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Abstract

This thesis aims to demonstrate the benefits that specific developments in the field of guidance
and control can bring to space exploration. These benefits are mostly related to the improvement
of planetary descent & landing techniques and reduction of launcher development and operation
costs. The demonstration employs two application cases that are well-representative of the
aforementioned benefits.

The first case study investigates the feasibility of applying robust control tools to design and
optimise descent & landing trajectories. It is based on a sample return mission to the Martian
moon Phobos, which is especially challenging because the irregular and poorly-known shape of
this body renders its gravitational environment extremely uncertain and variable.

By offering the ability to explicitly account for the effects of such an uncertain environment
in a systematic manner, it is shown how robust control synthesis and analysis techniques can be
effective in complementing and improving state-of-practice industrial approaches. Due to the
conservative character of space industry, especial attention is given to techniques that allow to
take advantage of legacy knowledge, such as structured H∞ optimisation.

The second application is focused on sophisticated guidance and control architectures for
reusable launch vehicles, which are seen as a key paradigm for sustainable access to space.
Improving launcher performance is also a very demanding task since mission requirements tend
to compete against each other due to fundamental couplings between trajectory, actuators
and vehicle structure. A novel benchmark and design framework is first developed, featuring a
real-time capable guidance algorithm for retro-propulsive descent and pinpoint landing, which
relies on recent advances in the domain of convex optimisation.

This reusable launcher benchmark is finally supplemented with dedicated solutions to analyse
and minimise the impact of aerodynamic loads, which represent a critical driver of launcher
safety and operational availability. More specifically, this part of the thesis showcases the earliest
application of robust wind disturbance observation for improved load relief in both ascent and
descent flight.





Ao meu avô António Lourenço Menino
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Nomenclature

Due to the diverse technical areas covered by the thesis, the repetition of a few specific symbols
cannot be avoided. In order to clarify the adopted notation, the nomenclature is organised in:
generic descent & landing and robust control notation, additional variables of application I
and II (that add to the generic notation but are specific to each application), and subscripts &
superscripts (which are common to the applications and extend the definition of all the variables).
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v, v, Vc Relative velocity vector, norm and closing speed
ZEM, ZEV Zero-effort-miss and zero-effort-velocity vectors
z, σ Mass and thrust convexification variables
∆m, ∆V Change of mass and velocity required for manoeuvre
δg, wg Normalised gravity acceleration uncertainty and relative weight
θ Angle between the vehicle’s longitudinal axis and the vertical direction
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t, T Time and time-horizon, t ∈ [0, T ]
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w, w∆, ŵ∆ Exogenous input signal, uncertainty channel and its Fourier transform vector

(scalar if not boldface)
x, y, u, n State, output, control and noise input vectors of a generic system
z, z∆, ẑ∆ Exogenous output signal, uncertainty channel and its Fourier transform

vector (scalar if not boldface)
‖z‖2 2-norm of signal z (2-norm also assumed if subscript is omitted)
γ, K∗ Generic induced L2 gain (optimisation cost) and associated controller
∆, ∆WC Structured uncertainty block, ∆ = diag [δx1 , δx2 , . . . , δxn ], and worst-case

uncertainty configuration
δx, wx Normalised uncertainty of parameter x and relative weight
µ(M) Structured singular value of M
Π IQC multiplier, partitioned as [Π11 Π12; Π21 Π22] and contained in the set DΠ

ρTV Time-varying parameter vector, contained in the set P
σ(M), ρ(M) Singular value and spectral radius of M
Ψ, H Filters applied for the factorisation of multiplier Π
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f , Jf Nonlinear SDK vector function and Jacobian matrix
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R, µg Reference radius and gravitational constant of primary body
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U , ∇U∗# Gravity potential of main body and gradient of body ∗ affecting body #

WS , WA Weights related to the sensitivity function and actuators block
zr, za Output signals related to accuracy γacc and efficiency γeff objectives
δx Small perturbation of variable x (not to be confused with the uncertainty δx)
ν True anomaly of Phobos around Mars
ρGH Vector of selected gravity harmonics coefficients
∗σ Gaussian uncertainty range considered (95.5% for 2σ, 99.7% for 3σ)
σ, α, β Maximum control authority, nonlinear sector lower and upper bounds
τ Time delay
φ, Γ Nonlinear saturation and dead-zone operators
ωPho, ePho Phobos angular velocity and eccentricity around Mars

Additional variables of Application II

a∗i , d
∗
i Thrust acceleration and aerodynamic drag templates at successive

convexification iteration i (the drag template is computed as a
function of additional variables v∗i , z

∗
i , ρ

∗
i and C∗Di)

CD, CL, CN , Cf Drag, lift and normal RLV force coefficients, fin force coefficient
CNα , Cfα Normal RLV and fin force gradient coefficients
F, M Generic force and moment vectors
fsim, fgui Simulation and guidance update frequencies
h, ρ, a Altitude and altitude-dependent atmospheric density and speed of sound
hP, NP Terminal altitude and number of successive convexification iterations
hs, N Recovery start altitude and number of DESCENDO discretisation points
i#, j#, k# Basis vectors of reference frame #

i Bending mode index, i ∈ [1, · · · , k]

j RLV node/station index, j ∈ [1, · · · , n]

J , JA, JN Total, axial and normal moment of inertia
kp, kd, kφ Proportional, derivative and roll-rate gains
l, r, J0 Beam element length, radius and moment of inertia per unit of mass
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Lw Wind disturbance observer
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mctr, Γctr Pitch control moment and effectiveness matrix
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angle of attack at the RLV location defined by # (CG assumed if omitted)
βTVC, βfin, βthr TVC, planar fin and cold gas thruster control inputs
η, ηi Generalised modal vector and coordinate of mode i
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Introduction

It is hard to imagine today’s life without all the fruits space exploration has brought. Satellite
navigation has improved the way we travel whether by land, sea and air. Communications
satellites ensure reliable worldwide connectivity even in areas where terrestrial infrastructure is
poor, damaged or non-existent. A fleet of Earth observation satellites is constantly monitoring
our planet, providing the means to better manage its natural resources and study its climate.
Data gathered by spacecraft flying around the Earth and beyond have greatly contributed to
our current understanding of the Universe and of our humble place in it. Unfortunately, sending
satellites to space – and doing so in a safe and affordable manner – is not an easy task.

1.1 Short overview of launching and landing

To provide all the energy needed to put a satellite in orbit, state-of-the-art launch vehicles
have a propellant-to-structure mass ratio between 80 and 90%, far larger than the 40% of a
cargo aircraft and even 52% of a molotov cocktail [Pet12]. Furthermore, launchers are inherently
unstable during atmospheric flight, which makes them fundamentally more difficult to control,
especially as lighter structures tend to lead to stronger control-structure interactions [WYH08].
These two factors make of rockets highly dangerous and complex machines, becoming even more
critical when human spaceflight is envisaged. Because of this, they are also extremely costly to
develop and operate.

Hence, flight test opportunities for launchers are significantly less than for aircraft and the
subsequent lack of experimental data subjects their development to a higher level of modelling
uncertainty. This in turn makes the whole design process even more critical. To tackle it, launcher
manufacturers rely on extensive mission preparation stages for each specific trajectory and can
operate only within a narrow set of wind and weather conditions. If those conditions are not
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CHAPTER 1. INTRODUCTION

met in the day-of-flight, the launch is postponed to a later date, which increases cost even
further. Then, after successfully delivering a spacecraft into space, the launcher comes crashing
back down to Earth and a new one will have to be built for the next trip. Once again, this is
not the case with aircraft as they are able to operate under a much wider range of conditions,
independently of the trajectory, and they are not thrown away after each flight.

On the other hand, exploration missions where a probe or lander is to be delivered, e.g. Sample
Return (SR) missions, tend to offer a much higher scientific return at the expense of an extra
degree of complexity. For instance, in 2012, chemical analyses carried out by the University of
Chicago on the lunar material collected by Apollo 14 fifty years earlier brought new elements to
the disputed question of the origin of the Moon, casting a new doubt on the most widely-accepted
"Giant Impact" hypothesis [ZDDF12].

But Descent & Landing (D&L) is extremely challenging, even on the most Earth-like planet
of the solar system, Mars. In fact, two out of three missions to the red planet have ended
in failure [LJ14]. This is mostly because the Martian atmosphere is about 100 times thinner
than Earth’s, which compromises the effectiveness of aerodynamic control and deceleration
methods, but it is also highly uncertain and time-varying. To make it more challenging, landing
accuracy specifications have become more stringent over the years, as illustrated by the required
confidence ellipses in Fig. 1.1.

Figure 1.1: Landing ellipses of successful Mars landings on elevation map of Gale Crater (credits:
Ryan Anderson, US Geological Survey Astrogeology Science Center). Highlighted in red is the
landing target of NASA’s Mars Science Laboratory Curiosity.

In order to steer the spacecraft through the harsh Martian environment while coping with
communication delays with Earth (ranging between 4 and 24 minutes) as well as with the chance
of subsystem failures, Guidance & Control (G&C) algorithms have to be highly robust and fully
autonomous.
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Yet, current endeavours aiming to make space more accessible are also making all the
challenges mentioned above ever more present.

1.2 Making space more accessible

The most immediate way of making space more accessible to everyone is through space tourism.
This concept was pioneered by private company Virgin Galactic and aims to offer anyone who
can afford it, an orbital or sub-orbital flight or even a trip around the Moon [Vir19].

Another rapidly-growing interest in space is that of asteroid exploitation, pursued by
companies such as Planetary Resources and Deep Space Industries [Gle18]. There are two
main reasons why reaching for asteroids is economically appealing. The first one is to transfer
heavy-industry activities to space so as to alleviate their harmful impact on Earth. The other
one is to harvest asteroids’ natural resources which, depending on their composition, range from
water (essential for the manufacture of propellant in space) to precious metals like platinum
(that are rare on our planet). Additional advantages of asteroid mining are related to their
low-gravity environment, where moving the same amount of material requires considerably less
energy than on Earth, and to the fact that the ability to harvest and use in situ resources will
ultimately become mandatory if we continue to expand into space.

But the most noble motivation for better capabilities to access space probably lies on
the discovery and colonisation of other planets. Scientists agree that there are now multiple
foreseeable threats with the potential to wipe out humanity and even all life on Earth. Amongst
others, the least unlikely include ecological collapse, global pandemic, nuclear catastrophe,
asteroid collision and misuse of artificial intelligence [Bos02]. Hence, many believe that to
safeguard our survival in case of any of these events, we must colonise other worlds and become
a multi-planetary species as soon as possible. The main candidates for the creation of a self-
sustainable civilisation are Mars and a few moons of Jupiter and Saturn. But the former, having
an adequate atmosphere as well as a land mass and day length comparable to Earth’s seems to
be the next logical leap of mankind.

Nevertheless, in order to make all these ventures feasible, as well as to ensure the sustainability
of today’s space activities, two key questions need to be addressed:

I D&L technologies must be mastered, Mars’ current failure ratio of 2/3 is simply not
acceptable if we plan to carry people or mine asteroids on a regular basis;

II Launch costs must be slashed down, which is equivalent to say that the efficiency of
the development and of the operations process have to be improved.

A more elaborate discussion on the reduction of costs will be provided in Sec. 1.3.2, but
the most impactful paradigm shift in this domain is that of launcher reusability, which is also
tightly related to the need to master D&L techniques.
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The idea of reusability is to recover launcher stages through a controlled re-entry, descent
and pinpoint landing back on Earth and then reuse them for other missions. This idea is not
new – the historical illustration of the first Reusable Launch Vehicle (RLV) is NASA’s winged
Space Shuttle. However, reusing this vehicle proved to be much more difficult than anticipated,
and the cost and risk of maintaining it caused this programme to be cancelled in 2011.

But not long after, two private companies, Blue Origin and SpaceX, were founded with plans
to make reusable Vertical Take-off and Vertical Landing (VTVL) stages [Bla16], which have
now been demonstrated technically feasible. Blue Origin has recovered a sub-orbital vehicle,
New Shepard, in November 2015 for the first time and reused it a few months later. SpaceX
has successfully recovered the first stage of their Falcon 9 launcher on land in December 2015,
on an ocean platform in April 2016 and re-flew an used stage in March 2017. For a broad
overview of other past and current experimental recovery concepts, the interested reader is
referred to [HHA18].

Thanks to the cost efficiency achieved with reusability [Jon18], these companies are already
scaling-up their vehicles towards a new generation of launchers that will open even more
directions in space exploration. For example, Blue Origin is developing the New Glenn launcher
(Fig. 1.2a) which will be able to bring heavy payloads to the Moon (this capability was lost
with the cancellation of the Apollo program) and beyond. A distinctive feature of its design is
the inclusion of planar fins for improved control during Launch & Recovery (L&R).

(a) New Glenn launcher (credits: Blue Origin) (b) Super Heavy Rocket & Starship (credits: SpaceX )

Figure 1.2: New generation of reusable heavy-lift launch vehicles

SpaceX is working on their interplanetary transport system (Fig. 1.2b) composed of a
reusable Super Heavy Rocket and a Starship that can be refilled in orbit (to further cut down
costs). This system is seen as the first enabler for the colonisation of Mars [Mus17]. But it also
holds the potential to revolutionise everyday transportation on Earth – flying outside of the
atmosphere, SpaceX foresees trips between Paris and New York to last only 30 minutes and
access anywhere on the planet in under an hour.

The multi-disciplinary nature of reusability and of space exploration in general makes G&C
applications particularly demanding. Nonetheless, with compatible modelling, synthesis and
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analysis tools provided by Systems and Control theory, improvements can be made that greatly
contribute to more effective integrated solutions. As described in the following section, the aim
of this thesis is precisely to showcase some of these contributions.

1.3 Motivation for guidance & control developments

Because of all the involved risks, launcher and lander manufacturers are historically extremely
conservative and the use of simple classical control techniques is by far the most common
state-of-practice as they are vastly established and understood.

However, this industrial state-of-practice offers limited capabilities to manage issues such as
the impact of uncertainties (which, as seen in Sec. 1.1, play an important role) and specification
of Multiple-Input Multiple-Output (MIMO) requirements in a systematic manner. Instead,
requirements are tackled iteratively for a single channel at a time, although control adjustments
in one channel are typically coupled with the others. Consequently, not only does this approach
rely on very time and cost consuming tuning and ad hoc Verification & Validation (V&V) cycles,
there may also be missing opportunities for performance improvement.

Mathematical tools to address these limitations arose with the advent of the robust control
paradigm in the 1980’s [DGKF89, SD91, DPZ91, PDB93], which provides an explicit consider-
ation of uncertainties and a multi-channel, multi-requirement design framework with formal
guarantees of stability/performance by design. From a safety-oriented point of view, these
formal guarantees make robust control even more attractive than newer alternatives based on
the learning or identification of unknown system dynamics [NMBR19], such as adaptive or
intelligent control. Moreover, a robust control technique called structured H∞ has been more
recently developed [AN06, GA11] and allows controller dimension and structure to be specified.
As it will be seen, this is extremely convenient since it facilitates the transfer of this type of
approach (offering better performance/robustness properties) to industry while keeping the
legacy knowledge from previous control designs.

Despite the aforementioned advantages, there is still a big gap between the academic
development and industrial application of robust control techniques. For this reason, one of the
thesis’ motivations is to work towards narrowing that gap.

In addition to safety concerns, computational capabilities have also limited the adoption of
more advanced guidance algorithms, in particular for propelled D&L, which involves solving a
fuel-optimal trajectory generation problem with state and control constraints. This problem is
highly nonlinear and, until the past decade, it could only be solved in an offline setting, where
trajectories are designed on the ground with powerful computers.

However, the increase of computational power available onboard together with a few mathe-
matical developments, mostly in the field of convex optimisation [AP07, BAS10, LL14, MSA16],
have enabled representative solutions to be determined online and applied in a closed-loop
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fashion. This paradigm shift is now known as Computational Guidance and Control [Spe17] and
it represents one of the enablers of Blue Origin and SpaceX successes [Bla16]. It also enables
the exploration of less accessible, but more scientifically interesting, landing sites on other
planets [SEA17].

Despite the feasibility demonstration of launcher recovery by those private companies, it is
noted that the academic understanding of this topic remains largely uncharted and open to
improvement, which makes it an important research topic of this thesis.

The thesis aims to demonstrate the benefits that specific G&C elements can bring to space
exploration. These elements arise from the aforementioned motivation to narrow the gap between
academic/industrial development of robust control techniques and to increase the understanding
of G&C approaches for D&L. Throughout the thesis, the potential benefits will be demonstrated
by means of two case studies that are well-representative of those benefits, while targeting the
key questions of Sec. 1.2: the first one is devoted to the improvement of D&L on small planetary
bodies and the other is aimed at solutions to reduce the cost of launchers.

The investigated G&C approaches provide a design framework that is transversal to different
aerospace systems but, since the two application cases are very specific and challenging, the
transversal techniques have to be evolved and tailored. The case studies are linked to two different
activities that co-funded the research work; the associated challenges and G&C elements are
introduced in Sec. 1.3.1 and 1.3.2.

1.3.1 Application I
Fuel-optimal descent & landing on small planetary bodies

This activity was sponsored by the UK Space Agency through a National Space Technology
Programme (NSTP) fast-track grant and carried out in cooperation with Airbus Defence &
Space in Stevenage (UK). Its primary objective was to investigate the application of robust
control techniques for the design and optimisation of D&L approaches on small planetary bodies.

As mentioned in Sec. 1.1, SR missions tend to offer a revolutionising degree of scientific return.
However, to facilitate the science, they also require a high level of technological development,
with D&L being one of the most critical phases. In the past few years, recent advances have led
to several SR missions and studies targeting small planetary bodies such as asteroids, comets
and moons. An overview of those missions and guidance strategies is provided in Sec. 2.1.

The growing interest on small planetary bodies is mostly motivated by the fact that their
weaker gravity field makes them more accessible than larger planets. To illustrate this, Fig. 1.3
shows the propellant cost of travelling between Earth and Mars systems. This cost is measured
through the cumulative change of energy or velocity (∆V ) that is required to move from one
orbit to another.

From this figure, it can be seen that a ∆V between 9.3 and 10 km/s is required just to
place a satellite on Low Earth Orbit (LEO). This interval accounts for the energy loss due to
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Figure 1.3: ∆V requirements (in km/s) between Earth and Mars systems (adapted from The case
for a mission to Mars’ moon Phobos, https://phys.org/). Note: ∆V values are cumulative;
not all possible routes are included.

atmospheric drag of different vehicles. To go to Mars, a further ∆V of 10.2 km/s is needed (if no
aerobraking is performed), adding up to a total of about 20 km/s. Instead, if the destination is
one of its moons, Phobos or Deimos, the required ∆V is about 4.5 km/s inferior, which results
in a propellant saving of up to 23%.

To reach the surface of these bodies, conventional strategies involve an extended period of
forced motion. Yet, propellant requirements can be further alleviated if the D&L trajectory
exploits the dynamics of the gravity field in the vicinity of the target body. However, in opposition
to planets, small bodies are often characterised by highly irregular and poorly known shapes,
which render their physical environment extremely uncertain and variable. Therefore, any G&C
solution must be robust in the presence of these challenging circumstances.

Moreover, due to the interplanetary distances involved, highly robust algorithms are required
to cope with communication delays and with the chance of long-term subsystem degradation.
An excellent example of the latter was provided by ESA’s Rosetta mission [FPB+15] when,
in 2014, robust control techniques had to be employed to re-tune Rosetta’s control gains after
thruster authority degradation occurred since its launch ten years before. The new gains were
uploaded to the spacecraft just before its braking and final insertion with the target comet
Churyumov-Gerasimenko.
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This need for robust G&C approaches represents the main motivation for this part of
the thesis. Due to the long-term scope of D&L missions and the conservative character of
space industry in general, special attention is given to techniques well-oriented towards the
state-of-practice, where the integration with legacy knowledge is fundamental.

Also, a conceptual separation between guidance and control is usually adopted by industry,
in which the control element is either over-simplified or non-existent. As it will be seen, this
simplification is only practical if the target body is well known or if guidance algorithms do not
rely on its natural dynamics, which leaves significant room for performance improvement.

Although a generic framework for D&L on small bodies is pursued in this thesis, the scenario
of a candidate Phobos SR mission led by Airbus (Fig. 1.4) is employed as an illustrative case of
the proposed strategies on system design and operation. This Martian moon has been receiving
significant attention from the international community, not only because of the wide scientific
interest to solve the unknowns surrounding its formation, but also as a technological precursor
for future manned and unmanned exploration missions targeting the Martian System [BRB+14].

Figure 1.4: Artist’s concept of a lander on Phobos (credits: Airbus Defence & Space)

In addition to all the support related to the Phobos SR mission, the collaboration with
Airbus Defence & Space (Stevenage) on this activity was especially crucial in ensuring that the
proposed G&C strategies are deemed feasible to adopt in short-term future missions.

1.3.2 Application II
Reusable launcher guidance & control with active load relief

This application was sponsored by the European Space Agency (ESA) through a Network
Partnering Initiative (NPI) doctoral grant and carried out in cooperation with the German
Aerospace Centre (DLR) in Bremen. As mentioned before, the end goal is to explore G&C
functionalities to improve the cost (and performance) of launch vehicles.

As introduced in Sec. 1.2, reusability is currently seen as a key driver for more affordable
launcher operations. The first objective of this part of the thesis is therefore to explore the
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field of Computational Guidance and Control and mature the understanding and application
of onboard D&L guidance algorithms. Once again, these algorithms must be fuel-optimal to
further minimise costs, but also suitable for the challenging environment of retro-propulsive
entry, descent and pinpoint landing.

The second objective is to supplement these algorithms with robust attitude controllers,
exploiting the benefits of robust control. By offering the ability to explicitly account for
uncertainties as well as improving the management of MIMO specifications in a systematic
manner, then the mission design and V&V efforts can be greatly reduced, while simultaneously
increasing wind resilience. This in turn allows to decrease the turnaround time of the vehicle
and increase its operational availability and safety.

In addition, loads arising from the aerodynamic forces exerted on the vehicle must be
maintained below certain structural integrity limits for a set of admissible wind conditions.
When Load Relief (LR) is not properly addressed at control design stage, launcher manufacturers
account for the safety limits by over-dimensioning the structure or constraining the admissible
day-of-flight wind conditions. The design of active LR controllers is a well-established practice
in aeronautics but, despite the critical effect of wind, not in launchers.

In this thesis, an improved LR capability is achieved by augmenting a fixed control structure
with a robust Wind Disturbance Observer (WDO) for onboard wind estimation. This approach is
an excellent example of the advantage of exploiting control structure, mentioned in the beginning
of Sec. 1.3: while the state-of-practice robust control procedure to improve LR performance
would involve increasing the order (and complexity) of a feedback controller, the wind observer
augmentation provides a more gradual, industry-oriented approach, in which heritage launcher
control knowledge can be complemented using an element with clear physical meaning. This
simpler element can then be efficiently designed using (full-order) robust control techniques, as
proposed in Sec. 10.3.

The inclusion of the WDO element is expected to enable further improvements in wind
resilience, as well as help decrease the structural mass. The latter, in turn, allows for an increase
of payload mass and subsequent reduction of the launch cost per kilogram of payload. However,
the holistic optimisation of RLV performance is particularly demanding. One reason for this
is that different requirements tend to compete against each other and a successful design is
a result of an acceptable trade-off between them – as it will be seen, design choices that
minimise propellant consumption are likely to subject the vehicle to higher aerodynamic loads
and touchdown errors, and vice-versa. Another reason is that trajectory, control actuation and
launcher structure are intrinsically coupled, as exemplified by Fig. 1.5.

In short, the vehicle is steered via Thrust Vector Control (TVC), aided by two pairs of fins
under low thrust and two pairs of cold gas thrusters under low dynamic pressure conditions. Not
only do these mechanisms influence L&R performance, they also induce excitations that are
propagated along the vehicle. Predicting these excitations is critical to be able to minimise the
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Figure 1.5: Inherent launcher interactions. These interactions make guidance and control
particularly challenging.

oscillations transmitted to the payload, but also very challenging because the vehicle is subject
to uncertainty, time-varying effects (largely related to Mass, CG & Inertia (MCI) variations
caused by propellant burn), as well as distributed aerodynamic loads and structural elasticity
(jointly known as aeroelasticity).

These effects become even more adverse for the next-generation of launchers, as lighter (and
more flexible) structures tend to lead to stronger control-induced interactions [SYA11, MG16].
Aeroelastic couplings are expected to be even stronger during D&L since the launcher will be
flying with quasi-emptied propellant tanks, which reduces the separation between flexible and
rigid-mode frequencies. All these effects are further worsened by wind gusts, also extremely
uncertain and time-varying, and must be compensated for by the G&C algorithms.

The ability to accurately capture these interactions is fundamental for the complete un-
derstanding of reusable flight mechanics and successful G&C design. Several programmes and
studies have addressed the problem of RLV performance optimisation [BH09, BGF14, TBLG15,
SSBD17, DSE+17], but they are mostly focused on the application of Multi-Disciplinary Opti-
misation (MDO) methods to determine combined L&R reference trajectories, staging conditions
and preliminary vehicle configurations that allow delivering the highest payload while keeping
aerodynamic and thermal loads at reasonable levels.

In this thesis, an alternative design framework based on the coupled assessment of flight
mechanics, guidance and control is proposed. To do so, before any G&C design, an RLV
benchmark will be developed. It is noted that, while this is not an industrial-level simulator
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(with detailed aerodynamic, thermal and structural models), it is a very sophisticated one
capturing all the essential behaviours with sufficient representativeness to allow verifying the
results to a confidence level acceptable by industry.

The benchmark simulates the L&R trajectory of a VTVL booster used as first stage of a
lightweight, non-winged launcher injecting a 1,100 kg satellite in a quasi-polar orbit at 800 km.
The same recovery scenarios employed by SpaceX are implemented: Down-Range Landing (DRL),
in which the reusable stage lands close to its unpropelled impact site, and Return To Launch
Site (RTLS), where the booster uses an additional firing to return to its launch site.

The cooperation with DLR (Bremen) on this activity is particularly interesting because
it opens the door to the possibility of flight testing algorithms developed throughout the
thesis using their own VTVL demonstrator called Environment for Autonomous G&C Landing
Experiments (EAGLE ) [SDT19] and depicted in Fig. 1.6.

Figure 1.6: DLR’s EAGLE demonstrator

1.4 Organisation of the thesis

As introduced in the previous section, this thesis is composed of two application cases arising
from two different activities, but sharing the same G&C design framework. The work breakdown
of these activities and the interplay between them is clarified in Fig. 1.7.

This figure shows the structure of the UK Space Agency activity (Application I) on the left-
hand side, ESA’s activity (Application II) on the right-hand side and the transversal framework
in the middle. In addition, the temporal allocation of tasks is highlighted using different colours
and the overall workflow is clarified using arrows.

The first year (blue blocks) started with the review of D&L guidance as well as robust
control modelling, analysis and synthesis techniques. The former techniques were then applied
for the development of a systematic closed-loop guidance tuning methodology, which was verified
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Figure 1.7: Organisation of the activities (arrows indicate the overall workflow)

using a high-fidelity industrial simulator of the dynamics in the vicinity of Phobos developed by
Airbus Defence & Space (Stevenage).

The robust control framework was then employed for the synthesis and analysis of control
compensators in the first part of the second year (green blocks), marking the end of the first
activity. Control compensation proved to be essential for open-loop guidance architectures (an
elaborate discussion on G&C architectures is provided in Sec. 2.1) and an added-value for
closed-loop laws.

In addition, to initiate and support ESA’s activity, the second part of the second year was
dedicated to the development of a multi-disciplinary benchmark for the study of reusable flight
mechanics. Since there are inherent interactions between trajectory and flight mechanics, the
knowledge acquired during the review of D&L techniques was fundamental for the implemen-
tation of a suitable launcher recovery law and for the development of a more sophisticated
algorithm coined Descending over Extended envelopes using Successive ConvExificatioN-baseD
Optimisation (DESCENDO).

The third year (yellow blocks) started with the design of active LR controllers based on
wind disturbance observation. To achieve this, the set of robust control techniques reviewed in
the first year was fundamental, as well as the knowledge from previous activities on launcher
TVC control in ascent flight. It is highlighted that the study of the combined use of TVC and
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fins in descent flight is particularly novel in launcher control literature. Descent flight control of
a vertical take-off and landing vehicle has been addressed by Boelitz [Boe99], but only TVC
was considered.

The last task corresponded to the inclusion of aeroelasticity effects (couplings between
structural flexibility and distributed aerodynamics) in the model of the launcher by relying on a
MultiBody (MB) dynamics approach. This refined model provided a higher-fidelity analysis of
the LR controllers under potential load cases extracted from the benchmark.

Finally, ESA’s activity accounts for the possibility/potential to verify algorithms developed
throughout the thesis (red block) using the EAGLE demonstrator of Fig. 1.6. The current
plan is to flight test the robust wind disturbance observers mentioned above through concise
campaigns after submitting the thesis.

The thesis report is also organised around the two application cases, see Fig. 1.8, which
provides the layout of the thesis. Following the present introduction, Chapter 2 provides a broad
state-of-the-art review of G&C strategies and techniques in support of both cases. Developments
on each application take place independently but through a common sequence: development of
benchmark/models, followed by development of guidance and control functionalities, finishing
with dedicated analysis and conclusions for each case.

Figure 1.8: Organisation of the report (arrows indicate the overall workflow)
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With this structure in mind, Chapter 3 presents the models relative to Application I,
Chapter 4 proposes a performance-oriented guidance tuning methodology for space D&L,
Chapter 5 is dedicated to the development of control compensators for further performance
improvements. Chapter 6 provides thorough robustness analyses of those compensators and
Chapter 7 draws the main conclusions.

Regarding Application II, Chapter 8 reports the development of the RLV benchmark
and G&C framework, Chapter 9 and Chapter 10 are respectively focused on improving the
guidance and control algorithms implemented with the benchmark. Chapter 11 then refines
the performance analysis by accounting for effects related to aeroelastic loads and Chapter 12
concludes this application.

To conclude the thesis, the conclusions drawn in Chapter 7 and 12 are reviewed in Chap-
ter 13 and recommendations for future work are provided based on the encountered room for
improvement.

1.5 Main contributions

In accordance with the motivations stated in Sec. 1.3 for the two activities that constitute this
thesis, its high-level contribution to the state-of-the-art is a Technology Readiness Level (TRL)
increase of G&C approaches for planetary landers and reusable launchers.

This outcome is broken down into the following achievements (in order of appearance):

1. Reconciliation of G&C architectures for D&L, enabling the integration of legacy
industry knowledge with sophisticated design techniques;

2. Development of a methodology for performance quantification and optimisation
of guidance laws based on the generation of trade-off maps;

3. Earliest application of robust control synthesis techniques to spacecraft orbital
(translational) control, as they were well-established for attitude control only;

4. Demonstration of how robust control analysis techniques can be effective to validate
modelling choices and complement state-of-practice V&V methods;

5. Development of a novel benchmark/framework for RLV G&C design that allows
to exploit fundamental couplings between flight mechanics and closed-loop algorithms;

6. Design and validation of an onboard convex optimisation-based recovery guidance
algorithm specifically tailored to the extended flight envelope encountered by RLVs;

7. Earliest application of robust wind disturbance observation to improve the con-
trol of launcher aerodynamic loads in ascent and descent flight;

8. Extension of the RLV benchmark with a MB model that enables more accurate load
predictions and faster design iterations between trajectory, structure and control.
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Guidance & Control Background

This chapter provides a state-of-the-art survey of methods and tools that are the foundation
to technological developments performed in the remainder of the thesis. Section 2.1 is devoted
to the Descent & Landing (D&L) problem and associated guidance strategies, while Sec. 2.2
introduces the robust control modelling, analysis and synthesis techniques to be subsequently
employed.

2.1 Descent & Landing (D&L) strategies

The D&L strategies presented in this section cover applications to both small asteroids and larger
planetary bodies, as it is noted that, while techniques for each category have been developed
rather independently, much insight can be gained by examining them jointly. Hence, in contrast
to surveys available in the literature, e.g. [HGW12, GHW13], the present one is much ampler
and techniques are compared in an implementation-oriented manner.

For each category, relevant space missions are presented and guidance laws are described. In
addition, emphasis is placed on a parametric description of the algorithms (Sec. 2.1.4.4), which
is convenient for their optimisation, as well as on the impact of uncertainties and inaccuracies
(Sec. 2.1.5) that can lead to performance or mission loss if not addressed properly. This survey
is also available in [SMJ+17b, SMJ+18a].

2.1.1 D&L problem formulation

The D&L problem geometry is depicted in Fig. 2.1 for planar motion but without loss of
generality. It describes a spacecraft approaching a moving body target subject to the influence of
a larger one. Here, the X and Y axes arbitrarily define an inertial reference frame with origin at
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the centre of the larger body. For this problem, it is assumed that the spacecraft has a dedicated
attitude control system that maintains a nadir pointing during the descent (this is actually a
requirement of visual-navigation systems). Couplings are then considered at actuator level by
reserving a fraction of the available thruster authority (10 to 20%) for attitude control.

Y

X

Target

Spacecraft

λ

r

a

rx

ry

rS

rT

vT

vS

Figure 2.1: D&L problem geometry showing a spacecraft approaching a moving body subject to
the influence of a larger one

The position and velocity of the target in Fig. 2.1, rT (t) ∈ R3 and vT (t) ∈ R3, are described
as follows:

ṙT (t) = vT (t)

v̇T (t) = gT (rT )
(2.1)

where gT (rT ) ∈ R3 is the gravitational acceleration acting on the target, which is generically
expressed as a partial derivative of the gravity potential of the main body. Also, rT (t) = ||rT (t)||
and vT (t) = ||vT (t)||.

In a similar way, the position and velocity of the impactor or lander spacecraft in the same
frame, rS(t) ∈ R3 with rS(t) = ||rS(t)|| and vS(t) ∈ R3 with vS(t) = ||vS(t)||, are modelled
as [HGW11]:

ṙS(t) = vS(t)

v̇S(t) = gS(rT , rS) + a(t) + p(t)
(2.2)

where gS(rT , rS) ∈ R3 is the gravitational acceleration felt by the spacecraft due to the main
and target bodies, a(t) ∈ R3 is the control acceleration provided by the spacecraft thrusters and
p(t) ∈ R3 represents any external perturbations (e.g. third-body perturbations) and unknowns.

Defining relative position as r(t) = rS(t)−rT (t) and relative velocity as v(t) = vS(t)−vT (t),
the relative motion between spacecraft and target is expressed as:

ṙ(t) = v(t)

v̇(t) = g(rT , rS) + a(t) + p(t)
(2.3)
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where:
g(rT , rS) = gS(rT , rS)− gT (rT ) (2.4)

is the apparent gravitational acceleration. The closing velocity of the spacecraft is defined as
Vc(t) = −||v(t)||. Moreover, g(rT , rS) can be computed with different levels of accuracy, e.g.
assuming Keplerian forces only or including detailed representations of the inhomogeneity of
bodies via Gravity Harmonics (GH), with all the inaccuracies contained in p(t). Also, note that
it is important that non-inertial effects are accounted for in g(rT , rS) when the frame of Fig. 2.1
is rotating with the system.

Based on this figure, the D&L problem is defined as the computation of the acceleration
input a(t) between initial and final times, i.e. t = t0 and t = tf , that is able to:

• Bring the relative position and velocity from the initial boundary conditions r(t0) = r0

and v(t0) = v0 to the final conditions r(tf ) = rf and v(tf ) = vf ;

• Cope with the effects of uncertainties and perturbations. In the case of small bodies, these
effects are mostly caused by an inexact gravitational model, thruster realisation errors
and inaccurate sensor measurements.

Two additional important concepts to describe the D&L problem that must be introduced
now are the time duration from a given instance t until the end of the manoeuvre, known as
time-to-go, tgo(t) = tf − t, and the Line-Of-Sight (LOS) vector Λ(t) ∈ R3, which is the direction
from target to spacecraft [HPW10] and is given by:

Λ(t) =
r(t)

r(t)
(2.5)

For the planar illustration of Fig. 2.1, the LOS is represented by a single angle and angular rate:

λ(t) = arctan
ry(t)

rx(t)
, λ̇(t) =

rx(t)ṙy(t) + ry(t)ṙx(t)

r2(t)
(2.6)

and, in this case:

Λ(t) =

[
cosλ(t)

sinλ(t)

]
, Λ̇(t) = λ̇(t)

[
− sinλ(t)

cosλ(t)

]
(2.7)

In addition, and specially important to reconcile the diverse guidance laws, the concept of
zero-effort errors that was first defined in [EBR08] must be introduced:

• Zero-Effort-Miss (ZEM) is the position error at the end-of-mission if no corrective ma-
noeuvres are made after time t:

ZEM(t) = rf − r(tf ) | a(τ) = 0 ∀ τ ∈ [t, tf ] (2.8)

• Zero-Effort-Velocity (ZEV) is the velocity error at the end-of-mission if no corrective
manoeuvres are made after time t:

ZEV(t) = vf − v(tf ) | a(τ) = 0 ∀ τ ∈ [t, tf ] (2.9)

19



CHAPTER 2. GUIDANCE & CONTROL BACKGROUND

Position and velocity can be propagated using Eq. (2.3) in the absence of corrective manoeuvres,
and then the ZEM and ZEV equations become:

ZEM(t) = rf −
[
r(t) + (tf − t)v(t) +

∫ tf

t
(tf − τ)g(τ) dτ

]
ZEV(t) = vf −

[
v(t) +

∫ tf

t
g(τ) dτ

] (2.10)

To obtain these analytical expressions for ZEM and ZEV, the apparent acceleration is
typically assumed to be known as an explicit function g(t) of time. However, as the acceleration
is more generally given as a function of position, Eq. (2.4), the computation of ZEM and ZEV
has to be performed numerically or alternatively must be approximated [HGW12]. For example,
the value of ZEM and ZEV can be estimated from a linearised time-varying State Transition
Matrix (STM) [Bat87]. While if the gravitational force is not significant, then it can be neglected
for ZEM and ZEV computations. However, if the gravitational force cannot be neglected but
changes slowly during the manoeuvre, it can be assumed constant and equal to g, yielding:

ZEM(t) = rf −
[
r(t) + tgo(t)v(t) +

1

2
t2go(t)g

]
ZEV(t) = vf − [v(t) + tgo(t)g]

(2.11)

For the development of guidance laws, spacecraft mass m(t) is often also assumed constant
while the control acceleration is assumed unconstrained. These approximations can be compen-
sated for by an inner control loop (see Sec. 2.1.2). However, for the purpose of Verification &
Validation (V&V), the actual spacecraft acceleration results from:

a(t) =
T(t)

m(t)
(2.12)

in which the available thrust force T(t) ∈ R3 is limited:

0 ≤ Tmin ≤ ||T(t)|| ≤ Tmax (2.13)

and the mass variation is given by the rocket equation [Gre70]:

ṁ(t) = − 1

Ispg0
||T(t)|| ⇒ m(t) = m(t0) exp

(
− 1

Ispg0

∫ tf

t0

||a(τ)|| dτ
)

(2.14)

where Isp is the specific impulse of the thrusters, g0 is the gravitational acceleration at the surface
of the Earth and ∆m = m(t0)−m(tf ) is the propellant mass consumed for the manoeuvre.

2.1.2 G&C architectures

Arising from different domains in control theory and from the understanding of Space Mission
Analysis, different specialist terms are found in the literature on D&L techniques. Thus, before
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proceeding with the survey, this section clarifies key Guidance & Control (G&C) concepts. This
clarification is supported by the two block diagrams of Fig. 2.2.

Referring to Fig. 2.2, the Spacecraft Dynamics & Kinematics (SDK) block lies essentially
on the simulation of the relative translational motion of Eq. (2.3). The complexity of this
simulation depends on that of Eq. (2.4), since g(rT , rS) can be highly nonlinear for very
accurate gravitational models.
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Figure 2.2: G&C architectures for D&L. Dashed lines indicate information flow for closed-loop
guidance.

The SDK block is fed by the spacecraft actuators, which are commanded by the guidance
and/or control systems. The actuators account for realisation errors of the spacecraft thrusters
due to mounting errors and gas-dynamics properties, as well as for maximum thruster capability,
e.g. Eq. (2.13), and limited authority (if also employed for position-dependent attitude control).
Furthermore, the outputs of the SDK block are measured and filtered by the sensors & navigation
subsystem before being used for G&C. This process introduces noise and quantisation errors in
the relative position and velocity estimates, r̂(t) and v̂(t).

Focusing now on Fig. 2.2a, two different paradigms for planetary descent can be defined:

• Open-loop guidance, also known as implicit guidance, which refers to the case when a
reference trajectory {rref(t),vref(t)} and thruster profile aref(t) are generated before, and
remain unchanged during, the descent. In the space domain, these references are designed
based on Mission Analysis considerations;

• Closed-loop guidance, also known as explicit guidance, when the thruster profile aref(t) is
computed in real-time to correct the trajectory based on onboard measurements, r̂(t) and
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v̂(t). This feedback of information is represented with dashed lines in the figure. In this
case, the guidance subsystem may also be responsible for the computation of auxiliary
variables such as the LOS or zero-effort errors, i.e. Eq. (2.5) and (2.10).

Regardless of the type of guidance that precedes it, the architecture may also be augmented
with a control compensator, as illustrated in Fig. 2.2b, to further alleviate trajectory errors. As
it will be detailed later on, this alleviation is achieved by introducing an additional acceleration
vector command acmp(t) that compensates for deviations between reference trajectory and
measured states.

2.1.3 Space missions and categories

In recent years, a renewed interest in small planetary bodies has led to several studies and
missions (refer to Fig. 2.3 for a broad overview of applications). There are mainly two different
purposes behind these studies and missions. On the one hand, there is the exploitation of
hypervelocity impact with a spacecraft as a mitigation strategy against objects on a course for
potential collision with Earth. Notable examples of this type of missions include NASA’s Deep
Impact Spacecraft [Kub03], which successfully hit comet Tempel 1 on July 2005 at 10 km/s, and
ESA’s Asteroid Impact Mission [FLS+15], undergoing preliminary design phase but planned to
rendezvous with the Didymos binary system and observe closely the collision with an impactor.

On the other hand, there is also the interest of touch-and-go or landing on planetary bodies
instead of impacting, as the scientific return in general is much higher. Successful missions in this
category include NASA’s Stardust [BMRS04], launched in 1999 and the first Sample Return (SR)
mission to collect comet and cosmic dust samples, JAXA’s Hayabusa [YKH+09], a mission that
landed on Itokawa asteroid on November 2005 returning to Earth five years after, and ESA’s
Rosetta [GFUW14], which performed a rendezvous with comet Churyumov-Gerasimenko and
delivered a lander for on-site analysis on November 2014. In addition, NASA has launched
OSIRIS-REx [WAC+18] in September 2016, an SR spacecraft that will reach the near-Earth
asteroid Bennu, while ESA is also studying the feasibility of an SR mission to Phobos [BRB+14].
And more recently, JAXA’s Hayabusa-2 [KH15] successfully delivered two small rovers and a
lander on asteroid Ryugu in late 2018, an impactor followed by touchdown for sample collection
in 2019, and is scheduled to return to Earth in 2020.

For both interception and landing on small bodies, autonomous systems are mandatory
to guide the spacecraft through very uncertain operational environments while coping with
long communication delays with Earth. The earliest known method is inspired by the missile
interception problem. It is known as Proportional Navigation Guidance (PNG) and introduced
in [Zar94], where a method of augmenting it when the target acceleration is known or can
be assumed is also provided. In addition, guidance using predictive manoeuvres based on
linear orbital perturbation theory [Bat87] is proven possible and complemented with PNG
in [GFPC08].
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Figure 2.3: Examples of D&L applications

However, most of the work on traditional closed-loop guidance for small bodies recasts
the problem as optimal feedback control with terminal constraints only (i.e. without path
constraints), which is solved with the Pontryagin maximum principle in [Bat87] or through
calculus of variations in [D’S97]. This type of laws, known as Optimal Guidance Laws (OGLs),
has been continuously developed for different terminal boundary conditions (e.g. constrained
velocity, free velocity, constrained intercept-angle, etc.) and also related to the classical PNG
laws (see, for example, [HGW11]).

