

study prevalences.14 Trivariate random effects models on prevalence, sensitivities and 

specificities were proposed to account for such correlations.15 However, many meta-

analyses of diagnostic tests in practice contain both cohort and case-control study designs.16 

Using cohort design, a study first tests participants with the index test, next confirms disease 

status with the gold standard.17 In case-control design studies, groups of patients with and 

without disease are identified before performing the index test.18 Thus, case-control studies 

cannot be used to estimate disease prevalence and direct application of the trivariate random 

effects models has been restricted to a meta-analysis with cohort studies only. Under such 

situations, ignoring the information on prevalence to fit the bivariate random effects 

model6,9–11 on Se and Sp, or excluding case-control studies to fit the trivariate random 

effects model15 on prevalence can potentially lead to substantial loss of information 

contained in the data. For example, the former approach ignores disease prevalence 

information and the correlations between disease prevalence Se and Sp, which can lead to 

incorrect estimation of PPV and NPV.

Partial verification is a common and important potential source of bias that usually arises 

when the selection of samples to be verified by a reference standard test is affected by the 

results of a diagnostic test.19,20 As stated in the quality assessment tool for diagnostic 

accuracy studies (QUADAS), partial verification bias occurs when not all of the study group 

receive confirmation of the diagnosis by the reference standard.21 As an illustration, let us 

assume that the true Se and Sp of a diagnostic test are 0.8 and 0.9, respectively. A study with 

a population of 100 diseased (D+) and 200 non-diseased (D−) subjects is conducted to 

evaluate the diagnostic test performance. Assume 80% of the subjects with test positive 
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outcomes are verified, while only 20% of the subjects with test negative outcomes are 

verified by a reference standard. Let ntd denote the number of subjects with test results T = t 
and disease status D = d (t, d = 0, 1, m indicating negative, positive and missing results, 

respectively). Assuming no sampling variation, we will have n11 = 64, n01 = 4, n00 = 36, n10 

= 16, n1m = 20 and n0m = 160. Now, if we only use verified samples, we overestimate Se as 

 and underestimate Sp as . Moreover, 

the direction and magnitude of such bias depends on selection probabilities.22 To avoid such 

bias, ideally, all subjects should be verified. However, due to some practical issues such as 

ethical and economic considerations, partial verification is prevalent. In a systematic review 

of bias and variation in meta-analysis of diagnostic accuracy studies, 15 out of 31 (48%) 

meta-analyses contain at least one study with partial verification.22 Thus, it is important to 

adjust for partial verification bias in meta-analysis of diagnostic tests.22,23

Methods to adjust for verification bias in a single study are widely published. Most of the 

methods are built upon the missing at random (MAR) assumption, when the decision to 

ascertain disease status only depends on the observed index test result, T. Violations of this 

condition can happen when, for example, subjects with family disease history are more 

likely to get disease status verified.1 Begg and Greenes24 proposed a simple method based 

on Bayes theorem. Other methods such as multiple imputation, direct maximum likelihood, 

or Bayesian approaches have been proposed.20,25–29 These methods give unbiased estimates 

of Se and Sp for individual studies instead of recovering missing counts of subjects. Thus we 

would not be able to apply the exact binomial likelihood assumption for a GLMM approach 

under meta-analysis settings. Few sensitivity analysis methods are available under the 

assumption of Missing Not At Random (MNAR), i.e., the probability of being verified by a 

reference standard depends on the unobserved data.30,31

On the other hand, only limited literature are available on methods to adjust verification bias 

in a meta-analysis setting. De Groot et al.32 extended the Bayes theorem method to adjusting 

for this bias in meta-analysis of diagnostic tests with nominal outcomes. A two-stage 

Bayesian approach was described, where in the 1st stage the probability distribution of the 

index test was calculated and in the 2nd stage PPV and NPV are calculated using observed 

data based on their unbiasedness property under the MAR assumption.1 Bayes theorem is 

then applied to achieve pooled sensitivity and specificity estimates. A few papers have 

discussed the missing data problem caused by imperfect reference standards, but these 

papers are not aimed at partial verification problems specifically. Chu et al.33 discussed a 

latent class random effects model for such a scenario. The model allows variation in 

sensitivity, specificity and prevalence across different studies, and allows correlation among 

the parameters. Sadatsafavi et al.34 proposed a random effects model which allows either 

sensitivity or specificity to vary across studies.

