2,314 research outputs found

    Towards Robustness Of Production Planning And Control Against Supply Chain Disruptions

    Get PDF
    Just-in-time supply chains have become increasingly popular in past decades. However, these are particularly vulnerable when logistic routes are blocked, manufacturing capacities are limited or customs are under strain, as has been seen in the last few years. The principle of just-in-time delivery requires a coordinated production and material flow along the entire supply chain. Challenges in the supply chain can lead to various disruptions, so that certain manufacturing jobs must be changed, postponed or cancelled, which will then impact supply down the line up to the consumer. Nowadays, many planning and control processes in the event of a disturbance are based on the procedural knowledge of employees and undertaken manually by those. The procedures to mitigate the negative effects of disturbances are often quite complex and time-critical, making disturbance management highly challenging. In this paper, we introduce a real-world use case where we automate the currently manual reschedule of a production plan containing unavailable jobs. First, we analyse existing literature regarding the classification of disturbances encountered in similar use cases. We show how we automate existing manual disturbance management and argue that employing stochastic optimization allows us to not only promote future jobs but to on-the-fly create entirely new plans that are optimized regarding throughput, energy consumption, material waste and operator productivity. Building on this routine, we propose to create a Bayesian estimator to determine the probabilities of delivery times whose predictions we can then reintegrate into our optimizer to create less fragile schedules. Overall, the goals of this approach are to increase robustness in production planning and control

    Towards robustness of production planning and control against supply chain disruptions

    Get PDF
    Just-in-time supply chains have become increasingly popular in past decades. However, these are particularly vulnerable when logistic routes are blocked, manufacturing capacities are limited or customs are under strain, as has been seen in the last few years. The principle of just-in-time delivery requires a coordinated production and material flow along the entire supply chain. Challenges in the supply chain can lead to various disruptions, so that certain manufacturing jobs must be changed, postponed or cancelled, which will then impact supply down the line up to the consumer. Nowadays, many planning and control processes in the event of a disturbance are based on the procedural knowledge of employees and undertaken manually by those. The procedures to mitigate the negative effects of disturbances are often quite complex and time-critical, making disturbance management highly challenging. In this paper, we introduce a real-world use case where we automate the currently manual reschedule of a production plan containing unavailable jobs. First, we analyse existing literature regarding the classification of disturbances encountered in similar use cases. We show how we automate existing manual disturbance management and argue that employing stochastic optimization allows us to not only promote future jobs but to on-the-fly create entirely new plans that are optimized regarding throughput, energy consumption, material waste and operator productivity. Building on this routine, we propose to create a Bayesian estimator to determine the probabilities of delivery times whose predictions we can then reintegrate into our optimizer to create less fragile schedules. Overall, the goals of this approach are to increase robustness in production planning and control

    To Adapt or Not to Adapt: A Quantification Technique for Measuring an Expected Degree of Self-Adaptation

    Get PDF
    Self-adaptation and self-organization (SASO) have been introduced to the management of technical systems as an attempt to improve robustness and administrability. In particular, both mechanisms adapt the system’s structure and behavior in response to dynamics of the environment and internal or external disturbances. By now, adaptivity has been considered to be fully desirable. This position paper argues that too much adaptation conflicts with goals such as stability and user acceptance. Consequently, a kind of situation-dependent degree of adaptation is desired, which defines the amount and severity of tolerated adaptations in certain situations. As a first step into this direction, this position paper presents a quantification approach for measuring the current adaptation behavior based on generative, probabilistic models. The behavior of this method is analyzed in terms of three application scenarios: urban traffic control, the swidden farming model, and data communication protocols. Furthermore, we define a research roadmap in terms of six challenges for an overall measurement framework for SASO systems

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    Guided self-organisation in open distributed systems

    Get PDF
    [no abstract

    Modeling social resilience: Questions, answers, open problems

    Full text link
    Resilience denotes the capacity of a system to withstand shocks and its ability to recover from them. We develop a framework to quantify the resilience of highly volatile, non-equilibrium social organizations, such as collectives or collaborating teams. It consists of four steps: (i) \emph{delimitation}, i.e., narrowing down the target systems, (ii) \emph{conceptualization}, .e., identifying how to approach social organizations, (iii) formal \emph{representation} using a combination of agent-based and network models, (iv) \emph{operationalization}, i.e. specifying measures and demonstrating how they enter the calculation of resilience. Our framework quantifies two dimensions of resilience, the \emph{robustness} of social organizations and their \emph{adaptivity}, and combines them in a novel resilience measure. It allows monitoring resilience instantaneously using longitudinal data instead of an ex-post evaluation

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care Medicine

    Get PDF
    Physiological closed-loop controlled medical devices automatically adjust therapy delivered to a patient to adjust a measured physiological variable. In critical care scenarios, these types of devices could automate, for example, fluid resuscitation, drug delivery, mechanical ventilation, and/or anesthesia and sedation. Evidence from simulations using computational models of physiological systems can play a crucial role in the development of physiological closed-loop controlled devices; but the utility of this evidence will depend on the credibility of the computational model used. Computational models of physiological systems can be complex with numerous non-linearities, time-varying properties, and unknown parameters, which leads to challenges in model assessment. Given the wide range of potential uses of computational patient models in the design and evaluation of physiological closed-loop controlled systems, and the varying risks associated with the diverse uses, the specific model as well as the necessary evidence to make a model credible for a use case may vary. In this review, we examine the various uses of computational patient models in the design and evaluation of critical care physiological closed-loop controlled systems (e.g., hemodynamic stability, mechanical ventilation, anesthetic delivery) as well as the types of evidence (e.g., verification, validation, and uncertainty quantification activities) presented to support the model for that use. We then examine and discuss how a credibility assessment framework (American Society of Mechanical Engineers Verification and Validation Subcommittee, V&V 40 Verification and Validation in Computational Modeling of Medical Devices) for medical devices can be applied to computational patient models used to test physiological closed-loop controlled systems

    ComplexWorld Position Paper

    Get PDF
    The Complex ATM Position Paper is the common research vehicle that defines the high-level, strategic scientific vision for the ComplexWorld Network. The purpose of this document is to provide an orderly and consistent scientific framework for the WP-E complexity theme. The specific objectives of the position paper are to: - analyse the state of the art within the different research areas relevant to the network, identifying the major accomplishments and providing a comprehensive set of references, including the main publications and research projects; - include a complete list of , a list of application topics, and an analysis of which techniques are best suited to each one of those applications; - identify and perform an in-depth analysis of the most promising research avenues and the major research challenges lying at the junction of ATM and complex systems domains, with particular attention to their impact and potential benefits for the ATM community; - identify areas of common interest and synergies with other SESAR activities, with special attention to the research topics covered by other WP-E networks. An additional goal for future versions of this position paper is to develop an indicative roadmap on how these research challenges should be accomplished, providing a guide on how to leverage on different aspects of the complexity research in Air Transport
    corecore