Additionally, and due to the highly uncertain character of the operational environments,
OGLs have been recently augmented with nonlinear terms based on Sliding Mode Control (SMC)
theory in order to increase their robustness in the presence of inaccurate measurements and
unmodelled dynamics [EBR08]. Because of the achievable robustness improvement, this topic
has been evolving and applied to different scenarios in the past few years [FSCC11, FGWS13].

In parallel, different D&L techniques have been developed and applied for the exploration
of larger bodies, such as the Moon and Mars. These approaches are not as demanding as for
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the asteroid intercept problem since the curvature of the planet can often be neglected and its
gravity field is relatively uniform and well known. Hence, the first-generation of Mars probes
that successfully reached its surface, from NASA’s Viking 1 in 1976 to Phoenix in 2008, relied
on an unguided descent phase. As a consequence, these systems generated a landing uncertainty
ellipse in the order of 500 km by 100 km [LJ14].

When the mission has to satisfy more stringent requirements such as very high landing
accuracy or crew safety (in the case of manned missions), then the strategies used are generally
based by solving a trajectory-generation problem with both terminal and path constraints. This
type of approach begun with the US Apollo and Russian Luna programs and continues with
the next-generation Mars landers (for which the capability of pinpoint landing the spacecraft in
hazardous sites with high scientific value is mandatory, thus requiring an uncertainty ellipse down
to 100 m [LJ14]), and is also used on Earth by Vertical Take-off and Vertical Landing (VTVL)
vehicles as introduced in Sec. 1.2.

The aforementioned problem is typically nonlinear and challenging to solve and, until the
past decade, its application was only feasible in an offline setting. To simplify the problem,
during the Apollo program, an acceleration profile that is a quadratic function of time [Klu74]
was chosen. This profile was not optimal in the sense that no cost function was optimised, but
the quadratic coefficients could be computed analytically from the terminal boundary conditions
for a pre-specified descent duration. This approach was modified for the NASA’s Mars Science
Laboratory Curiosity in 2011, by adding a line-search over the powered descent duration so
as to minimise propellant consumption [PAW06, WSM06]. In addition to these simplifications
and extensions, augmenting the polynomial order of an open-loop guidance law renders the
computation of the coefficients under-determined and thus, this allows choosing them so as to
optimise a desired cost function.

A plethora of optimisation algorithms can be applied to solve this augmented-coefficient
optimisation problem offline while enforcing different path constraints (such as minimum altitude
or maximum actuation). However, the increase of computational power available onboard in
recent years has enabled representative solutions to be determined and applied in a closed-loop
fashion, leading to a paradigm shift known as Computational Guidance and Control [Spe17].
This is supplemented by specific semi-analytical algorithms (e.g. [LLA13, LLA14]) or by further
mathematical developments in the domain of convex optimisation and pseudospectral methods.

Nonetheless, methods for extraterrestrial autonomous pinpoint landing have very little
heritage and have only recently been demonstrated with NASA’s VTVL platform Xombie,
which uses a vision system to determine its location and the Guidance for Fuel-Optimal Large
Diverts (G-FOLD) algorithm to optimally fly to the landing site [AAC+13, SRV+14].

Although developed in parallel, these solutions have the potential to complement more
traditional techniques targeting small bodies such as Phobos which, due to their irregular shapes
and mass distributions, are characterised by very variable and uncertain gravitational fields, with
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complex orbits stable only in certain regions [LS03]. This complementarity between techniques
will be exploited throughout the thesis.

2.1.4 Review of guidance techniques

This section is dedicated to the description of the techniques introduced in Sec. 2.1.3. They
are divided in open-loop (Sec. 2.1.4.1), traditional closed-loop (Sec. 2.1.4.2) and computational
closed-loop guidance (Sec. 2.1.4.3). An overall summary is also provided in Sec. 2.1.4.4.

2.1.4.1 Open-loop guidance

Open-loop guidance relies on the design of a reference trajectory and thruster profile before
initiating the descent. Depending on the type of profile, open-loop guidance laws can be further
classified as quadratic or as optimal with path constraints, both described next.

Quadratic
As previously mentioned, for landing on larger planetary bodies where the gravity field is

well known and can be assumed constant, open-loop guidance techniques often suffice. For the
Apollo program, emphasis was placed on developing computationally feasible guidance laws
rather than looking for complex energy-optimal solutions. Hence, the Apollo guidance law is
simply defined as a quadratic function of time [Klu74, WSM06]:

a(t) = C0 + C1t+ C2t
2 (2.15)

where Ci ∈ R3 are coefficients to be determined. Velocity and position are obtained assuming a
constant gravity field and integrating the above acceleration:

v(t) = v0 + (C0 + g) t+
1

2
C1t

2 +
1

3
C2t

3 (2.16)

r(t) = r0 + v0t+
1

2
(C0 + g) t2 +

1

6
C1t

3 +
1

12
C2t

4 (2.17)

Applying the boundary conditions at the end-of-mission (t = tf ) as defined in Sec. 2.1.1, the
unknown coefficients are obtained by solving the linear system:

I tf I t2f I

tf I
t2f
2
I

t3f
3
I

t2f
2
I

t3f
6
I

t4f
12

I


C0 + g

C1

C2

 =

 v̇(tf )

vf − v0

rf − r0 − v0tf

 (2.18)

where I is the identity matrix of suitable dimension. The solutions are then given by:
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C0 = v̇(tf )− g − 6

tf
(vf − v0) +

12

t2f
(rf − r0 − v0tf )

C1 = − 6

tf
v̇(tf ) +

30

t2f
(vf − v0)− 48

t3f
(rf − r0 − v0tf )

C2 =
6

t2f
v̇(tf )− 24

t3f
(vf − v0) +

36

t4f
(rf − r0 − v0tf )

(2.19)

In this type of guidance, the end-of-mission time (or the time-to-go, tgo(t) = tf − t) is a free
parameter that must be specified.

Optimal with path constraints
Planetary descent guidance with a direct consideration of physical state and control constraints

can also be implemented in an open-loop fashion. The basis for these sophisticated implicit
guidance methods is actually the quadratic acceleration law of Eq. (2.15), in which all the
coefficients are completely determined, but in this case augmenting its order to N > 2:

a(t) = C0 + C1t+ . . .+ CN t
N (2.20)

This higher order polynomial structure for the acceleration allows for significant improve-
ments [PAW06, SSW07], since the terminal linear system of Eq. (2.18) is now under-determined:

I tf I . . . tNf I

tf I
t2f
2
I . . .

tN+1
f

(N + 1)
I

t2f
2
I

t3f
6
I . . .

tN+2
f

(N + 1)(N + 2)
I




C0 + g

C1

...
CN

 =

 v̇(tf )

vf − v0

rf − r0 − v0tf

 (2.21)

Therefore, the solution of the acceleration coefficients Ci ∈ R3 and of tf can be determined
so as to optimise a specified cost function (e.g. propellant consumption) subject to the linear
system of Eq. (2.21), as well as to ensure satisfaction of path state and control constraints.
These may include bounded thrust force, Eq. (2.13), admissible mass variation, subsurface
flight avoidance (r(t) ≥ hmin) or any additional position and velocity constraints (e.g. obstacle
avoidance, glide-slope angle or maximum velocity) all given as generalised linear inequalities.

Depending on the formulation of the constrained optimisation problem, a myriad solvers
are available and, depending on the solver, parametric descriptions of the acceleration profile
different to Eq. (2.20) may also be considered.

2.1.4.2 Traditional closed-loop guidance

In traditional closed-loop guidance, the thruster profile is computed as a closed-form solution
to actively correct the descent trajectory. Depending on the type of solution, guidance laws
can be further classified as [i] proportional, [ii] predictive and hybrid, [iii] optimal without path
constraints and [iv] nonlinear robust.
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Proportional
The earliest known guidance strategy for the interception of small bodies is inspired by the

missile interception problem and is known as PNG. PNG laws and their most basic variations
are introduced in [Zar94] and thoroughly described in [HGW12, GHW13]. The principle of PNG
is to drive the LOS rate to zero by applying a proportional acceleration perpendicularly to the
LOS direction:

a(t) = nVc(t)Λ̇(t) (2.22)

where n is the effective navigation ratio, a tunable parameter typically chosen between 3 and 5.
Smaller values result in reduced propellant consumption whereas larger values are adopted for
improved robustness at the expense of higher acceleration commands. For the planar case, i.e.
Eq. (2.7), the acceleration becomes:

a(t) = nVc(t)λ̇(t)

[
− sinλ(t)

cosλ(t)

]
(2.23)

This guidance law does not require the target or spacecraft accelerations to be zero, but its
performance is improved if the contribution of the gravitational environment is deducted. This
results in the Augmented Proportional Navigation Guidance (APNG) law:

a(t) = nVc(t)Λ̇(t)− n

2
g⊥(t) (2.24)

where again g⊥(t) are the components of apparent gravity perpendicular to the LOS. For the
planar case, the APNG law simplifies into:

a(t) = n

(
Vc(t)λ̇(t)− 1

2
g⊥(t)

)[
− sinλ(t)

cosλ(t)

]
(2.25)

with g⊥(t) = [− sinλ(t) cosλ(t)] g(t). Moreover, employing the definitions of time-to-go and
zero-effort-miss, Eq. (2.10), it can be shown that the APNG law becomes:

a(t) =
n

t2go(t)
ZEM(t) (2.26)

where the time-to-go cannot be controlled, but is computed as tgo(t) = r(t)/Vc(t).
In [KLH98], an adaptation of the APNG law known as Biased Proportional Navigation

Guidance (BPNG) is also explored. This biased law allows to constrain the impact (final) LOS
angle to λf resulting in:

a(t) =

(
4Vc(t)λ̇(t)− g⊥(t) + 2Vc(t)

λ(t)− λf
tgo(t)

)[
− sinλ(t)

cosλ(t)

]
(2.27)

Finally, for thrusters with no continuous throttling ability (only on-off), PNG laws have to
be applied using a discrete scheme, through a pulse-modulation method [Wie08]. In this case,
the guidance is known as Pulsed PNG.
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Predictive and hybrid
A more propellant-efficient method to perform pulsed navigation is to compute impulsive

velocity corrections, which eliminate the predicted end-of-mission error by using linearised orbital
perturbation theory [Bat87] and apply them only at pre-scheduled firing times Tp. Acceleration
commands are provided as:

a(t) =


∆vS(t)

∆tp
, for t ∈ Tp

0, otherwise
(2.28)

where ∆tp is the duration of the correction and Tp is the set of pre-scheduled times. This method
is designated predictive navigation and it is assessed in [GFPC08] and detailed in [HPW10].

If full information on the relative position and velocity vectors is available, then the guidance
is known as Predictive Impulsive (PI) and, recalling Eq. (2.5), the velocity correction to be
applied is:

∆vS(t) = Vc(t)Λ̆(tf )− v(t) = Vc(t)
r̆(tf )

r̆(tf )
− v(t) (2.29)

where the superscript ˘ indicates a predicted term. The term r̆(tf ) is the predicted relative
end-of-mission position, propagated from time t through a linearised time-varying STM yielding:

r̆(tf ) ≈
(
I +

1

2
G(t)t2go(t)

)
r(t) (2.30)

where G(t) is the gravity Jacobian along the reference orbit [Bat87]:

G(t) =
∂ g(r, t)

∂ r(t)

∣∣∣∣
r(t)=rref(t)

(2.31)

In the case that measurements or estimates of the relative states are not available, then the
kinematics of the system must be estimated using for example optical LOS information:

r(t) = Vc(t)tgo(t)Λ(t)

v(t) = Vc(t)tgo(t)Λ̇(t) + Vc(t)Λ(t)
(2.32)

In this case, the guidance law is known as Kinematic Impulsive (KI) and it is obtained by
substituting Eq. (2.32) into the velocity correction of Eq. (2.29):

∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− Vc(t)

(
tgo(t)Λ̇(t) + Λ(t)

)
(2.33)

as well as into the predicted end-of-mission position, Eq. (2.30):

r̆(tf ) = Vc(t)tgo(t)

(
I +

1

2
G(t)t2go(t)

)
Λ(t) (2.34)

With respect to the firing times Tp of the thrusters, earlier firings will lead to less propellant
consumption because of the propagated corrective effect – even if the sensed information
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is less accurate when the spacecraft is away from the target. On the other hand, in these
cases, performance tends to degrade near the end-of-mission as further gravity linearisations
cause increasing approximation errors. For this reason, a hybrid guidance scheme is typically
adopted, which implements mid-course predictive corrections and then switches to terminal
PNG [GFPC08].

Optimal without path constraints
Most of the work on guidance laws for small bodies recasts the problem as optimal feedback

control, resulting in a class known as Optimal Guidance Laws. This problem can be solved using
either the Pontryagin maximum principle [Bat87] or calculus of variations [D’S97], although
these derivations assume rf = vf = 0. OGLs have been generalised in [HGW11] as described in
this subsection.

The objective of the optimal control problem is to find the acceleration profile a(t) that
minimises the actuation effort, formulated as the cost function:

J(a(t)) =

∫ tf

t
L(x(τ),a(τ)) dτ =

∫ tf

t

1

2
aT(τ)a(τ) dτ (2.35)

subject to the dynamics of the system in Eq. (2.3):

ẋ(t) = f (x(t),a(t)) ⇔

[
ṙ(t)

v̇(t)

]
=

[
v(t)

g(rT , rS) + a(t)

]
(2.36)

and the terminal boundary conditions introduced in Sec. 2.1.1.
In order to solve this problem, it is convenient to define position and velocity co-states,

pr(t) ∈ R3 and pv(t) ∈ R3, which are described by:[
ṗr(t) ṗv(t)

]
= −

[
pr(t) pv(t)

] ∂ f(x(t),a(t))

∂ x(t)
+
∂ L(x(t),a(t))

∂ x(t)
=

= −
[
0 pr(t)

] (2.37)

These are then solved via integration until the terminal co-states are obtained:

pr(t) = pr(tf )

pv(t) = pv(tf ) + pr(tf )tgo(t)
(2.38)

In addition, defining the Hamiltonian function H(x(t),a(t)) as:

H(x(t),a(t)) =
[
pr(t) pv(t)

]
f(x(t),a(t))− L(x(t),a(t)) =

=
[
pr(tf ) pv(tf ) + pr(tf )tgo(t)

] [ v(t)

g(rT , rS) + a(t)

]
− 1

2
aT(t)a(t)

(2.39)

the Pontryagin maximum principle states that the optimal acceleration profile, which minimises
J(a(t)) in Eq. (2.35), is the one that cancels out the Hamiltonian derivative:

∂ H(x(t),a(t))

∂ a(t)

∣∣∣∣
optimal

= 0 ⇒ a(t) = pv(tf ) + pr(tf )tgo(t) (2.40)
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From Eq. (2.40), it is observed that the optimal acceleration law is a linear function of the
time-to-go (and thus of t) that depends only on the terminal co-states. These are determined
from the terminal states by integrating the acceleration twice, exactly as was done in Sec. 2.1.4.1.

To obtain a closed-form solution, a constant gravity field is assumed, yielding the expression
for the so-called Constrained Terminal Velocity Guidance (CTVG) law:

a(t) = 6
rf − [r(t) + vf tgo(t)]

t2go(t)
+ 4

vf − v(t)

tgo(t)
− g (2.41)

For the case when the terminal velocity is unconstrained (e.g. no soft landing is required),
the corresponding co-state is zero, pv(tf ) = 0, and the so-called Free Terminal Velocity
Guidance (FTVG) solution can be found:

a(t) = 3
rf − r(t)

t2go(t)
− 3

v(t)

tgo(t)
− 3

2
g (2.42)

Furthermore, if the zero-effort equation (2.10) is analytically integrated for a constant gravity
field, the CTVG and FTVG laws can be re-written as:

a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t) (2.43)

a(t) =
3

t2go(t)
ZEM(t) (2.44)

Comparing Eq. (2.26) and (2.44), it is concluded that FTVG corresponds to the APNG law
for a navigation ratio n = 3, which means that this represents the optimal value of proportional
laws. In addition, writing the CTVG and FTVG laws generically as a function of ZEM and ZEV
avoids the constant gravity assumption at the expense of requiring a more accurate integration
of the zero-effort errors. If such an integration is still too complex, a candidate alternative is
to perform the computation with respect to a set of intermediate waypoints interpolated on a
reference trajectory.

Note also that OGL laws allow to define state constraints only at terminal conditions, but
not during the manoeuvre itself (path constraints). Also, they do not directly impose any kind
of control constraints. This shortcoming is the main motivation for the constrained guidance
strategies introduced in Sec. 2.1.4.1. Nevertheless, several developments of the OGLs can be
found in the literature to indirectly account for specific types of constraints:

• In [EBR08], an OGL is derived for a fixed-interval guidance manoeuvre, with a continuous
firing that burns-out several seconds before touching down. It is then called Optimal
Fixed-Interval Guidance Law (OFIGL).

• In [HW11], an optimal law to control the impact (or glide-slope) angle is obtained by
leaving the terminal velocity in the desired direction free and constraining the remaining
components to zero. This law is called Intercept-Angle-Control Guidance (IACG) and it
is shown to yield the BPNG law of Eq. (2.27) for the case of planar motion.
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• In [GHW12], a methodology to cope with thrust and power limited engines is proposed
combining the OGLs with the generation of intermediate optimal waypoints.

• In [GHW13], the case when the landing site is not specified is tackled by indirectly
incorporating the constraint rT

f rf = R2
T as a weighted index in the cost function J(a(t)),

where RT is the radius of the target.

• In [ZX14], a weighted term is added to the cost function J(a(t)) to penalise trajectories
that go under a certain altitude with respect to the target and even below its surface
(subsurface flight).

Nonlinear robust
In opposition to the guidance methods presented in Sec. 2.1.4.1, the techniques from Sec. 2.1.4.2

have relied on closed-loop feedback control based on the assumption that the parameters on
which they depend are fully known. But, in practice, inaccurate measurements or unmodelled
dynamics will affect the results negatively. To address this issue, in [EBR08] it is proposed to
augment the energy-optimal laws with advancements in the field of nonlinear control. This
augmentation is rooted on nonlinear Sliding Mode Control theory [Lev07, SEFL14] and results
in guidance algorithms that are globally stable in uncertain dynamical environments for which
an upper bound of the perturbing acceleration p(t) is known. These algorithms are named
Optimal Sliding Guidance (OSG) and are further developed in [FSCC11, FGWS13].

OSG laws are derived by defining a sliding surface as a linear combination of tracking
(zero-effort) errors:

s(t) = ZEV(t) + λ̃(t)ZEM(t) (2.45)

where λ̃(t) > 0 ∀ t ∈ [t0, tf ]. The dynamics of this sliding surface is given by:

ṡ(t) = ˙ZEV(t) + λ̃(t) ˙ZEM(t) = −a(t)− λ̃(t)tgo(t)a(t) (2.46)

This results in the guidance law re-constructed in such a way that the system is always
asymptotically driven to the sliding surface, i.e. s(t)→ 0. The rate of convergence corresponds
to e−λ̃(t)t and, when the sliding surface is reached, the system is said to be in sliding phase.
The new guidance law can be made as simple as a switching between two states (back or forth
towards the sliding surface) and therefore very robust. It is constructed using Lyapunov’s direct
method by selecting V (s) = 1

2sT(t)s(t) as the candidate Lyapunov function with V (0) = 0 and
V (s) > 0 for s(t) > 0, as well as imposing:

V̇ (s) = sT(t)ṡ(t) ≤ 0 (2.47)

For the CTVG case, substituting the optimal acceleration of Eq. (2.43) into (2.46) gives:

ṡ(t) = − 1

tgo(t)
Ks(t) (2.48)
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where K = 4. The acceleration input can be augmented, for example, simply as:

a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t)− φ

tgo(t)
sign s(t) (2.49)

which gives the following ṡ(t), satisfying now Eq. (2.47):

ṡ(t) = − 1

tgo(t)
[Ks(t) + φ sign s(t)] (2.50)

Finally, using Lyapunov’s second method [FSCC11, FGWS13] it can be proven that the
algorithm is globally stable when φ ≥ ||p(t)|| ∀ t ∈ [t0, tf ]. Moreover, the nonlinear term provides
an additional acceleration command, but only in off-nominal cases. In these cases, the motion is
brought inside the sliding surface at the expense of a larger control effort.

The OSG concept can also be extended to the FTVG cases by defining:

s(t) = ZEM(t) (2.51)

ṡ(t) = −tgo(t)a(t) = − 1

tgo(t)
Ks(t) (2.52)

with K = 3 and modifying the acceleration law of Eq. (2.44) to:

a(t) =
3

t2go(t)
ZEM(t)− φ

tgo(t)
sign s(t) (2.53)

The main shortcoming of Eq. (2.49) and (2.53) is that the augmentation with the discontin-
uous term sign s(t) can degenerate in the system chattering around the sliding surface, which
massively reduces its performance. To overcome this phenomenon, continuous chattering-free
augmentations known as higher-order sliding controllers have been presented over the last
years [FCW13, FWGS15]. Additional research has also been carried out in the SMC field with
its application to increase the robustness of open-loop guidance laws [OS08, OS09].

2.1.4.3 Computational closed-loop guidance

With computational guidance, solutions that minimise Eq. (2.35) while meeting desired state
and control constraints are computed in real-time. Two classes of algorithms are available to
achieve this in an efficient manner: convex optimisation and pseudospectral methods.

Convex optimisation
Convex optimisation-based guidance entails solving a reformulation of the constrained fuel-

optimal trajectory generation problem in the convex programming framework. The main difficulty
lies in the process of converting non-convex state and control constraints into the convex form,
which is known as lossless convexification.

Lossless convexification (see [AP05, AP07, BAS10] and references therein) is a procedure
that can be used to relax non-convex constraints into a convex form, and then prove the
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equivalence of the resulting optimal control problem. This convex formulation also facilitates
the characterisation of controllable and reachable conditions [EDA15, DRA16] (e.g. how far can
the vehicle perform a soft landing given the fuel available).

The convex problem, once discretised, becomes a Second-Order Cone Programming (SOCP),
for which powerful interior-point solvers exist [NN94, Stu02] with guaranteed convergence to
the optimal solution of the original problem within a finite number of iterations. This approach,
where a fuel-optimal control input is computed based on the predicted trajectory, enables tackling
the D&L problem in a Model Predictive Control (MPC) setting [PBB15, EPK+17, WCW19].

There are two sources of non-convexity that are inherent to the trajectory-generation problem:
[i] the propellant-depletion dynamics, which has an exponential dependence on time as evidenced
by Eq. (2.14), and [ii] thrust magnitude and pointing constraints, due to the norm operator
in Eq. (2.13). As introduced in [AP07, BAS10], the first one is directly convexified using the
following change of coordinates:

z(t) = lnm(t), ż(t) =
ṁ(t)

m(t)
(2.54)

while the latter requires the introduction of an additional optimisation constraint defined using
two new variables:

a(t) =
TCVX(t)

m(t)
, σ(t) =

‖TCVX(t)‖
m(t)

(2.55)

To solve the D&L problem, the optimisation variables are discretised into N points. The
objective is then to find a discrete thrust acceleration profile a[k] (k ∈ [1, · · · , N ]) that minimises
the vehicle’s fuel consumption, which is equivalent to maximising its final mass or z[N ]. This
specific problem is well established based on [SABJH16, JMBS17] and formally defined as:

min
a,σ

N∑
k=1

σ[k] = max
a,σ

z[N ] (2.56)

Its main constraints are described in the following paragraphs.

Similar to CTVG, the optimisation problem is subject to initial and final boundary states
at k = 1 and k = N , respectively. The former specifies the current mass, position, velocity and
thrust acceleration, i.e. z[1] = lnm(t), r[1] = r(t), v[1] = v(t) and a[1] = a(t), while the latter
specifies the conditions at touchdown. In this case, the final position and velocity must coincide
with the desired values, r[N ] = rf and v[N ] = vf , and the final thrust acceleration vector is
required to have a positive vertical component only, ax,y[N ] = 0 2×1 and az[N ] ≥ 0, so that the
vehicle lands with an upright orientation.

The optimisation problem includes also the dynamics equations that dictate the time-
evolution of the aforementioned states. These equations are discretised using time-interval TS

and the knowledge that acceleration is linearly interpolated between two consecutive points.
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More precisely, the discrete motion of Eq. (2.3) is given by:

r[k + 1] = r[k] + TS v[k] +
T 2

S

3

(
w[k] +

w[k + 1]

2

)
v[k + 1] = v[k] +

TS

2
(w[k] + w[k + 1])

(2.57)

and the mass-depletion dynamics of Eq. (2.14), following the change of variables of Eq. (2.54)
and (2.55), becomes:

z[k + 1] = z[k]− 1

Ispg0

TS

2
(σ[k] + σ[k + 1]) (2.58)

A set of auxiliary variables w[k] and σ[k] are then defined. The former variable gathers the
vehicle’s acceleration contributions:

w[k] = a[k] + g(t) (2.59)

where a[k] is given by Eq. (2.55) and the gravity acceleration g(t) is assumed constant from
time t onwards. Also, the inequality:

‖a[k]‖ ≤ σ[k] (2.60)

is introduced as part of lossless convexification procedure [AP07, BAS10], with σ[k]→ ‖a[k]‖
when z[N ] is maximised.

In addition, control constraints are employed to bound the direction and magnitude of
the thrust force. The direction constraint indirectly limits the angle between the vehicle’s
longitudinal axis and the vertical direction to θmax via:

az[k] ≥ ‖ax,y[k]‖
tan θmax

(2.61)

Lower and upper thrust magnitude limits are given by {Tmin, Tmax}. To preserve convexity,
constant mass m(t) is assumed from t onwards, which is not restrictive since the actual limit
values can be re-adjusted, and the constraint becomes:

Tmin

m(t)
≤ σ[k] ≤ Tmax

m(t)
(2.62)

The optimisation problem subject to the constraints introduced above is then formulated in
SOCP 2.1 (see next page). The inclusion of additional constraints in this problem is straightfor-
ward if they are convex (e.g. subsurface flight avoidance and glideslope limits) or if they can be
converted via lossless convexification. If not, a technique known as successive convexification
can be applied to approximate any remaining nonlinearities.

Successive convexification (see [LL14, MSA16] and references therein) constitutes an iterative
process in which non-convex terms are sequentially linearised using information from the previous
SOCP solution. To facilitate convergence, a Trust Region Constraint (TRC) is typically imposed
between consecutive iterations.
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SOCP 2.1

max
a,σ

z[N ], subject to:

Boundary conditions

z[1] = lnm(t), r[1] = r(t), v[1] = v(t), a[1] = a(t)

r[N ] = rf , v[N ] = vf , ax,y[N ] = 0 2×1, az[N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N − 1]

r[k + 1] = r[k] + TS v[k] +
T 2

S

3

(
w[k] +

w[k + 1]

2

)
v[k + 1] = v[k] +

TS

2
(w[k] + w[k + 1])

z[k + 1] = z[k]− 1

Ispg0

TS

2
(σ[k] + σ[k + 1])

Surrogate variables, ∀k ∈ [1, · · · , N ]

w[k] = a[k] + g(t)

‖a[k]‖ ≤ σ[k]

Control constraints, ∀k ∈ [1, · · · , N − 1]

az[k] ≥ ‖ax,y[k]‖
tan θmax

Tmin

m(t)
≤ σ[k] ≤ Tmax

m(t)

This technique allows to handle certain features that, depending on the target body, may
play a critical role for D&L, such as high-order gravitational harmonics, nonlinear aerodynamic
forces, non-convex keep-out zones and also free final-time. This will be further exploited in the
second part of the thesis.

Moreover, this approach effectively enables extending the 3 degrees-of-freedom (3-DoF)
problem to 6-DoF by incorporating attitude kinematics and decoupling the thrust vector
from the attitude of the spacecraft [SEA17, SA18]. An alternative approach was proposed
in [LM15, LM17] based on Piece-Wise Affine (PWA) approximations of the nonlinear 6-DoF
dynamics and an MPC formulation with dual quaternions. Its main shortcoming is that, since it
relies on PWA approximations, the resolution of the discretised dynamics has a drastic impact
on the quality of the obtained solutions.

Pseudospectral methods
An alternative approach to convex optimisation arose with the development of pseudospectral

optimal control in [FR08]. Pseudospectral methods allow to transform the infinite-dimensional
problem of minimising Eq. (2.35) with state and control constraints into a discrete, finite-
dimensional NonLinear Programming (NLP) problem, which can be solved using several off-
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the-shelf solvers. These methods are particularly suitable for aerospace applications due to the
guaranteed spectral (i.e. quasi-exponential) convergence of their solution for smooth problems.

With this approach, the cost function, differential equations and constraints are approximated
by being defined at a set of discretisation nodes (known as collocation points) and treated as a
set of algebraic constraints, in a process called transcription. To do so, the physical domain of a
variable t ∈ [t0, tf ] is converted into a normalised independent variable τ ∈ [−1, 1] through the
following affine transformation:

τ =
2

tf − t0
t−

tf + t0
tf − t0

(2.63)

Different methods can then be employed to compute the location of the collocation points,
with one of the simplest corresponding to the roots of a linear combination of Legendre
polynomials of order n and n− 1 as follows:

Rn(τ) = Pn(τ)− Pn−1(τ), τ ∈ [−1, 1] (2.64)

with:

Pn(τ) =
1

2nn!

dn

dτn
(τ2 − 1)n (2.65)

generating non-uniform grids, where a smaller number of nodes is required to compute a
valid solution. Once the domain is discretised, pseudospectral operators for differentiation and
integration are also defined. Thanks to the classes of polynomials involved, these operators
are more accurate than the standard finite differences for differentiation and trapezoidal rule
for integration. Application examples using more sophisticated algorithms, such as the flipped
Radau pseudospectral method, can be found in [AOS+14] and [STDB17] for lunar landing and
Earth re-entry guidance, respectively.

It is important to note that the quality of the obtained solution is strongly dependent on
the Jacobian matrix generated from the transcription process. In [ST13], it is shown how the
inherent sparseness of that matrix (due to non-dependencies between states) can be exploited
for faster and improved results. Nonetheless, even with a proper transcription, poor scaling of
the Jacobian can still lead to numerical difficulties.

Once again, different strategies exist, ranging from ad hoc manual scaling, available with
widespread pseudospectral tools like DIDO [Eli15], to more sophisticated self-scaling methods
such as Jacobian rows normalisation [Rao09] or projected Jacobian rows normalisation [Sag14].

The real-time implementation of pseudospectral optimisation remains a challenging issue
because of the NLP problem involved. To tackle this issue, the hybridization of pseudospectral
methods and convex optimisation was recently proposed in [Sag18]. The idea is to combine
the more accurate distribution of nodes and pseudospectral operators with the more efficient
formulation and computation of SOCP problems. In that reference, this method was shown to
remain real-time capable, while providing improved results compared to the standard convex
approach.
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2.1.4.4 Parametric guidance

The open-loop and traditional closed-loop laws addressed in this chapter are summarised in
Table 2.1. Although being directed at the same planetary D&L problem, they present quite
different properties as highlighted throughout Sec. 2.1.4.1 and 2.1.4.2.

Table 2.1: Open-loop and traditional closed-loop D&L guidance laws

Proportional

PNG a(t) = nVc(t)Λ̇(t) Eq. (2.22)

APNG a(t) =
n

t2go(t)
ZEM(t) Eq. (2.26)

Representing the laws as a function of ZEM and ZEV allows to concentrate the
knowledge of gravitational forces in these terms

Predictive and hybrid

PI ∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− v(t) Eq. (2.29)

KI ∆vS(t) = Vc(t)
r̆(tf )

r̆(tf )
− Vc(t)

(
tgo(t)Λ̇(t) + Λ(t)

)
Eq. (2.33)

Pre-scheduled firings are commanded to generate the required ∆vS(t) and correct
the predicted end-of-mission position r̆(tf )

Quadratic

Apollo a(t) = C0 + C1t+ C2t
2 Eq. (2.15)

Open-loop trajectory with closed-form solution as a function of terminal conditions

Optimal without path constraints

CTVG a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t) Eq. (2.43)

FTVG a(t) =
3

t2go(t)
ZEM(t) Eq. (2.44)

Specific constraints may be taken into account but not explicitly enforced, e.g.
OFIGL [EBR08] and IACG [HW11]

Optimal with path constraints

Polynomial a(t) = C0 + C1t+ . . .+ CN t
N , N > 2 Eq. (2.20)

Open-loop trajectory with optimisation-based solution and possibility to explicitly
enforce path constraints

Nonlinear robust

Sliding CTVG a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t)− φ

tgo(t)
sign s(t) Eq. (2.49)

Sliding FTVG a(t) =
3

t2go(t)
ZEM(t)− φ

tgo(t)
sign s(t) Eq. (2.53)

Augmentation with nonlinear function, ensuring stability for ||p(t)|| ≤ φ
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Despite their differences, it is observed that traditional closed-loop guidance laws share
structural commonalities and can be formalised in terms of LOS kinematics as follows:

a(t) =
[
kr kv

]
Vc(t)


Λ(t)

tgo(t)

Λ̇(t)

− φh
(
Λ(t), Λ̇(t), tgo(t)

)
(2.66)

Alternatively, they can also be parameterised as a function of zero-effort errors:

a(t) =
[
kr kv

]


ZEM(t)

t2go(t)

ZEV(t)

tgo(t)

− φh (ZEM(t),ZEV(t), tgo(t)) (2.67)

The two equations above, i.e. Eq. (2.66) and (2.67), clearly show a fixed structure formed
by a linear component (parameterised through the gains kr and kv) and (optionally) by a
nonlinear function h(.) (weighted by the constant φ). As mentioned before, this nonlinear term
is introduced to improve robustness properties following the concepts of sliding motion control
and it can range from a very simple to a high-order function.

Throughout the first part of the thesis, it will be demonstrated that the two parametrisations
presented are particularly convenient for the application of systematic tuning methods. It shall
also be remarked that this generalisation does not encapsulate open-loop laws, although these
are directly parameterised as time polynomials as in Eq. (2.20).

2.1.5 Impact of uncertainties

In Sec. 2.1.4.2, it was anticipated that pure optimal guidance laws are more sensitive to
dynamical perturbations and operational uncertainties than their robust counterparts, such as
those augmented with SMC. In order to showcase the importance of developing robust guidance
laws, this section provides a simple illustration of the effect of uncertainties in planetary D&L.

The scenario selected to exemplify these effects is taken from reference [HPW10]. It simulates
a hyper-velocity interception mission of asteroid Apophis (which will make close approaches to
planet Earth in 2029 and 2036) with the interception phase starting at perihelion roughly 1 day
before impact. The available thrust force for control is assumed unlimited, but the actuation is
switched-off 200 seconds before touch-down. In addition, gravity is assumed constant for ZEM
and ZEV computations and all the sensor measurements are assumed ideal. The target asteroid
is modelled as a uniform sphere with gravitational coefficient µT = 15.35 m3/s2 and radius
RT = 500 m. Note that without any guidance actuation, this scenario results in a miss distance
of around 40,000 km.

The main source of uncertainty in this type of scenario is known to lie on the gravitational
force experienced by the spacecraft due to the irregular and inaccurately known mass distribution
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of the asteroid and to the proneness of variable third-body perturbations. Thus, an uncertainty is
introduced around the norm (not direction) of the spacecraft’s nominal gravitational acceleration
gSNOM

(rT , rS) assuming a relative uncertainty level wg = 100%:

gS(rT , rS) = gSNOM
(rT , rS)

(
1 + wgδg

)
(2.68)

where δg ∈ [−1,+1] represents the normalised uncertainty (with ±1 its maximum/minimum
range and 0 its nominal value).

The above uncertainty representation follows the robust control modelling framework known
as a Linear Fractional Transformation (LFT). As it will be thoroughly introduced in Sec. 2.2,
these LFT models are the cornerstone of robust control as they allow capturing the known part
of a system and/or variable (in this case gSNOM

) and the uncertain component (in Eq. (2.68)
the range of δg) in a manner amenable for subsequent control synthesis and analysis.

Simulations are depicted for a fixed set of 20 values of δg for the CTVG law (terminal
velocity constrained to 0 m/s, i.e. soft landing) in Fig. 2.4 and for the FTVG law (free terminal
velocity) in Fig. 2.5. Both figures show the outcome of the two (pure) optimal laws (given by
gray lines) against their SMC-augmented (robust) counterparts (given by red lines) – for the
latter a constant φ = 200 is used. The same end-of-mission time is commanded for all the cases.
The nominal responses, i.e. δg = 0, are also shown (black lines). The main difference between
the CTVG and the FTVG laws is related to the reduction of velocity towards 0 m/s imposed
by the former (Fig. 2.4b vs. 2.5b). As expected, this manoeuvre is more demanding in terms of
control acceleration (Fig. 2.4d vs. 2.5d). Note that the linear dependence on time anticipated
for the pure optimal laws from Eq. (2.40) is also seen.

For the pure optimal laws, it is also observed that off-nominal spacecraft’s gravitational
accelerations lead to significantly dispersed trajectories (see Fig. 2.4a and 2.5a for the heliocentric
frame, and Fig. 2.4c and 2.5c for the relative frame). This effect is therefore reflected into a
degradation of the landing accuracy. Furthermore, the FTVG law, by employing only position
information, Eq. (2.44), shows larger sensitivity to uncertainties, which even causes the spacecraft
to miss the asteroid for |δg| ≥ 0.8 (in other words, the robust laws improve against gravity
uncertainty of at least 80% larger in norm-size). After augmenting the guidance schemes with
SMC, and although the trajectory is still affected by the presence of uncertainties, its degradation
is reduced to approximately half for both laws (Fig. 2.4c and 2.5c). Of course, this comes at the
expense of higher actuation effort (Fig. 2.4d and 2.5d) in off-nominal cases.

This decrease in sensitivity and consequent increase in control effort is a critical trade-off
often encountered in aerospace systems, in which better robustness properties are attained
through a compromise in terms of optimality. As briefly mentioned before, the robust control
community has particularly well-suited methods to address the aforementioned trade-offs in a
systematic manner, while explicitly accounting for uncertainties and disturbances. Hence, this
simple analysis serves also as a motivation for the application of those methods in this thesis.
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(a) Heliocentric position (b) Closing velocity

(c) Relative position (d) Control acceleration norm

Figure 2.4: Sensitivity of CTVG laws (vf = 0) to gravitational uncertainty

(a) Heliocentric position (b) Closing velocity

(c) Relative position (d) Control acceleration norm

Figure 2.5: Sensitivity of FTVG laws to gravitational uncertainty. Dashed lines indicate missed
interceptions.
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2.2 Robust control techniques

The robust control framework provides a set of techniques that allow to manage issues such
as the impact of uncertainties and specification of Multiple-Input Multiple-Output (MIMO)
requirements in a systematic manner. As depicted in Fig. 2.6, these techniques cover all the
aspects involved in control design: modelling, synthesis and analysis.

Figure 2.6: Robust control design workflow and tools

The first step in the robust control framework is to model the system, capturing the possible
(or expected) uncertainties in a methodical manner. This modelling phase is followed by control
synthesis, for which specialised tools are available. As indicated by the arrows in the figure, an
acceptable solution is the result of an iterative cycle of control synthesis and analysis, to ensure
that design requirements are always fulfilled. Moreover, analysis results also provide valuable
insights that can be taken into account to improve the modelling phase.

The modelling, synthesis and analysis techniques employed throughout the thesis are
summarised in Fig. 2.6 and reviewed between Sec. 2.2.1 and 2.2.3.

2.2.1 Modelling

Stability and performance characteristics of any real system are affected by many dynamical
perturbations (uncertainties), ranging from modelling inaccuracies (both, epistemic and random)
to external disturbances. Control systems are designed to work with a single nominal plant
model, but a successful controller must function properly for all perturbations and operating
variations (within a pre-defined set).
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2.2.1.1 LFT modelling

To capture the effect of modelling uncertainty, a mathematical representation known as Linear
Fractional Transformation (LFT) is typically employed in the robust control context. This
type of representation is thoroughly described in [DPZ91, ZDG95] and briefly discussed in the
following paragraphs.

As a cursory example, assume that a given parameter x has a relative uncertainty range wx

around its nominal value xNOM, then it can be represented as:

x = xNOM (1 + wxδx) , δx ∈ [−1, 1] (2.69)

Following the LFT notation, the product of a signal w with the uncertain parameter x is
conventionally represented as shown in Fig. 2.7 and written as:

z = xw = Fu


[
M11 M12

M21 M22

]
︸ ︷︷ ︸

M

, δx

w =
(
M22 +M21δx (I−M11δx)−1M12

)
w (2.70)

where Fu denotes the upper LFT operation, the nominal system (xNOM = M22) is retrieved for
δx = 0, and:

M =

[
0 1

xNOMwx xNOM

]
(2.71)

0

xNOMwx

1

xNOM

𝛿x

w z

Figure 2.7: Upper LFT representation of an uncertain element

Conversely, a lower LFT operation is also defined as follows:

Fl {M, δx} = M11 +M12δx (I−M22δx)−1M21 (2.72)

LFTs are particularly attractive due to their extreme modularity and because typical
algebraic operations (e.g., inverse, cascade, parallel and feedback connections) preserve the
LFT structure. Moreover, its elements are not limited to scalar parameters and can represent
complex-valued matrices. Therefore, in an interconnected system, it is common to isolate what
is known as a Linear Time-Invariant (LTI) system, i.e. M22, and gather all the "troublemaking"
(uncertain, time-varying or nonlinear) elements into a block ∆ = diag [δx1 , δx2 , . . . , δxn ] with
normalised infinity norm, ||∆||∞ ≤ 1. This block is known as structured uncertainty.
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Nowadays, this modelling procedure can be automated thanks to software packages like
MATLAB’s Robust Control Toolbox [BCPS06] or SMAC [BBD+16] from ONERA, the French
Aerospace Lab.

2.2.1.2 LPV modelling

In addition, when a system is not time-invariant, i.e. when its characteristics change over a
certain trajectory (or time), a formalism known as Linear Parameter-Varying (LPV) can be
employed to capture this behaviour. This formalism is introduced in the following paragraph,
for further details the reader is referred to [Bal02, MB04, MVS+10].

An LPV model of M(s) is a linear system whose state-space matrices {A,B,C,D} are
continuous functions of a measurable Time-Varying (TV) parameter vector ρTV(t):[

ẋ(t)

z(t)

]
=

[
A
(
ρTV(t)

)
B
(
ρTV(t)

)
C
(
ρTV(t)

)
D
(
ρTV(t)

)] [x(t)

w(t)

]
, ρTV(t) ∈ P (2.73)

where x(t) is the state vector, w(t) and z(t) are vectors of input and output signals, respectively,
and P ⊂ Rnρ is a known compact set.

Intuitively, to every time-frozen point of ρTV(t) ∈ P corresponds an LTI realisation. Moreover,
LPV models allow to establish a bridge between linear and nonlinear systems by embedding
nonlinear terms (e.g. change of trajectory) in the TV parameter.

The analysis of LPV systems leads to conditions that involve the TV parameter and, if
assumed Rate-Bounded (RB), its rate, i.e. (ρTV(t), ρ̇TV(t)). In this case, a parametric description
(p, q) ∈ P × Ṗ is introduced to emphasise that such conditions only depend on the compact sets
P and Ṗ . The manipulation of LPV systems is also made simpler through the use of dedicated
toolboxes, e.g. LPVTools [HSP15] from the University of Minnesota. This toolbox also provides
tools for LPV control synthesis.

2.2.2 Synthesis

As introduced in Sec. 1.3, the use of classical controllers represents the industrial state-of-practice,
but offers limited ability to systematically manage (potentially competing) control requirements
in a MIMO fashion. Instead, requirements are tackled iteratively for a single channel at a time,
although control adjustments in one channel are typically coupled with the others. Consequently,
this approach relies on extensive tuning followed by ad hoc Verification & Validation (V&V),
which renders the design process very time and cost consuming, with solutions often found via
brute-force search.