To the best of our knowledge, no one has considered methods to combine information from 

cohort and case-control studies, and to correct partial verification bias in meta-analyses of 

diagnostic tests simultaneously. In this paper we propose a hybrid generalized linear mixed 

model (hybrid GLMM) to solve the two problems together under the assumption of a gold 

standard reference test. The proposed method is described in Section 2. Simulation studies 

are carried out and reported in Section 3. Section 4 provides two motivating case studies. 
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The paper ends with a discussion in Section 5. The data sets for the two case studies are 

given in Appendix 1, Tables S1 and S2, and corresponding WinBUGS code are given in 

Appendix, respectively.

2 Bayesian Hierarchical Model

2.1 Notations

Suppose that we have a meta-analysis with N diagnostic accuracy studies, and the studies are 

indexed such that the N1 cohort studies come first, followed by N2 = N − N1 case-control 

studies. To allow partial verification in some of the first N1 cohort studies, let nitd be the 

number of subjects with disease status D = d and test results T = t (d, t = 0, 1, m indicating 

negative, positive and missing results, respectively) in the ith study (i = 1, 2, …, N1) and pitd 

be the corresponding probability. As subjects with both D and T missing do not provide any 

information, we will not consider them. Let πi, Sei and Spi denote disease prevalence, 

sensitivity and specificity for study i such that πi = P (D = 1), Sei = P(T = 1|D = 1) and Spi = 

P(T = 0|D = 0). Let V = 1 and V = 0 denote the subject is verified or not, respectively. Let 

ωitm (t = 0, 1) and ωimd (d = 0, 1) be the mutually exclusive probabilities of missing for 

subjects with test result T = t and disease status D = d, respectively. Furthermore, given the 

nature of case-control studies, it is unnecessary to consider the influence of missing data in 

case-control studies: subjects with unverified disease status generally do not exist and 

subjects with missing diagnostic test outcomes can be ignored as prevalences in such studies 

are not well defined.

Table 1 presents the data structure and notation for the ith study when it is a cohort study or 

a case-control study. In each cell, the number of cell counts and the corresponding 

probabilities are presented. The left panel is for a cohort studies, which extends a standard 2 

× 2 table to allow for partial verification. The sum of all cell probabilities is one. The right 

half is for a case-control studies with a typical 2 × 2 table. The cell probabilities sum up to 

one for diseased and non-diseased subjects respectively. Derivations of the cell probabilities 

for cohort studies are also provided at the footnote of Table 1.

2.2 The Likelihood with Random Effects Accounting for Heterogeneity

Let ω= {ωi} and θ= {θi}, where ωi = (ωi0m, ωi1m, ωim0, ωim1) and θi= (πi, Sei, Spi) for 

study i. Assuming independence among subjects conditional on θi and ωi, the likelihood is 

the product of contribution from each study. Multinomial likelihoods are used for cohort 

studies and binomial likelihoods are used for case-control studies. In this paper we assume 

verification is MAR, where the missing probabilities ω are independent of prevalence and 

test accuracy parameters, θ. Therefore, the likelihood can be factored as L(θ, ω|Data) ∝ L(θ|

Data) × L(ω|Data). Specifically,

(1)

Ma et al. Page 4

Stat Methods Med Res. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and

(2)

where hi1 = πiSei + (1 − πi)(1 − Spi), hi0 = πi(1 − Sei) + (1 − πi)Spi and j = 0, 1, m.

To account for potential between-study heterogeneity, we consider a generalized linear 

mixed effects model (GLMM):

(3)

where g() is a link function such as logit or probit, and (εi, μi, νi)T is a vector of random 

effects. To account for potential correlation among πi, Sei and Spi, the random effects (εi, μi, 
νi)T are assumed to follow a multivariate normally distribution as (εi, μi, νi)T ~ N(0, Σ), 

where

The diagonal elements of the variance-covariance matrix Σ, ( ), characterize the 

between-study heterogeneities of disease prevalence, test sensitivities and specificities, while 

the off diagonal elements (ρεμ, ρεν, ρμν) capture the correlations between the corresponding 

random effects (πi, Sei), (πi, Spi) and (Sei, Spi) in the transformed scale, respectively. For 

simplicity, we assume the same correlation structure for sensitivities, specificities and 

prevalences for both case-control and cohort studies in this paper, which can be easily 

relaxed if necessary. However, for case-control studies, the study-specific prevalences are 

not contained in the likelihood and not directly estimable, and can be predicted using this 

correlation structure and study-specific sensitivity and specificity.