The ability to address the aforementioned limitations arose with the advent of robust control,
as explained next. An overview of the primary features of classical and robust control is provided
in Table 2.2.
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Table 2.2: Comparison of control synthesis paradigms

Feature Classical
Control

Standard
H∞ Control

Structured
H∞ Control

Explicit consideration of
plant uncertainties

No1 Yes Yes

Stability/performance
guarantee by design

No1 Yes Yes

Frequency-wise insight on
driving perturbations

No1 Yes Yes

Multi-plant, multi-channel,
multi-requirement design

No Limited
ability

Yes

Deterministic control
solution

No Yes Non-smooth
problem

Configurable controller
size/architecture

Yes No Yes

Easy handling of design
requirements

Often via
brute-force

No Yes, with
systune

2.2.2.1 H∞ synthesis

The objective of robust control synthesis is to find a linear controller K(s) such that all the
desired requirements of a MIMO plant P (s) are fulfilled, even in the presence of uncertain LTI
dynamics ∆(s). This controller uses an output vector y and generates an input vector u to
stabilise and control the plant. Similar to Fig. 2.7, the plant may contain a set of exogenous
inputs w (reference and disturbance signals) and regulated outputs z (error and performance
measurements). For ease of design, the perturbation is bounded by ||∆(s)||∞ ≤ 1 and enters the
system via the uncertainty channel z∆ → w∆.

This setup is conventionally represented by the generalised (upper LFT) interconnection
of Fig. 2.8, formed by the input-output transfer function M(s) and uncertainty ∆(s). In that
diagram, an input weight Wi(s) is employed to normalise the frequency content of the exogenous
signals and an output weight Wo(s) translates the desired requirements in the frequency domain.

1Classical control theory is not able to provide an explicit consideration of plant uncertainties, stabil-
ity/performance guarantee by design or frequency-wise insight on driving perturbations, but some ramifications
such as Quantitative Feedback Theory (QFT) [Hor01, HRGS05] allow to exploit these features without the need
for robust control techniques. However, the use of QFT in the literature is not widespread, mostly because it is
more complex than classical techniques and still does not offer the ability to systematically manage multiple
control requirements in a MIMO fashion (in opposition to robust control).
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P(s)

K(s)

Δ(s)

Wo(s)Wi(s)

M(s)

yu

zΔwΔ

zw

Figure 2.8: Generalised interconnection in the H∞ framework

The dynamics of the plant P (s) is expressed as: z∆(s)

W−1
o (s) z(s)

y(s)

 =

[
P11(s) P12(s)

P21(s) P22(s)

]
︸ ︷︷ ︸

P (s)

 w∆(s)

Wi(s) w(s)

u(s)

 (2.74)

and the control loop is closed using the lower LFT operation of Eq. (2.72).
In this case, the transfer function M(s) is given by:[

z∆

z

]
=

[
I 0

0 Wo

]
Fl {P,K}

[
I 0

0 Wi

][
w∆

w

]
=

[
M11 M12

M21 M22

]
︸ ︷︷ ︸

M(s)

[
w∆

w

]
(2.75)

where the dependence on the Laplace variable s is dropped for clarity.
The robust control problem consists then in finding a stabilising controller K∗(s) that

minimises the H∞-norm of M(s):

min ||M(s)||∞ = min sup
ω∈R

σ̄ (M(jω)) (2.76)

which corresponds mathematically to its Maximum Singular Value (MSV) σ̄ (M(jω)) and
physically to the energy amplification from a signal w ∈ L2 to z ∈ L2. L2 denotes the space of
finite-energy functions satisfying:

||w||22 =

∫ ∞
0

wT(t)w(t) dt <∞ (2.77)

and it is said that the system M(s) has an induced L2 gain of γ if:

sup
w 6=0

||z||2
||w||2

< γ (2.78)
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The output weight Wo(s) normalises the system such that, if all the control requirements
are fulfilled, then:

||M(s)||∞ < 1 (2.79)

and, under one of the most basic formulations of the problem (known as mixed sensitiv-
ity [ZDG95]), Wo(s) is a block-diagonal weight that shapes specific functions in frequency:

• Sensitivity S(jω), the transfer function from exogenous inputs to tracking errors;

• Complementary sensitivity T (jω), the function from exogenous inputs to system outputs;

• Control sensitivity, the transfer function from exogenous inputs to system inputs (control
channel), given by the product between the controller K(jω) and S(jω).

More specifically, the roll-off properties of the sensitivity function define Low-Frequency (LF)
tracking capabilities and its peak indicate the attainable closed-loop stability Gain Margin (GM)
and Phase Margin (PM) [RLD10]:

GM ≥ ||S(jω)||∞
||S(jω)||∞ − 1

, PM ≥ 2 arcsin

(
1

2 ||S(jω)||∞

)
(2.80)

where ||S(jω)||∞ is the amplitude of the sensitivity peak. On the other hand, the complementary
sensitivity function T (jω) dictates the controller bandwidth, which determines the closed-
loop performance, and the High-Frequency (HF) disturbance rejection. Both functions, S(jω)

and T (jω), are bounded by the fundamental relation S(jω) + T (jω) = 1, which imposes a
design trade-off between the required disturbance attenuation below the controller bandwidth
and system performance [Ste03]. Finally, the control sensitivity allows to manage the control
actuation effort as a function of frequency.

Well-known solutions of the H∞ synthesis problem are based on algebraic Riccati equations
or Linear Matrix Inequality (LMI) [DGKF89]. This is nowadays a well-established practice for
space applications where performance/robustness trade-offs are key [Pig02, BDG+02, Cha10,
WYF+11], but a few practical limitations must be taken into account:

• The controller K∗(s) has the same order of M(s), therefore high-dimensional plants result
in control systems that may not be suitable for onboard implementation (despite the
increasing computational power) unless ad hoc model-reduction methods are used for the
controller (which are typically challenging without loss of performance);

• A proper definition of Wi(s) and Wo(s) is still a difficult process, especially for non-H∞
control experts;

• Minimising the whole H∞-norm of M(s), including off-diagonal terms, does not allow to
manage cross-coupling effects and can introduce conservativeness in the solution when
considering ill-conditioned plants or multiple requirements.
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It is also important to note that the standard (full-order) H∞ synthesis formulation assumes
that the uncertainty block ∆(s) is unstructured (i.e. strictly complex). The full-order extension
to structured (combined real or complex) uncertainties was proposed in [SD91, PDB93] using
the so-called D-K iteration algorithm (also known as µ synthesis), which employs a combination
of H∞ synthesis and µ analysis (Sec. 2.2.3.1).

2.2.2.2 Structured H∞ synthesis

Motivated by the necessity to keep the dimension of controllers low by design, an algorithm
to tackle the minimisation problem for fixed-order controllers via specialised non-smooth
optimisation techniques was first proposed in [BLO03, BHLO06]. In addition, another application
was further proposed in [AN06, GA11]. The latter is called structured H∞ and, besides allowing
low-order design, it also permits to specify the structure of the controller. This is extremely
convenient since it enables the specification of its architecture based on physical considerations
(e.g. need for integrative or derivative action) or heritage from previous designs.

The underlying principle of structured H∞ synthesis is to represent the desired architecture
of the controller as an LFT of low-level tunable elements aj(s). Since any interconnection
of LFTs preserves its structure, the system of Fig. 2.8 can be rearranged by isolating the
tunable elements into a block-diagonal K̃(s) and absorbing the rest of the structure into a new
plant termed P̃ (s). The structured H∞ problem consists then in tuning the elements aj(s) by
minimising the global transfer function of Eq. (2.76).

Moreover, it is possible to rearrange the plant P̃ (s) and weights Wi(s) and Wo(s) so as
to map different combinations of input-output channels and, most notably, individual design
requirements. These combinations are then encapsulated into a new block-diagonal matrix:

M(s) = diag
[
M1(s), . . . ,MN (s)

]
(2.81)

and the synthesis problem becomes:

min max
(
||M1(s)||∞, . . . , ||MN (s)||∞

)
(2.82)

Note that this new formulation enables the direct handling of multiple requirements, as well as
design plants. In addition, this approach allows the controller to be parameterised as a function
of a scheduling variable (known as self-scheduled control [SBB13, LSZ14]), which paves the way
for structured LPV synthesis.

These advantages come at the expense of transforming the original synthesis problem into a
non-smooth mathematical problem due to the composition of the convex but non-differentiable
H∞ cost function with the differentiable but non-convex mappings aj(s)→Mi(s) [GA11]. To
solve the non-smooth problem, structured H∞ employs local optimisation methods and, to
mitigate the local nature of the optimiser, multiple runs are often performed from random
starting points. This represents a key issue in industry due to certification concerns and also a
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breakdown in the design learning experience (i.e. the assessment of system behaviour changes
due to changes in the posing of the problem). Hence, the optimiser initialisation and the choice
of the parameters that are free to be tuned may become critical for a successful control design.

The structured H∞ algorithm is part of the hinfstruct and systune routines available in
MATLAB [GA11], with the latter including an easier quantification of H∞ requirements and
handling of multiple control requirements, channels and models. This algorithm is also able to
seamlessly account for parametric uncertainties [ADN15]. Alternatives to cope with mixed (real
and complex) uncertainties are currently being developed [AAN18].

Despite the apparent ease of hinfstruct or systune, there are numerous options available
to set the tuning requirements and design conditions (sometimes seemingly fighting each other,
as characteristic of multiple minima optimisation). This wide availability of choice is a risk
in the sense that it provides a confidence level that can complicate the design process by
over-constraining the optimisation problem. In this thesis, that risk is mitigated by posing the
problem as in the standard H∞ framework and focusing on frequency-domain weight functions
Wi(s) and Wo(s) to impose the desired closed-loop properties.

Despite the challenges mentioned above, the effectiveness of structured robust control has
been proven through many simulation design problems, two space-flown missions [FPB+15, PP15]
and recently in piloted flight tests [MS17]. The main strength of structured H∞ under the scope
of these applications is its capability to synthesise a controller that is valid not only for one, but
for a set of plants or operating conditions (multi-plant control). Other works from the author
on structured H∞ optimisation can be found in [SNIM18, NMS+19].

Finally, an additional strength of structured H∞ for space missions lies on its ability to
specify the controller structure, which allows: [i] control gains to be changed ad hoc if any
re-tuning is required (recall Rosetta’s example from Sec. 1.3.1), and [ii] legacy industry knowledge
to be kept. Taking advantage of legacy knowledge is a very important point as it enables the
transfer of this approach (offering better performance/robustness properties) to industry without
representing a disruptive change for the design teams.

2.2.3 Analysis

Robustness analysis entails assessing the impact of uncertainties and unmodelled dynamics on
closed-loop stability and performance. The Nyquist diagram of a generic Single-Input Single-
Output (SISO) system is provided in Fig. 2.9 to evidence such impact in a graphical manner.

Here, the nominal transfer function is shown in magenta, the critical stability point –1 is
marked with a red cross and the required performance is specified by the red exclusion disk
enveloping the 6 dB M-circles for S(jω) and T (jω). Plant perturbations are accounted for as an
unstructured uncertainty around the nominal response, which is represented by the green circle
with the corresponding spectral radius. Note that this effect is depicted for a single frequency,
but it can occur (with varying severity) throughout the spectrum.
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Figure 2.9: Illustration of robust SISO stability and performance (adapted from [WYF+11])

In this setting, the system is nominally stable if the magenta response does not encircle the
point –1 and it is said to have Robust Stability (RS) if this criterion does not get compromised
when accounting for the green circle instead of the nominal response. In addition, Nominal
Performance (NP) is assessed by verifying if the nominal response does not intercept the red
exclusion disk. Finally, the system is said to have Robust Performance (RP) if the green circle
does not intercept the red exclusion disk.

The systematisation of this assessment to MIMO plants with structured uncertainties was
introduced in [SD91] and is presented in Sec. 2.2.3.1. Before that, a more concrete example of
launcher stability analysis from the author is discussed in the next paragraphs.

This example, taken from [SBM+16], is based on Europe’s lightweight VEGA launcher [Bia08]
during atmospheric flight. Here, Nichols charts are employed for the assessment of classical
stability indicators [dVK93], which include (in ascending order of frequency): [i] rigid-body
low-frequency gain margin (LF GM), [ii] rigid-body phase margin (PM), [iii] rigid-body high-
frequency gain margin (HF GM), [iv] right phase margin of the first bending mode (PM1),
[v] gain peak of the first bending mode (Pk1), [vi] left phase margin of the first bending mode
(PM2), and [vii] gain peak of the second bending mode (Pk2).

Nichols charts of VEGA’s closed-loop attitude channel are illustrated together with the nom-
inal stability indicators in Fig. 2.10a at distinct instants over the flight (for t ∈ [5, 110] seconds),
and the corresponding rigid-body margins are gathered in Fig. 2.10b (note that PM is reported
in terms of the equivalent delay margin divided by 10 for readability purposes). This type of
representation allows to verify that closed-loop stability under nominal conditions is ensured
throughout the flight, although there is a reduction of stability margins when aerodynamic loads
become more intense (between 20 and 80 seconds).
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Figure 2.10: Classical launcher stability analysis over the flight

2.2.3.1 µ analysis

The Structured Singular Value (SSV) µ relies on the LFT representation in the form of Fig. 2.8
to determine if a system M(s), partitioned as in Eq. (2.70), is stable in the presence of all the
normalised LTI uncertainties ||∆(s)||∞ ≤ 1.

In this case, stability is ensured by the existence of the inverse (I−M11∆)−1 in Eq. (2.70),
and verified by computing:

µ(M11) =
1

min∆ {σ̄(∆) : ||∆||∞ ≤ 1, det (I−M11∆) = 0}
(2.83)

with µ(M11) ∈ R+ if a solution exists.
The system is then said to have RS [DPZ91, ZDG95] if and only if its nominal component

M22(s) is stable and:
µ(M11(jω)) < 1, ∀ω ∈ R (2.84)

Moreover, the norm of the smallest set of uncertainties that destabilises the system is given
by ||µ (M11) ||−1

∞ . The computation of Eq. (2.83) is known to be polynomial-time hard, hence
its estimation (except for a few specific cases) relies on lower and upper bounds, such that:

max
Q∈Q

ρ (QM11) ≤ µ(M11) ≤ inf
D∈D

σ̄
(
DM11D

−1
)

(2.85)

where Q and D are scaling matrices from two complex subsets Q and D defined to get the
bounds as tight as possible [DPZ91], ρ indicates the spectral radius (recall Fig. 2.9) and σ̄ the
MSV (recall Eq. (2.76)). All the algorithms necessary for µ analysis are also available with
MATLAB’s Robust Control Toolbox [BCPS06] and ONERA’s SMAC [BBD+16].

50



2.2. ROBUST CONTROL TECHNIQUES

In practice, the two bounds provide an analytical guarantee of existence of at least one per-
turbation that equals the Lower Bound (LB) degradation and of inexistence of any perturbation
that exceeds the Upper Bound (UB) degradation. For more accurate bounds, the size of LFT
models shall be kept as small as possible while capturing the most relevant physical phenomena
of the real system and their interplay with the uncertainties.

Furthermore, the SSV µ can be employed for robust performance analysis, i.e. to check if
closed-loop requirements defined as in Eq. (2.79) remain fulfilled under the effect of the allowable
LTI uncertainties ||∆(s)||∞ ≤ 1. Without uncertainties, NP is assessed by verifying if Eq. (2.79)
holds for ∆(s) = 0 over frequency, which is equivalent to:

σ̄(M22(jω)) < 1, ∀ω ∈ R (2.86)

Under the presence of uncertainties, the performance channel z → w is closed through a
fictitious complex perturbation ∆p(s) as shown in Fig. 2.11, and the µ test is now applied to
M(s) instead of M11(s), considering the augmented uncertainty diag [∆(s), ∆p(s)].

M(s)

Δ(s)

zΔwΔ

zw

Δ
p
(s)

Figure 2.11: Generalised interconnection for RP analysis

Similar to the stability case, the system with requirements defined as in Eq. (2.79) is said to
have RP if and only if it has nominal stability and:

µ(M(jω)) < 1, ∀ω ∈ R (2.87)

with smaller values of µ(M) indicating better RP properties. It is also important to note that,
as indicated by the upper LFT operation of Eq. (2.70), M(s) is directly influenced by M11(s),
M22(s) and by their interplay through M12(s) and M21(s), thus a system cannot have RP
without having RS and NP. In other words:

µ(M)︸ ︷︷ ︸
RP

≥ max

{
µ(M11)︸ ︷︷ ︸

RS

, σ̄(M22)︸ ︷︷ ︸
NP

}
(2.88)
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Additional valuable insights can also be extracted using µ analysis, which will be thoroughly
exploited in the thesis:

• In addition to the binomial RS/RP check, µ offers a frequency-wise insight on the
stability/performance degradation mechanisms;

• The LB can be used to obtain critical uncertainties ∆WC(s), which allow to identify
Worst-Case (WC) configurations [MRR+15] and complement traditional sampling-based
V&V methods such as Monte-Carlo (MC) by narrowing the sampling around critical areas;

• The possibility to calculate RS/RP sensitivities [MBP05] that quantify the impact of each
uncertainty in the solution of µ, allowing to validate the meaningfulness of the results and
to support considerations often derived from an engineering perspective.

Coming back to VEGA’s example from [SBM+16], the WC closed-loop system can be
constructed from the results of µ analysis and its stability properties may be analysed as before.
The comparison between nominal and WC response is illustrated in Fig. 2.12a. This Nichols
chart shows that the system remains stable, but the WC combination of uncertain parameters
amounts to a profound stability degradation in the LF area, with a critical reduction of gain
and delay margins.

The same approach allows to determine the WC stability margins for other instants of time,
which are plotted against the nominal ones of Fig. 2.10b in Fig. 2.12b. Similar to what is shown
in Fig. 2.12a for t = 60 seconds, the WC conditions found via µ lead to a considerable reduction
of LF GM and also PM throughout the flight and to the consequent (negative) increase of HF
GM as the Nichols plot is essentially shifted down.

(a) Comparison of Nichols charts at t = 60 s (frequencies
in rad/s at critical points shown inside brackets)
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Figure 2.12: Nominal and WC launcher stability indicators
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Figure 2.12a also depicts the response of 10000 MC random LFT samples. These results
clarify the effectiveness of the µ algorithm which, in a single shot, was able to identify conditions
for a more intense degradation of stability. WC margins tend to be very realistic as they
are derived from the LB peak of µ, but it is understood that this methodology is inherently
conservative and that these margins are generally associated to rather unlikely configurations. A
more sophisticated approach known as probabilistic µ has been proposed in [KP98] to estimate
the WC likelihood and applied in [MBR15, FAP17].

It is highlighted that the µ framework is limited to LTI uncertainties. For this particular
case, once the WC perturbation ∆WC(s) of a system M(s) is determined, its induced WC L2

gain, defined in Eq. (2.78), corresponds to:

γ = ||Fu

{
M(s), ∆WC(s)

}
||∞ (2.89)

2.2.3.2 IQC analysis

In order to extend the induced L2 gain computation to systems with nonlinear perturbations
(such as time-varying uncertainties, time delays and limited control authority), an analytical
methodology has been proposed in [MR97] based on the concept of Integral Quadratic Constraints
(IQC).

The underlying principle of the IQC framework is that the finite-energy signals w∆ ∈ L2

and z∆ ∈ L2, also depicted in Fig. 2.8 and with Fourier transforms ŵ∆(jω) and ẑ∆(jω), are
said to satisfy the IQC defined by multiplier Π(jω) if:∫ +∞

−∞

[
ẑ∆(jω)

ŵ∆(jω)

]∗ [
Π11(jω) Π12(jω)

Π∗12(jω) Π22(jω)

]
︸ ︷︷ ︸

Π(jω)

[
ẑ∆(jω)

ŵ∆(jω)

]
dω ≥ 0 (2.90)

where Π(jω) : jR→ C is a measurable Hermitian-valued function, usually chosen amongst a
set of rational functions bounded on the imaginary axis, and the superscript ∗ represents the
complex conjugate transpose.

Using this setup, any bounded and causal nonlinear perturbation ∆ can be described by an
IQC in the form of Eq. (2.90), also known as soft IQC, provided that it holds for all z∆ ∈ L2 and
w∆ = ∆ (z∆) (i.e. w∆ denotes the output of ∆ when excited by z∆). For a given uncertainty
description, the set DΠ of all suitable multipliers Π(jω) is given by:

DΠ =

{
Π(jω) :

∫ +∞

−∞

[
ẑ∆(jω)

εŵ∆(jω)

]∗
Π(jω)

[
ẑ∆(jω)

εŵ∆(jω)

]
dω ≥ 0, ∀ ε ∈ [0, 1], w∆ = ∆ (z∆)

}
(2.91)

where the term ε is introduced because IQC theory requires DΠ to be star-shaped with respect to
the origin. The structure of Π(jω) is chosen based on the type of perturbation being investigated.
A list of multipliers describing common perturbations can be found in [MR97].

53



CHAPTER 2. GUIDANCE & CONTROL BACKGROUND

The frequency-domain formulation of Eq. (2.90) is known to have a time-domain equivalent
through the application of Parseval’s theorem and factorisation of Π(jω) as:

Π(jω) = Ψ∗(jω)HΨ(jω) (2.92)

where Ψ(jω) is a tall stable filter applied to w∆ and z∆, and H = HT is a real matrix variable
that defines the structure of the multiplier. The graphical interpretation of this setup is provided
in Fig. 2.13.

M(s)

Δ

zΔwΔ

zw

Ψ

Figure 2.13: Graphical interpretation of the IQC analysis setup

In this case, the signals z∆ ∈ L2 and w∆ = ∆ (z∆) are said to satisfy the IQC defined by
(Ψ, H), also known as hard IQC, for a finite time-horizon T > 0 if:∫ T

0

(
Ψ

[
ẑ∆(t)

ŵ∆(t)

])T

H

(
Ψ

[
ẑ∆(t)

ŵ∆(t)

])
dt ≥ 0 (2.93)

The filter Ψ(jω) can be understood as the IQC generalisation of the Q and D scaling matrices
employed in µ analysis.

Within this framework, analysing whether a nominally stable system M(s) has an induced
WC L2 gain of γ amounts to verifying whether the following inequality is satisfied:[

M(jω)

I

]∗
Π̃(jω)

[
M(jω)

I

]
dω < 0, ∀ω ∈ R (2.94)

with Π̃(jω) =


Π11(jω) 0 Π12(jω) 0

0 I 0 0

Π∗12(jω) 0 Π22(jω) 0

0 0 0 −γ2I

 (2.95)

In Eq. (2.94), the behaviour of the z∆ and ∆ (z∆) channels is directly reflected into the
[M(jω) I]T structure. To solve the IQC problem, this inequality is often reformulated as a single
LMI using the Kalman-Yakubovich-Popov lemma [IH05].
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As a cursory example of this formulation, consider that a system M(s) is solely perturbed by
a (rate-bounded) TV parameter such that it can be parameterised as introduced in Sec. 2.2.1.2.
In this particular case, the generalised LTI bounded real lemma [WYPB96] states that M(s) is
exponentially stable and its induced L2 gain is bounded by γ > 0 if there exists a continuously
differentiable TV parameter-dependent matrix P (p), such that ∀ (p, q) ∈ P × Ṗ:

P (p) > 0,[
P (p)A(p) +AT(p)P (p) +

∑nρ
i=1

∂P (p)
∂pi

qi P (p)B(p)

BT(p)P (p) −I

]
+

1

γ2

[
CT(p)

DT(p)

] [
C(p) D(p)

]
< 0

(2.96)
where {A(p), B(p), C(p), D(p)} represent the state-space matrices of M(s). The ability of IQCs
to generalise uncertain and time-varying effects under the same unified framework also paves
the way for robust LPV synthesis [PS15].

In opposition to the µ approach, for which very efficient algorithms exist, IQC analysis is
less straightforward mostly due to the choice of the filter Ψ(jω) in Eq. (2.92). While static
filters may be over-conservative and render Eq. (2.94) non-solvable, adding dynamics leads to
ambiguity and computational scalability issues. To facilitate the process, dedicated toolboxes are
available, such as IQCβ [KMJR04] from the authors of [MR97], and [BBD+16] from ONERA.
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Application I

Fuel-optimal Descent & Landing on
Small Planetary Bodies
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3
System Modelling for Landing on Phobos

In this chapter, all the models needed for the first application of the thesis are presented.
Sections 3.1 and 3.2 present respectively the high-fidelity benchmark and the reference Descent
& Landing (D&L) trajectories employed for the landing on Phobos case study. Using these inputs,
an approach to derive Linear Time-Invariant (LTI) models from the high-fidelity dynamics that
can be employed for Guidance & Control (G&C) design purposes is provided in Sec. 3.3.

The linear models are then augmented to account for gravitational uncertainties and
Time-Varying (TV) effects via Linear Fractional Transformation (LFT) and Linear Parameter-
Varying (LPV) modelling in Sec. 3.4 and 3.5, respectively. To complete the chapter, actuator
and navigation subsystems included with the benchmark are characterised and modelled in
Sec. 3.6.

3.1 High-fidelity dynamics in the vicinity of Phobos

Mars’ largest moon Phobos is a small body, orbiting the red planet at a mean altitude of less
than 6,000 km and a period of about 7 hours and 40 minutes. An overview of physical and
orbital parameters of the Mars-Phobos system is provided in Appendix B. One interesting
property is that, just like our Moon, Phobos is tidally locked due to the long-term effect of the
planet’s gravity gradient, meaning that its revolution and rotation periods are the same and
that it always shows the same face to Mars.

Phobos is also particularly lightweight (its mass is 8 orders of magnitude smaller than Mars)
and close to the red planet, which causes the planet’s sphere of influence (Fig. 3.1a) to end
just 3.5 km above the moon. Hence, there is no possibility for Keplerian orbits around Phobos
and the third-body perturbation of Mars cannot be neglected, making landing on this asteroid
extremely challenging.
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(a) Mars’ sphere of influence
around Phobos. Axes normalised
by mean distance Mars-Phobos.
Continuous black line represents
Phobos ellipsoid and dashed line
its mean sphere.

(b) Percentage difference of gravitational acceler-
ation between gravity harmonics and Keplerian
model at Phobos’ surface.

Figure 3.1: Highly inhomogeneous gravity field of Phobos (credits: Airbus Defence & Space)

Furthermore, due to the irregular shape and mass distribution of Phobos, the gravity of the
moon cannot be accurately accounted for by a spherical (Keplerian) field, and requires to be
described using a Gravity Harmonics (GH) model. The difference between these two models
over Phobos’ surface is illustrated in Fig. 3.1b.

Using spherical coordinates (r, θ, ϕ) for distance to barycentre, co-latitude and longitude, as
well as R for a reference radius and µg for the gravitational constant, the GH gravity potential
is described by the spherical series expansion [ZB15]:

U(r, θ, ϕ) = −µg

R

n̄∑
n=0

(
R

r

)n+1 n∑
m=0

Cmn (ϕ)Pmn (cos θ) (3.1)

where:
Pmn (x) = (1− x2)m/2

dm

dxm
Pn(x)

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

(3.2)

are the associated Legendre polynomials and:

Cmn (ϕ) = Cn,m cosmϕ+ Sn,m sinmϕ (3.3)

is the double expansion of GH coefficients Cn,m and Sn,m.
For Phobos, n̄ = 4 is assumed to suffice, which leads to 28 coefficients plus the Keplerian

term C0
0(ϕ) = 1. Estimates of Phobos’ GH coefficients are available from ground observations

but, due to its complex gravitational environment and distance to Earth, 19 of them are known
with a large range of uncertainty. In this work, each coefficient is assumed to follow a Gaussian
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distribution with standard deviation equal to its nominal value. This assumption is further
discussed in [ZB15], the nominal GH coefficients are also provided in Appendix B.

As demonstrated in Sec. 2.1.5, it is mandatory that every candidate G&C algorithm is
verified not only for nominal GH coefficients, but also for all admissible values within the
uncertainty range mentioned above. In practice, this range may be significantly reduced before
D&L if an observation phase of the target body is included in the mission. The possibility of
G&C retuning upon the availability of updated estimates is actually an added-value of the
methodologies proposed in Chapter 4 and 5.

Having in mind the small eccentricity of Phobos’ orbit around Mars (ePho ≈ 0.0156), the
nonlinear dynamics of a spacecraft flying in the vicinity of the Mars-Phobos system can be
described as a circular restricted three-body problem. In this case, using a Body-Centred Body-
Fixed (BCBF) frame with origin at the moon’s barycentre, the spacecraft motion is written
as [ZB15]:  ṙ(t)

v̇(t)

ν̇(t)

 = f
(
r(t),v(t), ν(t)

)
+

03×3

I3×3

01×3

a(t) (3.4)

where the state vector [r(t) v(t) ν(t)]T gathers the position and velocity of the spacecraft with
respect to Phobos, as well as the true anomaly of the latter around Mars, while the control
vector a(t) represents any propulsive acceleration generated by the spacecraft in the BCBF
frame.

The equation above is equivalent to Eq. (2.3), with the complex gravity potential description
of Eq. (3.1) for Phobos and Mars embedded in f

(
r(t),v(t), ν(t)

)
through the dynamics of v(t).

Dropping the dependence on t for clarity, this is given by:

v̇ = ∇UPho
S/C (r) + ∇UMars

S/C (r, ν)−∇UMars
Pho (ν)− ωPho × (ωPho × r)− 2ωPho × v (3.5)

Here, the first three terms ∇U∗# represent respectively the gravity of Phobos on the spacecraft,
Mars on the spacecraft and Mars on Phobos, computed as a function of the position r of the
spacecraft relative to Phobos and of the latter’s location around Mars via its true anomaly ν.

The calculation above becomes particularly complex due to all the frame transformations
involved. Details on these transformations are outside the scope of this thesis, but can be found
in [ZB15]. The last two terms of Eq. (3.5) account for the non-inertial acceleration caused by
the fact that the BCBF frame is rotating with Phobos at a rate ωPho. Finally, based on this
rate, the true anomaly of Phobos on its orbit around Mars is propagated as follows:

ν̇ = ωPho
(1 + ePho cos ν)2(

1− e2
Pho

)3/2 (3.6)

For this thesis, all the Spacecraft Dynamics & Kinematics (SDK) computations are performed
using a high-fidelity simulator developed by Airbus Defence & Space for this project based on
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their space operational experience [JZS+17, JZS+18]. This simulator is part of their industrial
testing, simulation and assessment facility and will be employed for system development and
validation in case of a future Phobos Sample Return (SR) mission.

3.2 Reference trajectory design

Two guidance paradigms for D&L have been defined in Sec. 2.1.2: [i] open-loop (or implicit),
employed when a Reference Trajectory (RT) {rref(t),vref(t)} and thruster profile aref(t) are
generated before, and remain unchanged during, the descent, or [ii] closed-loop (or explicit),
which refers to the case when the thruster profile is computed in real-time to correct the trajectory
based on onboard measurements (as it was shown in Fig. 2.2 by dashed lines). Regardless of
the type of guidance, the architecture may be augmented with a control compensator which
introduces an additional acceleration vector command acmp(t) to further alleviate trajectory
errors.

For G&C design, it is therefore convenient to have adequate RTs defining not only the
aforementioned profiles {rref(t),vref(t),aref(t)}, but also the set of design points where any
control compensator must be able to operate. In this study, a set of RTs has also been calculated
by Airbus Defence & Space and provided together with the high-fidelity benchmark introduced in
the previous section. These trajectories were designed via the following process [JZS+17, JZS+18]:

1. Identification of unstable manifolds that originate at an invariant Libration Point Orbit
(LPO) in the three-body system and that intersect Phobos. Examples of such manifolds
are depicted in Fig. 3.2a;

2. Selection of the manifolds that reach the moon with higher incidence angle (i.e. the most
vertical ones) as initial trajectory guesses. These trajectories are ballistic (i.e. require
∆V = 0), but their final (touchdown) speed may be too high. Typical sample return
missions require a touchdown velocity inferior to 1.5 m/s vertically and 1.0 m/s horizontally;

3. Parametrisation of a fixed-order polynomial acceleration profile aimed at bringing the
touchdown speed to zero. The fixed-order structure will lead to sub-optimal solutions,
but allows the use of finite-dimensional NonLinear Programming (NLP) algorithms for a
faster optimisation;

4. Computation of the acceleration profile and associated RT (starting from the initial guesses
from point 2) that minimise the required ∆V :

∆V =

∫ tf

t0

[
aT(τ)a(τ)

]1/2
dτ (3.7)

while keeping an admissible level of error on the final states. To simplify the optimisation
runs, a few approximations are introduced in the dynamics of the Mars-Phobos system,
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hence it may not be possible to accurately track the resulting RT in open-loop (as it will
be seen in Chapter 5).

The three optimised trajectories that will be considered throughout the thesis for the Phobos
application are shown (together with their required ∆V value) in Fig. 3.2b. All of them will be
employed for closed-loop Verification & Validation (V&V), but only that termed RT1 will be
used for G&C synthesis purposes.

(a) Candidate manifolds originated at
LPOs that intersect Phobos

(b) Optimised trajectories and ∆V requirements
(all the trajectories have a duration of less than
2 hours)

Figure 3.2: Reference landing trajectories

3.3 Orbital perturbation model

For G&C synthesis purposes, it is also convenient to have a linear representation of Eq. (3.4).
In this thesis, such a representation is accomplished through the application of linearised orbital
perturbation theory [Bat87].

According to the orbital perturbation theory, state and control variables can be defined at
different operating points along a given trajectory as the sum of a reference (desired) value and
small perturbations (deviations):

r(t) = rref(t) + δr(t)

v(t) = vref(t) + δv(t)

ν(t) = νref(t) + δν(t)

a(t) = aref(t) + δa(t)

(3.8)

The dynamics of these perturbations are then approximated by the 1st order terms of the Taylor
series expansion of f

(
r(t),v(t), ν(t)

)
around the reference points:
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δṙ(t)

δv̇(t)

δν̇(t)

 = Jf (t)

δr(t)

δv(t)

δν(t)

+

03×3

I3×3

01×3

 δa(t) (3.9)

where the Jacobian matrix is given by:

Jf (t) =

[
∂f

∂r

∂f

∂v

∂f

∂ν

]∣∣∣∣∣∣∣∣∣∣
r = rref(t)

v = vref(t)

ν = νref(t)

(3.10)

which is computed via finite differences due to the complexity of f
(
r(t),v(t), ν(t)

)
. Performing

this linearisation at different instants of time ti, i = {1, . . . , N} along an RT allows to generate
a set of LTI SDK models termed GiSDK(s), with the following general state-space description:

ẋSDK(s)

δr(s)

δv(s)

 =

 J if

03×3

I3×3

01×3

I6×6 06×1 06×3


[
xSDK(s)

δa(s)

]
(3.11)

where J if = Jf (ti) and xSDK(s) is the internal state vector. The pole-zero map of GiSDK(s) along
RT1 (refer to Fig. 3.2b) and the magnitude response of its first channel δax → δrx over time
are depicted in Fig. 3.3.

The linear analysis shown in this figure confirms the complexity of the evolution of GiSDK(s),
with its poles (Fig. 3.3a) and magnitude peaks (Fig. 3.3b) changing smoothly but non-
monotonically over time and with higher characteristic frequencies towards the final descent
time, where the gravity pull of Phobos becomes more intense. It is also confirmed from Fig. 3.3a
that the system is open-loop unstable, since any deviation from the reference trajectory will
cause the spacecraft to be pulled towards either Mars or Phobos.

3.4 Inclusion of gravitational uncertainties

As introduced in Sec. 3.1, 19 out of the 28 GH coefficients of Phobos are highly inaccurately
known. This means that the computation of J if and thus the description of GiSDK(s) in Eq. (3.11)
is subject to a high level of uncertainty. To capture the effect of this uncertainty, the LFT
representation introduced in Sec. 2.2.1.1 will be employed.

To build representative LFT models of GiSDK(s), a three-step procedure has been developed.
These steps encompass uncertainty selection, plant interpolation and LFT verification and they
are detailed in the following paragraphs. The developed procedure must be repeated for every
time instant of interest. Here, 10 design points i = {1, . . . , 10} : ti ∈ [t0, tf ] have been chosen
with uniform intervals in terms of closing speed ||vref(t)||. The reason for this choice is twofold:

64
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• System information becomes more refined closer to the final descent time, where the
dynamics of GiSDK(s) becomes faster (recalling Fig. 3.3a);

• The time-evolution depicted in Fig. 3.3b seems to be strongly determined by ||vref(t)||, as
Fig. 3.5 will show.
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(a) Pole-zero map over the descent (b) Magnitude response of channel δax → δrx

Figure 3.3: Linear analysis of GiSDK(s) for RT1 with ti ∈ [t0, tf ]

3.4.1 Sensitivity-based uncertainty selection

In order to minimise the size of the resulting LFT model, only the GH coefficients of Eq. (3.3)
with higher impact on J if are selected and denoted ρGH. In order to methodically perform this
selection, two distinct criteria are applied: [i] impact of each coefficient on the nonlinear open-loop
simulation of Eq. (3.4), and [ii] relative weight of each coefficient on dedicated interpolations (see
next step). With the two criteria providing consistent results, the following set of 9 coefficients
is selected:

ρGH =
[
C3,0 C3,1 C3,2 C4,0 C4,1 C4,2 C4,3 S3,3 S4,3

]
(3.12)

This choice will be further revisited at the control analysis stage (Sec. 6.1) based on insights
from a closed-loop sensitivity analysis.

3.4.2 Jacobian sampling and interpolation

Once the set of uncertainties is selected, an appropriate number of dispersed samples is generated
and the Jacobian matrix of Eq. (3.10) is evaluated for each sample. Depending on the dispersion
ranges considered, models with different levels of conservativeness can be obtained. As mentioned
in Sec. 3.1, each GH coefficient is assumed to follow a Gaussian distribution with standard
deviation equal to its nominal value.
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Here, two cases are considered: 2σ and 3σ dispersions, capturing respectively 95.5 and 99.7%
of uncertainty. For each case, a matrix with polynomial dependence on the uncertain parameters
J if (ρGH) is then constructed.

This task was accomplished using the orthogonal least-squares interpolation routine provided
with the Approximation of Polynomial and Rational-type for Indeterminate Coefficients via
Optimisation Tools (APRICOT) library [RHB14], which is now openly available [BBD+16].
After several tests, the maximum degree of the interpolating polynomials was fixed to 1, enabling
the quantification of their dependence on each uncertainty coefficient.

3.4.3 LFT transformation and verification

The final step consists in converting the LTI system of Eq. (3.11) with J if (ρGH) into an LFT.
This is also an embedded capability of the APRICOT library, which adjusts the necessary
repetitions of each coefficient in ρGH to meet a pre-specified approximation error.

In the end, two sets of models, GiSDK,2σ(s) and GiSDK,3σ(s), are obtained for the points
i = {1, . . . , 10}, together with corresponding ∆i

SDK,2σ(s) and ∆i
SDK,3σ(s) blocks. Each block

contains the uncertainties δcn,m(s) and δsn,m(s) (with n andm indicating the selected coefficients
shown in Eq. (3.12)), normalised to [−1, 1] and repeated as necessary. The sum of these repetitions
determines the size of the block and, the larger it is, the more elaborate the impact of the
uncertainty in the dynamics of the system (and the more complicated to analyse).

It is therefore reasonable to expect that the uncertainty size changes with the level of
conservativeness, but also along the trajectory as the dynamics become more complex closer
to Phobos. This behaviour is depicted in Fig. 3.4a, where it is seen that the size of ∆i

SDK,2σ(s)

is never larger than ∆i
SDK,3σ(s) and that they both tend to increase with time (i.e. towards

Phobos), ranging from a size of 3 (when only some of the 9 uncertainties have a significant role)
to 27 (when all the uncertainties appear repeated 3 times).

Finally, the accuracy of the LFTs is verified by comparing frequency response samples
obtained from the LFT and from equally dispersed LTI realisations. An example of such a
comparison is shown in Fig. 3.4b for the singular values of G10

SDK,3σ(s), i.e. the largest model. In
this case, LFT accuracy (uppermost subplot of Fig. 3.4b) is confirmed by the good matching
with the LTI responses (bottom subplot).

3.5 Inclusion of time-varying effects

The models developed in Sec. 3.3 and 3.4 are time-invariant, i.e. their characteristics are assumed
to be frozen and locally valid at the instant of time ti for which they are derived. In practice,
however, this is not the case, and the behaviour actually changes globally over the trajectory
(and time). As introduced in Sec. 2.2.1.2, this TV effect can be captured using the LPV modelling
paradigm.
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Figure 3.4: Results of LFT verification step

The generation of an LPV model GSDK(s, ρTV(t)) follows similar lines to those described
in Sec. 3.4. Here, the TV parameter can be directly defined as ρTV(t) = t, the 10 Jacobian
matrices can be written as a function of this parameter, i.e. J if (ρTV(t)), i = {1, . . . , 10}, and
then interpolated. The 10 design points along RT1 and the corresponding closing velocity are
illustrated in Fig. 3.5. The interpolation was performed using the LPVTools library [HSP15].
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Figure 3.5: Closing speed of RT1 and design points chosen

Alternatively, the inclusion of GH uncertainties and TV effects can be merged through
the combined interpolation of J if

(
[ρGH, ρTV(t)]

)
. This formulation was however not considered

since, as it will be seen in Sec. 6.2, the impact of TV effects is much less significant than that of
uncertainties.
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3.6 Actuator and navigation models

In addition to simulating the physical environment in the vicinity of Phobos, Airbus’ high-fidelity
benchmark also included a set of actuator and navigation subsystems. The effects of these two
subsystems have been summarised in Sec. 2.1.2 and are further detailed below.

Actuators introduce thruster realisation errors, which are time (and trajectory) dependent,
but assumed to be bounded. In this case, actuation errors can be captured following the LFT
approach, i.e. defining a simple model GA(s):

a(s) =

I3×3 +

 waxδax(s) waodδaod(s) waodδaod(s)

waodδaod(s) wayδay(s) waodδaod(s)

waodδaod(s) waodδaod(s) wazδaz(s)


acmd(s) (3.13)

and uncertainty block:

∆A(s) = diag [δax(s), δay(s), δaz(s), I3×3δaod(s)] (3.14)

Here, δax, δay, δaz are uncertainties affecting the three axes and δaod represents off-diagonal
effects. The relative ranges of ∆A(s) were established from Monte-Carlo (MC) time simulations
of the high-fidelity benchmark to:

wax = 0.06, way = 0.11, waz = 0.12, waod = 0.14 (3.15)

and then normalised to [−1, 1] with M(s) absorbing these scaling factors (recall Fig. 2.7).
Since uncertainty ranges are relative, GA(s) is equally applicable to full acceleration com-

mands acmd(t) as well as to acceleration command perturbations δacmd(t) = acmd(t)− aref(t),
as per Eq. (3.8).

The sensors & navigation subsystem, on the other hand, introduces two different pertur-
bations: a quantisation and a noise error. The former effect is due to the fact that position
and velocity estimates, r̂(t) and v̂(t) (recall Fig. 2.2), are updated every 60 seconds, injecting a
non-smooth signal into the system. To attenuate it, these estimates are filtered by a first-order
Low-Pass Filter (LPF) GLPF(s) with 0.05 Hz bandwidth.

The noise error is accounted for by colouring white noise signals nr(t) and nv(t) through
appropriate filters GrNAV(s) and GvNAV(s). Their transfer functions were chosen such that the
Power Spectral Density (PSD) produced by the actual, nonlinear sensors & navigation block is
recovered. The resulting transfer functions are given by:

GrNAV(s) = 40
0.001 (s + 1)

s + 0.001
I3×3

GvNAV(s) =
1

30

0.03 (s + 1)

s + 0.03
I3×3

(3.16)

This is exemplified in Fig. 3.6 for GrNAV(s).
Finally, and similar to the actuator model, the noise shaping filters are equally applicable to

full and perturbed estimates since reference values rref(t) and vref(t) are known without error,
therefore r̂(t)− r(t) = δr̂(t)− δr(t) and v̂(t)− v(t) = δv̂(t)− δv(t).
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Figure 3.6: Actual (blue) vs. synthetic (red) position noise PSD
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4
Systematic Closed-loop Guidance Tuning

Throughout the survey of Sec. 2.1.4, it was seen that most of the work on closed-loop guidance
for small bodies recasts the Descent & Landing (D&L) problem as optimal feedback control
with terminal constraints, for which optimal conditions can be analytically derived using the
Pontryagin maximum principle or through calculus of variations. Nevertheless, these optimal
conditions are only practical under the assumption of simplified and well-known gravity fields,
which is not the case with Phobos.

From the surveyed techniques, a reconciliation (in exactitude, an underlying parametric
generalisation) of D&L guidance laws was identified in Sec. 2.1.4.4. Although a simple step, this
parametrisation enables the possibility of applying systematic tuning methodologies, which may
prove to be a paradigm change in the current state-of-practice for D&L on small bodies.

In this chapter, a tuning methodology that relies on the identified parametric generalisation is
presented and applied to Phobos D&L guidance. This approach employs a systematic evaluation
of the high-fidelity model of Sec. 3.1 over the design parameter space to generate trade-off maps
that enable a clear performance quantification of candidate solutions. In addition, this approach
provides a valuable understanding of the system dynamics that supports the application of robust
control tools, including the structured H∞ optimisation framework preceded in Sec. 2.2.2.2.

The chapter begins with the introduction of the baseline guidance technique in Sec. 4.1.
The proposed methodology is then thorougly described in Sec. 4.2, applied to distinct D&L
trajectories in Sec. 4.3 and verified in Sec. 4.4. Following its verification, the reconciliation of
the tuning methodology with structured H∞ optimisation is presented in Sec. 4.5. Comparative
results between the two approaches are then provided in Sec. 4.6.

The results presented in this chapter have been published in [SMJ+17a, SMJ+19].
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4.1 Parametric CTVG implementation

As mentioned above, this chapter is based on the parametric generalisation of D&L guidance
laws identified in Eq. (2.67). Using zero-effort error coordinates, the parametrisation is given by:

a(t) =
[
kr kv

]


ZEM(t)

t2go(t)

ZEV(t)

tgo(t)

 (4.1)

and, depending on the choice of {kr, kv}, the corresponding guidance law yields different
properties. As seen before, a nonlinear term h(.) can also be considered to improve robustness
properties, but this option was only exploited by Airbus’ team and it is not included in the
thesis for simplicity.

For the case of Constrained Terminal Velocity Guidance (CTVG), required for the speci-
fication of soft landing, standard values of {6, -2} have been analytically derived, as detailed
in Sec. 2.1.4.2, based on the cost function of Eq. (2.35) assuming simplified and well-known
gravity fields. Note that the latter cost function does not represent a direct minimisation
of ∆V (Eq. (3.7)), but it is generally easier to solve and provides a representative solu-
tion [JZS+17, JZS+18].

The estimation of Zero-Effort-Miss (ZEM) and Zero-Effort-Velocity (ZEV), Eq. (2.10),
can become challenging without some approximations which, depending on their level of
conservativeness, can affect the ability of the guidance law to accurately enforce the terminal
conditions (i.e. to minimise touchdown errors). In order to mitigate this effect, zero-effort errors
can also be defined with respect to a set of intermediate waypoints interpolated along a given
Reference Trajectory (RT).

The waypoint-based approach is illustrated in Fig. 4.1. It has been implemented with a fixed
guidance time-horizon th = 500 seconds using the optimised D&L trajectories of Sec. 3.2. As
anticipated in that section, those trajectories may not be feasible in open-loop due to modelling
inaccuracies, but they can be effectively followed in a closed-loop setup. In Sec. 4.4, it will be
shown that this results in total ∆V values slightly different from those in Fig. 3.2b.

Figure 4.1: Illustration of waypoint-based CTVG

72



4.2. PROPOSED TUNING APPROACH

Care must also be taken in Eq. (4.1) to avoid a singularity as tgo(t)→ 0. The most effective
way to do this is by switching-off the guidance commands immediately before the end-of-mission.
The exact instant of time represents a trade-off between allowable touchdown error and maximum
thrust authority.

4.2 Proposed tuning approach

A successful guidance tuning is then translated in an appropriate trade-off between acceptable
touchdown (position and velocity) accuracy and the total ∆V needed for the D&L manoeuvre. As
mentioned before, using results from optimal control theory, standard closed-loop guidance gains
can be analytically derived. Nevertheless, these gains are only practical under the assumption of
simplified and well-known gravity fields.

In order to provide not just a systematic tuning methodology, but also a clear understanding
of the aforementioned trade-off, a simulation-based approach is proposed in this section for
the case of highly complex and perturbed gravitational environments. This approach relies on
the availability of a nonlinear, high-fidelity simulation model (in the present case the Airbus’
benchmark introduced in Sec. 3.1) to evaluate three key performance indicators:

• Rc - Target distance (position error) at touchdown, i.e. ||rf − r(tf )||;

• Vc - Closing speed (velocity error) at touchdown, i.e. ||vf − v(tf )||;

• ∆V - Total ∆V , given by Eq. (3.7).

The proposed tuning approach is illustrated using the parametric guidance generalisation of
Sec. 4.1 with intermediate waypoints along RT1 (recall Fig. 3.2b). It is described in the following
paragraphs.

4.2.1 Step 1 – Nominal indicators

The first step of this approach is to evaluate the three performance indicators in nominal
conditions over a parameter grid of {kr, kv}. This is represented for RT1 by the three plots of
Fig. 4.2, where kr ∈ [3.5, 6.5] and kv ∈ [−3.0, −1.5]. These plots provide a clear visualisation
of the tuning trade-off mentioned before. In exactitude, a choice of gains that minimises the
touchdown error (either in terms of position and velocity) will maximise the required ∆V and
vice-versa.

4.2.2 Step 2 – Dispersed indicators

The same principle is then employed to quantify the dispersed performance obtained with each
pair {kr, kv} by analysing the standard deviation of the key indicators for 100 random samples
of the 19 uncertain Gravity Harmonics (GH) coefficients in Eq. (3.3) with Gaussian distributions.
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The outcome of this analysis is provided in Fig. 4.3, where it is possible to observe that certain
guidance combinations are associated with intense indicator peaks, which must be avoided.
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Figure 4.2: Nominal performance indicators at touchdown for RT1
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Figure 4.3: Dispersed performance indicators at touchdown for RT1

4.2.3 Step 3 – Trade-off maps

The final step is to generate a tuning trade-off map featuring both nominal and dispersed
information by overlapping the contour plots of the previous two figures. Such trade-off map is
depicted in Fig. 4.4 for RT1.

Focusing on Fig. 4.4a, blue and red solid lines represent the contour plots of respectively
closing speed (from Fig. 4.2b) and total ∆V (from Fig. 4.2c). Note that target distance could
have been used instead of closing speed since their nominal and dispersed trends are similar.
As mentioned before, a minimisation of Vc requires an increment of ∆V and vice-versa, but
solutions exist such that minor degradations in Vc allow for high ∆V improvements.

Furthermore, the map of ∆V has a global minimum (under 8.8 m/s), but it coincides with
the area where Vc becomes significantly higher. For this reason, the transition area corresponds
to a peak of Vc dispersion (see Fig. 4.3b), which is depicted in the trade-off map of Fig. 4.4a
using dashed black lines. In the same map, the contours of ∆V dispersion (from Fig. 4.3c) are
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4.2. PROPOSED TUNING APPROACH

represented using dashed magenta lines. This plot allows to identify a global maximum (close to
the standard gains {6, -2} and marked with a red ×) and a local minimum next to the nominal
∆V minimum.
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Figure 4.4: Guidance trade-off map for RT1 (×/3 indicate standard/revised gains)

For an easier visualisation of the observations above, Fig. 4.4b highlights the undesirable
tuning regions of Fig. 4.4a. This clearly leads to the conclusion that the standard choice of gains
is not the most suitable (at least for the studied Phobos mission) since it is associated with
relatively high values of both nominal and dispersed ∆V .

Hence, the proposed tuning trade-off process and maps can be systematically employed for a
more favourable selection of guidance gains. For example, choosing {kr, kv}={5, -2.35}, marked
with a green 3 in Fig. 4.4a and 4.4b, allows ∆V to be reduced from 15.9 to less than 9 m/s
while only increasing Vc from slightly more than 0.088 to approximately 0.092 m/s. At the same
time, although it does not correspond to the minimum of ∆V dispersion, this choice reduces its
value from around 0.9 to less than 0.88 m/s and, most importantly, keeps a safety margin with
respect to the peaks of nominal and dispersed Vc.

The exact nominal values can be read directly from the map, but the dispersed indicators shall
go through a more extensive Monte-Carlo (MC) validation since, for the sake of computational
efficiency, the trade-off map is based on a very limited number (100) of simulations per guidance
solution {kr, kv}. Before performing such a validation, the applicability of the proposed approach
to other D&L trajectories is assessed in the next section.
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4.3 Applicability to other trajectories

Following the same procedure of Sec. 4.2, trade-off maps for RT2 and RT3 (Fig. 4.5a and 4.5b)
can be generated. As before, the same standard and revised choices of gains are marked with ×
and 3, respectively.
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Figure 4.5: Guidance trade-off maps for other trajectories (×/3 indicate standard/revised gains)

For both trajectories, it can be seen that, similar to RT1, switching from standard to revised
choice of gains results in a large decrease of ∆V (about 3.5 m/s for RT2 and 2.5 m/s for RT3)
with a minor increase of Vc (approximately 1 mm/s for both). The main difference between
these two trajectories and RT1 is the absence of Vc dispersion peaks, denoted by the dashed
black lines. In the present cases, this indicator is inversely proportional to kr, which seems
to indicate the existence of a terrain hazard in RT1 where the spacecraft collides for certain
guidance solutions.

Also, it is possible to verify that, contrary to RT1, the revised choice of gain is not the
best for RT2 and RT3 in terms of ∆V dispersion (dashed magenta lines), since it is associated
with higher values than the standard gains. However, the impact of this behaviour is much less
significant than the nominal ∆V reduction and, for simplicity, the same revised gains are kept
for the rest of the chapter.

For a real-world application, the practical implementation of the proposed tuning methodol-
ogy is envisaged as follows:
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1. High-fidelity simulation and guidance trade-off maps are generated on the ground, before
the mission, for a set of candidate reference trajectories;

2. Once the spacecraft approaches the target and local analyses are carried out, the most
suitable reference trajectory can be selected;

3. The most performing tuning selection is then determined using the appropriate trade-off
map and implemented before initiating the D&L manoeuvre.

The main benefit of this approach is that guidance tuning is able to account for the actual
∆V available and acceptable landing accuracy (e.g. based on visual observations) at the time,
without involving any major real-time computation.

4.4 Verification and discussion

To validate the results discussed in the previous two sections, the revised choice of guidance
gains {kr, kv}={5, -2.35} is now tested and compared with the standard guidance selection
{kr, kv}={6, -2} using the benchmark introduced in Sec. 3.1 and the parametric guidance of
Sec. 4.1. Each guidance tuning is simulated against the same 1000 MC samples of the 19 GH
coefficients with Gaussian distributions for the three RTs. As mentioned in Sec. 4.3, the revised
gains have been optimised for RT1 but are kept the same for RT2 and RT3 for the sake of
simplicity. Moreover, since the focus of this analysis is on the impact of the GH coefficients, no
additional perturbations from actuators or navigation are included in the simulations.

The outcome of this validation campaign is depicted in Fig. 4.6, with a different column
for each RT and using darker and lighter lines for results using respectively the standard or
the revised gains. For each case, the target distance ||rf − r(t)||, closing speed ||vf − v(t)|| and
required ∆V are given. Trajectories in 3D are not shown since differences amongst them are so
small that they cannot be distinguished from those in Fig. 3.2b.

From Fig. 4.6 it is clear that, for the three trajectories, the revised gain selection results in
significant ∆V savings with a minimal impact on position and velocity errors. Since the revised
gains have been optimised for RT1, it is natural that ∆V savings are higher for this trajectory
than for RT2 and RT3. For a detailed comparison, the average and standard deviation of the
final values found in the MC simulations are recorded in Table 4.1. Note that these indicators
are directly related to the ones employed for the generation of the guidance trade-off maps in
Sec. 4.2.

As anticipated for RT1, the revised gains enable a significant reduction in both average
and dispersed ∆V at the expense of a minor increase in average and dispersed velocity error.
In fact, in terms of average indicators, a ∆V reduction of 44.5% is achieved with a velocity
error increase of only 3.4%. As mentioned before, these indicators can be directly read from the
trade-off map of Fig. 4.4. On the contrary, the dispersed indicators do not correspond exactly
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to the values of Fig. 4.4 because the trade-off map was generated from a smaller number of
simulations (100), but the mismatch is relatively small (≈9%).

(a) RT1 (b) RT2 (c) RT3

Figure 4.6: High-fidelity simulation of 1000 MC runs per trajectory with different gains

Table 4.1: Performance comparison of 1000 MC runs per trajectory with different gains

RT1 RT2 RT3

Standard gains Avg. Std. Avg. Std. Avg. Std.

Rc (m) 1.118 8.15×10−5 11.949 1.82×10−4 39.053 1.72×10−4

Vc (m/s) 0.089 4.91×10−9 0.200 1.45×10−8 0.404 2.19×10−8

∆V (m/s) 15.905 9.96×10−1 12.574 6.25×10−1 10.586 7.02×10−1

Revised gains Avg. Std. Avg. Std. Avg. Std.

Rc (m) 1.117 9.80×10−5 11.946 2.19×10−4 39.050 2.07×10−4

Vc (m/s) 0.092 6.32×10−9 0.202 1.76×10−8 0.405 2.64×10−8

∆V (m/s) 8.819 9.71×10−1 9.009 8.00×10−1 8.073 8.24×10−1

Similar conclusions then hold for RT2 and RT3, i.e. the revised gains enable a significant
reduction in terms of average ∆V at the expense of a minor increase in average and dispersed
velocity errors as well as dispersed ∆V , as anticipated from Sec. 4.3. The increase of the latter
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is however very small (0.18 m/s for RT2 and 0.12 m/s for RT3) and is clearly outweighed by
the improvements of the average ∆V (28.5 and 23.7%, respectively).

With the aforementioned observations in mind, not only does this section validate the
proposed guidance tuning methodology, it also confirms that the state-of-practice tuning
selection, based on the assumption of simplified and well-known gravity fields, is not fuel-optimal
for the case of Phobos.

4.5 Reconciliation with structured H∞ optimisation

The closed-loop guidance laws considered in this chapter, Eq. (4.1), have a fixed structure
parameterised by tunable gains {kr, kv}, which makes them perfect candidates for the application
of the structured H∞ optimisation paradigm.

The main strengths and drawbacks of structured H∞ are summarised in Table 2.2. In
addition to the ability to specify the structure of the guidance law, its application to the D&L
problem offers two advantages:

• As it is founded on robust control framework, it allows to explicitly account for uncertain
gravitational elements;

• It is able to handle directly and simultaneously multiple tuning requirements and design
models, providing solutions that are guaranteed for a set of operating points or RTs.

The main difficulty in the application of structured H∞ optimisation to this problem lies on
its formulation in the H∞ framework. As introduced in Sec. 2.1.4.2, state-of-practice guidance
solutions have been found by recasting it as an optimal control problem with constrained
terminal position and velocity. This is substantially different from the structured H∞ problem,
which aims at minimising the induced H∞-norm of pre-specified input-output control channels.
In this case, the problem of Eq. (2.82) is written as:

min
kr, kv

max
(
||M1(s)||∞, . . . , ||MN (s)||∞

)
(4.2)

whereMi(s), with i = {1, . . . , N}, are Linear Time-Invariant (LTI) representations of the system
dynamics at different operating points along one or more RTs.

All the necessary system interconnections to address this guidance tuning problem have
been implemented in Simulink, as depicted in Fig. 4.7. Using this setup, all the models Mi(s)

can be retrieved using Simulink’s slTuner interface, which allows to automatically create linear
models of blocks featuring tunable parameters (in this case {kr, kv}).

The linear representations Mi(s) include not only the Spacecraft Dynamics & Kinematics
(SDK) block (recall Sec. 3.3), but also the structure of the guidance algorithm. Furthermore,
the SDK block can be conveniently replaced by the orbital perturbation model of Eq. (3.11)
to consider a multi-plant design, adding in this case the required transformation of Eq. (3.8)
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between total and perturbed variables. In addition to the parametric structure, i.e. {kr, kv}, the
guidance algorithm block includes estimators for the apparent gravity (Eq. (3.5)) and zero-effort
errors (Eq. (2.10)).

Figure 4.7: Simulink model for structured guidance tuning

Furthermore, the Simulink model highlights (with green and orange blocks) input-output
control channels, which provide the basis for the definition of tuning objectives. The specification
of these objectives is a key factor in H∞-based approaches, often resulting in an iterative process.
The adopted process is described below and encompasses the following steps:

1. Input-output channel specification as functions of {kr, kv};

2. Problem/trade-off quantification using H∞-norm objectives;

3. Selection of applicable set of nominal design points or trajectories;

4. Uncertainty specification using Linear Fractional Transformation (LFT) models.

The first step is the selection of input and output channels with respect to which the tuning
objectives are to be defined. These channels must contain the gains {kr, kv} on their path and
be physically related to the intended tuning objectives. Following the same reasoning of Sec. 4.2,
two competing requirements are addressed: accuracy (i.e. minimisation of touchdown error)
and efficiency (i.e. minimisation of propellant consumption). To achieve this, the touchdown
position vector rf is selected as control input and two dedicated output signals are defined:

• zr(t) = rf − r(t), measuring the deviation with respect to touchdown site. Remark: a
velocity deviation could have also been included, but it was found to be redundant and
hence not considered for the sake of simplicity;
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• za(t) = aT(t) a(t)

(
tgo(t)

10−3

)2

, quantifying the instantaneous actuation effort commanded

to compensate for the former deviation. Remark: the acceleration signal is scaled by
tgo(t) to normalise this indicator throughout the descent (recall that actuation effort tends
to increase as tgo(t)→ 0) and by a constant factor of 103 to operate with more suitable
units (mm/s2 instead of m/s2).

Although the selection of the channels is driven by engineering objectives (e.g. minimise a
specific signal), the "best" configuration is not always clear, and different channels’ choices might
be needed depending on the optimisation outcome. Here, objectives are defined by constraining
the H∞-norm of the control channels as follows:

||Mrf→zr(s)||∞ <
γacc

α

||Mrf→za(s)||∞ <
γeff

α− 1

(4.3)

In these equations,Mrf→zr(s) andMrf→za(s) are the control channel transfer functions (obtained
with slTuner) which depend on {kr, kv}, and the parameters γacc > 0 and γeff > 0 represent
the constraints associated with accuracy and efficiency requirements.

The constant α ∈ ]0, 1[ is a parameter that allows to exploit the underlying trade-off between
the two requirements: when α → 1 the optimiser focuses on accuracy and when α → 0 on
efficiency. Note that the interval is open in order to prevent the singularity in Eq. (4.3). γacc and
γeff can be frequency-dependent but, for simplicity, constant values of 0.16 and 25, respectively,
have been adopted. Once again, these values were chosen iteratively and may need revisiting
based on the models employed for the optimisation.

Selecting the linear models to be considered is another key step in the process. Different
design plants Mi(s) can be specified through the findop routine, which runs the Simulink model
up to the desired operating point and provides the LTI representation at that point. Following
the multi-plant approach of structured H∞, those plants are then aggregated in a block-diagonal
structure. Here, all the design models have been considered except the last one (at t = tf ) since
it leads to tgo = 0. This choice is also affected by how tight the performance and robustness
specifications are defined.

Finally, robustness against gravitational uncertainties can be explicitly accounted for by
replacing the linear SDK models in Fig. 4.7 by the LFTs developed in Sec. 3.4. The LFT models
can be injected using the BlockSubs field of slTuner. At each step of the iterative process, the
systune routine is then called to find optimal gains {kr, kv} that meet the requirements of
Eq. (4.3) at every chosen operating point under nominal or dispersed gravitational conditions.

4.6 Comparison of results

The guidance tuning results obtained for RT1 using the setup described in the previous section
are depicted in Fig. 4.8, which shows the optimal gains {kr, kv} for different values of α ∈ ]0, 1[
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(and therefore different objective combinations of efficiency and accuracy) given in percentage
terms. In this figure, continuous lines represent the nominal (NOM) solution and dashed lines
that derived using the LFT models.

To generate this figure, the two gains are allowed to vary within the same intervals considered
in Sec. 4.2 (indicated by thin horizontal, black lines) and initialised with their state-of-practice
values {6, -2}. The multiple random initialisation capability of systune was also investigated,
but the solutions found by the optimiser remained the same, indicating that it is unlikely that
these solutions correspond to local minima.

100% Efficiency 75% / 25% 50% / 50% 25% / 75% 100% Accuracy

Tuning objective
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0
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6

k
r
 NOM

k
r
 LFT

k
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v
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Figure 4.8: Guidance tuning trade-off results for RT1, ranging from 100% efficiency (α→ 0) to
100% accuracy (α→ 1)

From Fig. 4.8, it is clear that extreme tuning objectives (100% efficiency or 100% accuracy)
lead to a completely opposite trend in optimal gains. This trade-off was already anticipated
based on the understanding provided by the trade-off maps. Note also that, for 100% accuracy,
the optimal value of kv would reach its lower limit if kr was allowed to have higher values.

Between the two extremes, there is a smooth transition of optimal gains as a function of the
objective combination. This transition is different for the nominal and LFT solutions. For a
clearer interpretation of results, the structured H∞ tuning solutions of Fig. 4.8 are plotted in
cyan on top of the trade-off map of RT1 (from Fig. 4.4) in Fig. 4.9, and referred to as "stune".
Intermediate trade-off points are also highlighted.

From Fig. 4.9, it is confirmed that the difference between optimal nominal and LFT results
is consistent with the understanding provided by the trade-off map, that is, LFT solutions
are shifted towards the top right corner of the plot, away from the dispersion peaks of both
touchdown error and total ∆V .

The main observation, however, is that, using the structured H∞ guidance tuning methodol-
ogy, the standard gain selection of {6, -2} (given by the red ×) could be successfully recovered.
This takes place for nominal conditions, the same under which the gains were analytically
derived, and for a combination of 83% accuracy / 17% efficiency.
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Figure 4.9: Visualisation of tuning results (of Fig. 4.8) over the trade-off map (of Fig. 4.4)

The fact that the ratio between accuracy and efficiency requirements is so high in this case
is again related to the way the optimal D&L control problem (Sec. 2.1.4.2) was formulated:
since terminal position and velocity are constrained variables in that problem, it is reasonable
that accuracy requirements have a stronger impact in the H∞-norm trade-off.

Nevertheless, for this scenario, the structured tuning approach was unable to capture more
performing guidance solutions, such as the one marked with the green 3, obtained using the
trade-off maps and systematic methodology proposed before. This is due to the loss of highly
nonlinear effects with the linearisations performed by slTuner, as well as of their propagation
throughout the D&L trajectory.

The aforementioned limitation of this method is in fact endemic to all LTI-based design
and tuning approaches. For that reason, the applicability of structured H∞ optimisation to
problems where the propagation of highly nonlinear dynamics is key remains an open research
question. This applicability can be tackled either by adopting a different type of formulation (e.g.
structured LPV) for the guidance problem or by modifying the behaviour of the structured H∞
algorithm itself.
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5
Synthesis of Robust Control Compensators

The conceptual separation between guidance and control introduced in Sec. 2.1.2 has been
assumed throughout this thesis. Following this logic, Chapter 4 was dedicated to the assessment
and optimisation of different Descent & Landing (D&L) closed-loop guidance laws. In the present
chapter, improved D&L strategies are obtained through the augmentation with a simple yet
robust control compensator, which enables the adoption of simpler (e.g. open-loop) guidance
schemes.

In fact, significant room for improvement can be achieved at this level since the state-of-
practice in D&L control compensation is conventionally over-simplified or even non-existent,
which is only practical if the target body is well-known or if guidance algorithms do not rely on
its natural dynamics. The application of robust control techniques is nowadays a well-established
practice for spacecraft attitude (rotational) control synthesis, but not for orbital (translational)
control.

The proposed design approach is further motivated by, and based on, the structured H∞
optimisation paradigm which, as explained in Sec. 2.2.2, is particularly well-oriented towards
the industrial state-of-practice. This point has been central during the whole thesis, since the
applicability of legacy knowledge is fundamental within the space industry.

Controller structure, performance requirements, synthesis steps and nominal results are
presented from Sec. 5.1 to 5.4. Throughout these sections, the suitability of structured H∞
to the D&L problem, as well its main challenges, are further discussed. The robustness of the
designed compensators will then be thoroughly assessed in Chapter 6 using the analysis tools of
Sec. 2.2.3 together with high-fidelity Monte-Carlo (MC) campaigns.

The results presented in this chapter have been published in [SMJ+18b, SMJ+18c].

85



CHAPTER 5. SYNTHESIS OF ROBUST CONTROL COMPENSATORS

5.1 Control structure

The scope of D&L control compensation was introduced in Sec. 2.1.2. The compensator’s
objective is to provide an additional acceleration command acmp(t) to compensate for deviations
with respect to a given Reference Trajectory (RT). This task must be achieved regardless of the
type of guidance (i.e. open or closed-loop) and of the trajectory to be followed.

In Chapter 3, it was seen that RTs are convenient to define a set of design points (i.e.
apparent gravity Jacobian matrices), which are then augmented via the inclusion of gravita-
tional uncertainties. In this case, control compensators can be designed using structured H∞
optimisation to exploit the advantages highlighted in Table 2.2.

To fulfil the control objective mentioned above, the internal architecture chosen for the
compensator (as introduced in Fig. 2.2b) is evidenced in Fig. 5.1.

GLPF(s)
Ki(s)

03x1

aref

rref

vref

r̂ v̂

𝛿r̂

𝛿v̂

𝛿rcmd

𝛿rlpf

𝛿vlpf
acmp = 𝛿a

Control compensator

Figure 5.1: Control compensator architecture

At the core of the compensator, there is a Linear Time-Invariant (LTI) controller Ki(s) that
must be designed to track commanded deviations δrcmd(t) using position and velocity deviation
measurements δr̂(t) and δv̂(t) relative to the RT {rref(t),vref(t)}. These signals are filtered by
a first-order low-pass filter GLPF(s), introduced in Sec. 3.6, to attenuate the quantisation effect
injected by the navigation algorithms.

An additional velocity command δvcmd(t) could have been included, but it was found to be
redundant and hence not considered. For this case, the commanded deviation signal is fixed
to zero, δrcmd(t) = 0, but it can also be employed to command small changes of landing site
without the need for redesigning the trajectory.

With such a structure (fed by position and velocity deviations and providing an acceleration
command acmp(t) that is summed to a reference acceleration profile aref(t)) the controller can
be designed based on the orbital perturbation model of Sec. 3.3 by realising that the acceleration
command is actually a perturbation, i.e. acmp(t) = δa(t). The closed-loop interconnection is
then depicted in Fig. 5.2.

In addition to the blocks already present in the previous figure, Fig. 5.2 features actuator’s
model GA(s) and uncertainty ∆A(s), and navigation noise-shaping filters GrNAV(s) and GvNAV(s),
all of them described in Sec. 3.6. It also includes the orbital perturbation models GiSDK,∗(s) and
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Figure 5.2: Closed-loop model for control synthesis

gravitational uncertainty ∆i
SDK,∗(s) developed in Sec. 3.4. Here, the superscript i = {1, . . . , 10}

specifies different designs point along the RT and ∗ represents either 2σ or 3σ, depending on
the Linear Fractional Transformation (LFT) conservativeness at each point.

Generically speaking, a different LTI controller Ki(s) can be synthesised and implemented for
each design point i. Nevertheless, both hinfstruct and systune enable additional alternative
strategies (with increasing level of complexity):

• Single-plant controller, when synthesised so as to fulfil the control requirements for a single
design point i = i∗, but then applied throughout the trajectory. It is therefore clear that
this controller may perform inappropriately at other trajectory points i 6= i∗.

• Scheduled controller, if a different controller is designed for each LTI point i = {1, . . . , 10}
and then interpolated ad hoc to cover all the trajectory. This interpolation can however
become challenging for dynamic compensators and implementation problems may arise.

• Multi-plant controller, when a single controller is synthesised so as to fulfil the control
requirements at all the design points i = {1, . . . , 10} simultaneously. The feasibility of this
approach naturally depends on how different the design points are from each other.

• Self-scheduled controller [SBB13, LSZ14], similar to the multi-plant controller, but param-
eterised as a function of a scheduling variable. It performs as a scheduled controller, but
with an interpolation law explicitly enforced.

As it will be demonstrated in Chapter 6, the multi-plant controller synthesis approach proved
to be very successful for this D&L problem. Hence, in Fig. 5.1 and 5.2 there will be only one
controller Ki(s) = K(s) for all the design points i = {1, . . . , 10}.
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5.2 Control requirements

In order to ensure a successful control compensation, the controller K(s) must be designed in
such a way that, even under an uncertain gravitational environment and perturbed actuator
and sensor responses, two driving requirements are fulfilled:

• Tracking, minimising the error δre(s) = δrcmd(s)− δr(s);

• Actuation, minimising the overall control effort δa(s).

As described in Sec. 2.2.2, control requirements are posed by rearranging the design problem
into the generalised framework of Fig. 2.8, reproduced below for ease of readability. More
specifically, comparing the latter figure with Fig. 5.2, one can identify as exogenous inputs:

w(s) = [δrcmd(s) nr(s) nv(s)]T (5.1)

and as regulated outputs:
z(s) = [δre(s) δa(s)]T (5.2)

In addition, all the uncertain elements are combined into a single uncertainty block:

∆i(s) = diag
[
∆i

SDK,∗(s), ∆A(s)
]

(5.3)

and everything else is gathered in the LTI system M i(s), again for i = {1, . . . , 10}. Control
requirements are then defined through the appropriate choice of frequency-dependent weights
Wi(s) and Wo(s), also contained in M i(s) as shown in Fig. 2.8.

P(s)

K(s)

Δ(s)

Wo(s)Wi(s)

M(s)

yu

zΔwΔ

zw

Figure 2.8: Generalised interconnection in the H∞ framework (repeated from page 45)

Weight selection is a key factor for the synthesis, but also one of the most time-consuming,
typically involving several iterations. For standard H∞ synthesis, weight complexity must be
chosen as low as possible to limit the controller order, but this does not apply to structured H∞.
In addition, thanks to the multi-plant approach of the latter, it is possible to use different weights
for different design points i. Still, the number of weights shall be the lowest possible in order to
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reduce the designer’s work (i.e. fewer parameters to tune) and the risk of over-constraining the
optimisation with conflicting requirements.

For this problem, weights were chosen to be the same for all the design points (in general, this
might not be possible). The input weight Wi(s) is employed for a differential scaling within the
input signal w(s) of Eq. (5.1). For this specific case, with main focus on the effect of gravitational
uncertainties, no noise has been considered for design, therefore Wi(s) = diag [I3×3, 03×3, 03×3].
Resilience to noise is achieved by adjusting these values accordingly. The output weight Wo(s) is
applied to the output signal z(s) of Eq. (5.2) and partitioned as Wo(s) = diag [WS(s), WA(s)],
whereWS(s) imposes the tracking requirements via δre(s) andWA(s) the actuation requirements
through δa(s). These two requirements represent a generalisation to constrain the sensitivity
and control sensitivity transfer functions presented in Sec. 2.2.2.1.

More specifically, as a consequence of Eq. (2.79), the magnitude response of δre(s) for a
unitary command in δrcmd(s) is bounded by W−1

S (s). After a few trial-and-error design/analysis
iterations, the following characteristics were selected for W−1

S (s):

• Small Low-Frequency (LF) gain (10−3 = −60 dB) for small steady-state error;

• Reasonable High-Frequency (HF) gain (2 ≈ 6 dB) for good stability margins (from
Eq. (2.80));

• Roll-over frequency (10−2 rad/s) that is fast enough for the dynamics of the problem;

• Zero off-diagonal terms to minimise cross-coupled interactions.

These characteristics can be imposed by defining the weight as the following generic first-order
transfer function [ZDG95]:

W (s) = KLF
KHF s + ωB

KLF s + ωB
(5.4)

where KLF and KHF represent the gain of the LF and HF asymptotes, respectively, and ωB is
the desired bandwidth. Hence, WS(s) is written as:

WS(s) =

1

2
s + 10−2

s + 10−5
I3×3 (5.5)

In a similar fashion, the magnitude response of δa(s) for a unitary command in δrcmd(s) is
bounded by W−1

A (s), and the following characteristics were selected:

• Reasonable LF gain (5.5× 10−4 ≈ −65 dB) which establishes the maximum control effort;

• Small HF gain (10−9 = −180 dB) for small reactivity to noisy signals;

• A roll-off frequency (10−3 rad/s) able to accommodate the tracking bandwidth;

• Zero off-diagonal terms to minimise cross-coupled interactions.
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Hence:

WA(s) =
s +

10

5.5
10−9 s + 10−3

I3×3 (5.6)

5.3 Control synthesis

Following the multi-plant synthesis approach, plants M i(s) are aggregated in a block-diagonal
structure and the hinfstruct routine is called to find a single stabilising controller K(s) that
meets the requirements of Sec. 5.2 at every LTI point i = {1, . . . , 10}.

As mentioned in Sec. 2.2.2.2, structured H∞ is able to seamlessly account for parametric
uncertainties ∆i(s) in the optimisation problem. In the same section, it was anticipated that the
optimiser initialisation and the choice of control parameters that are free to be tuned represent
key factors for the success of the optimisation.

Without a suitable initialisation, e.g. using random guesses, the optimiser is often unable
to find a solution or ends up converging towards a controller with fast and/or unstable poles,
which is not practical to implement. Hence, assuming a third-order controller and partitioning
its state-space representation as:

[
ẋK(s)

acmp(s)

]
=

[
AK B1K B2K B3K

CK D1K D2K D3K

]
xK(s)

δrcmd(s)

δrlpf(s)

δvlpf(s)

 (5.7)

where xK(s) is the internal state vector, initial guesses were chosen as follows:

• AK = −10−2 I3×3 for stable poles with reasonable frequency;

• B1K = −B2K = I3×3 and B3K = 03×3 to lead the optimiser towards the consideration of
the error δrcmd(s)− δrlpf(s);

• CK = D2K = D3K = I3×3, respectively responsible for integrative, proportional and
derivative control actions;

• D1K = 03×3, feed-forward term, which should not be needed since control compensation
is independent of the reference trajectory.

These matrices can be understood as gains that can be changed ad hoc if any control re-tuning
is required.

The choice above results in 72 parameters to be tuned. However, if all of them are left free,
the optimiser tends to find physically inappropriate solutions, featuring very different dynamics
on each control axis or strong cross-coupled interactions between them. This issue was solved
by fixing to zero all the off-diagonal terms of the sub-matrices in Eq. (5.7), which reduces the
number of tunable parameters to 24.
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As a consequence, the highly-coupled D&L dynamics will be tackled by a diagonal (but
robust) controller. It is important to note that the fixed controller structure comes with an
intrinsic sacrifice of achievable performance compared to standard H∞ controllers. For the
present case, the focus was in studying the viability of structured H∞ for the Phobos D&L
mission, as it enabled to reconcile legacy control architecture knowledge with sophisticated
tuning tools. Additional research has also been conducted in order to find the minimal acceptable
structure for Eq. (5.7).

With this strategy, four controllers have been synthesised, each of them accounting for a
different set of actuator and/or gravitational uncertainties (recall Fig. 5.2). Naturally, the larger
the number of uncertainties considered in the design, the more time consuming the optimisation
process becomes. The selection of the four sets of design uncertainties is summarised in Table 5.1.
For better results, and referring to the latter table, the controller KA(s) has been employed as
initial condition for the synthesis of KA,2σ(s) and KA,3σ(s).

Table 5.1: Specification of the designed D&L controllers

Controller Uncertainties considered

K0(s) None (non-robust controller)

KA(s) ∆A(s) only

KA,2σ(s) ∆A(s) and ∆i
SDK,2σ(s)

KA,3σ(s) ∆A(s) and ∆i
SDK,3σ(s)

Before proceeding to an in-depth robustness analysis of the designed controllers in Chapter 6,
preliminary tests with models in nominal conditions are provided in the next section.

5.4 Nominal analysis

First, an LTI analysis and comparison of closed-loop frequency responses using the four controllers
of Table 5.1 is provided in Fig. 5.3. For each case, the figure shows two singular value magnitude
plots for: [i] the δre(s) (top plot) and δa(s) (bottom plot) transfer functions, [ii] the corresponding
H∞ constraints W−1

S (s) and W−1
A (s), and [iii] the response evolution along RT1 using different

colours, similar to Fig. 3.3a. In addition, a distinction is made between diagonal and off-diagonal
responses (using continuous and dashed lines), which must be as separated as possible in order
to minimise cross-coupled interactions.

From this figure, it is clear that, in nominal conditions, the four controllers meet the design
requirements for all the points throughout RT1. It is also visible that the margins with respect
to W−1

S (s) and W−1
A (s) become tighter towards the final descent time, especially for off-diagonal

channels in the LF region. In fact, for the non-robust controller K0(s) in Fig. 5.3a, there is not
enough separation between diagonal and off-diagonal terms, which anticipates robustness issues.

91



CHAPTER 5. SYNTHESIS OF ROBUST CONTROL COMPENSATORS

10-5 100 105

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 δ

r e
(s

) 
(d

B
) W

S

-1(s)

Diagonal channels

Off-diagonal channels

10-5 100 105

Frequency (rad/s)

-250

-200

-150

-100

M
a
g
n
it
u
d
e
 δ

a
(s

) 
(d

B
)

W
A

-1(s)

Diagonal channels

Off-diagonal channels

t
0

t
f

D
e
s
c
e
n
t 
ti
m

e

Bandwidth

(a) Using controller K0
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(b) Using controller KA
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(c) Using controller KA,2σ
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(d) Using controller KA,3σ

Figure 5.3: Multi-channel closed-loop singular values along RT1 and ti ∈ [t0, tf ] in nominal
conditions, i.e. ∆(s) = 0, against the requirements W−1

S (s) (uppermost subplots) and W−1
A (s)

(bottom subplots). The control tracking bandwidth is indicated by vertical, green lines.
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This separation is then achieved by the other controllers, which account for cross-couplings
introduced by the actuators and/or by the gravitational uncertainties. These controllers (Fig. 5.3b
to 5.3d) show very similar responses (indeed, major differences are only visible in Chapter 6
using robust performance analysis or highly dispersed simulations), although it is observed
that they have incrementally smaller diagonal steady-state errors, at the expense of larger
off-diagonal components.

In addition, to demonstrate the effect of control compensation, a high-fidelity simulation of
RT1 is now performed with open-loop guidance and nominal conditions. The outcome is depicted
in Fig. 5.4, showing reference and actual trajectories, rref(t) and r(t), as well as arrows for
the magnitude and direction, at different points throughout the trajectory, of the acceleration
signals: reference aref(t), compensation acmp(t) and total, i.e. aref(t) + acmp(t).

(a) Without control compensation (b) Using controller K0

Figure 5.4: Impact of control compensation on trajectory RT1 in nominal conditions

On the left-hand side, Fig. 5.4a, no compensation is employed, i.e. acmp(t) = 0, so RT1
cannot be followed and the spacecraft crashes on Phobos before reaching the desired landing
site. This potential failure, i.e. in the absence of any guidance or control feedback loop, has
already been identified and addressed in Sec. 4.1 using an uncompensated closed-loop guidance
approach. Otherwise, a successful landing is only accomplished when a control compensator is
introduced. This is illustrated in Fig. 5.4b for K0(s), but the same result is obtained with any
of the other controllers since they have similar nominal performance.

This figure also shows that the acceleration vector becomes larger and normal to the moon’s
surface towards the final descent time for a lower touchdown speed and higher incidence
angle, as desired in Sec. 3.2. But most importantly, it confirms the effectiveness of the control
compensation approach: the acceleration command acmp(t), smaller than the reference vector,
provides the means to correct the latter and to track the commanded D&L trajectory.
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6
Robustness Analysis of Control Compensators

This chapter is dedicated to an in-depth robustness analysis of the control compensators designed
in Chapter 5. In addition to the assessment of those controllers, the main objective of this
chapter is to demonstrate how the robust control analysis techniques introduced in Sec. 2.2.3
can be employed to complement non-analytical Guidance & Control (G&C) Verification &
Validation (V&V) methods. This demonstration is performed under the presence of Linear
Time-Invariant (LTI) uncertainties in Sec. 6.1 and of nonlinear effects in Sec. 6.2.

6.1 Analysis against uncertainties

In this section, the impact of gravitational uncertainties on the control compensators designed in
the previous chapter is assessed. This assessment is carried out first via the structured singular
value µ in Sec. 6.1.1 and then through high-fidelity Monte-Carlo (MC) simulation in Sec. 6.1.3.
Moreover, closed-loop sensitivity information provided by µ analysis is addressed in Sec. 6.1.2
as a way to validate and complement the uncertainty selection choice made before in Sec. 3.4.

6.1.1 Application of µ analysis to D&L

The µ analysis framework introduced in Sec. 2.2.3.1 is here applied to assess and compare robust
stability and performance properties of Descent & Landing (D&L) compensation systems using
the controllers summarised in Table 5.1. Similar to the analysis carried out in Sec. 5.4, this
is achieved by closing the loop with the different multi-plant controllers at every LTI point.
Also, the uncertainties considered for analysis do not necessarily need to coincide with the ones
accounted for the design of each controller. Indeed, this will be one of the key demonstrations
from these analyses.
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An overview of all the information provided by µ analysis is illustrated in Fig. 6.1 at the LTI
point i = 8, which corresponds to a descent time around 6500 seconds, for three pairs formed
by examining controller KA with the two uncertainty sets ∆A and diag

[
∆A, ∆8

SDK,3σ

]
, and

controller KA,3σ paired with the latter uncertainty set.

In the figure, there are two subplots per assessed pair. The top ones depict the Robust
Stability (RS) (—–O ), Nominal Performance (NP) (—–� ) and Robust Performance (RP) (—–M )
tests of Eq. (2.84), (2.86) and (2.87) over frequency. For RS and RP, there is a dashed and a
continuous line representing Lower Bound (LB) and Upper Bound (UB) for the computation of
Eq. (2.85) which, for practical effects, show a very good agreement in this scenario. The bottom
subplots then show the sensitivity of the RP results against each element of the tested uncertainty,
quantified by ∂ µ(M i(jω)) / ∂ δx and computed by the µ algorithm. A higher sensitivity indicates
that the corresponding uncertainty has a stronger influence in the level of RP obtained.

Starting with the first plot, Fig. 6.1a, the closed-loop analysis with KA, designed for ∆A

only, against the effect of ∆A is shown. Since all the curves lie below 1, this implies that NP,
RS and RP conditions are met, which is expected since the uncertainties considered for design
and analysis are the same. In nominal conditions, NP (—–� ) is more demanding at low and
very high frequencies, which could also be anticipated from the proximity of the closed-loop
responses in Fig. 5.3 for the W−1

S and W−1
A requirements, respectively for those two frequency

regions. In addition, stability degradation, i.e. RS (—–O ), is only affected at Low-Frequency (LF)
and there is always a significant margin until instability, i.e. until µ(M i

11) = 1.

Finally, RP (—–M ) envelops, and is driven by, the shapes of NP and RS, which is a result of
Eq. (2.88). That is, in the presence of uncertainties, closed-loop performance is constrained by
NP and by the interplay with the uncertainty channels. In terms of sensitivity (bottom subplot),
all the uncertain elements have similar trends, but the off-diagonal uncertainty δaod is the most
decisive.

Figure 6.1b shows the same analysis but with KA now against the combined effect of actuator
and Gravity Harmonics (GH) uncertainties, i.e. diag

[
∆A, ∆8

SDK,3σ

]
. As expected, considering

a wider range of uncertainties leads to the same NP, but degraded robustness properties,
particularly in terms of RP. As evidenced by the top plot in Fig. 6.1b, the RP condition is no
longer met by KA. Also, the elements of ∆8

SDK,3σ are now included in the sensitivities (bottom)
subplot with continuous lines. In fact, the impact of the latter elements becomes comparable to
that of ∆A, precisely at LF where µ(M8) ≈ 1.