Study-level covariates, such as study quality, type of design (case-control versus cohort 

studies), race distribution and mean age, can be incorporated through meta-regression when 

necessary. For example, let g(πi) = η0 + η1Xi + εi, g(Sei) = α0 + α1Wi+ μi and g(Spi) = β0 + 

β1Zi + νi, where Xi, Wi and Zi denote the possibly overlapping study-level covariate vectors. 

Note that the hybrid GLMM accounts for different study designs in the construction of 

likelihood. Including type of study design as a covariate is helpful when there is a systematic 

difference between cohort and case-control studies, e. g., if the pooled sensitivity and 

specificity are believed to be different between the two designs.
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The marginal likelihood integrated over random effects is:

(4)

Frequentist methods (such as the maximum likelihood estimate) may converge slowly or 

have convergence problems due to the need to maximize the marginal likelihood with 

trivariate integrations, and the corresponding asymptotic approximations for standard errors 

of functions of parameters may not be sufficiently accurate.35

2.3 Bayesian Posterior Sampling approach

In this paper, we consider fully Bayesian approaches using Markov chain Monte Carlo 

(MCMC) methods for parameter estimation. In most instances, inferences obtained by 

Bayesian and classical frequentist methods are similar when the former uses non-

informative or weakly informative prior distributions for all model parameters.36 Compared 

to the frequentist methods, MCMC algorithms permit full posterior inference (e.g., credible 

intervals (CrIs)) even when the normality approximation based on large sample theory is 

insufficient, which is valuable here because the sampling distributions of π, Se, Sp, PPV, 

NPV, LR+ and LR− are often skewed and the number of studies in the meta-analysis is 

typically small or moderate (e.g., N < 30). Specifically, we will draw posterior inference 

using Gibbs and Metropolis-Hastings sampling algorithms37–40 with convergence assessed 

using trace plots, sample autocorrelations, and statistical convergence diagnostic tests.41,42

Let p(η), p(α), p(β) and p(Σ) denote the prior distributions for η, α, β and Σ. We take non-

informative normal priors on η, α, β and a Wishart prior on the precision matrix Σ−1 (inverse 

Wishart prior on Σ), denoted by

(5)

where R is a 3 by 3 matrix, and a small number is chosen as the degrees of freedom v (v ≥ 

3). The posterior distribution of η, α, β and Σ can be written as:

(6)

where L(θ|data) depends on (η, α, β) through πi= g−1(η + εi), Sei = g−1(α + μi) and Spi = 

g−1(β + νi), and g−1(·) is the inverse function of the link function g(·). When study-level 

covariates are included in the link functions, plug in πi = g−1(η0 + η1Xi + εi), Sei = g−1 (α0 

+ α1Wi + μi) and Spi = g−1(β0 + β1Zi + νi) instead. Here we focus on the model without 

covariates for simplicity of the presentation.
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Using the MCMC samples of η, α, and β, the posterior samples for population-averaged 

PPV, NPV, LR+, LR− can be approximated by the following formulas:

3 Simulation

3.1 Simulation Design

We conduct 12 sets of simulations to compare the proposed Bayesian hybrid GLMM (model 

1) to two alternative approaches which researchers are likely to apply in practice: 1) a 

complete case analysis approach in which subjects not verified are ignored (model 2); and 2) 

a trivariate GLMM approach in which case-control studies are excluded from the analysis 

(model 3). To fit model 2, case-control and cohort studies are combined as in the hybrid 

GLMM, while the missing counts are excluded. To fit model 3, the missing counts are 

accounted for as in the hybrid GLMM, while all case-control studies are excluded from the 

data. To investigate the performance of the proposed hybrid GLMM, for each generated 

dataset, we fit the hybrid GLMM, model 2 and model 3 separately using R package 

BRugs.43 Each dataset contains equal numbers of case-control and cohort studies, where 

cohort studies are subject to partial verification. The probabilities of missing a reference test 

are 0.2 and 0.8, given diagnostic test results being positive and negative, respectively. The 

median prevalence is set to be 0.2 with the variances as , and the number of 

subjects per study is chosen to be similar to the case studies in Section 4. Specifically, we 

consider 12 settings with small (10) or moderate (30) number of studies in a meta-analysis 

and high sensitivity (specificity) as 0.9 (0.95), or low sensitivity (specificity) as 0.7 (0.8), 

respectively. To evaluate the impact of the correlation structure, the correlation parameters 

(ρεμ,ρεν, ρμν) are chosen as (0, 0, 0), (0.5, −0.5, −0.5) or (0.8, −0.8, −0.8) to correspond to 

no correlation, moderate or strong correlations among disease prevalence and test sensitivity 

and specificity (in logit scale). We assume a positive correlation between πi and Sei as it is 

likely to happen when population with higher prevalence may have more patients with clear-

cut disease condition, leading to a higher sensitivity. However, a negative correlation was 

also observed in some studies.14 For each setting, 2000 replicates are generated using the 

trivariate logit-normal random effects model. The posterior statistics (median and 95% equal 

tailed CrI) are summarized from 10000 posterior samples with 5000 burn-in iterations. 