Finally, Fig. 6.1c shows the results against the same set of uncertainties, diag
[
∆A, ∆8

SDK,3σ

]
,

but now replacing the controller with KA,3σ, synthesised using the latter set. This leads to all
NP, RS and RP conditions being met by a change of closed-loop behaviour at low-frequency.
Nevertheless, RP sensitivity frequency responses remain roughly the same, which indicates
that this type of insight is not intrinsically dependent on the controller being analysed (when
controllers are designed to achieve similar objectives).
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Figure 6.1: NP, RS, RP results (uppermost subplots) and µ sensitivities (bottom subplots) at
LTI point i = 8
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In order to conclude this first analytical robustness assessment, RP levels against the
complete set of uncertainties are computed along RT1 using the compensators that were not
addressed in Fig. 6.1, see Fig. 6.2a for K0 and Fig. 6.2b for KA,2σ.

(a) Using controller K0 (b) Using controller KA,2σ

Figure 6.2: RP results against ∆A and ∆i
SDK,3σ along RT1 with ti ∈ [t0, tf ]

It is confirmed from Fig. 6.2a that K0, which was designed for nominal conditions, exhibits
RP peaks well above 1, hence it is not suitable for this D&L scenario. This is no longer the case
with KA,2σ, in Fig. 6.2b, whose RP levels lie in-between those of KA and KA,3σ. For all the
cases, as anticipated from the nominal analysis of Fig. 5.3, performance degradation becomes
more intense closer to touchdown.

6.1.2 Sensitivity analysis

It was mentioned in Sec. 3.4.1 that an open-loop sensitivity analysis was performed to identify the
uncertain GH coefficients with higher impact on the dynamics of the problem. More specifically,
this consisted in repeating the interpolation of the Jacobian matrices J if for each coefficient
separately and counting the number of J if terms where that coefficient accounts for a variation
above 10% its nominal value. This allowed to quantify the impact of each parameter and select
the 9 most relevant for Linear Fractional Transformation (LFT) generation.

Here, this quantification method is revisited using the closed-loop sensitivity information
provided by µ analysis in Sec. 6.1.1 and the fact that this type of insight is not intrinsically
dependent on the controller employed. An overview of the results that can be obtained using
the aforementioned considerations is depicted in Fig. 6.3, for the case of controller KA,3σ

and 3σ uncertainty dispersions. The figure shows, per normalised Spacecraft Dynamics &
Kinematics (SDK) uncertainty δx (where x identifies the coefficients selected in Eq. (3.12)) and
as a function of the design points i = {1, . . . , 10}, the following:
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• In yellow, the sensitivity peak values, sup
ω∈R

∂ µ(M i(jω))

∂ δx
, which are computed via µ analysis

(e.g., for i = 8, these values correspond to the peaks of the bottom subplot of Fig. 6.1c);

• In dark blue, the number of J if terms where δx has a relative LFT interpolation weight
larger than 10% (as explained above), normalised so as to have the same scale as the µ
sensitivities.

Figure 6.3 then provides a visual confirmation that the sensitivity insights obtained using
two very different methods (open-loop LFT interpolation and closed-loop µ analysis) are quite
consistent for this scenario. This is particularly true with respect to the detection of cases that
have small sensitivities.
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Figure 6.3: Sensitivity indicators from 3σ LFT interpolation and µ analysis along RT1

Most importantly, the above figure allows to quantify the relative impact of each GH
coefficient on the dynamics of the problem, as well as its evolution through the descent. For
example, it is clear that δs3,3 and δc4,0 are the most determining in this case, with a growing
effect throughout the trajectory, while others, such as δc3,2 or δc4,1 are more intense at earlier
stages of the descent. LFT models featuring uncertainty sets other than Eq. (3.12) could also
be included in the comparison.

Besides being useful for LFT reduction (as in Sec. 3.4), the determination of driving GH
coefficients has practical implications with the potential to span from control synthesis to space
D&L mission design. Most notably, it can be employed to support key decisions (such as ad hoc
trajectory selection) or refined investigations aimed at reducing the uncertainty range of driving
coefficients.
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6.1.3 Verification and discussion

The robustness of the four control compensators of Table 5.1 is now verified using the nonlinear,
high-fidelity benchmark introduced in Sec. 3.1 for the trajectory RT1. Each controller is tested
against the same 2000 MC samples of the 19 GH coefficients in Eq. (3.3), randomly sampled
with Gaussian distributions. Since the focus of the analysis is on the impact of these coefficients,
no additional perturbations from actuators or navigation are included in the simulations.

In addition, special Worst-Cases (WCs) are also tested for each compensator. These WCs
correspond to the combinations of uncertainties associated with the RP peaks ∆i,WC

SDK,3σ, which
are determined via µ analysis at every LTI point i = {1, . . . , 10}. Since only 9 out of the 19 GH
coefficients are captured by the LFTs employed for µ analysis, every combination ∆i,WC

SDK,3σ is
tested with the remaining 10 coefficients simultaneously set to their nominal, +3σ and −3σ

values. Discarding all the repeated combinations, this originates between 18 and 24 WCs per
compensator.

The outcome of the verification campaigns is depicted in Fig. 6.4, showing nominal simulations
with a continuous blue line, MC runs with gray lines and the aforementioned WCs with dashed
red lines. For each controller, distance and speed errors with respect to the reference trajectory,
|r(t)− rref(t)| and |v(t)− vref(t)|, are plotted, together with the magnitude of the acceleration
compensation command |acmp(t)| and total ∆V (t), i.e. reference plus compensation. For clarity,
failure cases (i.e. spacecraft crashing on or diverging from Phobos) are not included in the plots,
but will be accounted for later on.

From Fig. 6.4, it can be confirmed that, while all the compensators behave similarly in
nominal conditions, the non-robust controller K0 (Fig. 6.4a) performs significantly worse than
the others under dispersed conditions, particularly in terms of position and velocity error.
Additionally, it is clear that, although determined using a reduced set of uncertainties, the WCs
identified via µ analysis are generally more challenging than the 2000 MC runs. In fact, WCs
typically have an extremely low probability of occurrence, but could be foreseen analytically,
which demonstrates the added-value of µ analysis as a complement to MC V&V tests.

For a detailed comparison, the average and standard deviation of the maximum values
encountered during the four MC campaigns are listed in Table 6.1, with the failure ratios of
both MC and WC simulations.

As anticipated from Fig. 6.2a, K0 is not suitable for this scenario because of its higher errors,
which are further translated into MC and WC failure ratios of 44.15 and 33.33%. The three
robust controllers then showed satisfactory and equivalent distribution indicators, but distinct
failure ratios. With KA, no failures were obtained from the MC simulations, but 12.5% of the
µ WCs resulted into failure. The situation improves with KA,2σ (Fig. 6.2c), which yields no MC
or WC failures.

Finally, results using KA,3σ became inferior to the other two robust controllers, with failure
ratios of 0.1 and 16.37%. Although this last result may seem counter-intuitive, it is actually a
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fairly common pitfall of robust control algorithms, in which controller performance may become
restricted (in the nonlinear, real-world case) by an over-conservative robustness specification
during the (linear) design phase. It is also important to note that, despite their added-value,
RP insights from µ analysis only have guaranteed validity for the LTI models adopted, hence
the execution of MC tests is fundamental for controller validation in the nonlinear case.

(a) Using controller K0 (b) Using controller KA

(c) Using controller KA,2σ (d) Using controller KA,3σ

Figure 6.4: High-fidelity simulation of 2000 MC runs and WCs from µ analysis of RT1

Based on Table 6.1,KA,2σ is selected as the most suitable controller. To assess its applicability
to trajectories other than the one it has been designed for, the same MC uncertainty combinations
are executed using KA,2σ and trajectories RT2 and RT3 (recall Fig. 3.2b). The same indicators
are now gathered in Table 6.2 for these campaigns. Since no detailed µ analysis was performed
along RT2 or RT3, the consideration of WCs is not pursued here.
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Table 6.1: Robustness indicators for RT1 using different controllers

K0 KA KA,2σ KA,3σ

Max. MC values Avg. Std. Avg. Std. Avg. Std. Avg. Std.

|r− rref | (m) 0.503 0.259 0.029 0.013 0.030 0.014 0.038 0.020

|v − vref | (mm/s) 1.234 0.130 1.206 0.008 1.208 0.007 1.212 0.013

|acmp| (mm/s2) 0.411 0.207 0.431 0.208 0.430 0.208 0.429 0.206

∆V (m/s) 8.793 0.630 8.326 0.966 8.326 0.965 8.329 0.955

MC failures (%) 44.15 0.00 0.00 0.10

WC failures (%) 33.33 12.50 0.00 16.67

Table 6.2: Robustness indicators for different trajectories using KA,2σ

RT1 RT2 RT3

Max. MC values Avg. Std. Avg. Std. Avg. Std.

|r− rref | (m) 0.030 0.014 0.026 0.010 0.026 0.011

|v − vref | (mm/s) 1.208 0.007 0.694 0.253 0.661 0.325

|acmp| (mm/s2) 0.430 0.208 0.332 0.160 0.326 0.164

∆V (m/s) 8.326 0.965 8.714 0.831 7.989 0.830

MC failures (%) 0.00 0.00 0.00

The results of Table 6.2 show that KA,2σ successfully handles the RT2 and RT3 trajectories
with similar performance to RT1 and without any failure. The success of this approach lies on
the fact that, since the controllers were designed around perturbation variables (recall Sec. 3.3),
the effect of trajectory changes is much reduced in comparison with GH uncertainties. Specific
differences amongst the indicators are then mostly related to how demanding each trajectory is.

These results also indicate that accounting for the uncertainties encountered along RT1
alone turned out to be enough for the design of a compensator that is equally able to cope with
other trajectories. This conclusion is tightly linked to the previous observation that having an
all-encompassing uncertainty specification is not necessarily sufficient (nor required) to achieve
a successful robust control design.

6.2 Analysis against nonlinearities

Following the robustness analysis under the presence of GH uncertainties performed in the
previous section, this section focuses on the impact of nonlinear effects on D&L performance. The
analytical assessment of these impacts is generalised by the Integral Quadratic Constraints (IQC)
analysis framework introduced in Sec. 2.2.3.2, and is here applied to the case of Time-Varying
(TV) effects (Sec. 6.2.1), time delays (Sec. 6.2.2) and limited control authority (Sec. 6.2.3).
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6.2.1 Impact of time-varying effects

The inclusion of TV effects on the SDK model was addressed in Sec. 3.5, generating the nominal
Linear Parameter-Varying (LPV) model GSDK(s, ρTV(t)), with ρTV(t) = t. It was also mentioned
that LPV-LFT models with combined consideration of GH uncertainties and TV parameters can
be obtained via the interpolation of the Jacobian matrices J if ([ρGH, ρTV(t)]) , i = {1, . . . , 10}.

Nevertheless, the size and complexity of the LFT models for this combined problem render
the applicability of the IQC analysis framework (Sec. 2.2.3.2) non-trivial. Alternatively, in
order to perform the robust D&L LPV analysis, the following approach, proposed in [PS15] for
verification purposes, is pursued:

1. The worst-case SDK uncertainty ∆i,WC
SDK,3σ(s) is computed using RP µ analysis (Sec. 6.1.1)

at every LTI point;

2. With these uncertainties, the worst-case LTI realisations are defined by:

Gi,WC
SDK (s) = Fu

{
GiSDK,3σ(s), ∆i,WC

SDK,3σ(s)
}
, i = {1, . . . , 10} (6.1)

3. A worst-case (not uncertain) LPV model GWC
SDK(s, ρTV(t)) is built, as in Sec. 3.5, interpo-

lating the realisations above.

Robustness analysis can now be performed by replacing the LTI SDK models in Fig. 5.2
with the nominal and WC LPV models GSDK(s, ρTV(t)) and GWC

SDK(s, ρTV(t)). The resulting
closed-loop LPV plants are denotedMLPV(s, ρTV(t)) andMWC

LPV(s, ρTV(t)), respectively. Because
the focus of this analysis is on the impact of GH uncertainties and TV effects, the actuator
model is fixed to nominal in this case, ∆A(s) = 0.

Since none of the new LPV models contains uncertain elements, the generalised LTI bounded
real lemma of Eq. (2.96) provides a sufficient condition to upper bound their induced L2 gain.
It is important to note that this approach does not provide the true WC gain of the uncertain
LPV system, but it allows to assess the relative impact of GH uncertainties and TV effects in
terms of D&L performance degradation.

The verification of Eq. (2.96) is performed using the same toolbox employed for LPV
modelling [HSP15]. This toolbox also provides routines to compute balanced LPV system
realisations, which is essential to obtain physically-meaningful results. For LPV analysis, two
sub-cases can be further considered:

• The TV parameter rate |ρ̇TV(t)| is assumed unbounded. In practice, this assumption may
be over-conservative, but it simplifies greatly the computation of Eq. (2.96) since the

parameter-dependent matrix P becomes constant, i.e.
∂P (ρTV)

∂ρTV
= 0;

• The TV parameter is assumed Rate-Bounded (RB) and, since ρTV(t) = t in this case, it is
reasonable to assume |ρ̇TV(t)| ≤ 1. Polynomial TV parameter-dependencies are generally
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considered for P , and the parametrisation P = P0 + ρTVP1 + ρ2
TVP2 is undertaken for

this analysis.

The outcomes of this analysis are gathered in Fig. 6.5, with one plot per each of the four
control compensators (from Table 5.1), and explained below.

0 1000 2000 3000 4000 5000 6000 7000

Descent time (s)

1

1.5

2

2.5

3

γ

LTI Nominal

LTI WC

RB-LPV Nom.

RB-LPV WC

LPV Nom.

LPV WC

(a) Using controller K0

0 1000 2000 3000 4000 5000 6000 7000

Descent time (s)

0.93

0.94

0.95

0.96

0.97

0.98

γ

LTI Nominal

LTI WC

RB-LPV Nom.

RB-LPV WC

LPV Nom.

LPV WC

(b) Using controller KA

0 1000 2000 3000 4000 5000 6000 7000

Descent time (s)

0.93

0.94

0.95

0.96

0.97

0.98

γ

LTI Nominal

LTI WC

RB-LPV Nom.

RB-LPV WC

LPV Nom.

LPV WC

(c) Using controller KA,2σ

0 1000 2000 3000 4000 5000 6000 7000

Descent time (s)

0.93

0.94

0.95

0.96

0.97

0.98

γ

LTI Nominal

LTI WC

RB-LPV Nom.

RB-LPV WC

LPV Nom.

LPV WC

(d) Using controller KA,3σ

Figure 6.5: Robustness analysis of RT1 with uncertainty and TV effects

In each plot of Fig. 6.5, six indicators are represented along RT1:

• "LTI Nominal", nominal LTI gains (—–� ), given by Eq. (2.86);

• "LTI WC", WC LTI gains (- - -� ), given by Eq. (2.89) with ∆A(s) = 0;

• "RB-LPV Nom.", induced L2 gain of MLPV with RB TV (—–O );

• "RB-LPV WC", induced L2 gain of MWC
LPV with RB TV (- - -O );
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• "LPV Nom.", induced L2 gain of MLPV with unbounded TV (—–M );

• "LPV WC", induced L2 gain of MWC
LPV with unbounded TV (- - -M ).

It is important to note that, while there is a different LTI gain for every plant i = {1, . . . , 10}
(or ti ∈ [t0, tf ]), each LPV gain corresponds to a single bound over the trajectory. Thus, the
last four indicators are always a constant horizontal line in the plots.

Following the considerations made throughout this subsection with respect to system
robustness properties, it is then expected that:

• For the same type of system (LTI, RB-LPV or LPV), worst-case ≥ nominal induced gains;

• For the same condition (nominal or worst-case), LPV ≥ RB-LPV ≥ LTI gains.

All these relationships are retrieved from the plots of Fig. 6.5, corroborating the meaningfulness
of the analysis:

• For the same marker (�, O or M), dashed ≥ continuous lines;

• For the same type of line (continuous or dashed), M ≥ O ≥ �.

As a global conclusion, it can be observed that there is a sequential improvement (i.e. decrease
of γ) from K0 in Fig. 6.5a to KA,3σ in Fig. 6.5d. The former is the only controller that does not
fulfil the RP requirements since γ > 1. This was already the case with LTI uncertainties (recall
Fig. 6.2a), but it gets even worse with TV effects.

Moreover, different types of system (�, O or M) present similar maximum gains for the same
conditions (nominal and worst-case), which indicates that, for this scenario, the impact of time
variation on D&L performance is significantly smaller than that of GH uncertainties. In other
words, a single robust multi-plant controller suffices to operate in the uncertain TV environment
encountered, as confirmed in Sec. 6.1.3.

6.2.2 Impact of time delays

The existence of time delays in any real-world control implementation, either introduced by
sensing/actuation hardware or by control logics computations, is unavoidable. Thus, in here
the impact of a time delay τ affecting the three components of the compensated acceleration
acmp(s) is addressed.

Time delays represent another nonlinear effect, as the time-delayed acceleration command is
given by:

a′cmp(s) = acmp(s) e−sτ (6.2)

Depending on their actual value and on the characteristics of the system, time delays have the
potential to compromise closed-loop stability and their impact must therefore be assessed. This
assessment can be performed using IQC analysis as demonstrated in [JS01], but the size of the
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LFT models for the present problem makes this approach very demanding from a computational
point of view.

Instead, for the combined assessment of GH uncertainties and time delays, the exponential
term in Eq. (6.2) will be replaced by a second-order Padé approximation [BCPS06], defined as:

Gτ (s) =
(sτ)2

12 −
sτ
2 + 1

(sτ)2

12 + sτ
2 + 1

I3×3 (6.3)

and illustrated in Fig. 6.6.

e-sτ
acmp a'cmp Gτ (s)

acmp a'cmp

Figure 6.6: Loop transformation for the analysis of time delays

With this transformation, all the elements enter the system linearly and µ analysis can
be employed for RP assessment. In addition, two modelling alternatives are possible: [i] τ is
assumed uncertain and considered as an additional uncertainty τ ∈ [0, τ̄ ], or [ii] only the case
corresponding to its maximum value τ = τ̄ is addressed. While the first one may be more
conservative, the latter option is adopted in order to reduce the size of the overall LFT (and
keep the bounds of Eq. (2.85) as tight as possible).

The RP results are presented in Fig. 6.7, in a similar fashion to the previous subsection,
with one plot per control compensator. Each plot of Fig. 6.7 shows the same (non-delayed)
nominal and WC LTI gains of Fig. 6.5 (—–� and - - -� , respectively), which are then recalculated
for sequentially larger delays up to 4 s (represented with different markers).

All the plots show that different conditions (nominal or worst-case) have very similar gains for
the same level of delay, meaning that large time delays are more impactful on D&L performance
than GH uncertainties. The only exception is the non-robust compensator K0, Fig. 6.7a, whose
performance is mainly degraded by the uncertainties, especially during the second half of the
trajectory. Within the other three controllers, performance degradation remains minor (γ < 1.2)
for delays up to 2 s, which are extremely unlikely having in mind the state-of-practice in
computational/hardware capabilities.

This formal performance guarantee is particularly valuable as it does not involve any
extensive V&V tests and because analytical results (based on the LTI models) tend to be more
conservative than nonlinear, real-world case. In fact, high-fidelity simulations (performed but
not depicted here for the sake of conciseness) showed an acceptable performance up to 7 s delay.

6.2.3 Impact of limited control authority

The last nonlinearity to be considered in this section is the effect of limited control authority.
Under the scope of D&L compensation, this would be the case when the acceleration command
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Figure 6.7: Robustness analysis of RT1 with uncertainty and time delay τ

acmp(t) is constrained so as not to significantly alter the reference acceleration profile (recall
Fig. 2.2b), but the same phenomenon often arises in electromechanical systems under the form
of actuator saturation or minimum impulse bit.

Here, it is assumed that the three channels aj,cmp(t), j ∈ {x, y, z} are independently limited
by σ through:

a′j,cmp(t) = φ
(
aj,cmp(t)

)
=

aj,cmp(t), if |aj,cmp(t)| ≤ σ

sign
(
aj,cmp(t)

)
σ, otherwise

j ∈ {x, y, z} (6.4)

This definition is problematic for robustness analysis since the extraction of the saturation
nonlinearity φ

(
aj,cmp(t)

)
as a ∆ block (in the interconnection of Fig. 2.13) will inevitably open

the loop, making the nominal system M(s) unstable and therefore Eq. (2.94) inapplicable.
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To overcome this issue, a transformation was proposed in [CBB+13], which employs a
nonlinear dead-zone perturbation:

w∆j(t) = Γ
(
z∆j(t)

)
=

0, if |z∆j(t)| ≤ σ

z∆j(t)− sign
(
z∆j(t)

)
σ, otherwise

j ∈ {x, y, z} (6.5)

with z∆j(t) = aj,cmp(t), to define φ
(
acmp(t)

)
as:

φ
(
acmp(t)

)
= acmp(t)− Γ

(
acmp(t)

)
= a′cmp(t) (6.6)

This transformation is illustrated in Fig. 6.8.


aj,cmp a'j,cmp

𝜎

aj,cmp

zΔj

wΔj

𝛼zΔj

𝛽zΔj

a'j,cmp

wΔj

zΔj

Figure 6.8: Loop transformation for the analysis of limited control authority

It is worth noting a couple of important properties of the new nonlinearity Γ
(
z∆j(t)

)
:

• Its output is bounded to a unitary-slope sector, i.e. defined in Fig. 6.8 by [α, β] = [0, 1];

• It is memoryless, i.e. there is only one possible outcome per input.

These two properties enable the characterisation of Γ
(
z∆j(t)

)
using IQCs (Sec. 2.2.3.2).

More specifically, the bounded sector [α, β] is formally defined as:

α z2
∆j(t) ≤ w∆j(t) z∆j(t) ≤ β z2

∆j(t) (6.7)

and associated with the Sector-Bounded NonLinearity (SBNL) multiplier [MR97]:

ΠSBNL(jω) =

[
−2αβ α+ β

α+ β −2

]
(6.8)

While this IQC guarantees global RP, the sector of Eq. (6.7) is independent of σ, which
may be over-conservative in practice. To tackle this limitation, an approach exploiting the local
nature of the perturbation Γ

(
z∆j(t)

)
was proposed in [KPS15]. Following this approach, if a

norm bound γ∆ on the signal acmp(t) is known, instead of checking over the whole sector [0, 1],
it is sufficient to consider a smaller sector.
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Assuming w(t) ∈ L2 (exogenous input signal, not to be confused with the perturbation
channel w∆(t)), the bound γ∆ corresponds to:

sup
||acmp(t)||2
||w(t)||2

< γ∆ (6.9)

and can be estimated using IQC analysis. Once γ∆ is known, the sector slope can be reduced
from 1 to 1− ε, i.e. to [α, β] = [0, 1− ε], with:

0 < ε =
σ

γ∆
< 1 (6.10)

and the results obtained will be valid for all:

σ ≥ γ∆ε > 0 (6.11)

In addition, this sector reduction offers the mathematical benefit of avoiding φ
(
acmp(t)

)
→ 0

when β → 1, Eq. (6.6), which would degenerate in the undesirable open-loop condition mentioned
above.

The SBNL multiplier holds for both time-invariant and time-varying nonlinear perturbations.
To capture the time-invariance of Γ

(
z∆j(t)

)
, assuming z∆j(0) = 0, Eq. (6.5) must satisfy the

condition: ∫ +∞

0
ż∆j(t)w∆j(t) dt = 0 (6.12)

which can be imposed through the Popov multiplier [MR97]:

ΠPopov(jω) = ±

[
0 −jω
jω 0

]
(6.13)

A further refinement in the IQC description of limited control authority can be introduced
using a sector slope restriction since Γ

(
z∆j(t)

)
is a monotonic and odd function. This can be

achieved with the so-called (dynamic) Zames-Falb multiplier [MR97] but, in order to simplify the
analysis, it is not considered. A comparative study of the conservativeness obtained when using
different combinations of multipliers is provided in [KPS15]. Additionally, the IQC description
can be extended so as to account for GH uncertainties as well but, again for the sake of simplicity,
these are not considered in this section.

The IQC description and RP analysis introduced above, namely using the combined SBNL
and Popov multipliers, can be conducted with any of the two toolboxes referred in Sec. 2.2.3.2,
i.e. [KMJR04] and [BBD+16]. Since the latter is more recent and based on a more efficient
optimisation algorithm (SeDuMi [Stu99]), this is the one adopted to solve the problems of
Eq. (6.9) and (2.94).

The results obtained are provided in Fig. 6.9, which shows the induced L2 gain γ as a
function of RT1 points (i.e. descent time) and of limited control authority σ for the three
robust compensators. With K0, no feasibility nor unfeasibility of Eq. (2.94) could be found,
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which means that no finite γ can be guaranteed analytically. This figure shows, across descent
time, the degradation of the controllers (i.e. the increase of γ) as the control authority becomes
increasingly limited (i.e. the smaller σ).

From Fig. 6.9, a sharp performance degradation can be observed with the three controllers
for σ . 4 × 10−4 m/s2. For larger values of σ (i.e. more control authority available) there
are no degradation effects and the nominal performance levels (—–� in Fig. 6.5 or 6.7) are
retrieved. Performance degradation takes places slightly later from KA to KA,3σ and it is roughly
independent on the mission time.

Figure 6.9: Robustness analysis of RT1 with limited control authority σ. No finite degradation γ
could be guaranteed with K0.

The three robust controllers are therefore analytically guaranteed to have an appropriate
D&L performance for authority limitations larger than 4× 10−4 m/s2. Similar to the delay case
of Sec. 6.2.3, this guarantee is relatively conservative as nonlinear simulations showed reasonable
performances down to 1× 10−4 m/s2. This value is deemed acceptable, but it can be further
adjusted through a revision of the design weight in Eq. (5.6).
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7
Conclusions of Application I

This part of the thesis was devoted to the reconciliation of G&C architectures for space D&L.
From the state-of-practice review of guidance techniques, it was verified that technological
developments on distinct areas (e.g. systems and control theory vs. space mission analysis) often
take place independently but, as demonstrated, having a coherent G&C design framework is
key to facilitate interdisciplinary cross-pollination towards effective planetary descent strategies.
For example, it was seen that traditional closed-loop guidance techniques share structural
commonalities that are particularly convenient for the application of systematic tuning methods.

It was also shown that special care must be taken to ensure robustness of autonomous D&L
systems on very variable and uncertain environments, which are characteristic of planetary
bodies with irregular shapes and mass distributions. This requires the ability to effectively
model and account for these uncertain effects when synthesising guidance and control algorithms.
Chapter 3 illustrated how the uncertain gravity field of Phobos can be modelled using robust
control tools such as LFTs and LPV, paving the way for more reliable planetary landers and
less stringent D&L propellant requirements.

Building up on this knowledge, Chapter 4 developed a tuning methodology for uncompensated
closed-loop guidance laws, which employs a systematic evaluation of high-fidelity models to
generate trade-off maps that provide clear performance and robustness quantifications of
candidate solutions. It was demonstrated that, for a landing on Phobos, propellant consumption
savings of around 40% could be achieved (for similar errors) compared to state-of-practice
tuning selections (derived under the assumption of simplified and well-known gravity fields).
In addition, trade-off maps can be generated before the mission but only applied once the
spacecraft approaches the target body, having in consideration the actual propellant available
and without the need for expensive computations, therefore making this approach extremely
industry-oriented.
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Also with the industrial pertinence in mind, the application of structured H∞ optimisation
was addressed as a way to exploit the fixed structure of D&L guidance laws. Comparative results
were presented regarding the reconciliation and complementarity of the two tuning processes,
but research on this topic is still open. This is mostly related to the fact that, although the
state-of-practice tuning selections could be recovered by the structured H∞ approach, superior
guidance solutions, identified with trade-off maps, could not be captured due to the propagation
of highly nonlinear dynamics inherent to the problem.

Emphasis was then placed on the application of structured H∞ synthesis to design simple
yet effective control compensators in Chapter 5. This choice was mainly because of its ability
to synthesise controllers that are valid for multiple plants, as well as the possibility to specify
the controller structure and take advantage of legacy industry knowledge. Design challenges
were also highlighted, for example on the sensitivity of structured H∞ to the choice of initial
conditions and control parameters to be tuned.

The main accomplishment of this work is that robust control techniques, which represent
non-standard practices for trajectory and orbit G&C, were successfully tailored to this type of
application for the first time. Control compensation proved to be essential for open-loop guidance
architectures and an added-value for closed-loop laws (although not shown in the thesis for the
sake of conciseness). Because of this, investigations on further D&L performance improvements
have continued within the TASC research group. Moreover, these outcomes led to the industrial
transfer of techniques and Airbus’ design teams are currently employing structured H∞ in the
preparation of future missions.

To conclude this part, the developed compensators were validated in Chapter 6 via high-
fidelity MC campaigns, but also through dedicated tests using robust control methods. The
latter tests provided an analytical assessment of the impact of gravitational uncertainties and
nonlinear issues, including TV effects, time delays and limited control authority, using µ and
IQC analysis, respectively. Amongst them, it was proven that the effect of uncertainties is
expressively more impactful than the others in the scenario considered.

Most importantly, it was shown that, more than a robustness assessment tool, µ analysis
can be directly employed to support the complete compensator design process. On the one
hand, critical uncertainty combinations can be used to complement and enhance conventional
MC verification campaigns and, on the other, closed-loop sensitivities that quantify the impact
of each uncertain parameter can be used to support system modelling choices. The practical
implications provided by these insights have the potential to span from control synthesis to
space D&L mission design.
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Coupled Flight Mechanics, Guidance & Control

Benchmark

This part of the thesis starts with the development of a nonlinear benchmark model for
the integrated assessment of reusable launcher Guidance & Control (G&C) approaches. As
introduced in Sec. 1.3.2, the relevance of such a benchmark is related to the fact that state-of-
practice Reusable Launch Vehicle (RLV) performance optimisation studies tend to simplify or
even neglect the interactions between flight mechanics and G&C algorithms and mechanisms.
Moreover, in many studies, model data details are not published, which makes it difficult to
reproduce results.

The benchmark simulates the Launch & Recovery (L&R) trajectory of a liquid-fuel Vertical
Take-off and Vertical Landing (VTVL) booster used as first stage of a lightweight, non-winged
launcher injecting a 1,100 kg satellite in a quasi-polar orbit at 800 km. Configuration and
mission parameters can be easily modified and assessed thanks to its modular architecture,
which makes it extremely versatile to study the aforementioned interactions at user-defined levels
of fidelity. This modularity will also be exploited in the following chapters for the development
and verification of improved guidance and control techniques.

This chapter begins with the description of all the building blocks of the model in Sec. 8.1.
Then, the L&R mission scenarios under assessment are introduced in Sec. 8.2, as well as a
baseline closed-loop guidance law for retro-propulsive entry, descent and pinpoint landing. In
addition, Sec. 8.3 showcases how attitude control algorithms can be designed and integrated
in the RLV benchmark while taking into account Thrust Vector Control (TVC), planar fins
and cold gas thrusters. Finally, Sec. 8.4 presents detailed flight mechanics simulations for both
Down-Range Landing (DRL) and Return To Launch Site (RTLS) missions, as well a preliminary
controllability analysis for the former method of recovery.
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The coupled RLV benchmark has been published in [SMB19d] and presented together with
a more sophisticated guidance algorithm (developed in Chapter 9) in [SMB19a].

8.1 RLV flight mechanics modelling

The RLV flight mechanics model developed in this thesis results from the interconnection of
several system building blocks. These elements are depicted in Fig. 8.1 and presented in the
following subsections.

Guidance & control
algorithms Environment

Sensors &
actuators Vehicle

Cold Gas 
Thrusters

Gravity

Fins Atmosphere
& Wind

Mass, CG
& Inertia

Aero-
dynamics

Attitude 
Control

Control 
Allocation

Thrust 
Vector 
Control

Launch &
Recovery
Guidance

Equations 
of Motion

Sensors

Figure 8.1: RLV simulation block interconnections

Reference frames and environment models adopted for gravity, atmosphere and wind are
described in Sec. 8.1.1. Then, a detailed description of the equations of motion, aerodynamic
calculations and Mass, CG & Inertia (MCI) evolution is provided in Sec. 8.1.2, 8.1.3 and 8.1.7,
respectively. The vehicle is mainly steered via TVC, but two pairs of planar fins are also included
to provide attitude control under low thrust, as well as two pairs of cold gas thrusters for pitch
and yaw manoeuvring in low dynamic pressure conditions. These actuators are introduced in
Sec. 8.1.4, 8.1.5 and 8.1.6, respectively.

Finally, G&C algorithms are organised in three subsystems. The first one, "launch & recovery
guidance", is responsible for the online generation of thrust and attitude commands. A dedicated
discussion on L&R mission profiles and guidance techniques is provided in Sec. 8.2. Then, the
"attitude control" subsystem (responsible for the computation of attitude control moments) and
the "control allocation" subsystem (for the allocation among the aforementioned actuators) are
presented in Sec. 8.3.
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8.1.1 Reference frames and environment models

This subsection introduces the reference frames and environment models that are essential to
simulate the motion of RLVs during flight. For a thorough description of these frames and their
coordinate transformations, the reader is referred to [Gre70] or [RA93].

The first reference frame is the Earth-Centred Inertial (ECI) frame, with basis vectors
{iI, jI, kI}. Its origin is at the centre of the Earth, iI points to the vernal equinox, kI to the
North pole and jI completes a right-handed set. Since the Earth’s orbital motion around the
Sun can be neglected for the study of RLV trajectories, the ECI frame is considered inertial
and the equations of motion are referred to it.

With the same origin and equatorial plane, the Earth-Centred Earth-Fixed (ECEF) frame is
defined by the set of vectors {iE, jE, kE}. This frame rotates with the Earth’s angular velocity
ΩI = ωE kI, keeping iE along the Greenwich meridian. It is useful for the computation of
position-dependent quantities due to a straightforward conversion between its coordinates and
latitude, longitude and altitude {ϕ(t), λ(t), h(t)}.

In this study, simulations are initiated from the European Space Centre situated in French
Guiana [IHJH99], with {ϕ(0), λ(0), h(0)} ≈ {5.2 deg, −52.8 deg, 0 m}. Defining this initial
position in the ECI frame as rI(0), the initial velocity of the vehicle due to the Earth’s rotation
is vI(0) = ΩI × rI(0). Furthermore, the rotation quaternion qI

E(t) from ECI to ECEF and the
associated Direction Cosine Matrix (DCM) CqI

E
(t) are related to their initial values as follows:

CqI
E
(t) =

 cosωE t sinωE t 0

− sinωE t cosωE t 0

0 0 1

CqI
E
(0) (8.1)

Being an orthonormal transformation, the inverse DCM is defined as CqE
I
(t) = C−1

qI
E

(t) = CT
qI
E
(t).

For a more intuitive analysis of launch trajectories, see Fig. 8.2, the Launch Pad (LP)
reference frame is fixed at the initial position rI(0) and specified by {iL, jL, kL}. Here, kL is
normal to the local horizon, iL indicates the direction of launch, with an azimuth χ relative to
the North, and jL completes a right-handed set. The reference mission addressed in this study
(see Sec. 8.2.1) is based on a satellite injection in a quasi-polar orbit, with χ ≈ −0.02 degrees.
Equivalently, vectors specifying a Recovery Pad (RP) reference frame {iR, jR, kR} are defined
in the same way, but having the origin at a recovery platform position.

The transformations between ECEF and local frames, CqE
L
and CqE

R
, are time-invariant and

of straightforward computation [Mat17]. To determine the position and velocity relative to the
LP frame, its origin and the contribution of the Earth’s rotation must be accounted for as
follows: {

rL(t) = CqE
L
CqI

E
(t) [rI(t)− rI(0)]

vL(t) = CqE
L
CqI

E
(t) [vI(t)−ΩI × rI(t)]

(8.2)
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with CqI
E
(t) given by Eq. (8.1), and in the same way for the RP frame. The latter frame is

defined based on the location of the recovery platform, which is well-known when the mission
starts.

Then, the vehicle’s body-fixed reference frame is fixed to its Centre of Gravity (CG) and has
basis vectors {iB, jB, kB}. Vector iB lies along the vehicle’s longitudinal axis and jB is defined so
as to remain perpendicular to the pitch plane and have a positive pitch angle. The relationships
between LP, RP and body-fixed frames are illustrated in Fig. 8.2. Note that the pitch plane
changes slightly throughout the trajectory as a result of Earth’s rotation.

Figure 8.2: Relationships between local (launch and recovery pad) and body-fixed reference
frames

Following the above definition, roll, pitch and yaw angles {φ(t), θ(t), ψ(t)} represent the
orientation of the body-fixed frame with respect to the LP frame. Hence, upon launch, i.e.
{φ(0), θ(0), ψ(0)} = {π, π2 , 0} radians, the inertial orientation of the vehicle’s body is given by:

CqI
B

(0) =

0 0 1

0 −1 0

1 0 0

CqE
L
CqI

E
(0) (8.3)

and its initial angular velocity corresponds to ωB(0) = CqI
B
(0) ΩI. Note that an initial roll

angle of π is assumed because jL and jB are pointing in opposite directions, and that the offset
between launch pad and the vehicle’s CG can be neglected for practical computations.

For the computation of the aerodynamic characteristics, a Velocity Reference Frame (VRF)
is defined using vectors {iV, jV, kV}. This frame is also fixed to the vehicle’s CG, but now with
iV directed along the air-relative velocity vector vair(t). A vector rotation from the body-fixed
to VRF, CqB

V
(t), can be represented by two aerodynamic angles, the angle of attack α(t) and

sideslip β(t) (also depicted in Fig. 8.2), as follows:
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CqB
V

(t) =

 cosα(t) cosβ(t) sinβ(t) sinα(t) cosβ(t)

− cosα(t) sinβ(t) cosβ(t) − sinα(t) sinβ(t)

− sinα(t) 0 cosα(t)

 (8.4)

The gravity model adopted in this study is the 2008 Earth Gravitational Model (EGM)
[PHKF08], which is based on a 120th order spherical harmonic approximation of the gravity field
and implemented in [Mat17]. It contains a function gEGM that computes the gravity acceleration
in the ECEF frame. Hence, the corresponding vector in inertial coordinates is given by:

gI(t) = CqE
I
(t) gEGM

(
CqI

E
(t) rI(t)

)
(8.5)

The atmosphere model adopted is also available in [Mat17] and implements the mathematical
representation of the 1976 Committee On Extension to the Standard Atmosphere (COESA)
[COE76]. This representation provides, as a function of altitude, the air density ρ (h(t)) and
the speed of sound a (h(t)).

Finally, wind gusts are included by adding a velocity field with Northern and Eastern
components, wNRN (h(t)) and wERN (h(t)) relative to launch pad, hence the wind perturbation
with respect to the ECEF frame corresponds to:

wE(t) = CqL
E

cosχ sinχ

sinχ − cosχ

0 0

[wNRN (h(t))

wERN (h(t))

]
(8.6)

where wNRN (h(t)) and wERN (h(t)) can be generated, for example, using a traditional noise-
colouring Dryden filter.

With such a filter, wind disturbance velocity vw is modelled by colouring a white noise signal
nw through the following transfer function:

Gwind(s) =
vw(s)

nw(s)
=

√
2
π
Vw(h)
lw(h) σ

2
w(h)

s + Vw(h)
lw(h)

(8.7)

where the turbulence length scale lw(h) and standard deviation σw(h) are tabulated as a function
of altitude for light, moderate and severe levels of wind [Joh93], and Vw(h) represents the vehicle’s
airspeed with respect to a steady-state vertical wind profile. In this equation, the dependence
of altitude on time has been dropped for clarity. For further information on the application of
Dryden filters to launcher flight control, the reader is referred to [SBM+16, NMS+19].

8.1.2 Equations of motion

The dynamic equations that describe the motion of a vehicle in space are summarised below and
complete derivations can be found in [Gre70]. These equations are based on the initial states
{rI(0), vI(0), qI

B(0), ωB(0)} identified in Sec. 8.1.1 and on the assumption that effects related
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to moving masses (including "tail-wags-dog" moment and rocket jet damping) are negligible for
trajectory assessment. In addition, it suffices to account for the impact of time-varying mass
through the mass-depletion dynamics of Eq. (8.28) [Eke98].

The vehicle’s translational motion (i.e. acceleration r̈I(t) and velocity vI(t)) is described in
the ECI frame by:

r̈I(t) = v̇I(t) = gI(t) +
1

m(t)

[
Faero,I(t) + FTVC,I(t) + Ffin,I(t) + Fthr,I(t)

]
(8.8)

where Faero,I(t) represents the aerodynamic force of the vehicle’s body (Sec. 8.1.3) expressed
in the ECI frame, FTVC,I(t), Ffin,I(t) and Fthr,I(t) represent control forces (Sec. 8.1.4 to 8.1.6),
m(t) is the total mass of the vehicle (Sec. 8.1.7) and gI(t) is given by Eq. (8.5).

In addition, the rotational dynamics are described in the body-fixed frame by:

ω̇B(t) = J−1(t)

[
Maero,B(t) + MTVC,B(t) + Mfin,B(t) + Mthr,B(t)

− ωB(t)× J(t)ωB(t)− J̇(t)ωB(t)

]
(8.9)

Equivalently to the forces, Maero,B(t), MTVC,B(t), Mfin,B(t) and Mthr,B(t) represent aerody-
namic and control moments written in the body axes, J(t) is the inertia tensor of the vehicle
(Sec. 8.1.7) and J̇(t) its time-derivative.

Finally, the orientation of the vehicle’s body axes in the ECI frame is propagated by the
quaternion-based kinematics equation:

q̇I
B(t) =

1

2


q4(t) −q3(t) q2(t)

q3(t) q4(t) −q1(t)

−q2(t) q1(t) q4(t)

−q1(t) −q2(t) −q3(t)

ωB(t) (8.10)

where the quaternion qI
B(t) = [q1(t) q2(t) q3(t) q4(t)]T is defined to contain the scalar part,

q4(t), as its last component. This vector and its associated DCM CqI
B
(t) are also essential for

the computation of the forces and moments in Eq. (8.8) and (8.9).
The equations of motion can be easily augmented to include effects such as structural

flexibility and propellant sloshing. However, in this chapter, only rigid-body motion is considered.

8.1.3 Aerodynamics characteristics

Aerodynamic forces and moments generated by the vehicle’s main body depend on its external
shape, as well on the instantaneous dynamic pressure. Assuming that the Earth’s atmosphere
rotates with the planet without slippage and shearing, dynamic pressure is given by:

Q(t) =
1

2
ρ(t)V 2(t) (8.11)
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where V (t) = ‖vair(t)‖ and vair(t) = [vair,x(t) vair,y(t) vair,z(t)]
T is the air-relative velocity vector

at the vehicle’s CG written in the body-fixed frame. This vector accounts for the vehicle’s
inertial velocity vI(t), Earth’s rotation ΩI and wind gusts wE(t) as follows:

vair(t) = CqI
B

(t)

[
vI(t)−ΩI × rI(t)− CqE

I
(t) wE(t)

]
(8.12)

Moreover, the local velocity at an arbitrary location xj(t) along the launcher’s body is also
affected by its rotational rate:

vjair(t) = vair(t) + ωB(t)× [xj(t)− xCG(t)] (8.13)

where xj(t) and the CG position, represented as xCG(t) = [xCG(t) yCG(t) zCG(t)]T, are measured
with respect to the same reference point in the body-fixed frame. The two aerodynamic angles
at the Centre of Pressure (CP), where aerodynamic forces are applied, i.e. at xj(t) = xCP(t),
can then be defined as follows:

αCP(t) = arctan2

vCP
air,z(t)

vCP
air,x(t)

(8.14)

βCP(t) = arcsin
vCP

air,y(t)

‖vCP
air (t)‖

(8.15)

The vehicle has a generic axisymmetric shape that is representative of Europe’s lightweight
VEGA launcher [Bia08]. Having in mind its axisymmetry, the forces are expressed in the
air-relative velocity reference frame as:

Faero,V(t) = −Q(t)Sref

CD (αeff(t),M(t))

0

CL (αeff(t),M(t))

 (8.16)

where Sref is a reference aerodynamic area and {CD, CL} are the drag and lift coefficients,
respectively. These coefficients are estimated as functions of the effective angle of attack αeff(t)

and Mach number M(t) = V (t)/a(t). The former is defined based on the so-called aeroballistic
coordinates [Zip07] as follows:

αeff(t) = arccos
(

cosαCP(t) cosβCP(t)
)
≈
√(

αCP(t)
)2

+
(
βCP(t)

)2 (8.17)

The aerodynamic force of Eq. (8.16) is thus written in the ECI frame as:

Faero,I(t) = CqB
I

(t)CqV
B

(t) Faero,V(t) (8.18)

In addition, an aerodynamic moment around the vehicle’s CG is produced due to the offset
between this point and the CP. Hence, this moment is directly expressed in the body-fixed
frame as:

Maero,B(t) = [xCP(t)− xCG(t)]× CqV
B

(t) Faero,V(t) (8.19)
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Similar to drag and lift, the CP position, represented as xCP(t) = [xCP(t) 0 0]T, is estimated as
a function of αeff(t) and M(t), while the evolution of xCG(t) is computed in Sec. 8.1.7.

Aerodynamic coefficients were kindly provided by VEGA’s manufacturer, AVIO, using
the full vehicle configuration up to a 10 degree angle of attack and for the post-separation
configuration sparsely from 0 to 180 degrees angles of attack. These coefficients are then linearly
interpolated. xCP is not defined for αeff(t) equal to 0 and 180 degrees, hence it is linearly
extrapolated from the adjacent interval. The variation of CD, CL and xCP for these two cases
with respect to αeff and M is illustrated in Fig. 8.3 and 8.4 respectively.
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Figure 8.3: Aerodynamic coefficients for full vehicle configuration
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Figure 8.4: Aerodynamic coefficients for first stage configuration

For simplicity, aerodynamic coefficients are assumed to be independent of the level of thrust,
which is a very rough approximation for retro-propulsive flight, where there are complicated
interactions between the engine plume and the oncoming flow. However, the goal of this work is
not to provide a high-level fidelity industrial simulator, but to show how a reusable launcher
benchmark can be built. Moreover, the limited validity of the assumptions does not invalidate
the modelling approach and the adopted model can be easily upgraded.

The proneness of the vehicle to generate aerodynamic loads is conventionally quantified
using the following parameter:
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µα(t) = [xCP(t)− xCG(t)]
Sref CNα(t)

JN (t)
Q(t) (8.20)

which provides an affine relationship between the angle of attack and the load-induced angular
acceleration (see Appendix C). In this equation, JN (t) is the lateral Moment of Inertia (MoI)
component and the normal load gradient is given by:

CNα(t) =
∂CN (α(t),M(t))

∂α(t)
(8.21)

with:

CN (α(t),M(t)) = CL (α(t),M(t)) cosα(t) + CD (α(t),M(t)) sinα(t) (8.22)

In addition, Qα(t) = Q(t)αeff(t) is an extremely useful indicator as it directly assesses the
impact of trajectory and attitude on the induced loads. For physically meaningful results, αeff(t)

must always be reduced to the first quadrant, i.e. αeff(t) ∈
[
0, π2

]
.

Finally, it is also essential to have an idea of the thermal environment encountered by the
RLV throughout L&R. A simple way to achieve this is by analysing the heat flux at the vehicle’s
stagnation point [RA93]. Given a reference nose radius Rref , the maximum heat rate can be
approximated by the Sutton Graves equation:

QH(t) = kH

√
ρ(t)

Rref
V 3(t) (8.23)

with kH ≈ 1.74× 10−4 for Earth.

8.1.4 TVC system

The vehicle’s ascent and descent trajectories are controlled by adjusting the magnitude and
direction of the thrust vector generated by its rocket engine. This adjustment is achieved via
two TVC actuators that deflect the engine’s nozzle by {βTVC,y(t), βTVC,z(t)} along the body
jB and kB axes respectively.

With this in mind, the TVC-generated force becomes:

FTVC,B(t) = Tref(t)

cosβTVC,y(t) cosβTVC,z(t)

cosβTVC,y(t) sinβTVC,z(t)

− sinβTVC,y(t)

 (8.24)

FTVC,I(t) = CqB
I

(t) FTVC,B(t) (8.25)

and, with xPVP = [xPVP 0 0]T representing the TVC pivot position, the moment around the
CG is given by:

MTVC,B(t) = [xPVP − xCG(t)]× FTVC,B(t) (8.26)
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The required thrust magnitude Tref(t) and direction are commanded by the guidance system
(Sec. 8.2), with the latter using vehicle attitude reference angles {φref(t), θref(t), ψref(t)} as a
surrogate.

Similar to Eq. (8.20), the TVC effectiveness in counteracting aerodynamic loads is measured
through the coefficient:

µc(t) = [xCG(t)− xPVP]
Tref(t)

JN (t)
(8.27)

which is naturally driven by the actual thrust level Tref(t). This coefficient establishes an affine
approximation between in-plane TVC deflection and control-induced angular acceleration (see
Appendix C).

The generation of thrust then causes the depletion of propellant. In this case, assuming
negligible engine back-pressure losses, the mass-depletion dynamics is given by the rocket
equation [Gre70]:

ṁ(t) = − 1

Ispg0
Tref(t) (8.28)

where Isp is the specific impulse of the engine and g0 ≈ 9.81 m/s2 is the gravitational acceleration
at the Earth’s surface.

Recovering the launch vehicle requires the use of a re-ignitable and throttleable rocket engine.
In this vehicle, a fictional liquid engine using highly-refined kerosene (RP-1) as fuel and liquid
oxygen (LOx) as oxidizer is adopted. This type of engine is common among many launcher
manufacturers [IHJH99], including SpaceX [CS04]. Its main characteristics are summarised in
Table 8.1. In this table, the required initial propellant masses have been determined based on
the reference mission under analysis and on information from the VEGA launcher [Bia08].

Table 8.1: RLV rocket engine characteristics

Parameter Value

Sea-level specific impulse (s) 282

Oxidizer/fuel mass ratio 2.56

Oxidizer/fuel density ratio 1.42

Initial fuel mass (kg) 25913

Initial oxidizer mass (kg) 66337

In order for the tanks to meet VEGA’s dimensions and initial MCI properties while ensuring
that the remaining propellant after launch is enough for a powered descent, this results in a
structural mass lower than the original one and in propellant densities higher than the actual
LOx/RP-1 engine. Nevertheless, the same density ratio of Table 8.1 is kept so as to have
a meaningful representation of the CG travel throughout the burn. Further details on the
launcher’s MCI evolution are provided in Sec. 8.1.7.
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8.1.5 Fins

Planar fins are also included in the RLV model to ensure enough control authority under low
(or zero) TVC effectiveness (recall Eq. (8.27)). This will be particularly critical throughout the
descent flight, and thus they should be ideally placed above the vehicle’s centre of pressure during
this phase for improved stability. Here, only two pairs of fins are considered as depicted in Fig. 8.5,
but the generalisation in case additional surfaces are exploited for improved controllability is
straightforward.

One pair of fins is assigned to pitch motion control using deflections {βfin,1(t), βfin,2(t)}, the
other pair to yaw control via {βfin,3(t), βfin,4(t)}. It is assumed that any roll perturbation is
rejected by the attitude control system (see Sec. 8.3) so that the two pairs always remain in the
trajectory yaw and pitch planes, respectively.

It is further assumed that, due to the reduced fin area compared to the RLV body, their
axial force contribution is negligible so that only the normal component is accounted for. When
flow separation is neglected, this contribution has a sinusoidal dependence on the fin angle of
attack given by:

Cf (αfin(t)) = C̄f sinαfin(t) (8.29)

where C̄f is the maximum normal fin force coefficient and αfin(t) is the local angle of attack.
The impact of these assumptions will be verified at a later stage through the consideration of
aerodynamic uncertainties in the model.

The ith fin’s angle of attack and its associated force in the RLV body-fixed frame Ffin,i(t)

are then defined in the pitch plane as:
αfin,i(t) = βfin,i(t)− αfin(t)

Ffin,i(t) = Q(t)SfinCf (αfin,i(t))

[
− sinβfin,i(t) 0 cosβfin,i(t)

]T , i = {1, 2} (8.30)

and in the yaw plane as:
αfin,i(t) = −βfin,i(t)− βfin(t)

Ffin,i(t) = Q(t)SfinCf (αfin,i(t))

[
sinβfin,i(t) cosβfin,i(t) 0

]T , i = {3, 4} (8.31)

where Sfin is the projected area of one fin, and αfin(t) and βfin(t) represent the vehicle’s
aerodynamic angles at the fins’ location, computed as in Sec. 8.1.3. With this in mind, the
fin-generated force in the ECI frame and the moment in the body frame correspond to:

Ffin,I(t) = CqB
I

(t)

4∑
i=1

Ffin,i(t) (8.32)

Mfin,B(t) =

4∑
i=1

[xfin,i − xCG(t)]× Ffin,i(t) (8.33)
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where the offset between each fin’s CP and attachment point xfin,i is negligible compared to the
distance between the latter and the vehicle’s CG.

Once again, the effectiveness of the fins in generating control moments can be quantified.
Assuming equal fin deflections within the same plane, it is given by:

µf(t) = 2 [xfin − xCG(t)]
Q(t)SfinCfα(t)

JN (t)
(8.34)

where xfin is the longitudinal position of the fins and Cfα(t) = C̄f cosαfin(t) is the normal fin
force gradient, with αfin(t) computed from Eq. (8.30) for the pitch plane, or from Eq. (8.31) for
the yaw plane.

Because αfin(t) has a dependence on the vehicle’s aerodynamic angles, the fins will also have
an impact on the natural aerodynamics of the vehicle and its load-proneness parameter has to
be generalised accordingly:

µα′(t) = µα(t) + µf(t) cosβfin,0(t) (8.35)

where βfin,0(t) represents the in-plane fin deflection required to trim the vehicle (see Appendix C).
For the rest of this part, C̄f has been fixed to 6, which is a reasonable value among conventional

symmetric airfoils, and Sfin has been set to 0.54 m2 based on preliminary stability analyses (see
Sec. 8.3.1).

8.1.6 Cold gas thrusters

In addition, cold gas thrusters are included for controllability under zero main engine thrust
and low fin effectiveness (recall Eq. (8.34)), which is the case at high altitudes where air density
is very low.

Similar to the fins, a different pair of thrusters is assigned to pitch and yaw control. The
force generated in the ECI frame is given by:

Fthr,I(t) = CqB
I

(t) T̄thr

(
βthr,y(t) kB − βthr,z(t) jB

)
(8.36)

where T̄thr is the maximum thruster force and {βthr,y(t), βthr,z(t)} are attitude commands about
the body jB and kB axes, normalised between [−1, 1]. Equivalently, the corresponding moment
in the body-fixed frame is:

Mthr,B(t) = T̄thr

(
[xthr,y − xCG(t)]× βthr,y(t) kB − [xthr,z − xCG(t)]× βthr,z(t) jB

)
(8.37)

In this equation, xthr,y and xthr,z represent the position of the thruster that is triggered for
pitch and yaw control, which has to be adjusted in accordance with the sign of βthr,y(t) and
βthr,z(t) since commands in opposite directions trigger thrusters in opposite sides of the vehicle.
For simplicity, thruster commands are assumed to be continuous.
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Control effectiveness of cold gas thrusters can also be quantified as follows:

µt(t) = [xthr − xCG(t)]
T̄thr

JN (t)
(8.38)

where xthr is the longitudinal position of the thrusters (here assumed equal to xfin for simplic-
ity). In addition, T̄thr is assumed constant and equal to 400 N, which is a reasonable value
among conventional actuators. This assumption is not restrictive since the subsequent G&C
design/analysis is able to explicitly account for thrust variations throughout the flight (which
cannot be neglected in the case of the main engine).

It is also important to note that, although there is a mass budget and depletion associated
to cold gas thrusters, it is assumed to be negligible compared to that of the main engine.

8.1.7 Mass, CG & inertia evolution

In line with all the considerations above, the launcher configuration adopted is detailed in
Fig. 8.5, showing the full vehicle on the left and the reusable first stage on the right. Since this
thesis is focused on the ascent and descent flight of the first stage only, all the other vehicle
bodies (e.g. upper stages) will be referred to as PayLoad (PL) from the first stage’s perspective.

The vehicle is assumed to have an axisymmetric shape and a uniform material (dry) density,
with more mass allocated to the bottom and middle sections to account for the weight of
the main engine module, retractable landing gear and inter-tank adapter. Moreover, fuel and
oxidizer masses are modelled as cylinders in end burn. Other types of burn include centrifugal
and centripetal burn, see [Eke98].

The MCI properties of the dry first stage and payload are summarised in Table 8.2. In this
table, and for the remainder of this section, heights are measured with respect to the first stage
base (i.e. 0.66 m above the nozzle exit) and MoI is relative to the CG of the corresponding body.

Table 8.2: RLV structural characteristics

Dry first stage Payload total

Mass (kg) 2750 43000

CG Height (m) 4.60 12.91

MoI Axial (kgm2) 3981 44000

MoI Lateral (kgm2) 40267 3×106

Based on this configuration, the vehicle’s mass is broken down into structural mass and
time-dependent propellant mass, which is updated via Eq. (8.28) during engine burn, as follows:

m(t) = mprop(t) +mdry +mPL (8.39)

with propellant mass defined as mprop(t) = mfuel(t) + moxid(t), and mdry and mPL given in
Table 8.2. Note that mPL must be set to 0 after separation.
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Figure 8.5: Generic RLV and first stage configuration

In order to compute the change over time of fuel and oxidizer masses, mfuel(t) and moxid(t),
as well as their level on the corresponding tank, hfuel(t) and hoxid(t), it is useful to normalise
the propellant mass with respect to the initial values of Table 8.1:

ν(t) =
mprop(t)

mprop(0)
(8.40)
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and:
m#(t) = ν(t)m#(0), h#(t) = ν(t) dtk,# (8.41)

where # = {fuel, oxid}, dtk,fuel (=3.30 m) and dtk,oxid (=5.97 m) are the tank depths depicted
in Fig. 8.5. The ratio between propellant burnt and its initial value is also quantified by:

mburnt(t)

mprop(0)
= 1− ν(t) (8.42)

Due to propellant mass and level variations, the total vehicle CG and MoI vary substantially
throughout the flight. In the nominal case, the former lies along the body longitudinal axis,
xCG(t) = [xCG(t) 0 0]T, and is computed as:

xCG(t) =
1

m(t)

[
mfuel(t)

(
htk,fuel +

hfuel(t)

2

)
+moxid(t)

(
htk,oxid +

hoxid(t)

2

)
+mdry hdry +mPL hPL

]
(8.43)

where htk,fuel (=1.2 m) and htk,oxid (=5.4 m) are the tank heights provided in Fig. 8.5 and hdry

and hPL are given in Table 8.2.
Based on the same assumptions, the inertia tensor is diagonal in nominal conditions and can

be expressed as J(t) = diag [JA(t), JN (t), JN (t)]. The axial component corresponds directly to:

JA(t) =
1

2
mprop(t) r2

tk + JA,dry + JA,PL (8.44)

in which rtk (=1.4 m) is the tank radius. The lateral contributions of propellant masses relative
to their CG are given by:

JN,#(t) =
1

12
m#(t)

(
3r2

tk + h2
#(t)

)
(8.45)

with # = {fuel, oxid}, and all the contributions are converted to vehicle’s CG coordinates using
the parallel axis theorem as follows:

JN (t) = JN,fuel(t) + JN,oxid(t) + JN,dry + JN,PL +mfuel(t)

(
htk,fuel +

hfuel(t)

2
− xCG(t)

)2

+moxid(t)

(
htk,oxid +

hoxid(t)

2
− xCG(t)

)2

+mdry (hdry − xCG(t))2 +mPL (hPL − xCG(t))2

(8.46)

Once again, mPL, JA,PL and JN,PL are set to 0 after separation and xCG(t) is computed via
Eq. (8.43).

8.2 RLV guidance approach

This section provides a description of the guidance techniques considered in this benchmark for
the coupled assessment of RLVs. First, a general introduction of the reference mission profile
and booster-back recovery strategies is presented, followed by the presentation of the baseline
landing algorithm currently implemented.
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8.2.1 L&R mission profiles

As mentioned in Chapter 1, several studies [BH09, BGF14, TBLG15, SSBD17, DSE+17] have
addressed the problem of RLV performance optimisation, but they are mostly focused on the
application of Multi-Disciplinary Optimisation (MDO) methods to determine L&R trajectories
that allow delivering the highest payload while fulfilling competing mission and aerothermal
load requirements. In opposition, the present thesis is not focused on the optimisation of
payload capabilities, but rather on analysing the practical feasibility of different Descent
& Landing (D&L) trajectories, together with the impact of different G&C choices on the
aerothermal loads encountered during the flight as well as on recovery performance.

For the above reason, the launch mission profile and the vehicle configuration described here
remain fixed throughout the study and only the recovery trajectory is modified. The ascent
profile corresponds to that of a 1,100 kg satellite injection in a quasi-polar orbit at an altitude
of 800 km using an expendable launcher from the European Space Centre in French Guiana
(same as [SBM+16, NMS+19]). Concerning its recovery, two distinct strategies are addressed
and discussed below: DRL and RTLS, see Fig. 8.6.

(a) DRL (b) RTLS

Figure 8.6: Recovery mission profiles

The most straightforward booster-back recovery strategy is known as Down-Range Landing
(DRL). In this scenario, the idea is for the reusable stage to land close to its unpropelled impact
site, therefore minimising the propellant required for the landing. However, launches typically
take place in the direction of the sea due to safety reasons, thus a sea-going recovery platform
needs to be placed at the landing point and then bring the stage back. This approach has been
successfully employed by SpaceX [Bla16], which uses a 91 m by 52 m drone ship as recovery
pad.

From Fig. 8.6a, DRL missions start naturally with lift-off and ascent of the first stage
(points 1 and 2 in the figure). This part of the mission is typically flown with open-loop guidance,
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hence dispersions due to system uncertainties and environmental perturbations tend to grow.
These dispersions are then compensated for by the exo-atmospheric stages in order to ensure an
accurate satellite injection. Open-loop guidance commands are provided in terms of reference
attitude angles {θref(t), ψref(t)} relative to the LP frame and thrust magnitude Tref(t).

The reference profiles adopted in this thesis are depicted in Fig. 8.7, where the distinct
launch phases of pitch over and gravity turn have been highlighted. The thrust profile (bottom
plot) is representative of a (non-throttleable) solid rocket engine and could be optimised for the
present liquid-propellant launcher, with important consequences on the staging altitude and
Mach number. Nonetheless, as mentioned above, the launch trajectory was kept the same for
simplicity. Similar to the simplifications made in the aerodynamics model, it does not invalidate
G&C design/analysis for the recovery phase and opens the door to more detailed analyses,
featuring a more realistic ascent thrust profile.
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Figure 8.7: Ascent attitude and thrust references

After 110 seconds of flight, the first stage cuts off its engine and separates two seconds after
(points 3 and 4 of Fig. 8.6a). The second stage then ignites its engine and proceeds the flight
towards the payload’s destination orbit. In the meantime (point 5), the first stage continues its
exo-atmospheric motion in the direction of the recovery platform with approximately constant
dispersions but with increasing velocity due to the action of gravity.

Then, at a pre-specified altitude hs, the first stage re-ignites its engine for the recovery burn
(point 6), which must be able to counteract dispersions (point 7) and bring the booster from its
current position and velocity to a soft touchdown at the drone ship (point 8).

The ability to cope with dispersions during recovery leads to the need for closed-loop guidance
techniques, where guidance commands are computed in real-time to correct the trajectory based
on onboard measurements. All the computations are made in the RP frame and the command
thrust vector in this frame is then converted back to {θref(t), ψref(t)} and Tref(t).
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Furthermore, in order to more efficiently meet aerothermal loads or propulsion system
requirements, sometimes it is convenient to explicitly split the recovery into three phases: [i] a
re-entry burn aimed at decelerating the booster, [ii] a second engine cut-off and coast phase and
[iii] a landing burn that ensures a precise touchdown. The duration of [i] and [ii] relative to the
total recovery phase will be denoted t1 and t2 respectively.

In addition, as depicted in Fig. 8.6a, the reusable stage needs to undergo a slow but significant
change in attitude between points 4 and 6. This flip-over manoeuvre is simulated by a change
in pitch with constant rate executed using fins and cold gas thrusters.

As an alternative recovery solution, the reusable booster can use its main engine not only for
deceleration and landing, but also to deliver an additional burn that brings it to a recovery pad
close to the launch site. The additional firing naturally leads to a more demanding propellant
consumption, which can be nonetheless paid for by avoiding the use of a sea-going platform
and all the associated infrastructure and operational costs. This recovery strategy is known as
Return To Launch Site (RTLS) and is illustrated in Fig. 8.6b.

Until separation (i.e. point 4), the RTLS and DRL missions have the same profile, which
is therefore omitted in Fig. 8.6b for clarity. From this point forward, as introduced above, the
reusable stage needs to perform a rapid flip-over manoeuvre (point 5) followed by the boostback
burn (point 6) in the direction of the launch site.

Following the boostback cut-off (point 7), the rest of the recovery (from point 8 onwards)
is similar to DRL: an exo-atmospheric flight where the booster flips over at a slower rate, a
closed-loop recovery stage that starts at hs (and is achieved with one or two distinct burns), and
finally a soft touchdown. In the RTLS scenario, the flip-over manoeuvres are again executed
by fin and thruster induced pitch variations with constant rate. In addition, for this study,
the boostback burn is fixed to an open-loop firing with magnitude Tref = 600 kN, direction
{θref , ψref} = {180, 0} degrees and duration 30 seconds.

Finally, it is important to mention that the implementation of guidance laws for powered
D&L is independent of the recovery strategy – since all the computations are made in the
RP frame, the only difference lies on the definition of this frame and of the corresponding
transformation CqE

R
. The baseline technique adopted in this study is presented in the following

subsection.

8.2.2 Baseline recovery guidance

The same closed-loop guidance law studied in the first part of the thesis, i.e. Constrained
Terminal Velocity Guidance (CTVG), is adopted as baseline in this second part. The main
strength of this technique lies in its simplicity, which makes it extremely easy to implement and
provides a rough idea of recovery flight mechanics very quickly.

As introduced in Sec. 2.1, CTVG is based on the compensation of zero-effort-miss and
zero-effort-velocity vectors, ZEM(t) and ZEV(t), which quantify the position and velocity error
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at the end-of-mission if no corrective manoeuvres are made after time t. Using these coordinates,
the commanded thrust vector is given in the RP frame by:

TCTV(t) = m̂(t)
[
kr kv

]


ZEM(t)

(tf − t)2

ZEV(t)

tf − t

 (8.47)

where m̂(t) represents the estimated mass of the vehicle and tf is the end-of-mission (i.e.
touchdown) time. Optimal values of {6, −2} for the two gains {kr, kv} were shown to be the
standard values derived by recasting the problem as a fuel-optimal trajectory generation problem
with constrained boundary position and velocity and assuming a uniform and well-known gravity
field (recall the discussion on Chapter 4). This was an invalid approximation for the Phobos
D&L case, but it is valid for an RLV on Earth.

The estimation of ZEM(t) and ZEV(t) involves propagating the equations of motion from t

to tf , which can become computationally challenging without some approximations. The ability
of the guidance law to accurately enforce the boundary conditions (i.e. to minimise touchdown
errors) naturally depends on the conservativeness of these approximations. This section seeks
the simplest possible law and hence, neglecting: [i] gravity variations during descent, [ii] mass
variations due to propellant consumption, [iii] aerodynamic forces, and [iv] non-inertial effects
of the RP frame, then the zero-effort errors can be computed using Eq. (2.11).

This calculation requires the specification of terminal conditions rf = vf = [0; 0; 0] for a
soft landing in the RP frame, as well as position, velocity and gravity acceleration estimates,
r̂(t), v̂(t) and ĝ(t). These estimates are computed applying similar rotations to Eq. (8.2) and
Eq. (8.5). Although the vehicle’s landing gear has to be able to withstand a (small) non-zero
touchdown velocity, vf is set to 0 m/s in order to be as conservative as possible.

Due to its simplicity, the computational time required by the CTVG algorithm is extremely
low, so guidance commands can be updated at the same frequency as the simulation, fgui = fsim,
starting at a pre-specified altitude hs. Initial values adopted for the verification of the algorithm
are summarised in Table 8.3. The simulation frequency was set to 10 Hz since it was verified to
provide enough accuracy for trajectory assessment while minimising simulation runtime.

Because of the simplifications and algorithmic framework, the inherent capabilities of CTVG
are rather limited. The most relevant limitations lie in its inability to explicitly enforce path
constraints (i.e. only boundary states can be constrained) and account for mass-depletion
dynamics, i.e. Eq. (8.28). Path constraints may be applied to the states (e.g. subsurface flight
avoidance) as well as to the control inputs (e.g. lower and upper throttling magnitude and rate
limits) and both of them are critical for RLV recovery.

It is also noted that, although it is possible to use two burns for recovery (defined by t1 and
t2), these burns are not explicitly accounted for with the CTVG approach. These limitations
motivate the need for more sophisticated algorithms, such as the one proposed in Chapter 9.
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Table 8.3: Initial CTVG algorithm parameters

Parameter Value

hs (km) 25

tf (s) 380

t1 (%) 0

t2 (%) 0

fsim (Hz) 10

fgui (Hz) 10

8.3 RLV control approach

This section exemplifies the manner attitude control algorithms can be designed and integrated
in the RLV benchmark. In an axisymmetric launcher with quasi-zero roll rate, the pitch and yaw
motions are often assumed uncoupled and the task of attitude control design and analysis can
be performed in a single plane. A model often employed for preliminary launcher calculations
(e.g. [Orr10, KSB12, NMBR16]) is used for this demonstration.

The model representing the rotational dynamics under the presence of aerodynamic effects
[Gre70] is given in the frequency-domain for a certain instant of time t as:

θ (s)

mctr (s)
=

1

s2 − µα′(t)
(8.48)

In the equation, θ(s) represents pitch deviations relative to a certain trim state,mctr(s) represents
specific pitch control moment divided by the lateral moment of inertia and µα′(t) is the load-
proneness parameter introduced in Eq. (8.35).

The high-level objective of any launcher’s attitude control system is to stabilise its dynamics
and track commands θref(s) provided by the guidance module, which can be achieved classically
using a Proportional-Derivative (PD) controller. The architecture of the adopted PD controller
in closed-loop with the linear system of Eq. (8.48) is depicted in Fig. 8.8, with the PD gains
kp(t) and kd(t) shown as time-varying due to µα′(t). Note that a first-order derivative filter
with time constant σd = 0.2 seconds is used to calculate the reference pitch rate command. In
the nonlinear simulator, angular errors are measured based on the orientation of the body-fixed
frame with respect to the LP frame (recall Sec. 8.1.1), which requires the knowledge of CqL

E
,

CqE
I
(t) and CqI

B
(t).

Figure 8.8 also shows a "control allocation" block that relates the specific control moment
mctr(s) to the actual inputs: βTVC,y(s), βfin,y(s) and βthr,y(s), with βfin,y(s) = βfin,1(s) = βfin,2(s)

for the pitch channel. Using the control effectiveness coefficients defined in Eq. (8.27), (8.34)
and (8.38), this relation is conveniently expressed as:
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mctr (s) = Γctr(t)

βTVC,y (s)

βfin,y (s)

βthr,y (s)

 (8.49)

where:
Γctr(t) = −

[
µc(t) cosβTVC,y0(t) µf(t) cosβfin,y0(t) µt(t)

]
(8.50)

and βTVC,y0(t) and βfin,y0(t) represent TVC and fin trim deflections. The role of control allocation
is to compute the inverse of this (overdetermined) equation in a way that is suitable for the
different phases of L&R flight.

RLVControl
Allocation[kp(t)  kd(t)]s

𝜎ds + 1

𝜃

 𝜃
𝑚ctr

𝜃ref

𝜃

𝑚ctr
=

1

s2 − 𝜇𝛼′(𝑡)

βTVC,y
βfin,y
βthr,y

Figure 8.8: Closed-loop attitude control model (pitch channel)

8.3.1 Preliminary control design

Equation (8.48) is time (and trajectory) dependent through µα′(t), which determines its poles:
they are placed at ±

√
µα′(t) when µα′(t) > 0 and at ±j

√
µα′(t) otherwise. Since µα′(t) is a

combination of the aerodynamic contributions of µα(t) and µf(t), Eq. (8.20) and (8.34), it is
also interesting to look at their individual effects, as well as at the contribution of µc(t) and
µt(t), Eq. (8.27) and (8.38).

Figure 8.9a shows the estimates of
√
µ∗(t) sgnµ∗(t), with ∗ = {α, f, α′, c}, throughout the

ascent of Fig. 8.7 followed by a closed-loop DRL recovery. In the case of µα′(t) and µα(t), this
corresponds to the natural frequency of the poles with and without fins; positive values indicate
open-loop instability and non-positive values indicate marginal stability. The figure was obtained
in an iterative manner since changes on control parameters affect the trajectory, while changes
on the trajectory affect the effectiveness levels and consequently the control parameters.

The evolution of the µα(t) indicator shows that an RLV with no fins would be open-loop
unstable for the first half of the trajectory (while the launcher is flying with the nose pointing
forward, until around 200 seconds) and for most of the second half. Indeed, only a few narrow
areas of marginal stability between the time regions of [200, 270] and [320, 350] seconds are
seen in Fig. 8.9a. They can be related to a combination of CNα(t) < 0 and xCP(t) > xCG(t).
The magnitude of the µf(t) indicator follows that of µα(t) due to their common dependence on
Q(t)/JN (t), but its sign has a more monotonic variation due to Cfα(t) being strictly positive for
the first half and negative for the second.
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Figure 8.9: Stability and control indicators of DRL mission

From µα′(t) in Fig. 8.9a, it is seen that the chosen fins have very little impact during
launch, but they do provide a significant stability improvement for recovery and landing with
µα′(t) << µα(t) – the most challenging area is around 300 seconds and coincides with re-entry
and first stage re-ignition as will be seen later. In addition, µα′(t) is considerably inferior to
µc(t) or µf(t) (in absolute value) during the atmospheric flight, so that a margin for stability
and control is ensured. This is different during the exo-atmospheric flight phase, for which cold
gas thrusters with effectiveness µt(t) have to be employed.

The closed-loop transfer function of Fig. 8.8 is then given by:

θ (s)

θref (s)
=

(
kd(t) + σd kp(t)

)
s + kp(t)(

σd s + 1
)(

s2 + kd(t) s + kp(t)− µα′(t)
) (8.51)

and can be easily employed to choose the gains kp(t) and kd(t) via pole-placement. Here, this
is carried out so as to have a constant natural frequency and damping ratio of the 2nd order
term in the denominator throughout the trajectory (with the other term solely defined by
σd). Once again, this is a simplification for illustration purposes and does not represent the
industrial state-of-practice, where the required attitude tracking performance changes with the
phase of flight. For example, tracking performance should be less demanding at high dynamic
pressure [NMS+19] and more demanding for landing. The control gains required for a constant
natural frequency of 4 rad/s and damping ratio of 0.8 are depicted in Fig. 8.9b.

As mentioned before, the same process is followed for yaw attitude control design. There
are however two main differences that must be pointed out. The first one is related to the fact
that, as there is no flip-over manoeuvre in the yaw channel, there is no sign reversal of the fin
effectiveness µf(t) (recall Fig. 8.9a) to be taken into account for the computation of βfin,z from
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Eq. (8.49). The second remark is that fins in the yaw plane will also be employed to compensate
for any roll rate perturbation φ̇. This is achieved by adding extra differential deflections as
follows: {

βfin,3 = βfin,z + kφ φ̇

βfin,4 = βfin,z − kφ φ̇
(8.52)

Here, kφ is assumed constant and equal to 0.1 seconds for the sake of simplicity. Although fin
effectiveness is not uniform throughout the trajectory, this roll-rate stabilisation strategy is
proven very successful for the present case study.

8.3.2 Control allocation

The control moment mctr(t) has now to be allocated between the three RLV effectors: TVC,
planar fins and cold gas thrusters. The most general control allocation method uses the weighted
pseudo-inverse of Γctr [BB02], given by:

Γ+
ctr = W−1

Γ ΓT
ctr

(
ΓctrW

−1
Γ ΓT

ctr

)−1 (8.53)

where matrixWΓ is applied for effector regularisation, to invert Eq. (8.49). This method, however,
is very sensitive to numerical issues related to the conditioning of matrix Γctr and the choice of
WΓ renders the design and validation process more complex. Hence, in this thesis, a simpler
algorithm based on [MMP09] is proposed.

The main idea of this algorithm is to try allocating mctr(t) entirely to a primary effector
ε1 and only employ a secondary effector ε2 if the maximum authority of the primary effector
β̄ε1 were to be exceeded. Following the notation above and the definition of Eq. (8.49), control
inputs are first computed as:

βε1(t) = −mctr(t)

µε1(t)
, βε2(t) = 0 (8.54)

Then, if the maximum authority of ε1 is exceeded, i.e. if |βε1(t)| > β̄ε1 , βε1(t) is constrained and
βε2(t) is updated as follows:

βε1(t) = β̄ε1 sgnβε1(t) , βε2(t) = −mctr(t) + µε1(t)βε1(t)

µε2(t)
(8.55)

where the numerator of βε2(t) corresponds to the difference between the commanded moment
and the one achievable with ε1.

A suitable definition of primary and secondary effectors naturally changes throughout the
trajectory according to their effectiveness coefficients. The choice implemented in this study is
summarised in Table 8.4.

As the table shows, 6 modes have been defined, and for each a maximum authority value of
the primary effector can be assigned. Note that there are a couple of modes where no secondary
effector is necessary. In addition, the few seconds prior to PL separation are performed in
open-loop so as to avoid instability caused by the rapid change of inertia.
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Table 8.4: Control allocation modes

Primary Secondary

effector effector

From lift-off to engine cut-off (t = 110 s) TVC —–

From previous to PL separation (t = 112 s) Open-loop —–

From previous to drop of |µf(t)| Fins (35 deg max) Thrusters

From previous to recovery of |µf(t)| Thrusters —–

From previous to tf with: low thrust Fins (35 deg max) TVC

high thrust TVC (3 deg max) Fins

8.4 Coupled assessment

The assessment of coupled flight mechanics and G&C laws is demonstrated in this section
in two ways. First, a detailed comparison of DRL and RTLS missions using CTVG recovery
and a perfect attitude control is given. Then, the impact of attitude control on stability and
performance of DRL missions is assessed.

8.4.1 Recovery analysis

The aim of this subsection is to provide a quantitative comparison between DRL and RTLS
recovery strategies. Since the main differences between these missions are mostly related to their
trajectory, perfect attitude control dynamics will be assumed for simplicity. This means that
attitude angles are exactly what they are commanded to be, {θ(t), ψ(t)} = {θref(t), ψref(t)},
and that all the aerodynamic moments generated by the vehicle are compensated for, i.e. that
Maero(t)+MTVC(t)+Mfin(t)+Mthr(t) = 0. This is the standard approach used when developing
and assessing guidance schemes.

The two L&R trajectories obtained with CTVG triggered at hs = 25 km are depicted in
Fig. 8.10. Although sharing the same launch profile, the distinction between DRL using the
sea-going recovery platform with final time tf = 390 seconds and RTLS with tf = 500 seconds
is clear in the figure.

Detailed results of the simulations are plotted in Fig. 8.11 for DRL and Fig. 8.12 for RTLS.
The phases of launch (from lift-off to separation), exo-atmospheric flight (from separation to
recovery burn) and recovery (from recovery burn to touchdown) are distinguished in every plot
using dash-dotted, dashed and continuous lines respectively, and a thorough analysis of the plots
is provided subsequently. The figures show the most relevant flight performance indicators, also
gathered in Table 8.5. These indicators include total propellant consumption mburnt given by
Eq. (8.42), maximum aerothermal loads, Q and QH , vertical and horizontal touchdown velocity,
‖vRz(tf )‖ and ‖vRx,y(tf )‖, as well as position error ‖rRx,y(tf )‖.
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Figure 8.10: DRL and RTLS trajectories (image generated with Google Earth)

The top-left plot of Fig. 8.11 shows the evolution of vertical and horizontal velocity as a
function of altitude (in the vertical axis) for the DRL scenario. During launch, velocity increases
in both vertical and horizontal directions and separation occurs when the latter reaches its
maximum value at an approximate altitude of 51 km. From that point, the vehicle continues to
ascend until its vertical velocity becomes zero at an approximate altitude of 74 km and then
plunges downwards due to the action of gravity. In the meantime, horizontal velocity is dissipated
as a consequence of aerodynamic forces, which become more intense as altitude decreases (and
air density increases). Then, at an altitude of 25 km, recovery guidance is activated and the
commanded burn brings both components to zero at the landing point. It is important to notice
that horizontal velocity converges to this value significantly before their counterpart, which is
critical to ensure a vertical landing.

The bottom-left plot illustrates the evolution of dynamic pressure (Eq. (8.11)) and heat
flux (Eq. (8.23)) as a function of the vehicle’s Mach number. During launch, velocity increases
and air density decreases, which causes Q and QH to tend to zero at lift-off and at maximum
altitude (74 km, where M ≈ 5.3) and to have a peak value in-between. These indicators then
increase abruptly once the RLV starts to descend (at M ≈ 4.9) and re-enters the atmosphere.
At this point, recovery guidance is activated in order to manage the second peak values of these
indicators and bring them to zero at the landing point. Maximum values of Q and QH during
L&R are registered in Table 8.5 (it is important to note that the ascent peak of Q is higher than
the descent either with DRL or RTLS, but the descent peak of QH with DRL is the highest).

The uppermost plot on the right-hand side of Fig. 8.11 shows the reference pitch and yaw
angles {θref , ψref} as well as the total angle of attack αeff over mission time. The reference
attitude angles were shown in Fig. 8.7 for the launch phase (i.e. up to approximately 110 seconds).
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Figure 8.11: Flight mechanics results of DRL mission

In terms of the angle of attack, it remains close to zero during this phase, with a maximum
value under 5 degrees around pitch over (at 10 seconds).

Subsequently (dashed phase), the reference pitch angle follows a constant-rate manoeuvre to
flip over the booster during the exo-atmospheric flight while demanding a constant yaw angle.
This constant-rate flip over manoeuvre causes the angle of attack to go from zero to 180 degrees,
which implies that the velocity vector becomes aligned with the booster’s base. And finally
during the recovery, the reference attitude angles are computed by the guidance algorithm,
which results in θref converging to 90 degrees at touchdown (ensuring a vertical landing), ψref

remaining close to zero due to little aerodynamic couplings with the pitch motion and αeff close
to 180 degrees.

The second right-hand plot illustrates the evolution of the thrust vector magnitude Tref and
aerodynamic moment ||Maero||. Similar to the previous plot, Tref is given by Fig. 8.7 during
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the launch phase and computed by the guidance algorithm during recovery. The recovery burn
is more intense at the beginning (where zero-effort errors are larger) and close to touchdown
(where t→ tf ). The aerodynamic moment to be compensated, as expected, is more demanding
in zones of high dynamic pressure and angle of attack.

The third right-hand plot of Fig. 8.11 shows the evolution of the vehicle’s total mass using
logarithmic scale for clarity. Here, three zones of mass variation can be identified: [i] launch burn,
where most of the propellant is depleted, [ii] separation (sudden drop of mPL at 112 seconds of
flight), and [iii] recovery burn for re-entry and landing. Propellant consumption during L&R is
also registered in Table 8.5 with respect to its initial mass. In this scenario, while 90.30% of
propellant is depleted during launch, only 4.98% is required for the recovery, which leaves a
margin of about 4.7%.

Finally, the bottom-right plot illustrates the longitudinal travel of CP and CG relative to
the booster’s base throughout the flight. While the former is governed by the aerodynamic
environment encountered, the latter follows the depletion of mass as per Eq. (8.43). Hence, the
same three zones of launch (with CG moving forward), separation (sudden drop of mPL hPL)
and recovery (CG moves backward, although not visible in the plot as mass variation is quite
small) can be distinguished. In any case, the RLV is inherently unstable during powered flight
since the CP is located in front of the CG during ascent and behind during descent.

Regarding the RTLS results provided in Fig. 8.12, the main difference with respect to the
previous scenario lies on the boostback burn required to bring the stage back to the launch site.
In terms of velocity (top-left plot), this burn results in the inversion of the horizontal component
and the reduction of its magnitude to approximately half of its value at separation. In addition,
there is a stronger interplay between vertical and horizontal components, also visible in Fig. 8.10,
caused by the close interactions between trajectory and aerodynamics that are not taken into
account by the CTVG algorithm. This was one of the drawbacks identified before for this type
of guidance. The velocity reduction is then translated into less demanding aerothermal recovery
indicators than for the DRL trajectory, as evidenced by the bottom-left plot and in Table 8.5.

In terms of attitude (top-right plot of Fig. 8.12), the main difference is related to the
rapid constant-rate flip over manoeuvre, followed by a 30 seconds period with constant pitch
θref = 180 degrees during which the boostback burn takes place (recall Fig. 8.6b) and by a
second constant-rate manoeuvre prior to the recovery burn. The flip over manoeuvre also causes
the total angle of attack to follow the pitch variation, but the former angle returns to zero as
soon as the horizontal velocity is inverted by the boostback burn. Once the recovery burn is
activated, the observations are similar to the DRL approach, although the coupling between
pitch and yaw motion is slightly more intense.

The thrust reference associated with the boostback burn is clearly visible in the second
right-hand plot. The velocity reduction this burn induces is reflected into less intense thrust
commands during recovery compared to the DRL scenario, but larger aerodynamic moments
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Figure 8.12: Flight mechanics results of RTLS mission

Table 8.5: Nominal L&R performance indicators

Indicator Launch DRL RTLS

mburnt(tf )/mprop(0) (%) 90.3 4.98 9.60

maxQ (kPa) 53.0 44.8 11.2

maxQH (kW/cm2) 51.7 89.1 15.3

‖vRz(tf )‖ (m/s) —– 0.39 1.34

‖vRx,y(tf )‖ (m/s) —– 1.24 1.19

‖rRx,y(tf )‖ (m) —– 0.01 0.08
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due to higher angles of attack. Also as a result of this burn, an additional mass-depletion zone is
visible in the third right-hand plot. The evolution of CP and CG in the bottom-right plot is also
slightly different in comparison with the DRL case, but the overall observations are the same.

Despite the less intense effort during recovery, the boostback burn makes the RTLS approach
a significantly more demanding trajectory in terms of propellant consumption (see Table 8.5).
In fact, 9.6% of propellant is now required for the recovery, leaving a margin of only 0.1%. This
very tight margin also motivates the need for more performing recovery guidance algorithms,
such as the one presented in Chapter 9.

In addition to the indicators already covered, Table 8.5 includes vertical and horizontal
touchdown velocity, as well as position error, which are naturally of critical relevance for recovery
assessment. For the two cases analysed, all these values are well within an adequate range. It is
highlighted that these indicators should be ideally as small as possible but, in practice, their
combined optimisation is an extremely challenging activity. The reason behind this is that a
choice of recovery guidance tuning parameters that minimises propellant consumption is likely
to subject the vehicle to higher aerothermal loads [LSL16, WG17], and vice-versa.

Finally, to analyse the sensitivity of the proposed guidance approach to wind, 1000 runs of
the DRL recovery were performed with gusts perturbing both ascent/descent phases (and with
no other perturbations). These gusts are introduced using two orthogonal components wNRN

and wERN (recall Eq. (8.6)) and modelled by uncorrelated Dryden filters. The final landing
trajectories and touchdown position/velocity dispersions obtained with severe wind are provided
in Fig. 8.13a and 8.13b, respectively.