Model performance is evaluated by comparing bias, relative efficiency (RE) and 95% equal 

tailed CrI coverage probability (CP) of the three models. The REs are calculated as the ratio 

of the variances of estimates from the hybrid model and the variances of the estimates from 

an alternative model. The larger RE, the more efficient the estimate from that alternative 

model.

3.2 Simulation Results

We summarized in Table 2 the bias, RE and CP of estimated overall Se, Sp, π, NPV and 

PPV for settings with 30 studies and median Se (Sp) as 0.7 (0.8). Simulation results under 
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other simulation settings are summarized in Appendix 2 Tables S3–S5. Under all settings, 

the hybrid GLMM gives nearly unbiased estimates and satisfactory CP of Se, Sp, π, PPV 

and NPV that are close to the nominal level of 95%.

As expected, when the partial verification is ignored as in model 2, some of the posterior 

estimates were considerably biased with grossly small CP. Under our simulation 

assumptions, specificities are under-estimated, and prevalences and sensitivities are 

overestimated, which agrees with the illustrative example described in the introduction. An 

intuitive explanation is that if we assume ωi1m = 0 and ωi0m > 0 such that partial verification 

would decrease ni10 and ni00 but ni11 and ni10 remain the same, leading to increased Se and 

decreased Sp estimates. From the simulations we also observe that the bias in π is larger 

when true Se (Sp) was 0.9 (0.95) (ranges from 0.13 to 0.2) than when true Se (Sp) was 0.7 

(0.8) (ranges from 0.04 to 0.11), respectively. On the contrary, Sp and Se estimates are more 

biased when true Se (Sp) is 0.7 (0.8) (ranges from 0.04 to 0.14 and from 0.09 to 0.11 

respectively) than when true Se (Sp) is 0.9 (0.95) (ranges from 0.01 to 0.04 and from 0.03 to 

0.04 respectively). Because the estimates are biased, we do not calculate the RE of these 

estimates. Estimates of PPV and NPV from model 2 are nearly unbiased. Under the MAR 

assumption, we have P(V = 1|D = 1, T = 1) = P(V = 1|T = 1), where V = 1 indicates 

verification of disease status, which would imply that P(D = 1|V = 1, Y = 1) = P(D = 1|Y = 

1).1

When only cohort studies are included as in model 3, the estimates are nearly unbiased and 

the CPs remain close to the nominal level. Specifically, for estimation of prevalence, when 

there is no correlation, model 3 performs as well as the hybrid GLMM because only the 

cohort studies have information of π. However, as the correlation becomes larger, the RE of 

model 3 becomes smaller indicating the hybrid GLMM is gaining efficiency. This is because 

information of estimating prevalence is borrowed from Se and Sp estimates from case-

control studies. For estimations of Se and Sp, substantial loss of efficiency can be observed 

using model 3 with REs around 0.3 and 0.5. The reason is that half of the whole study set 

(the case-control studies) are discarded in model 3, which contains important information to 

estimate Se and Sp. For estimations of PPV and NPV, loss of efficiency can also be observed 

with REs ranging from 0.76 to 0.92, and from 0.44 to 0.69, respectively. Generally, the 

relative efficiencies indicate that estimates from the hybrid model are preferable. In 

summary, the hybrid model performs well in correcting partial verification bias and gaining 

efficiency by combining the information from cohort and case-control studies.

4 Case study

4.1 Meta-analysis of Gadolinium-enhanced Magnetic Resonance Imaging (MRI) in 
Detecting Lymph Node Metastases

We reanalyze the meta-analysis conducted by Klerkx et al.16 using the proposed approach. 

Thirty-two studies were reported assessing diagnostic accuracy of gadolinium-enhanced 

MRI in detecting lymph node metastases, with histopathology test as the reference gold 

standard test. A bivariate random effects model6 was applied by Klerkx et al.16 Overall 

sensitivity and specificity were estimated as 0.72 with 95% confidence interval (CI) (0.66, 
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0.79) and 0.87 with 95% CI (0.82, 0.91), respectively. Data for each study is reported in the 

systematic review, as well as the QUADAS21 quality assessment checklist.