(a) Landing trajectories in the RP frame
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(b) Position and velocity dispersions at touchdown

Figure 8.13: Impact of wind on DRL trajectory (1000 runs)

These figures show that all the wind-induced dispersions could be shrunk towards successful
pinpoint soft landings. As highlighted in Fig. 8.13b, the touchdown position has a 3σ dispersion
of 0.1 m around the recovery platform’s centre and less than 1% of the cases landed with velocity
higher than 3.5 m/s.
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8.4.2 Controllability analysis

The impact of attitude control on L&R trajectories is now addressed by closing the loop with
the controller introduced in Sec. 8.3 and using the time-scheduled control gains of Fig. 8.9b. This
section focuses on DRL missions since they were shown to be the most demanding ones in terms
of aerothermal loads (recall Table 8.5). Simulation results are depicted in Fig. 8.14. An animation
of this simulation can also be accessed in http://doi.org/10.13140/RG.2.2.35780.37760.
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Figure 8.14: Flight mechanics results of DRL mission with closed-loop control
The two left-hand side plots in Fig. 8.14 show the same information of Fig. 8.11 (i.e. velocity

components vs. altitude and aerothermal indicators vs. Mach), but without distinguishing now
the phases of flight. It can be seen that general trends and peak values with respect to the
previous perfect control trajectory are extremely similar. The main differences take place close
to touchdown, where the evolution of vertical and horizontal velocity becomes slightly more
elaborate. This happens because descent guidance and attitude control are tightly coupled:
actuator deflections required for attitude control generate lateral forces as a side effect, which
then cause landing trajectory and guidance commands to change.
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The uppermost plot on the right-hand side of Fig. 8.14 shows now the evolution of commanded
and actual attitude angles. It is clear that the pitch and yaw commands are successfully tracked
(with larger errors during re-entry and first stage re-ignition) while roll is kept approximately
constant throughout the mission. It is also interesting to verify that the commands are quite
different from those in Fig. 8.11 due to the aforementioned guidance-control coupling.

The required actuator deflections are provided in the second right-hand plot for TVC and
in the last plot for the fins. The main critical events are also identified in both plots. Cold gas
thrusters are only active during the designated area and not shown for the sake of conciseness.
Evolution of the main engine thrust magnitude and vehicle MCI properties are similar to those
of Fig. 8.11 and therefore also omitted.

As these two last right-hand plots show, attitude is controlled using TVC only (with
maximum deflection of 2 degrees) until engine cut-off. This is followed by a few seconds of
open-loop control (recall Table 8.4) and by fin activation to compensate for perturbations related
to PL separation and high-speed aerodynamics. There is then a period of thruster control only
where fin effectiveness is reduced due to the high altitude. Finally, fins are reactivated for precise
control during D&L, and are also aided by the TVC when its effectiveness is higher, at the start
and end of recovery burn.

Naturally, the majority of control activity takes place in the trajectory pitch plane (through
βTVC,y, βfin,1 and βfin,2) and the remaining deflections are mostly employed for small corrections.
It is important to highlight that, while βfin,1 = βfin,2, the same does not hold for βfin,3 and βfin,4

due to their differential deflection for roll stabilisation given by Eq. (8.52). This deflection is
highlighted in Fig. 8.15 and is in the order of 10−3 degrees, even at high altitudes (between 200
and 250 seconds).
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Figure 8.15: Differential fin deflection for roll stabilisation. Yaw control offset has been deducted.
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The information provided by these simulations is also crucial at the vehicle’s sizing stage
as it allows to evaluate the control authority that is required to ensure its controllability over
the flight and under different levels of wind perturbations. For instance, one can compute trim
conditions of the lateral motion throughout the trajectory based on the equilibrium of moments
with respect to the body jB or kB axes.

The aforementioned conditions correspond to the solution of Eq. (C.5) from Appendix C.
Wind perturbations of velocity vw in the vehicle’s normal axis are introduced via Angle of
Attack (AoA) perturbations as follows:

tanα =
vCP

air,z − vw

vCP
air,x

≈ tanα0 −
vw

V cosα0
(8.56)

in which α0 is the value taken from the simulation with no wind. The impact of such perturbations
changes greatly throughout the trajectory and this can be quantified using the Qα indicator
introduced in Sec. 8.1.3. The time responses of this indicator during the simulation of Fig. 8.14
and for different values of vw ∈ [−15, 45] m/s around that trajectory are provided (using
different colours) in Fig. 8.16.
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Figure 8.16: Impact of wind on DRL Qα with closed-loop control

As this figure shows, there is one main Qα peak during launch and another one during
recovery. These peaks are worsened when vw 6= 0 in accordance with Eq. (8.56). The impact of
wind is higher for launch, but the nominal Qα peak is more demanding for recovery, both of
them caused by the fact that α0 is also higher at recovery than at launch.

Trim curves are then plotted in Fig. 8.17a and 8.17b for two extreme conditions during
recovery: booster re-ignition (at 288 seconds) and maximum Qα (at 335 seconds), respectively.
Each plot shows solutions of Eq. (C.5) for fin deflections |βfin,y| ≤ 40 degrees (x axis), TVC
deflections |βTVC,y| ≤ 15 degrees (y axis) and wind perturbations vw.
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(a) Booster re-ignition (t = 288 s)
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(b) Maximum recovery Qα (t = 335 s)

Figure 8.17: Attitude (TVC vs. fin deflection) trim curves at extreme flight conditions

From Fig. 8.17a, it is possible to observe that, in spite of the dynamic disturbance induced
by the booster re-ignition at 288 seconds, controlling the vehicle is not particularly demanding
nor affected by wind. This happens because the aerodynamic stress encountered at this point is
fairly small due to low values of both Q and α. In fact, for the configurations under analysis,
the vehicle can always be trimmed using individual fin or TVC deflections under 1 degree.

This situation is naturally opposed to the point of maximum Qα, depicted in Fig. 8.17b. The
first conclusion to be drawn from here is that the vehicle could not be controlled without using
fins, as the trim curves do not intersect the βfin,y = 0 coordinate. In contrast, without using
TVC, trim with no wind requires a fin deflection of about 22 deg (point À, the lower-left point
in the inner rectangle of the figure). This equilibrium value is very close to the one observed
in Fig. 8.14 at 335 seconds, where the vehicle is slowly pitching up in preparation for landing.
The required fin deflection could however be alleviated for example to 16.4 deg, allowing an
additional TVC deflection of 10 deg (point Á, the upper-left point going along the line from À).

Introducing wind then makes the vehicle’s controllability more challenging. Suppose a
maximum authority of 30 deg is allocated to the fins. In case there is wind, fins alone allow
to compensate for speeds up to 16 m/s (point Â, the lower-right point) or, if they are fixed to
their previous value and TVC is used, up to 12 m/s (point Ã, above along the line from Â).
However, if an efficient allocation of both fins and TVC is employed, the present configuration
allows to accommodate wind speeds of 29 m/s (point Ä, upper-right point in the rectangle),
which represent rather severe gusts.

In addition to wind, controllability is also affected when the vehicle’s properties do not match
those assumed at design stage. To demonstrate this effect, the previous analysis is repeated
considering multiplicative perturbations in the aerodynamic effectiveness of the vehicle and its
fins, µα and µf . These perturbations cover potential mismatches in terms of CP and CG travel,
as well as of reference area and load coefficient of the vehicle and fins.
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Trim curves at maximum recovery Qα are now computed for two corner-cases and illustrated
in Fig. 8.18. Figure 8.18a shows a case where µf is 30% lower and µα is the same as before,
which accounts for a reduced ability of the fins to counteract loads. Figure 8.18b depicts a
configuration with µα 30% higher and same µf , simulating an increased proneness of the vehicle
to generate aerodynamic loads. The numbers of the marked points remain the same as before
for ease of explanation.
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(a) µf 30% lower (same µα)
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(b) µα 30% higher (same µf)

Figure 8.18: Attitude trim curves at maximum recovery Qα with corner-case RLV properties

As expected, both cases lead to a more challenging controllability of the vehicle, as indicated
by the shift of the curves to the right (compare e.g. the values of the black line at the x axis), but
its attitude trim capability remains ensured over a very wide range of wind speeds. For instance,
with full fin and TVC deflections (point Ä), the maximum velocity that can be accommodated is
reduced from 29 to 25 m/s in the first case and to 23 m/s in the second. Despite being generally
verified, this conclusion does not hold for every control combination because, in addition to
control effectiveness, fin effectiveness contributes to the vehicle aerodynamics as well (recall
the generalisation of µα′ in Eq. (8.35)). As an example, the wind velocity tolerated in point Ã

increases from 12 m/s in Fig. 8.17b to 15 m/s in Fig. 8.18a.
The control and allocation laws presented in this chapter represent a baseline against

which more sophisticated techniques will be compared in Chapter 10. As anticipated by the
present analysis, the ability to account for the impact of wind and AoA will be critical for the
development of high-performance attitude controllers.
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9
Improving Guidance via Onboard Convex Optimisation

The objective of this chapter is to improve the recovery guidance algorithm proposed with the
Reusable Launch Vehicle (RLV) benchmark in Sec. 8.2.2, which will be achieved through the
Computational Guidance and Control paradigm introduced in Sec. 2.1.3.

In particular, special emphasis is placed on the build-up of knowledge from simpler Descent
& Landing (D&L) techniques such as Constrained Terminal Velocity Guidance (CTVG) towards
the development of a novel onboard algorithm coined Descending over Extended envelopes
using Successive ConvExificatioN-baseD Optimisation (DESCENDO). The main strength of this
approach is that, as the main parameters on which CTVG depends are intrinsically representative
of the physics of the recovery problem, it allows to have a quick understanding of the acceptable
flight performance, which can then be leveraged for improvements.

The DESCENDO algorithm follows similar lines to [SABJH16, JMBS17], but it is specifically
tailored to the extended flight envelope encountered by reusable launchers. Furthermore, the
proposed algorithm is implemented in a closed-loop fashion (in opposition to an offline setting,
recall Sec. 2.1.2) and verified using the complete reusable launcher recovery scenarios of Sec. 8.2.1,
which is something that the launcher control community has not yet formally investigated.

With the aforementioned approach in mind, this chapter begins with the baseline performance
assessment driving the first improvements in Sec. 9.1. Subsequently, the DESCENDO algorithm
is developed in Sec. 9.2 and the results of its application are provided in Sec. 9.3. The proposed
approach has been presented together with the RLV benchmark in [SMB19a] and further detailed
in [SMB19b].

In order to expedite the simulations, a coarser RLV aerodynamic coefficient set is employed.
Hence, the Launch & Recovery (L&R) performance indicators provided in this chapter are
slightly different from those of Chapter 8, but the trends and conclusions established here have
been verified via simulation to be independent of the aerodynamic fidelity level.
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9.1 Baseline guidance performance assessment

Before tackling the improvement of performance through a more sophisticated guidance algorithm
(Sec. 9.2), the purpose of this section is to analyse the impact of different guidance parameters
and the compromises that can be achieved. To do so, an analysis approach using CTVG is
proposed in Sec. 9.1.1 and its results discussed in Sec. 9.1.2.

9.1.1 The trade-off map approach revisited

The baseline performance assessment is strongly based on the trade-off map approach proposed
in Sec. 4.2. It relies on systematic simulation of the nonlinear benchmark model over a guidance
parameter grid to generate trade-off maps that enable a clear quantification of candidate choices.

Performance trade-off maps are generated by overlapping contour plots associated with key
D&L metrics, which may represent either nominal or dispersed (e.g. standard deviation) values.
For the present study, these indicators include:

• mrec = m(tsep)−m(tf ), propellant mass required for recovery. This value is the most direct
mission performance indicator since decreasing the required propellant from separation
(tsep) to touchdown (tf ) enables an increase of payload mass and subsequent reduction of
the launch cost per kilogram of payload;

• Qmax = max Q(t)|t∈ [tsep, tf ], maximum dynamic pressure encountered during recovery, to
which aerodynamic loads are proportional. A higher dynamic pressure therefore requires a
more structurally robust vehicle’s body to withstand the associated loads and typically
leads to an increase of its dry mass;

• vf = ||v(tf )||, touchdown velocity norm, which needs to be sustained by the vehicle’s
landing gear. Similar to the above, higher touchdown velocities will require reinforced
mechanisms, which tend to increase the dry mass.

In the first two indicators, the separation time is taken to be tsep = 112 seconds.
Another mission-critical indicator is the maximum heat flux (proportional to V 3(t)). This

indicator was verified to follow similar trends to the maximum dynamic pressure (proportional
to V 2(t), see Eq. (8.11)) and therefore it is not shown in the trade-off maps for the sake of
conciseness.

Finally, it is important to recall that the two main parameters on which the CTVG technique
depends, hs and tf , are in fact intrinsically representative of the physics of the reusable L&R
problem. In other words, performance indicators change depending on the guidance solution
utilised, but their general trends remain comparable. Hence, CTVG trade-off maps over the
parameter space of hs and tf become extremely valuable since they can be generated very quickly
and the understanding they provide regarding the performance impact of those parameters
remains valid for other guidance algorithms.
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9.1. BASELINE GUIDANCE PERFORMANCE ASSESSMENT

9.1.2 Results and discussion

Trade-off maps for the Down-Range Landing (DRL) and Return To Launch Site (RTLS)
missions are depicted in Fig. 9.1a and 9.1b, respectively. They both show contours of the
previous indicators over the parameter space of start altitude hs ∈ [5, 40] km and final time
tf ∈ [360, 420] seconds. In addition, the optimal (minimum) value of each of the three indicators
is highlighted using the symbol ◦ (with the colour corresponding to the appropriate indicator).
Note that these optimal values lie on the axes of the figures.
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Figure 9.1: CTVG trade-off maps for hs and tf . ∗ indicates initial guidance choice, and {�,4}
different optimisation choices.

Starting with DRL recovery, Fig. 9.1a, the trade-offs between propellant mass mrec (black),
dynamic pressure Qmax (cyan) and touchdown speed vf (red) are clearly perceptible. For
example: [i] the minimum mrec (of 2.65 ton, located in the top-left corner) leads to a very high
Qmax because it is associated with a very low start altitude, [ii] the minimum Qmax (of 25.3 kPa,
on the top-right side) is related to a high mrec, as physically expected, and [iii] the minimum
vf (of 0.27 m/s, located towards the mid-bottom of the left axis) requires more demanding
guidance commands – mostly via a reduced final time (recall Eq. (8.47)) and therefore increased
mrec and Qmax.

In other words, a single guidance choice cannot simultaneously attain all three optima, but
is the result of a performance compromise. Suitable compromises and guidance choices can
however be easily identified and quantified using the trade-off map.

As an illustration, consider the initial choice taken from Table 8.3 of {hs, tf} = {25.0, 380}
(indicated by the symbol ∗ in Fig. 9.1a). This choice leads to mrec = 5.26 ton, Qmax = 83.7 kPa
and vf = 1.62 m/s. Now assume that the vehicle’s landing gear has a stronger structural
resistance and is able to withstand speeds 25% higher, i.e. up to 2 m/s (meaning that it does
not need to slow down as much throughout the descent). In this case, keeping the same value of
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CHAPTER 9. IMPROVING GUIDANCE VIA ONBOARD CONVEX OPTIMISATION

Qmax, the required propellant can be reduced to 4.95 ton by choosing {hs, tf} = {24.7, 370}
(indicated by the symbol �). This choice translates to initiating the manoeuvre slightly later
and finishing 10 seconds earlier. If, in addition to that, the vehicle is able to sustain a dynamic
pressure of 60 kPa (closer to the 53 kPa encountered during launch), the optimal choice becomes
{hs, tf} = {28.9, 383} (marked by 4) and the required propellant increases to 5.30 ton.

It is interesting to note that, although the latter guidance choice (4) and the initial one (∗)
have comparable propellant requirements, they are considerably different in terms of trajectory
and dynamic pressure, as evidenced by Fig. 9.2a and 9.2b, respectively. This consideration
proves that it is not enough to rely on a single indicator for a fair comparison of D&L guidance
approaches.
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Figure 9.2: DRL results with different guidance choices. Markers show increments of 20 seconds.

The trade-off map for RTLS recovery is provided in Fig. 9.1b. Performance trends are
roughly similar to the DRL case, although values of mrec are now globally higher and values of
Qmax lower. This effect is caused by the additional firing needed to bring the stage back, which
additionally reduces the magnitude of its horizontal velocity and thus dynamic pressure. From
the analysis of Sec. 8.4.1, it is also known that only about 8.9 ton of propellant is available after
launch and therefore not all the parameter space shown in the trade-off map is feasible.

Conflicting guidance choices that optimise each single indicator for the RTLS case can
again be identified: [i] minimum mrec (of 7.71 ton, bottom-left corner) leads to a high Qmax,
[ii] minimum Qmax (of 9.31 kPa, top-right corner) is related to a high mrec, and [iii] minimum
vf (of 1.19 m/s, bottom-right corner) lies in one of the unfeasible areas mentioned above. The
same trade-off exercise carried out for DRL recovery is repeated next.

The initial choice (∗) from Table 8.3 of {hs, tf} = {25.0, 380} leads to mrec = 8.55 ton,
Qmax = 31.8 kPa and vf = 1.85 m/s. Now considering that the vehicle’s constraints are exactly
the same as for the 4 point before, i.e. 60 kPa dynamic pressure and 2 m/s touchdown speed,
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revising the guidance choice to {hs, tf} = {18.2, 381} leads to an alleviation of the propellant
requirement to 8.37 ton (also marked in Fig. 9.1b by 4).

9.2 The DESCENDO algorithm

The DESCENDO algorithm has been designed as a middle-ground between computational
efficiency and trajectory optimality. It is built-up from the understanding obtained from the
previous trade-off analysis, as well as from concepts of convex optimisation-based guidance
(introduced in Sec. 2.1.4.3 and revisited here in Sec. 9.2.1). The implementation strategy and
mathematical details of DESCENDO are provided in Sec. 9.2.2 and 9.2.3, respectively.

9.2.1 Convex optimisation-based guidance revisited

The proposed algorithm relies extensively on the lossless and successive convexification techniques,
introduced in Sec. 2.1.4.3, which represent the foundation of convex optimisation-based guidance.
More specifically, it is based on the work of Szmuk et al. [SABJH16] and Jerez et al. [JMBS17],
with a few fundamental and critical differences.

The latter reference [JMBS17] is mostly focused on maximising computational efficiency.
This algorithm is ideal for real-time execution, but it relies on an extensive simplification of the
equations of motion including disregarding aerodynamic forces, which play a decisive role in the
vehicle’s recovery trajectory.

On the other hand, reference [SABJH16] takes a completely different approach to [JMBS17]
and focuses on maximising the optimality of the solution by employing successive convexifications
to account for aerodynamic effects (as well as engine back-pressure losses). It is also noted that
the two approaches have only been verified for low altitude and velocity, and that the assumption
of constant air density made in [SABJH16] is not physically representative for RLVs.

With these considerations in mind, the objective of the proposed algorithm is to attain a
middle-ground between the efficiency and optimality of the two aforementioned approaches
that is suitable for the extended flight envelope encountered by RLVs. This algorithm is termed
Descending over Extended envelopes using Successive ConvExificatioN-baseD Optimisation
(DESCENDO).

One additional difference with respect to Szmuk et al. [SABJH16] is that the final time tf is
not an optimisation variable and needs to be specified. This choice is made in order to provide
a common comparative framework with the baseline approach of Sec. 8.2.2.

Moreover, this development relies on a perfect attitude control assumption, which is a
common practice for designing and assessing guidance schemes since attitude can be changed
quickly compared to the trajectory. The impact of attitude control on the loads experienced by
the vehicle and its minimisation using robust Load Relief (LR) algorithms will be addressed in
Chapter 10.
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9.2.2 The DESCENDO algorithm implementation

The DESCENDO guidance algorithm is schematised in Fig. 9.3 and further detailed in Sec. 9.2.3.
It has been implemented in MATLAB using the CVX library [GB14] to formulate the convex
problems, and the ECOS routine [DCB13] to solve them. Both tools are freely available.
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Figure 9.3: The DESCENDO guidance algorithm

The algorithm consists of two Second-Order Cone Programming (SOCP) stages, see Fig. 9.3:
[i] SOCP 9.1, which allows to find a discrete trajectory and acceleration profile not accounting
with aerodynamic effects, and [ii] SOCP 9.2, where successive convexifications are iteratively
applied to define a convex approximation of those effects – for solution optimality purposes.
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At each simulation instance (determined by the simulation rate fsim), a commanded thrust
vector in the Recovery Pad (RP) frame TCVX(t) is computed from the most recent guidance
solution via linear interpolation. That solution is stored as an onboard look-up table and updated
only when an SOCP step is executed and a feasible solution is found.

SOCP 9.1 is triggered at every guidance step, which is determined by the guidance update
frequency fgui and by a pre-specified altitude hs. To enable its formulation, trajectory and opti-
misation variables are first discretised into N uniformly-spaced points, ranging from the current
instant of time t to touchdown time tf . The discretisation interval between two consecutive
points corresponds to:

TS =
tf − t
N − 1

(9.1)

and, since TS → 0 as t→ tf , the accuracy of the discretisation becomes more refined towards
the end. The execution of SOCP 9.2 is determined by two additional variables, hP and NP (not
to be confused with hs and N), which are shown in Fig. 9.3 and will be detailed in Sec. 9.2.3.

The accuracy of DESCENDO increases with the guidance update frequency fgui and with
the number of points N , at the expense of a higher computational load – for this reason, fgui

is typically smaller than the simulation rate fsim. It is important to note that a higher fgui

does not increase the accuracy of the SOCPs themselves, but executing them more frequently
minimises errors introduced by the trajectory discretisation and aerodynamic forces.

N could be adjusted over time, in order to have a larger number of points in earlier (longer)
trajectories. In practice, varying N is more demanding as it involves the implementation and
validation of different guidance modes. Since this preliminary study is focused on the behaviour
of the algorithm itself, this extra effort will be avoided by keeping N constant.

9.2.3 The DESCENDO optimisation problems

The formulation of SOCP 9.1 is similar to SOCP 2.1, with a few important additions. It
employs the same change of variables of Eq. (2.54) and (2.55), cost function of Eq. (2.56), and
boundary conditions, with the exception of an inequality relaxation of the final vertical velocity
(i.e. vz[N ] ≤ vfz).

The discrete dynamics equations are also the same, with Eq. (2.57) representing the transla-
tional motion of Eq. (8.8), Eq. (2.58) describing the mass-depletion dynamics of Eq. (8.28), and
TS given by Eq. (9.1). As mentioned before, recovery calculations are made in the RP reference
frame where non-inertial effects are neglected.

This optimisation problem relies also on the same lossless convexification constraints on
w[k] and σ[k] given by Eq. (2.59) and (2.60), as well as on the control limitations θmax, Tmin

and Tmax, imposed by Eq. (2.61) and (2.62).

It is important to notice that, at this point, aerodynamic effects are not yet included. In
addition, constraints (2.61) and (2.62) are only enforced during the burn periods defined by a
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pre-specified set TP , which depends on the relative duration of re-entry and landing burn, t1
and t2 (recall Sec. 8.2.1). Outside these periods, the applied thrust acceleration is set to zero.

The maximum thrust magnitude rate is also bounded to Ṫmax using a forward discretisation
scheme for the differentiation of σ[k] and a constraint equivalent to Eq. (2.62):

σ[k]− TS
Ṫmax

m̂(t)
≤ σ[k + 1] ≤ σ[k] + TS

Ṫmax

m̂(t)
(9.2)

This constraint was proven critical to the reduction of control chattering without having a
noticeable impact on the tightness of Eq. (2.60).

The SOCP 9.1 optimisation problem subject to the constraints introduced above is then
formulated as:

SOCP 9.1

max
a,σ

z[N ], subject to:

Boundary conditions

z[1] = ln m̂(t), r[1] = r̂(t), v[1] = v̂(t), a[1] = â(t)

r[N ] = rf , vx,y[N ] = vfx,y , vz[N ] ≤ vfz , ax,y[N ] = 0 2×1, az[N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N − 1]

r[k + 1] = r[k] + TS v[k] +
T 2

S

3

(
w[k] +

w[k + 1]

2

)
v[k + 1] = v[k] +

TS

2
(w[k] + w[k + 1])

z[k + 1] = z[k]− 1

Ispg0

TS

2
(σ[k] + σ[k + 1])

Surrogate variables, ∀k ∈ [1, · · · , N ]

w[k] = a[k] + ĝ(t)

‖a[k]‖ ≤ σ[k]

Control constraints, ∀k ∈ [1, · · · , N − 1] az[k] ≥ ‖ax,y[k]‖
tan θmax

,
Tmin

m̂(t)
≤ σ[k] ≤ Tmax

m̂(t)
, if TS(k − 1) ∈ TP

a[k] = 0 3×1, otherwise

Control rate constraints, ∀k ∈ [1, · · · , N − 1]

σ[k]− TS
Ṫmax

m̂(t)
≤ σ[k + 1] ≤ σ[k] + TS

Ṫmax

m̂(t)

The main limitation of this formulation lies on its inability to account for aerodynamic forces.
Without any knowledge of the deceleration caused by these forces, the algorithm overestimates
the amount of propellant needed to slow the vehicle down for landing. But most importantly, it
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is highlighted that, because of this discrepancy, earlier SOCP 9.1 solutions can only be found
if subsurface flight avoidance (or any other flight path constraint) is not enforced. Moreover,
the algorithm is able to recover more effectively from an earlier solution where all boundary
conditions are met (even if with subsurface flight) than from one without subsurface flight. This
recovery will be highlighted in Sec. 9.3.

To overcome the aforementioned limitations, the DESCENDO algorithm then introduces the
successive convexification procedure of [LL14, MSA16]. This procedure involves solving a second
(iteratively more refined) SOCP in which the solution of the previous problem is employed to
define a convex approximation of the aerodynamic effects.

The successive convexification loop is executed NP times per guidance step, and the solution
of SOCP 9.1 (if feasible) is used for the first iteration. This approach results in 1 +NP SOCPs
(i.e. 1 SOCP 9.1 and NP SOCPs 9.2) being solved at each guidance step. If SOCP 9.1 is not
feasible, the guidance solution is not updated and the interpolation uses the solution obtained
in the previous guidance step.

Aerodynamic effects in the refined SOCP 9.2 are approximated by augmenting the surrogate
acceleration vector with a velocity-dependent term defined as:

w[k] = a[k] + ĝ(t)− d∗i [k]v[k] (9.3)

where d∗i [k] is a template computed before the SOCP, and therefore its complexity does not
affect the efficiency of the problem’s solution. Since the most significant aerodynamic effect
during recovery is the deceleration due to drag, which is parallel to the velocity vector, d∗i [k] is
defined as:

d∗i [k] =
1

2
ρ∗i [k]SrefC

∗
Di[k]

‖v∗i [k]‖
exp z∗i [k]

(9.4)

In this equation, v∗i [k] and z∗i [k] are given directly by the solution of the previous SOCP
ith iteration, and ρ∗i [k] and C∗Di[k] can be estimated as functions of v∗i [k] and r∗i [k]. For this
scenario however, defining ρ∗i [k] as a linearly-spaced vector from ρ̂(t) to ρ0 (ρ0 ≈ 1.23 kg/m3 is
the density at sea level) and C∗Di[k] = CD|α=π as a constant was verified to yield acceptable
results.

In addition to the aerodynamic template, the iterative process includes a quadratic condition
that facilitates the algorithm’s convergence by bounding the deviation between guidance solutions
found in two consecutive iterations. This condition is known as a Trust Region Constraint (TRC),
see also Fig. 9.3, and defined as:

‖a[k]− a∗i [k]‖ ≤ ηa[k] (9.5)

where a∗i [k] is the thrust acceleration template determined by the previous SOCP ith iteration.
The TRC is enforced by minimising ηa[k], hence the SOCP objective function needs to be
augmented with the point-wise sum of this vector, weighted by wηa . A smaller value of wηa will
be reflected in a larger variation between solutions, and vice-versa.
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The formulation of the refined optimisation problem featuring the acceleration of Eq. (9.3),
the TRC of Eq. (9.5) and the augmented objective function is provided in SOCP 9.2:

SOCP 9.2

max
a,σ

z[N ]− wηa
N∑
k=1

ηa[k], subject to:

Boundary conditions

z[1] = ln m̂(t), r[1] = r̂(t), v[1] = v̂(t), a[1] = â(t)

r[N ] = rf , v[N ] = vf , ax,y[N ] = 0 2×1, az[N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N − 1]

r[k + 1] = r[k] + TS v[k] +
T 2

S

3

(
w[k] +

w[k + 1]

2

)
v[k + 1] = v[k] +

TS

2
(w[k] + w[k + 1])

z[k + 1] = z[k]− 1

Ispg0

TS

2
(σ[k] + σ[k + 1])

Surrogate variables, ∀k ∈ [1, · · · , N ]

w[k] = a[k] + ĝ(t)− d∗i [k]v[k]

‖a[k]‖ ≤ σ[k]

Trust region constraints, ∀k ∈ [1, · · · , N ]

‖a[k]− a∗i [k]‖ ≤ ηa[k]

Flight path constraints, ∀k ∈ [1, · · · , N − 1]

rz[k] ≥ r̂z(t)

‖r̂x,y(t)‖
‖rx,y[k]‖

Control constraints, ∀k ∈ [1, · · · , N − 1] az[k] ≥ ‖ax,y[k]‖
tan θmax

,
Tmin

m̂(t)
≤ σ[k] ≤ Tmax

m̂(t)
, if TS(k − 1) ∈ TP

a[k] = 0 3×1, otherwise

Control rate constraints, ∀k ∈ [1, · · · , N − 1]

σ[k]− TS
Ṫmax

m̂(t)
≤ σ[k + 1] ≤ σ[k] + TS

Ṫmax

m̂(t)

Comparing this problem with SOCP 9.1, two increasingly stringent specifications are made:
[i] the inequality relaxation of the final vertical velocity vz[N ] is dropped, and [ii] the following
flight path constraint is introduced:

rz[k] ≥ r̂z(t)

‖r̂x,y(t)‖
‖rx,y[k]‖ (9.6)
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In addition to subsurface flight avoidance, this constraint ensures that the recovery trajectory
remains in the interior of a shrinking cone with vertex at the landing point and with the vehicle’s
current position r̂(t) on its surface.

It is also important to note that, as evidenced in Fig. 9.3, SOCP 9.2 is only solved while the
vehicle is higher than a pre-specified altitude hP. The reason for this choice is related to the
fact that velocity is significantly smaller at low altitudes and thus aerodynamic forces become
less intense. Therefore, disregarding their impact here introduces less error while reducing the
overall computational time.

9.3 DESCENDO results and discussion

The initial parameters adopted for the verification of the DESCENDO algorithm are listed in
Table 9.1. The start altitude (hs) and final time (tf ) are maintained for consistency the same as
for the baseline guidance in Sec. 8.2.2. The thrust control constraints are set to Tmax = 600 kN
and Ṫmax = 1 kN/s, while Tmin is set to zero without loss of generality.

Additionally, values of hP, θmax and wηw are stipulated as a result of a pattern search aimed
at minimising Qmax while keeping computational times as low as possible. It is remarked that
testing optimisation-based algorithms in closed-loop is particularly challenging due to the drastic
influence of the choice of fgui and N . These parameters have been kept constant throughout
the present study, but a thorough assessment of their impact would be crucial prior to any
real-world application.

Table 9.1: Initial DESCENDO algorithm parameters

Parameter Value

hs (km) 25

tf (s) 380

t1 (%) 0

t2 (%) 0

fsim (Hz) 10

fgui (Hz) 1

N 20

Parameter Value

NP {0, 1, 2}

hP (km) 2

θmax (deg) 65 (DRL), 70 (RTLS)

Tmin (kN) 0

Tmax (kN) 600

Ṫmax (kN/s) 1

wηa 0.0001

Figure 9.4 gathers a set of closed-loop DRL simulations using DESCENDO and its three
columns (Fig. 9.4a, b and c) correspond to solutions with NP = {0, 1, 2}. The main purpose
of this analysis is to demonstrate the positive impact of having merely 1 or 2 successive
convexification loops, rather than showing how accurate the algorithm can be for a larger
number (which, in practice, is only limited by the available computational power).
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The rows of Fig. 9.4 represent trajectory in the RP frame (similar to Fig. 9.2a), remaining
propellant mass, thrust magnitude, and angle with respect to the vertical direction. Furthermore,
each plot shows the CTVG baseline in red (which is the same for all the values of NP), the
DESCENDO result in black and its intermediate solutions (i.e. those used for interpolation,
recall Fig. 9.3) in gray scale. All these solutions start from their current states in the black line
and become more accurate towards touchdown as TS → 0 (with the same number of points N
spanning over shorter distances).
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(c) NP = 2

Figure 9.4: DRL recovery using DESCENDO and intermediate solutions with increasing NP.
The solutions 30 seconds into the recovery are indicated by magenta lines.

Figure 9.4a shows that a successful recovery is already achieved with NP = 0. This outcome
can be interpreted as the result of an algorithm in which aerodynamic effects are not considered,
such as [JMBS17]. However, without any knowledge of the deceleration caused by aerodynamic
forces, the algorithm provides inadequate guidance solutions earlier in the descent, which is
demonstrated by the large dispersion of intermediate trajectory and mass estimates. It is
important to note that lighter colours are associated with solutions earlier in the descent.
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Although these estimates are not satisfactory since they assume subsurface flight (as explained
before) and often require more propellant than the CTVG baseline (second plot), they converge
to an acceptable result relatively quickly. As an indication of this convergence, the intermediate
solutions 30 seconds into the recovery are depicted in Fig. 9.4 with magenta lines and show that
there is already a good match with the actual, final trajectory.

The situation improves significantly as soon as the successive convexification loop is intro-
duced and repeated. A progressive decrease of dispersions is visible in Fig. 9.4b (NP = 1) and
Fig. 9.4c (NP = 2), and flight path constraints are successfully met by all the intermediate
guidance solutions. In addition, for NP = 2, a propellant saving of 6.9% is achieved in comparison
to the CTVG baseline, and thrust magnitude and vertical direction profiles (the two bottom
rows of plots) become less abrupt than for (NP = 0) (notice the time range between 310 and
350 seconds), while meeting the bounds of Table 9.1.

The exact same conclusions can be drawn for RTLS recovery, depicted in Fig. 9.5, except
that since the remaining propellant after the boostback burn is considerably lower than in the
DRL case, the impact of the DESCENDO algorithm becomes clearer.

Continuing with the RTLS analysis, on the one hand, many of the initial DESCENDO
solutions with NP = 0, Fig. 9.5a, show larger dispersions (many of them requiring more
propellant than what is actually available) and even degenerate into high control chattering close
to touchdown (third plot from the top on the left). On the other hand, for NP = 2 (Fig. 9.5c), a
propellant saving of 16.4% is achieved in comparison to the CTVG baseline (and most of the
initial solutions align with the final one). This value is not as high as for NP = 1 (Fig. 9.5b)
because it is achieved using a much smoother thrust profile, which once again indicates that a
single indicator may not be enough for a fair D&L comparison.

In order to have a better understanding of the convergence and computational efficiency of
the algorithm, Fig. 9.6 illustrates the optimal value of the cost function of Eq. (2.56), in the top
plot, and the cumulative ECOS runtime, in the bottom plot, as functions of the intermediate
guidance solutions for the RTLS scenario with NP = {0, 1, 2}. The cost function corresponds to:

z[N ] = ln m̂(tf ) (9.7)

The top plot of Fig. 9.6 confirms that, although all the cases end up with similar objective
function values, its accurate prediction takes place much later in the descent for NP = 0

(without successive convexification of aerodynamic effects). Solutions for NP = 1 and NP = 2

are relatively similar, which demonstrates the quick convergence of the algorithm for the present
case study, with NP = 2 slightly under NP = 1 as anticipated.

In terms of efficiency, the computational time naturally increases with NP, but it only takes
a total of 0.6, 1.3 or 2.2 seconds to compute the 100 seconds of recovery using NP = {0, 1, 2}, as
evidenced in the bottom plot of Fig. 9.6. These values account for core solver time only and a
small overhead needs to be added for problem parsing, but this is often negligible, especially if
an embeddable solver such as FORCES [JMBS17] or CVXGEN [MB12] is employed.
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Figure 9.5: RTLS recovery using DESCENDO and intermediate solutions with increasing NP
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Figure 9.6: Comparison of DESCENDO objective function and solver time during RTLS recovery
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It is interesting to note that the execution speed increases significantly around the 70th

run for NP > 0. This increase is due to the successive convexification switch-off for h(t) ≤ hP

(where smaller velocities lead to less intense aerodynamic forces) and allows to reduce the overall
runtime by about 30% with almost no optimality compromise (as seen in the top plot). Such a
saving is not relevant for a real-world implementation since the system will have to be capable
of coping with the successive convexification loops at higher altitudes, but it is very useful for
preliminary mission feasibility studies where many simulations need to be performed.

In order to obtain a thorough understanding of the flight envelope encountered by the vehicle,
results for the same simulation of Fig. 9.5c are provided in Fig. 9.7. For a detailed interpretation
of this figure, the reader is referred to the discussion on Fig. 8.12.
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As an overview, the recovery metrics achieved with this approach are mrec = 8.06 ton,
Qmax = 50.1 kPa and vf = 1.63 m/s. Comparing these results with those of the baseline CTVG
case (specifically, the choice set at the end of Sec. 9.1.2, i.e. mrec = 8.37 ton, Qmax = 60 kPa
and vf = 2 m/s), it is clear that the DESCENDO algorithm enables a significant improvement
for all the indicators (most noticeably a simultaneous decrease of 310 kg propellant mass and
16% dynamic pressure), which was exactly the main motivation behind its development.

Recovery using two burns

The same trade-off maps approach of Sec. 9.1.1 could be repeated to further improve these
results by exploiting the parameter space of start altitude and final time. Alternatively, it is also
interesting to utilise similar trade-off maps but to analyse the performance impact of explicitly
splitting the recovery into two separate burns. To do so, Fig. 9.8a and 9.8b show DRL and
RTLS maps for the parameter space of t1 (relative duration of the first burn with respect to the
total recovery phase) and t2 (relative duration of the pause in-between burns). The single burn
performance indicators (extracted from the simulation of Fig. 9.4c and 9.5c, respectively) are
also provided in the captions for comparison.
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Figure 9.8: DESCENDO trade-off maps for t1 and t2

For the DRL case (Fig. 9.8a), results are shown for t1 and t2 up to 35%. Although there
is a large area of unfeasible solutions (above the vf = 1.8 m/s contour line, notice the abrupt
transition to vf = 30 m/s) as well as a few peaks of Qmax (most notably around {t1, t2} =

{10, 10}%), considerable gains can still be achieved. For instance, see the point marked by 4,
having a first burn of t1 = 10% followed by a pause of t2 = 20% (before the second burn) enables
to bring mrec and Qmax from 5.05 down to 3.13 ton and from 144 to 136 kPa, respectively, while
only increasing the touchdown speed vf from 1.49 to 1.58 m/s.
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9.3. DESCENDO RESULTS AND DISCUSSION

Similar observations can be made for RTLS recovery (Fig. 9.8b), in which the parameter
space t1 +t2 ≤ 80% (i.e. allowing at least 20% of time for the second burn) was investigated. This
map facilitates understanding the trade-off between propellant mass and dynamic pressure in
the areas where vf assumes feasible values (note that there is again a large region of unfeasibility,
with vf above 30 m/s). As an example, indicated again by 4, keeping the same vf ≈ 1.63 m/s,
Qmax can be reduced from 50.1 to 45.4 kPa by increasing mrec from 8.06 to 8.10 ton while
choosing {t1, t2} = {20, 20}%.

To complement this result, the corresponding CTVG and DESCENDO simulation using
two burns is depicted (following the same lines of Fig. 9.5) in Fig. 9.9.
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Figure 9.9: RTLS recovery and intermediate solutions using two burns {t1, t2} = {20, 20}%

This figure confirms the successful implementation of the DESCENDO algorithm, with the
burn periods explicitly accounted for at all the intermediate guidance solutions (in opposition
to the CTVG baseline, in which the distinct burns are not enforced a priori). The pause is
reflected in a constant propellant mass, zero thrust and undefined angle during the t2 = 20% of
pause in-between burns (see the time range between 300 and 320 seconds in the bottom three
plots).
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Improving Control via Active Load Relief

The guidance improvement proposed in Chapter 9 relied on the assumption that attitude
commands are perfectly followed so that attitude control has no impact on the trajectory. The
present chapter, on the other hand, is focused on the impact of attitude control on the loads
experienced by Reusable Launch Vehicles (RLVs) and on how these loads can be minimised
through proper control design.

FeedBack (FB)-based design principles for load management are rooted on the work of
Hoelker [Hoe61], who established a set of minimum error/drift/load control conditions, al-
though it is well-known that achieving an acceptable compromise between these competing
conditions over the flight and for different launcher configurations is not straightforward [LR68].
More advanced methods have been proposed based on total Angle of Attack (AoA) estima-
tion [Boe89], the adoption of a Light Detection And Ranging (LiDAR) sensor for forward-looking
wind information [Mar02, BSG+03], and the use of adaptive control augmentation to recover
performance in off-nominal conditions [OV12]. Nonetheless, even though analogous develop-
ments have taken place, and are well-established for operational deployment, in the fields
of aeronautics [CFDS17, THS18, FJD19, OPV19] and wind energy [KBA+15, TJ16], the re-
liance on conventional control design principles remains the state-of-practice for launcher Load
Relief (LR) [Suz04, WDW08].

The objective of this chapter is to showcase a simple way to reconcile more conventional
launcher control design approaches with the benefits of anticipating the contribution of wind
on the load experienced by the vehicle. This is achieved first by augmenting a feedback-only
architecture [SBM+16, NMS+19] with a channel that provides information of wind disturbances,
and then designing an observer to estimate those disturbances using robust control techniques
(Sec. 2.2), here termed Robust Wind Disturbance Observer (rWDO). As seen in Sec. 8.3.2,
most of the recovery phase is unpropelled, so descent attitude control (and therefore LR) relies
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extensively on the use of fins. Conversely, the use of fins during launch (where thrust level is
very high) is not industrial practice, yet it will also be shown that further LR improvements are
possible by doing so.

This chapter begins with a review of the RLV model in Sec. 10.1, followed by an analysis
of achievable LR capabilities and consequent performance trade-offs in Sec. 10.2. The rWDO
design approach is then presented in Sec. 10.3 and applied to ascent flight using Thrust Vector
Control (TVC) alone and then combined fins/TVC in Sec. 10.4, as well as to descent flight in
Sec. 10.5. This work has also been presented in [SMB19c].

10.1 Linear RLV model

For this part of the study, the Linear Time-Invariant (LTI) model of Eq. (8.48) is replaced by
a more sophisticated one. The model of the vehicle in the pitch plane is depicted in Fig. 10.1.
Since the present chapter is dedicated to the study of atmospheric flight only, the use of cold
gas thrusters is not accounted for. In addition, the main focus is on the impact of uncertainties
and wind disturbances on flight performance, hence the effects of actuator, sensor, bending and
sloshing dynamics are not considered for the sake of simplicity.

The perturbed pitch dynamics are described using the model derived in Appendix C by
linearising the nonlinear RLV dynamics. The reader is referred to this appendix for details on the
model, but the main equations are repeated below for convenience. The linearised perturbations
are represented by the LTI model GRLV(s), which is defined as:[

θ̇ θ̈ ż z̈
]T

= ARLV

[
θ θ̇ z ż

]T
+BRLV

[
u

vw

]
(10.1)

where the perturbation notation "δ" is dropped for improved readability, θ, θ̇ and θ̈ represent
pitch angle and first/second-order derivatives, z, ż and z̈ are the lateral drift and derivatives.

In this equation, the vector u =
[
βTVC βfin

]T
gathers TVC and fin control inputs, vw is the

wind disturbance speed and matrices ARLV and BRLV are given by:

ARLV =


0 1 0 0

µα′ −
lαµα + lfµf cosβfin,0

V cosα0
0

µα′

V cosα0

0 0 0 1

−Nα′

m
− a0

lαNα + lfNf cosβfin,0

mV cosα0
+ u0 0 − Nα′

mV cosα0

 (10.2)

BRLV =


0 0 0

−µc cosβTVC,0 −µf cosβfin,0 − µα′

V cosα0

0 0 0

− T
m

cosβTVC,0
Nf

m
cosβfin,0

Nα′

mV cosα0

 (10.3)
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with all the coefficients introduced in Eq. (C.3), (C.27), (C.28) and (C.29).