The QUADAS criterion is used to classify case-control studies and studies with partial 

verification. The 1st QUADAS criterion is whether patients were representative of practice 

and six studies were reported as “No” or “Not Specified”. These studies are considered as 

case-control studies and the rest as cohort studies in our analysis. The 5th QUADAS 

criterion is whether all subjects were verified by the reference standard or not. Nine cohort 

studies reported as “No”. Among them, we failed to extract missing counts from two studies 

(study 13 and 25 in Table S1 of Appendix 1), thus are treated as having no partial 

verification in the analysis. The remaining seven studies are considered as having partial 

verification. Specific counts of n1m and n0m are extracted for studies 6, 11 and 20. However, 

four studies only indicated total numbers of patients not verified, while specific numbers of 

n1m and n0m are unclear. In practice, efforts should be made to recover missing values. 

Studies with missing values should be discarded to avoid bias. In the MRI study, the original 

papers from studies 10, 15, 16 and 22 were examined but failed to recover missing values. 

However, for purpose of illustration of our method, we assign all missing subjects as 

diagnostic test positive (n0m=0) for simplicity.

4.1.1 Model Fitting via Bayesian Approach—We fit the data using the hybrid GLMM 

with logit link function using WinBUGS44 to draw posterior samples. Model 2 and model 3 

are also fitted for comparison. Non-informative normal priors N(0, 102) are given to η, α 
and β and a Wishart prior W(R, v) is given to the precision matrix Σ−1 as in (5). The degrees 

of freedom v in the Wishart prior is set as v = 4, as pointed out by Tokuda et al. that when v 
= k + 1, where k is the dimension of Σ, the correlation coefficient parameters in Σ will have 

an approximately Uniform (−1, 1) vague prior.45,46 A scaled Wishart prior method is applied 

by setting v = 4 and R as a 3 by 3 identity matrix. Wishart prior is known as a conjugate 

prior for the precision matrix in a multivariate normal distribution. However, it is restricted 

in that it implies the same prior assumption on all of the variance components. The scaled 

Wishart prior method allows the flexibility of having separate priors on each of the precision 

parameter, while keeping the conjugacy property.47 The same priors are applied to model 2 

and model 3. After 100,000 burn-in samples, 1,000,000 posterior samples are collected. The 

median estimates and 95% CrI of interested parameters are presented in Table 3, where the 

estimates from hybrid GLMM are in bold.

The hybrid GLMM gives posterior median estimates of overall sensitivity as 0.76, which is 

0.04 higher than the estimate reported by Klerkx et al.16 and with a slightly narrower 95% 

CI, i.e., an interval of (0.70, 0.82) from the hybrid GLMM versus (0.66, 0.79) from the 

bivariate random effects method. The posterior median is 0.84 for the overall specificity, 

which is 0.03 lower than the bivariate model estimates. In addition, our approach allows the 

estimation of disease prevalence and possible correlations among prevalence, Se and Sp. We 

also presented posterior estimates of PPV, NPV, LR+ and LR− in Table 3. In this case-study, 

the estimates from hybrid GLMM and from model 3 are very similar as only 6 of the 32 

studies are case-control studies, e.g., the median sensitivity is estimated as 0.762 in hybrid 

model and 0.770 in model 3. The quantile contours of posterior estimates Se versus π, Sp 

versus π, Se versus Sp and NPV versus PPV at quantile levels 0.25, 0.5, 0.75, 0.90 and 0.95 
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are presented in Figure 1 A–D, respectively. Figure 1A indicates slightly positive correlation 

between Se and π. Negative correlation can be observed between Sp and π and between Se 

and Sp in Figure 1B and 1C. This observation agrees with the posterior estimates of 

correlation coefficients in Table 3: posterior ρεμ,ρεν and ρμν has median estimates as 0.08, 

−0.42 and −0.47. Slightly negative correlation is shown in Figure 1D between NPV and 

PPV. The observed estimates of Se and Sp for each study and the posterior estimates from 

the hybrid GLMM and model 2 are ploted in Figure 2. The plot shows that different 

approaches can lead to different posterior estimates.

4.1.2 Sensitivity Analysis to Prior Distributions for Σ−1—In addition to the scaled 

Wishart prior, an unscaled Wishart prior is commonly used in which no scale parameter is 

imposed on the precision matrix components. For the unscaled Wishart prior for Σ−1, there 

are several applicable selections of matrix R: the identity matrix,48 or a diagonal matrix with 

diagonal entries chosen to be close to the diagonal elements of posterior precision matrix.36 

In the latter option, previous estimates of the precision matrix can serve as a prior for further 

estimations. As the scaled Wishart prior in Section 4.1.1 gives posterior variance parameter 

estimates close to (0.322, 0,552, 0,912), we choose the Wishart prior parameter R to have 

diagonal entries close to (0.322, 0.552, 0.912)−1 ≈ (9.8, 3.3, 1.2). Thus, to study whether the 

posterior estimates are sensitive to different prior assumptions, we fit the data via two 

unscaled Wishart priors: the identity matrix and a diagonal matrix with elements as (9,8, 3.3, 

1.2). The fitted results are shown in Table 4 under unscaled methods. It shows that different 

priors have little impact on the posterior median Sp or π estimates.

To visually study the impact of different priors on posterior estimates, panel A of Figure 3 

plots posterior densities of Se, Sp and π and panel B of Figure 3 plots posterior densities of 

PPV and NPV under different prior assumptions. Figure 3 shows that different priors have 

little impact on the posterior Sp or π estimates. The unscaled R = diag(9.8, 3.3, 1.2) prior 

gives negligibly larger Se, PPV and NPV posterior estimates than the other two priors. The 

small impact of prior assumption is consistent with intuition and the literature. For example, 

Lambert et al. pointed out that in a univariate setting that relatively large study sizes (15 or 

30 in their simulation settings) would be less influenced by the prior of the scale parameter 

than small study size (5 in their simulation settings).49

4.1.3 An alternative Maximum Likelihood (MLE) approach—A referee has 

suggested considering a frequentist MLE approach as an alternative to obtain parameter 

estimates. Simulation studies comparing the Bayesian and MLE approaches are available in 

the literature.33 We present here the estimates of MRI meta-analysis study via MLE 

approach, which was carried out by SAS NLMIXED procedure. The median estimate is 0.39 

(95% CI: 0.30, 0.45) for disease prevalence, 0.77 (95% CI: 0.70, 0.83) for sensitiviy and 

0.85 (95% CI: 0.80, 0.90) for specificity. The bivariate GLMM8,10,11 ignoring partial 

verification was also fitted via SAS NLMIXED procedure, where sensitivity is estimated to 

be 0.72 (95% CI: 0.66, 0.79) and specificity is estimated to be 0.87 (95% CI: 0.82, 0.92). 

The estimates are close to our posterior estimates from model 1 and model 2 via the 

Bayesian approach (Table 3). The summary receiver operating characteristic (SROC) curves 

was first proposed by Moses et al.50 to reflect the trade-off between sensitivity and 

Ma et al. Page 10

Stat Methods Med Res. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specificity caused by implicit thresholds and bigger area under curve (AUC) suggests better 

test performance. SROC curves using the MLE estimates from the hybrid GLMM and the 

bivariate GLMM approaches are plotted for comparison6,12,51 (Figure 2). AUC are estimated 

to be 0.83 and 0.81 from the hybrid GLMM and the bivariate GLMM, respectively. The 

posterior Se and Sp estimates and AUC estimates from the hybrid GLMM and the bivariate 

GLMM ignoring partial verification are different, indicating that ignoring partial verification 

can lead to different conclusions on test accuracy. Thus, it is important to account for partial 

verification in a meta-analysis of diagnostic tests.

4.2 Meta-analysis of adrenal fluorine-18 fluorodeoxyglucose (FDG) positron emission 
tomography (PET) in Characterizing Adrenal Masses

Boland et al. conducted a systematic review and meta-analysis of 21 cohort studies about 

test accuracy of FDG-PET in characterizing adrenal masses.52 The reference standard tests 

used in the 21 cohort studies include surgery, percutaneous biopsy and follow-up CT. FDG-

PET is concluded to be highly accurate in detecting and differentiating malignant adrenal 

disease. The authors applied the bivarate random effects model and reported that the mean 

sensitivity, specificity of FDG-PET are estimated to be 0.97 (95% CI: 0.93, 0.98) and 0.91 

(95% CI: 0.87, 0.94), respectively.52 However, the authors evaluated the methodologic 

quality of the included studies by the QUADAS criterias and 18 out of the 21 studies were at 

risk of partial verification bias. Among the 18 studies with missing counts, we were able to 

extract the total missing counts for 8 studies from the original papers. The cell counts of 

each study are reported in Table S2 of Appendix A. Again, we impose a strong assumption 

on studies with only total missing counts available that the missing subjects were all tested 

negative by FDG-PET. We make this assumption here to creat a violation of the missing 

completely at random situation to show difference in estimates from the hybrid GLMM and 

from model 2. Under this assumption, sensitivity estimates will be conservative. Again, in 

practice, missing values should be recovered as much as possible and studies with missing 

values should be discarded to avoid bias.

We fit this data by the hybrid GLMM and model 2. In both models we use the same priors 

and number of posterior samples as in the meta-analysis of MRI data (section 4.1.1). We do 

not fit this example by model 3, because all the included studies in this meta-analysis are 

cohort studies. The estimates of interesting parameters are presented in Table 4. The hybrid 

GLMM estimates the overall median (95% CrI) sensitivity, specificity and prevalence as 

0.94 (95% CrI: 0.91, 0.97), 0.93 (95% CrI: 0.90, 0.95) and 0.39 (95% CrI: 0.31, 0.47), 

respectively. The overall sensitivity, specificity and prevalence estimates from model 2 are 

0.96 (95% CrI: 0.93, 0.98), 0.90 (95% CrI: 0.87, 0.94) and 0.45 (95% CrI: 0.37, 0.53), 

respectively. The trivariate GLMM ignoring partial verification overestimate sensitivity by 

0.03, underestimate specificity by 0.03 and overestimate prevalence by 0.06. Again, this 

example shows that ignoring partial verification bias can give different estimates for the test 

accuracy parameters.
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5 Discussion

In this paper we propose a hybrid Bayesian hierarchical model to combine cohort and case-

control studies in meta-analysis of diagnostic tests to account for disease prevalence and to 

correct partial verification bias. In general, this approach improves the precision of the 

estimates of test accuracies and predictive values by using all available information, and can 

be easily applied in practice using free downloadable software R53 and WinBUGS.44 The 

WinBUGS code is provided in Appendix C.

Simulation studies are performed under a variety of settings to compare the performance of 

the proposed method with two practical alternative approaches of either ignoring unverified 

subjects or excluding case-control studies. We showed that ignoring unverified subjects can 

lead to substantial bias and excluding case-control studies can lead to substantial loss of 

efficiency. Overall the simulation results show that the hybrid approach gives nearly 

unbiased posterior medians under all settings considered. The coverage probabilities of 

posterior intervals are close to the nominal level. Thus in the presence of mixed study 

designs and partial verification bias in a meta-analysis, the hybrid GLMM should be 

preferred over the two common alternative approaches.

Two case studies are used to illustrate our method. The first case study evaluates the 

diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting 

lymph node metastases. After combining the case-control and cohort studies and correcting 

for partial verification bias, compared to the original report, slightly higher sensitivity and 

lower specificity point estimates are obtained. The direction of bias on Se and Sp when 

ignoring the missing subjects is opposite of the simulation studies because we assume some 

studies have higher missing probability in MRI tested positives as n0m = 0. This can be 

intuitively explained under an extreme assumption that ωi0m = 0 and ωi1m > 0 such that 

partial verification would decrease ni11 and ni10 but keep ni10 and ni00 the same, leading to 

decreased Se and increased Sp estimates. In addition, our approach provides an overall 

estimate of disease prevalence, which is required for computing other clinical useful indices 

such as PPV and NPV. The second case study evaluates the diagnostic accuracy of FDG-

PET in characterizing adrenal masses. After correcting partial verification bias, the hybrid 

GLMM provides lower sensitivity and prevalence estimates, and higher specificity estimates 

than the bivariate random effects model.

An important question is what is an approriate sample size for such meta-analysis? Our 

simulation settings assumed sample size of 10 and 30 studies and lead to nearly unbiased 

estimates. As we have taken a full Bayesian approach, this becomes an even more intriguing 

question as the needed sample size may depend on whether there are informative priors for 

some parameters to improve estimation. In practice, sample size of meta-analysis varies 

largely. Davey et al.54 summarized that among 22,453 meta-analyses with at least two 

studies, the median number of studies is three and inter-quartile ranges from 2 to 6. As our 

hybrid GLMM is a random effects model, larger sample sizes may be needed.

In this article, we assume that the reference test is a gold standard. In practice, however, the 

reference test may be imperfect and subject to misclassification. Extensions to relax the 
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assumption of perfect reference test are currently under investigation. In such settings, every 

subjects true disease status is unknown and the imperfect tests may be correlated conditional 

on the latent disease status, inducing additional complexity for the estimation of test 

performance. Effort has been devoted in this regard. For example, Chu et al.33 talked about 

adjusting for missing data with imperfect reference test. Dendukuri et al.55 proposed a 

Bayesian approach to access overall sensitivity and specificity under absence of gold 

standard assumption, extending the hierarchical summary receiver operating characteristic 

method by Rutter and Gatsonis.12 Both approaches included conditional dependence 

between the two tests through additional covariance terms. However, restrictions on the 

covariance terms have to be imposed to ensure well-defined probability models.

Another assumption to be relaxed in future research is the MAR assumption. We consider 

the MAR assumption to be practical because in many studies whether a subject is being 

tested by the reference test is merely dependent on the outcome of the diagnostic test and 

other observed characteristics. However, in some studies such as longitudinal studies the 

MNAR assumption may be more appropriate. Baker31 discussed maximum likelihood 

estimates for the situation with multiple tests and Kosinski and Barnhart30 presented a 

general likelihood-based regression approach, based on the conditional selection model by 

Little,56 that can flexibly account for covariates and model different missing data 

mechanisms. Future development is needed to incorporate these approaches in meta-analysis 

settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quantile contours of posterior densities from estimates of the meta-analysis of gadolinium-

enhanced MRI in detecting lymph node metastases assuming scaled Wishart prior. A–D plot 

posterior Se versus prevalence (π), Sp versus π, Se versus Sp and PPV versus NPV, 

respectively, at quantile levels 0.25, 0.5, 0.75, 0.9 and 0.95.
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Figure 2. 
SROC curves from the Hybrid GLMM and the bivariate GLMM using MLE approach. Solid 

lines are the SROC curve from the hybrid GLMM estimates and the 95% prediction region 

for the summary point estimates of Se and Sp. Dashed lines are the SROC curve from the 

bivaraite estimates and the 95% prediction region for the summary point estimates of Se and 

Sp. Black and gray circles are the observed Se and Sp from studies with and without missing 

counts, respectively. Red and blue triangles are the posterior estimates of Se and Sp from the 

Hybrid GLMM and the Bivariate GLMM ignoring partial verification, respectively.
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Figure 3. 
Density plots of posterior estimates of the meta-analysis of gadoliniumenhanced MRI in 

detecting lymph node metastases under different prior assumptions. Panel A plots posterior 

densities of Se, Sp and prevalence (π). Panel B plots posteriors densities of PPV and NPV.
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Table 4

Median estimates and 95% CrI for meta-analysis of FDG PET: comparing the hybrid GLMM and model 2 

where partial verification is ignored

Parameter Hybrid GLMM Model 2

π 0.39 (0.31, 0.47) 0.45 (0.37, 0.53)

σε 0.68 (0.47, 1.01) 0.63 (0.43, 0.95)

Se 0.94 (0.91, 0.97) 0.96 (0.93, 0.98)

σμ 0.68 (0.23, 1.51) 0.71 (0.23, 1.54)

Sp 0.93 (0.90, 0.95) 0.90 (0.87, 0.94)

σν 0.54 (0.22, 1.08) 0.51 (0.22, 1)

ρμν 0.78 (−0.37, 0.97) 0.80 (−0.28, 0.97)

ρεμ −0.07 (−0.76, 0.74) −0.05 (−0.80, 0.73)

ρεν −0.46 (−0.89, 0.37) −0.31 (−0.85, 0.49)

NPV 0.96 (0.93, 0.98) 096 (0.93, 0.98)

PPV 0.89 (0.84, 0.93) 0.89 (0.84, 0.93)

LR+ 16.83 (9.94, 37.97) 21.77 (12.85, 49.75)

LR− 0.06 (0.03, 0.10) 0.05 (0.02, 0.08)

Stat Methods Med Res. Author manuscript; available in PMC 2016 December 01.


	Abstract
	1 Introduction
	2 Bayesian Hierarchical Model
	2.1 Notations
	2.2 The Likelihood with Random Effects Accounting for Heterogeneity
	2.3 Bayesian Posterior Sampling approach

	3 Simulation
	3.1 Simulation Design
	3.2 Simulation Results

	4 Case study
	4.1 Meta-analysis of Gadolinium-enhanced Magnetic Resonance Imaging (MRI) in Detecting Lymph Node Metastases
	4.1.1 Model Fitting via Bayesian Approach
	4.1.2 Sensitivity Analysis to Prior Distributions for Σ−1
	4.1.3 An alternative Maximum Likelihood (MLE) approach

	4.2 Meta-analysis of adrenal fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in Characterizing Adrenal Masses

	5 Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4