The aerodynamic load generated by the vehicle is directly proportional to the angle of attack
α, hence the following equation is also necessary to provide a point-mass load indication at its
Centre of Gravity (CG):

α = θ +
ż − vw

V cosα0
(10.4)

N

A

x

z

mg

zL

xL

vw

T

xCG

xCP

xPVP

βTVC

αCP
θ

Ffin

βfinxfin

V

αfin

V

Figure 10.1: RLV model diagram

Nominal values of all the required variables are imported from the Down-Range Landing
(DRL) simulation of Sec. 8.4.2 for two flight time instances (potential load cases), one during
ascent and the other during descent, see Table 10.1 in the next page. In addition, parametric
uncertainties are introduced in the previous state-space matrices and a Linear Fractional
Transformation (LFT) form (Sec. 2.2.1.1) is obtained, similar to [SBM+16]. These parametric
uncertainties are encapsulated in the uncertainty block:

∆RLV(s) = diag
[
I6×6δCNα , I6×6δCfα cosβfin, I4×4δQ, I2×2δT cosβTVC,

I8×8δV cosα, δa0, I6×6δxCP, I9×9δxCG, I6×6δm, I3×3δJN

] (10.5)

As indicated in Table 10.1, an uncertainty range of 20% is assumed for aerodynamic-related
parameters, 2% for Mass, CG & Inertia (MCI) and 10% for the remaining variables. The thrust
force T , although commanded externally by the guidance subsystem as Tref (recall Sec. 8.2),
is more conveniently modelled as an uncertain parameter. Its uncertainty range of 10% then
accounts for guidance variations with respect to the nominal trajectory as well as mismatches
between T and Tref caused by uncertainties in the propulsion system.
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Table 10.1: Model parameters and uncertainty ranges at ascent and descent design points

Variable Symbol Units Nominal
ascent

Nominal
descent

Uncert.

Normal RLV force gradient CNα – 2.007 -2.963 20%
Normal fin force gradient Cfα cosβfin,0 – 6.000 -5.583 20%
Dynamic pressure Q kPa 52.48 7.835 20%
Normal thrust force T cosβTVC,0 kN 2386 49.69 10%
Trim acceleration a0 m/s2 7.122 9.331 10%
Longit. velocity V cosα0 m/s 571.4 -175.0 10%
Longit. CP coordinate xCP m 18.36 5.317 10%
Longit. CG coordinate xCG m 8.919 4.452 2%
Total RLV mass m kg 93.5×103 8.49×103 2%
Normal RLV MoI JN kg.m2 46.0×105 0.64×105 2%
Reference RLV area Sref m2 7.14 7.14 –
Reference fin area Sfin m2 0.54 0.54 –
Fin pivot coordinate xfin m 11.1 11.1 –
TVC pivot coordinate xPVP m 0.96 0.96 –

10.2 Achievable load relief performance

Launcher missions impose a challenging set of requirements to the flight control system [SBM+16]:

• Stabilising the vehicle and ensuring adequate gain and phase margins in nominal and
dispersed conditions;

• Tracking attitude commands with an error that converges to zero;

• Attenuating induced aerodynamic loads and drift from the reference trajectory;

• Minimising control actuation;

• Rejecting disturbances such as wind gusts and internal dynamics.

These requirements are well-known to be competing: for example, load minimisation involves
keeping the angle of attack small by pitching into the wind field, which necessarily causes
attitude errors to grow. Hence, a successful control design must be able to exploit the underlying
trade-offs while operating as close to the limits of performance as possible. This interplay is
illustrated by the Pareto front in Fig. 10.2a. The achievable performance is determined both
by the sophistication of the adopted controller and by the physical limitations of the system
(e.g. an attitude correction using TVC will always generate drift as a result of its side-force).

Control design becomes even more challenging because the wide flight envelope variation
over the mission makes the limits of performance change and requires different control priorities.
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For instance, LR is critical in regions of high dynamic pressure but not near touchdown, where
the priority is to minimise tracking errors. The evolution of dynamic pressure and Mach number
along the trajectory used in this work is shown in Fig. 10.2b. This plot is the same as that of
Fig. 8.14, but is repeated here to identify the two flight instances introduced in the previous
section. The ascent design point coincides with the launch peak of dynamic pressure and the
other one with the recovery Qα peak (recall Fig. 8.16).
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Figure 10.2: Main drivers of RLV control requirements

10.2.1 Proposed control functionalities

In this chapter, two control functionalities are proposed to enlarge the limits of performance
(i.e. illustrated by the shift from the dashed line to the solid line in Fig. 10.2a).

The first functionality consists of augmenting a feedback-only architecture with a channel
that provides information of wind disturbances and employ an observer to estimate those
disturbances. This allows to enhance wind rejection without compromising nominal stability
and tracking properties. The second functionality relies on the use of fins to compensate for the
TVC side-force and therefore enabling further improvements in LR. The use of fins is mandatory
in descent flight but it is not a common practice during launch. As it will be shown, significant
gains (with relatively minor costs) are possible by also using fins in this phase.

To achieve this, consider first the closed-loop block diagram of Fig. 10.3a. This diagram fea-
tures the guidance subsystem and an LFT block composed of GRLV(s) and ∆RLV(s), introduced
before in Sec. 10.1. In addition, a derivative filter Hderiv(s) is included to differentiate pitch
angle commands, as well as a Dryden filter Gwind(s) to simulate the frequency content of wind
disturbances vw by colouring a white noise signal nw. The derivative filter is the same used in
Sec. 8.3 and the Dryden filter is derived using Eq. (8.7) for the two design points as follows:

G↑wind(s) =
3.54

s + 0.32
, G↓wind(s) =

2.36

s + 0.15
(10.6)

where the superscripts ↑ and ↓ refer to ascent and descent, respectively.
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Figure 10.3: Closed-loop attitude control architectures with LR augmentation

The attitude control loop is closed using a conventional static feedback controller KFB.
Comparing Fig. 10.3a with Fig. 8.8, it can be seen that KFB is already responsible for the
control allocation between TVC and fins, and includes an extra drift rate feedback for drift and
AoA minimisation (recall Eq. (10.4)). This controller is tuned using structured H∞ optimisation
(Sec. 2.2.2.2) with constraints on the transfer functions θref → {θe, θ, ż, βTVC} and nw → {θe, α}.
The design weights used in the optimisation will be shown later on in Sec. 10.4.

Assuming that perfect wind knowledge is available, then this information could be employed
in a feedforward manner, through KLR (see Fig. 10.3a), to anticipate and compensate for the
effect of wind. However, in practice the wind needs to be either measured or estimated. Wind
measurements can be obtained with a LiDAR sensor at the expense of additional instrumentation
complexity [Mar02, BSG+03]. Alternatively, an observer Lw(s) can be included, see Fig. 10.3b,
to provide wind disturbance estimates v̂w. Section 10.3 is dedicated to the design of the observer
Lw(s), but the impact of KLR on the achievable performance is first analysed in Sec. 10.2.2.
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10.2.2 Impact of wind anticipation

This analysis is based on the ascent design point with no fin control, for which the following
(FB-only) controller was designed (note that only 3 gains are used now):

K↑FB =

[
−5.64 −1.60 4.3× 10−4

0 0 0

]
(10.7)

The impact of KLR can be appreciated by evaluating the system’s response to a step signal in nw.
In this case, the states deviate from equilibrium in a monotonic manner, hence their value after
a certain interval of time can be employed as a good indicator. The values of the most relevant
variables after 6 seconds are shown in Fig. 10.4a using different colours. Here, KLR represents a
single gain from vw to βTVC, ranging from 0 (i.e. FB-only) to -0.015. In practice, more complex
FB controllers can be used, e.g dynamical ones, but to facilitate the understanding this simple
case is chosen (especially since the conclusions are not invalidated by this assumption). The
figure includes the indicators in nominal conditions (∆RLV = 0) using solid lines and the worst
corner-case from the LFT using dashed lines.
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From Fig. 10.4a, distinct values of KLR for minimum attitude error, drift rate and AoA
(i.e. load) can be identified. These minima are analogous to the well-known Hoelker condi-
tions [Hoe61], but with the key difference that KLR does not enter the feedback loop and thus
nominal stability/tracking properties are not affected. This figure also reflects the performance
compromises discussed above.

The performance compromises are then evidenced by the radar plots of Fig. 10.4b to 10.4d,
in which the FB-only indicators are compared to those obtained using the various minimum
conditions. These radar plots show that each minimum condition optimises the corresponding
indicator in both nominal and worst cases at the expense of degrading one of the others. Of
special relevance for this work, Fig. 10.4d demonstrates that a direct trade-off between load
relief and tracking error minimisation can be achieved.

10.3 Robust WDO design

This section is focused on the synthesis of the Wind Disturbance Observer (WDO) Lw(s),
introduced in Fig. 10.3b. As depicted in that figure, Lw(s) uses as inputs the feedback variables

y =
[
θ θ̇ ż

]T
and the control inputs u =

[
βTVC βfin

]T
to provide wind disturbance estimates

v̂w. The ascent point is again adopted for exemplification purposes in this section.

10.3.1 Problem formulation

A robust WDO (here termed rWDO) must fulfil the following requirements:

• v̂w shall tend to zero in the absence of wind so that nominal stability/tracking properties
of the system are not altered;

• v̂w shall tend to vw so that the wind is accurately estimated

• The former two requirements shall hold for all the allowable control inputs u and uncer-
tainties ∆RLV of Eq. (10.5).

More formally, the design problem consists of finding an observer Lw(s) such that:

v̂w(s) = Lw(s)

[
y(s)

u(s)

]
≈

{
0, vw(s) = 0

vw(s), vw(s) 6= 0
∀
{

u(s), ∆RLV(s)
}

(10.8)

As a tentative solution, it is possible to estimate the wind by solving the equations of motion
with respect to vw. For instance, inverting the pitch dynamics (second row of Eq. (10.1)) yields
the initial guess:

L0
w(s) =

V cosα0

µα′

[
µα′ −

s

σds + 1
−
lαµα + lfµf cosβfin,0

V cosα0

µα′

V cosα0
Γctr

]
(10.9)
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in which σd = 0.05 seconds is employed to make the differentiation proper and Γctr is the control
moment effectiveness matrix of Eq. (8.50) without the last column (relative to the cold gas
thrusters input). The zero of Eq. (10.9) determines the frequency at which wind anticipation
starts.

This approach, however, presents severe robustness problems. To clearly understand them,
it is convenient to reformulate the design problem using the robust control framework, see
Fig. 10.5.
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Figure 10.5: Closed-loop model for rWDO design

The block diagram in Fig. 10.5a is obtained by rearranging the closed-loop interconnections
of Fig. 10.3b so that the requirements of Eq. (10.8) can be assessed. This involves adding the
output (error) signal we = vw− v̂w to quantify the observation mismatch. In addition, the impact
of guidance commands is accounted for through a new input signal upert acting as a perturbation
on the control inputs, while the impact of wind is assessed through the same input nw as before.
It is also noted that the feedback controller KFB must be included when performing the rWDO
design, otherwise GRLV(s) and the whole closed-loop could not be stabilised.

The input/output singular values of Fig. 10.5a, with L0
w(s) from Eq. (10.9) as WDO, are

depicted in Fig. 10.6 using solid black lines. This figure shows that L0
w(s) is capable of ensuring

a small observation error in the face of wind (right plot), i.e. the solid black line is below 0 dB.
But, as seen respectively in the left and mid plots, this is not the case in the presence of TVC
and fin perturbations, particularly at frequencies higher than 1 rad/s. On the other hand, at
lower frequencies, an unnecessary roll-off is provided in the three channels.

This result indicates that there is potential to improve the observer by reshaping these
frequency responses, for which H∞ optimisation (Sec. 2.2.2.1) is extremely suitable, as shown
next.
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Figure 10.6: Multi-channel closed-loop singular values and requirements for rWDO design

10.3.2 H∞ WDO synthesis

To tackle this problem, Fig. 10.5a is further rearranged into the interconnections of Fig. 10.5b,
in which the same inputs/outputs, uncertainty block ∆RLV(s) and WDO Lw(s) can be identified.
All the other elements are encapsulated in a generalised plant P (s). As shown in Fig. 10.5b,
this system is input/output weighted by Wu, Wn and We(s), which specify the desired design
requirements, forming the augmented plant M(s). Similar to Sec. 2.2.2.1, the H∞ problem
consists of finding an observer L∗w(s) that minimises the H∞-norm of M(s):

min
Lw(s)

γ = ‖M(s)‖∞ (10.10)

In practice, Wu and Wn are applied to define the expected range of upert and nw, and We(s)

normalises the system so that the Maximum Singular Value (MSV) of M(s) is bounded by
W−1

e (s) if γ < 1.
Expected TVC and fin deflections are set to 1 and 20 degrees, respectively, based on

the results of Fig. 8.14. The range of nw is defined to 3 to account for 3σ wind dispersions.
Furthermore, the input weights Wu and Wn are constant so as to minimise the order of the
system, but frequency-dependent functions can also be considered. Hence, they are given by:

Wu =
π

180

[
1 0

0 20

]
, Wn = 3 (10.11)

The advantage of having the initial guess L0
w(s) is related to the insight it provides when

choosing a reasonable W−1
e (s) specification (see Fig. 10.6). More specifically, We(s) is tailored

to have: [i] a maximum value of 1/0.6 so that the worst-case observation error is approximately
the same as L0

w(s), [ii] a zero at 80 rad/s so that the observation bandwidth is also the same,
and [iii] a pole 104 times faster to make the transfer function proper. Using the definition of
Eq. (5.4), these considerations lead to the following weight:
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We(s) =
1

0.6

s + 80

s + 80× 104
× 104 (10.12)

With the above choice of weights, the H∞ synthesis problem yielded a stable 5th-order
observer with the fastest pole below 90 rad/s and an optimal performance of γ = 0.43. The
frequency-dependent requirement imposed by W−1

e (s) and the singular values attained with the
latter observer are included in Fig. 10.6 using black dashed and red lines.

Comparing the H∞ design with the initial guess (the solid black lines in Fig. 10.6), it is
clear that the optimised observer is able to effectively reject input perturbations (particularly
at higher frequencies) at the expense of a larger steady-state error, which is bounded to
W−1

e (0)/Wn = 20%. To verify whether this behaviour holds in the face of launcher uncertainties,
µ analysis (see Sec. 2.2.3.1) can now be employed.

The top plot of Fig. 10.7 depicts the bounds of µ for the system of Fig. 10.3b with
K∗LR = −1.04 × 10−2 for load minimisation (recall Fig. 10.4a) and with the H∞-designed
observer in red (solid line for upper bound and dashed for lower bound). The µ sensitivities are
shown in the bottom plot using a different colour for each uncertainty of Table 10.1. In the top
plot, a peak of µ > 1 indicating lack of Robust Stability (RS) can be seen for the H∞ design.
From the bottom plot, it is possible to recognise the thrust uncertainty (δT cosβTVC,0) as the
main responsible for this degradation.
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10.3.3 D-K iteration WDO synthesis

In this subsection, a new observer is designed using the D-K iteration algorithm to prevent the
lack of RS. By employing a combination of H∞ synthesis and µ analysis (recall Sec. 2.2.2.1), the
D-K iteration allows to recover the loss of robustness introduced by the H∞-designed observer.
The weight functions are kept the same as for the latter design, but critically, only the thrust
uncertainty is considered in the LFT model used for D-K synthesis. This is done in order to
minimise the complexity of the problem driven by the µ analysis results.

Following this approach, the D-K synthesis problem yielded an observer of the same order as
before, with the fastest pole also below 90 rad/s and with an optimal performance of γ = 0.58.
The bounds of µ obtained with this new observer are also shown in the top plot of Fig. 10.7
(blue lines), indicating that µ is now smaller than 1 for all the frequencies. This means that
accounting for the impact of thrust changes in the synthesis process is enough to design an
observer that is robust in the face of all the uncertainties ∆RLV(s).

To clarify how the three WDOs (L0
w(s), the H∞ and D-K designs) differ from each other,

their MSV are provided in Fig. 10.8a and the closed-loop pole dispersion generated with 500
random ∆RLV(s) samples are depicted in Fig. 10.8b.
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Figure 10.8: WDO design evolution in the frequency-domain

The initial guess L0
w(s) provides the desired wind anticipation action between 1 and 100 rad/s

(Fig. 10.8a), but results in most configurations being unstable (notice the black positive poles in
Fig. 10.8b). The H∞-designed WDO (in red) keeps the steady-state gain of the initial guess (see
Fig. 10.8a) but adds a high-frequency roll-off that enables the rejection of input perturbations,
at the expense of a higher order system. Although it stabilises most of the cases, a few of them
remain unstable, as observed in Fig. 10.8b and identified by the peak of µ > 1 in Fig. 10.7.

A robust disturbance observation is only ensured by the D-K design (blue colour), which
effectively shrinks the pole dispersion to remain inside the left complex half-plane. This is
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achieved by relying less on low-frequency information and more on higher frequencies (as
indicated by the arrows in Fig. 10.8a), while maintaining the roll-off of the H∞ design. The
reduced confidence in low-frequency information when the thrust uncertainty is considered
for the D-K design is consistent with the fact that this variable determines mostly the slower
dynamics of the system [SBM+16]. The application of the rWDO design approach to ascent
and descent flight is further detailed in Sec. 10.4 and 10.5, respectively.

10.4 Application to ascent flight

The application and benefits of the functionalities proposed in Sec. 10.2.1 for ascent flight are
demonstrated in this section. To do so, four controllers are designed following different strategies
combining the two proposed functionalities (i.e. the rWDO and the use of fins):

1. In black, the TVC-only controller with the 3 non-zero gains of Eq. (10.7) and using

K↑LR =
[
0 0

]T
, i.e. with FB-only control.

2. In blue, a TVC-only controller augmented with the rWDO designed (using the D-K
iteration) in Sec. 10.3.3, in which K↑FB and K↑LR are jointly tuned using structured
H∞ optimisation. This is achieved by employing a tighter tuning requirement on the
nw → α channel (and dropping the nw → θe requirement). The feasibility of applying this
tighter weight could be identified thanks to the LR performance analysis of Sec. 10.2.2.
The LR controller adds 1 extra gain (v̂w to βTVC) for a total of 4 gains to be tuned.

3. In red, a combined fins/TVC controller with K↑LR =
[
0 0

]T
and with K↑FB tuned using

structured H∞ optimisation. As anticipated in Sec. 10.2.1, fins can be used for load
minimisation by counteracting the TVC side-force, which is enforced by augmenting the
tuning requirements of the first controller with new constraints on the θref → {α, βfin}
channels. The FB controller with combined fins/TVC has 6 gains to be tuned (twice as
the first controller).

4. In green, a combined fins/TVC controller augmented with the rWDO designed in Sec. 10.3.3,
in which K↑FB and K↑LR are jointly tuned using structured H∞ optimisation. Representing
a combination of the last two strategies, this controller is generated using their respective
nw → {α, βfin} and θref → {α, βfin} requirements concurrently. The LR controller adds 2
extra gains (v̂w to βTVC and to βfin) to be tuned. The final gains of this controller are the
following:

K↑FB =

[
−5.76 −2.72 4.8× 10−4

−0.46 0.26 9.8× 10−4

]
, K↑LR = −

[
9.75

0.24

]
× 10−3 (10.13)

The indicated controller colours are used in the figures of Sec. 10.4.1 and 10.4.2, where com-
parative analyses of frequency and time-domain properties are provided. The outcome of this
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comparison and the number of tunable gains is then summarised in Table 10.2 and a simple
verification using the nonlinear benchmark is shown in Sec. 10.4.3.

Before that, in order to clarify how load relief is influenced by the tuning requirements
mentioned above, Fig. 10.9 shows the closed-loop singular values obtained with the first two
controllers (black and blue), together with the corresponding design weights in dashed and solid
magenta lines, respectively.
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Figure 10.9: Multi-channel closed-loop singular values and requirements for ascent control design
without fins. Note that, in the left column, the dashed and solid magenta lines are overlapped,
as well as the black and blue lines.

The improved load relief capability of the blue controller (compared to the black one) is then
verified by the reduction of the maximum singular value of the nw → α channel (fourth plot on
the right-hand side of Fig. 10.9) at the expense of an increased steady-state attitude error (first
plot on the right-hand side). As expected, these changes do not impact the tracking response,
which is confirmed by the overlapped black and blue lines on the left-hand side of the figure.

10.4.1 Frequency-domain analysis

In the frequency-domain, the controllers are compared in nominal conditions using Nichols
charts and in the face of uncertainties using µ analysis (Sec. 2.2.3). Since Nichols chart analysis
is a Single-Input Single-Output (SISO) tool, the closed-loop of Fig. 10.3b is first transformed
as depicted in Fig. 10.10. This single-loop transformation uses the pitch control moment
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mctr = Γctr u. The obtained Nichols charts are provided in Fig. 10.11a, where the resulting
Gain Margin (GM) and Phase Margin (PM) are also indicated. The outcome of µ analysis is
presented in Fig. 10.11b and is equivalent to that of the top plot of Fig. 10.7.

KLR

KFB
u

Lw(s)

GRLV(s)

𝜃
ሶ𝜃
ሶ𝑧

ΓctrΓctr
+

𝛽TVC

𝛽fin

𝛽TVC

𝛽fin
mctr

u

Figure 10.10: Loop transformation for Nichols chart generation
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Figure 10.11: Frequency-domain comparison of ascent control functionalities

The first two controllers (both without including fin control, and respectively without and
with rWDO) have the same gain and phase margins, as their responses overlap in Fig. 10.11a.
This is because the observation error is zero in nominal conditions and the rWDO does not
affect closed-loop stability. This is no longer the case in the face of uncertainties, as illustrated in
Fig. 10.11b, where the presence of the rWDO in the second controller leads to an RS degradation
(particularly around PM frequencies) due to delay added by the observer for wind estimation.

This blue plot is the same as that of Fig. 10.7, and is repeated here for comparison of designs.
Despite the RS degradation, the peak of µ = 0.53 indicates that a very reasonable robustness
margin is guaranteed to cover for effects that are not accounted for by the model (e.g. actuator
and bending dynamics). This degradation is expected since the introduction of the WDO leads
to a performance improvement that must be traded-off with robustness. Nonetheless, since the
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µ peak is still about 50% from the limit, this shows that improvements can be achieved with
these techniques (without an unacceptable loss of robustness).

The red controller (fin control, without rWDO) yields a completely different frequency
response, with smaller GM but larger PM, as shown by the Nichols chart. As it will be seen in
Sec. 10.4.2, these differences are reflected in an improved command tracking response. In terms
of RS, µ analysis identifies a slight degradation with respect to the TVC-only controller (in
black), but much larger margins compared to the one without fins but with rWDO (in blue).

Finally, the inclusion of the rWDO with the fins (green lines) leads to smaller phase and RS
margins. Nonetheless, the rWDO is critical for LR (as it will be shown) and both phase and
RS margins obtained with rWDO using fin control are superior than without fins (compare the
green vs. blue lines).

10.4.2 Time-domain analysis

In the time-domain, the four closed-loop LTI systems are subjected to three different tests: [i] a
0.5 deg step command in θref , [ii] a low-frequency, high-amplitude gust in vw (maximum peak of
33 m/s), with a shape that is often used in the validation of launcher control systems, and [iii]
high-frequency, low-amplitude gusts, generated by 100 white noise signals in nw with different
seeds. Each test is repeated for the 210 corner-cases covering the 10 parametric uncertainties.
Results of the three tests are provided in Fig. 10.12, which depict both nominal and dispersed
responses of θ, ż, α, βTVC, βfin (from top to bottom), and observation error we when applicable.
The latter plot also shows the actual wind gust vw in purple.

In terms of command tracking (Fig. 10.12a), the first two controllers exhibit similar responses,
and the main difference is a reduction of drift rate dispersion at the expense of higher TVC
actuation with the blue controller. This small difference is caused by the rWDO, whose error is
zero in nominal conditions but grows in the presence of uncertainties (see last row of plots).
The benefits of the rWDO become more evident in the face of both Low-Frequency (LF) and
High-Frequency (HF) wind gusts (Fig. 10.12b and 10.12c), where the induced load/AoA (third
row) and drift (second row) are drastically minimised at the expense of a larger pitch angle (first
row), as predicted in Sec. 10.2.2. In the case of HF gusts, the load dispersion is alleviated by
approximately 50%. The adequate operation of the rWDO is also confirmed by noting that the
observation errors are significantly smaller than the actual wind, particularly for the LF gust.

With the introduction of fin control (red controller), the tracking response improves pro-
foundly as the drift caused by the TVC side-force is effectively compensated (second row of
Fig. 10.12a), which minimises the overshoot in pitch and AoA. This compensation is also useful
for wind rejection as it reduces its impact on pitch and drift (first two rows of Fig. 10.12b
and 10.12c), but the induced AoA remains equivalent to the first controller (no fin control,
without rWDO). The load relief capabilities of the blue controller (no fin control, with rWDO)
are only recovered when the rWDO is employed in combination with TVC and fins (green
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controller). These two controllers have very similar AoA, pitch and observation error responses
in the presence of wind. However, the latter controller sees the required TVC actuation reduced
(fourth row) by using minimal fin deflections (barely noticeable on the fifth row). This comes at
the expense of larger tracking overshoots (Fig. 10.12a) compared to the red controller, but not
as large as with the blue controller.

(a) 0.5 deg step reference (b) LF wind (c) HF wind (100 samples)

Figure 10.12: MC comparison of ascent control functionalities using a step command, LF and
HF wind fields
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Table 10.2: Overview of ascent control functionalities. Legend:
+ + Major improvement, + Minor improvement, – Minor degradation, – – Major degradation

Fin rWDO Tunable Phase Robust Command Wind
control load relief gains margin stability tracking rejection
No No 3 Baseline for comparison
No Yes 3+1 – – +
Yes No 6 + + + +
Yes Yes 6+2 + – + + +

Table 10.2 provides an overview of the observations made throughout this section. The main
objective of improving wind rejection while also enhancing phase margin and command tracking
is effectively achieved with the introduction of fin control and wind disturbance observation, at
the expense of a small decrease of RS. The insight provided by µ analysis is key when specifying
the rWDO requirements – smaller observation errors will require higher observation gains in the
system (recall Fig. 10.8a), which will result in reduced RS. Nonetheless, as demonstrated, if the
observer design is performed appropriately, this degradation is still within acceptable bounds.

10.4.3 Verification and discussion

In order to verify the achievable performance using the nonlinear RLV simulator, a simple
Monte-Carlo (MC) campaign of the ascent phase with 100 severe wind seeds was carried out.
The Qα and attitude error responses produced with and without wind anticipation for pitch and
yaw control are compared in Fig. 10.13. The MC Qα check of Fig. 10.13a is a widely-employed
procedure to verify whether the structural integrity limits of the vehicle are not exceeded.

(a) Qα (b) Attitude errors

Figure 10.13: Ascent Qα and attitude errors of 100 MC runs with severe wind and LR active
between [30, 70] s
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The black lines correspond to results obtained with a TVC and FB-only controller (i.e. as
the black controller before) that was tuned and scheduled for distinct points along the launch
trajectory. In blue, the same controller is augmented with the LR gain between [30, 70] seconds
area (where the dynamic pressure is higher), which was tuned as in Sec. 10.2.2 for the vari-
ous trajectory points. The achievable performance of the blue controller becomes clear from
Fig. 10.13a, with a Qα reduction of more than 50% when the LR augmentation is active. This
improvement comes at the expense of much larger pitch and yaw errors, Fig. 10.13b, although
they remain bounded during the same period.

In practice, as discussed throughout the present chapter, a successful control tuning will
most likely rely on a more balanced compromise between Qα and error minimisation.

10.5 Application to descent flight

In this section, the generalisation of the proposed wind disturbance observation to the descent
design point is showcased through the following strategies:

1. In black, a combined fins/TVC controller with K↓LR =
[
0 0

]T
and with K↓FB tuned

using structured H∞ optimisation. Using constraints on the θref → {θe, θ, βTVC, βfin}
and nw → {θe, α} channels, the following FB-only controller is obtained:

K↓FB =

[
−0.44 −3.0× 10−3 2.5× 10−3

1.28 1.31 3.9× 10−3

]
(10.14)

2. In green, the controller of Eq. (10.14) augmented with a rWDO, which is generated by
repeating the procedure of Sec. 10.3 for the descent design point. In opposition to the
ascent case, theH∞ rWDO design (Sec. 10.3.2) proved to be robust enough since the thrust
level is much smaller (recall Table 10.1) and therefore no D-K iteration was necessary.
K↓LR is chosen, as in Sec. 10.2.2, to be a single gain from v̂w to βfin that minimises the
attitude tracking error. In opposition to Sec. 10.4, no joint tuning of K↓FB and K↓LR is
performed in this section.

3. In blue, a controller similar to the previous one, but in which K↓LR is chosen to minimise
the aerodynamic load.

The frequency and time-domain analyses of the three descent controllers are presented in
Sec. 10.5.1 and 10.5.2, respectively.

10.5.1 Frequency-domain analysis

Having the same feedback controller K↓FB, the three descent designs exhibit the same behaviour
in nominal conditions, hence their frequency-domain comparison is only carried out in terms of
µ analysis. The outcome of this analysis is provided in Fig. 10.14.
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Figure 10.14: Robust stability upper and lower bounds of descent control functionalities

The µ analysis shows that, similar to Sec. 10.4.1, the introduction of the rWDO leads to an
RS degradation when load is minimised (blue controller), but to an improvement when error
is minimised (green controller). This is consistent with the previous observation that a better
tracking performance is tightly related to better stability margins. Compared to the ascent case,
the peaks of degradation are similar (maximum is µ = 0.49), but take place for lower frequencies
due to a value of dynamic pressure 85% smaller at the descent design point (recall Fig. 10.2b).

10.5.2 Time-domain analysis

The time-domain verification of the descent controllers is exactly the same as described in
Sec. 10.4.2. Results of the three tests in nominal and dispersed conditions are depicted in
Fig. 10.15.

Focusing on command tracking first (Fig. 10.15a), the three cases have the same nominal
response, but dispersions are smaller with the minimum error controller (green) and larger
with the minimum load controller (blue), as anticipated in Sec. 10.5.1. In descent flight, the
controllers prioritise the use of fins with respect to TVC, which is the same for the three cases
as the rWDO only acts on the fin channel. The level of rWDO errors (last row) is similar to the
ascent case during the three tests, since its design requirements were kept the same.

The trade-off between error and load alleviation using disturbance observation then becomes
evident with the LF and HF wind gusts (Fig. 10.15b and 10.15c, respectively). Both figures
confirm that, compared to the FB-only controller, pitch and drift errors are minimised by the
green controller at the expense of larger AoA deviations in nominal and dispersed conditions,
and vice-versa for the blue controller. As an example, following the 33 m/s gust (Fig. 10.15b),
the latter controller effectively brings the steady-state AoA from 2.4 deg to zero (third row)
while only worsening the pitch angle from -1.3 to -3.2 deg (first row).

The above observations highlight the benefits of the proposedWDO augmentation, introduced
in Sec. 10.2. That is, control priorities can be adjusted along the mission via KLR (e.g. load relief
at high dynamic pressure, minimum error near touchdown), which does not affect the system’s
nominal stability/tracking properties and therefore does not require retuning the feedback loop.
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(a) 0.5 deg step reference (b) LF wind (c) HF wind (100 samples)

Figure 10.15: MC comparison of descent control functionalities using a step command, LF and
HF wind fields
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Analysing the Impact of Aeroelastic Loads

Up to the present chapter, Guidance & Control (G&C) analyses have been carried out assuming
(time-varying) rigid-body and point-mass loads, which means that local angles of attack and
aerodynamic loads are uniform along the vehicle. In fact, flight mechanics and aeroelasticity are
often treated separately in the traditional Verification & Validation (V&V) approach. However,
as the focus on weight minimisation of launchers tends to lead towards more flexible structures,
the frequency separation between flexible and rigid-mode motion becomes smaller and the above
approach looses accuracy.

Hence, accurate load prediction requires accounting for the combined impact of distributed
aerodynamics and structural flexibility. An accurate prediction is critical not only to ensure the
structural integrity of the launcher, but also to enable the development of more sophisticated
load relief systems.

In this thesis, aeroelastic effects are included using a modelling approach known as MultiBody
(MB) dynamics. As it will be detailed in Sec. 11.1, aeroelastic modelling via MB is particularly
valuable because it enables an integrated multi-physics approach and allows: [i] more accurate
load predictions in the preliminary design phase, and [ii] faster design iterations between
trajectory, structure and flight control. Following the motivation to this type of approach,
Sec. 11.2 describes the development of the Reusable Launch Vehicle (RLV) MB model, while
Sec. 11.3 concludes the chapter with a detailed aeroelastic load analysis.

11.1 Aeroelastic modelling via multibody dynamics

Although aeroelasticity of stationary wings is considered a mature research topic, the field of
aeroelasticity in general is still evolving [Kal14, IML18, ISM19].
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The most common and simple way to capture structural flexibility effects in flight mechanics
models for control design and analysis is to augment the equations of motion (Sec. 8.1.2) with
elastic degrees-of-freedom (see [OJWM09, MG16] and references therein). This can be achieved
via modal superposition, where it is assumed that elastic deflections can be represented as a
linear combination of the k most impactful orthogonal vibration modes.

In this case, a vector s(x, t) containing the translation of a set of nodes along the RLV
longitudinal axis and a vector ξ(x, t) with the corresponding rotations are written as:

s(x, t) = Φ(x) η(t) (11.1)

ξ(x, t) = Φ̇(x) η(t) (11.2)

where Φ(x) is a matrix consisting of modal column shape vectors, Φ̇(x) its spatial derivatives
and η(t) is a vector with the associated generalised coordinates. Since the modes are orthogonal,
modal mass and stiffness are defined by diagonal matrices M̄s and K̄s, which can be related to
the modal frequency ωf through Rayleight’s quotient ω2

f = K̄s M̄
−1
s . In addition, it is common

practice to model structural damping as a diagonal fraction ζf of the stiffness and, following
this assumption, the dynamics of η(t) are described by:

η̈(t) + 2 ζf ωf η̇(t) + ω2
f η(t) = M̄−1

s ΦT(x)Fs(t) (11.3)

The shape vectors contained in Φ(x) correspond to the nodal displacement eigenvectors of the
above equation and Fs(t) represents the force excitation applied to the structure.

In practice, M̄s, K̄s and Φ(x) are time-varying because they depend on the amount of
propellant at each instant of time. They can be computed offline (for different amounts of
propellant) using Finite Element Analysis (FEA) software or analytically under a few simplifying
assumptions [SKC+17]. As an illustration of the former, the normalised shapes of the first three
bending modes of the full RLV with empty tanks are depicted in Fig. 11.1.

An example of the modal superposition approach is available in [SBM+16, NMS+19] and a
more evolved derivation featuring the coupling between flexibility and aerodynamics (as well
as propellant sloshing) can be found in [Orr10, Orr11]. Essentially, in the aeroelastic case, the
local Angle of Attack (AoA) at a certain node j in the launcher’s body is given by:

αj = θ +
ż − vw

V cosα0
− lj
V cosα0

θ̇ +

k∑
i=1

(
φ̇ij ηi −

1

V cosα0
φij η̇i

)
(11.4)

where the first two terms correspond to Eq. (10.4), the third term accounts for the pitch
damping effect and the last term describes the aeroelastic coupling. The pitch damping is a
non-steady low-frequency aerodynamic effect (due to θ̇) which is often neglected in preliminary
studies (recall Sec. 8.3). In the aeroelastic term, ηi and η̇i represent the modal coordinate and
time-derivative of mode i, and φij and φ̇ij represent the normalised displacement and slope of
mode i at node j (recall Eq. (11.1)).
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Figure 11.1: First three normalised bending modes of the full vehicle with empty tanks

The most accurate aeroelastic modelling approach, on the other hand, is to complement a
dedicated flight mechanics simulator with high-fidelity FEA and Computational Fluid Dynamics
(CFD) tools. Although this approach yields very accurate results, it is extremely demanding
and involves large models associated with very high computational times [VS11]. Hence, this
approach is not compatible with the vehicle’s preliminary design phase (where various choices of
shape and subsystems have not yet been fixed) nor with complicated iterations between highly
interconnected disciplines (recall Fig. 1.5).

In some cases, e.g. [KS04] for aircraft and [TMW09] for launchers, the integration between
the different disciplines relies on a MultiBody modelling system, since large flexible structures
can be effectively modelled as distributed systems [MG16]. However, the inherent properties of
the MB approach can also be employed for the development of solutions that allow to largely
reduce computational times without a significant compromise in terms of accuracy. This is
achieved by replacing the CFD solver with simpler aerodynamic models, such as the quasi-steady
model of Eq. (11.4), and by relying on MB dynamics approximations to avoid extensive FEA
simulations.

MB dynamics studies require a very rigorous theoretical understanding (see, e.g. [HR13])
but, once the theoretical formalism is understood, it can be very efficiently implemented using
physical modelling software suites such as MODELICA or MATLAB’s Simscape Multibody
(formerly SimMechanics), in which degrees-of-freedom are introduced via an abstraction to
joints and frame transforms. In contrast to causal signal-based approaches (such as Simulink),
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these toolboxes represent subsystems using non-causal connections where an energy balance is
applied and described by a set of hybrid differential algebraic equations [Loo08]. These equations
can then be self-mapped into explicit ordinary differential equations and subsequently solved
numerically.

Thanks to their physical description, these tools offer the possibility to [i] make quick changes
in model configuration and instrumentation, [ii] be interfaced with different physical domains
(such as electrical, hydraulic and power), and [iii] provide dedicated visualisation libraries for
bodies and motions. All these features are of vital importance to achieve a reduction of the
launcher design efforts mentioned above, i.e. by integrating distinct domains in a single multi-
physics framework that can be quickly built and analysed, the number of iterations between
discipline experts using their own dedicated tools can potentially be reduced.

Notable multibody developments in the literature include: [Loo08] (aircraft modelling using
MODELICA), [Acq16] (launcher modelling using MODELICA) and [Kal14] (aircraft modelling
using Simscape Multibody). In this chapter a MB launcher model is developed using Simscape
Multibody. For further information on Simscape functions or modelling principles, the reader is
referred to [Mat19].

Following this approach, the inhomogeneous structure of the launcher is discretised into
a number of simple beam elements with distinct geometrical and structural properties and
connected by joints, as illustrated in Fig. 11.2. The dynamics of the joints are chosen to reflect
the characteristics main flexible modes of the launcher, as it will be detailed throughout the
next section.

Figure 11.2: Multibody discretisation of the flexible vehicle structure

The MB model will be equivalent to GRLV(s) from Chapter 10, but it will account for
structural flexibility and its coupling with distributed aerodynamics. Hence, it is based on the
following assumptions: [i] launcher is axisymmetric so that only pitch plane and in-plane bending
motions are considered (i.e. the other degrees-of-freedom are constrained), [ii] aerodynamics
are computed using the quasi-steady model of Eq. (11.4) and [iii] trajectory-related (velocity,
dynamic pressure, etc.) and Mass, CG & Inertia (MCI) conditions are frozen in time (same as
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GRLV(s)) to avoid the added complexity of having to interpolate the beam properties [TMW09].
As before, the following examination focuses on the state of the vehicle at the point of maximum
launch dynamic pressure, which is imported from the RLV benchmark.

11.2 Multibody model development

The architecture of the MB RLV model is schematised in Fig. 11.3 and its building blocks
are introduced below. In this figure, the green lines indicate Simscape’s physical modelling
interconnections, while the black lines represent Simulink’s interface signals. The latter signals

correspond to the control input u =
[
βTVC βfin

]T
, wind disturbance vw and output vector

y =
[
θ θ̇ z ż α

]T
of GRLV(s) from Chapter 10.

Figure 11.3: Multibody model interconnections

Referring to Fig. 11.3, the "Sensor at CG" subsystem determines the values of y at the
vehicle’s Centre of Gravity (CG) with respect to a local trajectory frame, {xL, zL} in Fig. 10.1,
in body-fixed coordinates. The local frame is defined in the "Frames" block based on the trim
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pitch angle. This frame is also employed by the "Rigid-body motion" and "Gravity force" blocks.
The latter block computes the gravity component normal to the body axis and injects it as an
external force at the CG. The rigid-body motion is then simulated by one revolute joint and
one prismatic joint at the CG, respectively providing degrees-of-freedom for pitch and drift.

In addition, attached to the CG, there is the "RLV Structure" subsystem. This is the
most complex subsystem because it is responsible for distributed aerodynamics and structural
computations and will be treated in more detail during the following subsections. As it will be
seen, the former computations require the knowledge of vw and of the local frame. Through a
series of rigid transforms, attachments for fins and TVC Pivot Point (PVP) are also defined in
the structure.

Thrust and fin forces are then injected at the corresponding attachment points. While the
thrust force depends only on βTVC and T cosβTVC,0 (recall Sec. 10.1), the fin force depends
on βfin and Cfα cosβfin,0, as well as on the local aerodynamics at the fin’s location. Local
aerodynamics calculations will be further discussed in Sec. 11.2.1.

The control deflections βTVC and βfin are also used to drive the Thrust Vector Control (TVC)
and fin motion through independent revolute joints in the associated subsystems of Fig. 11.3.
TVC motion is modelled using a truncated cone in the "Nozzle" block, which is assumed to
have no mass in order to be consistent with the negligible moving masses assumption of Sec. 8.1.
Equivalently, the fins are modelled by four massless elliptical lofts, of which only two are actuated
for pitch control (recall Sec. 8.3). Since all these elements are massless, they do not affect the
dynamics of the system, but they are extremely useful for visualisation purposes, see Fig. 11.2.

Coming back to Fig. 11.2, each one of the vehicle’s beam element contributes to its aero-
dynamics in a distributed manner. The implementation of this distributed RLV structure is
described next.

11.2.1 Implementation of distributed aerodynamics

The internal architecture of a single beam element j is depicted in Fig. 11.4 and divided into
MCI (on the top) and aerodynamics components (on the bottom).

As shown in the figure, the MCI components include a rigid-body block and two translations
defining the location of the element’s CG with respect to the adjacent elements’ interfaces
j − 1 and j + 1. The rigid-body block allows to specify the shape and MCI properties of the
beam element. While the former is simply chosen so as to meet the geometry of Fig. 11.2, the
definition of local MCI properties will be detailed in Sec. 11.2.2.

If such elements are connected in series through the red dashed lines without any degree-
of-freedom in-between, a distributed rigid-body structure is obtained. The distributed forces
applied in this structure are kept in dynamic equilibrium by its internal forces (e.g. shear, axial,
torsion and bending moment), which are directly computed by Simscape.
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Figure 11.4: Beam element architecture. The orange blocks represent Simulink-Simscape conver-
sion operations.

Regarding the aerodynamics components, the outcome is to inject an external normal load
force N j at the element’s CG. This force is calculated as follows:

N j = N j
α α

j (11.5)

where N j
α is the local load gradient of element j, which will be further discussed in Sec. 11.2.2,

and αj is the local AoA. Note that the coefficients N j
α do not account for the dynamic flow

propagation along the launcher nor the effects of elastic deformation on that flow. The local
AoA computation represents the MB equivalent to Eq. (11.4). Therefore, the corresponding
subsystem in Fig. 11.4 involves:

• Measuring the pitch and drift motion of element j with respect to the local frame, which
is performed using a "sensor" block similar to the one of Fig. 11.3. If any flexible motion
occurs in the model, elastic deformations are automatically included in the measurements.

• Accounting for the wind disturbance vw. Although this approach allows to consider a
distributed wind profile (with a distinct velocity at every beam element), the wind velocity
is assumed constant along the launcher body for the sake of simplicity.

• Accounting for the pitch damping effect caused by the element’s velocity lj θ̇ about the
vehicle’s CG. The offset lj is sensed by the "Longitudinal displacement" block in Fig. 11.4.

195



CHAPTER 11. ANALYSING THE IMPACT OF AEROELASTIC LOADS

11.2.2 Definition of beam properties

As it was introduced in Sec. 11.1, in the MB approach, the inhomogeneous structure of the
launcher is modelled as a series of uniform beam elements with distinct mass and load gradient.
Integrating these distributed elements then entails defining spatial distributions for the MCI
and aerodynamics characteristics of the vehicle.

The beam elements are assumed to be identical cylinders, as depicted in Fig. 11.2, with
length l = 2 m and radius r = 1.5 m. The centroid and CG of such an element j with respect
to the launcher’s base, xj , is given by:

xj = l

(
j − 1

2

)
, j = {1, . . . , n} (11.6)

with n = 15, and the normal moment of inertia per unit of mass, J0, corresponds to:

J0 =
1

12

(
3r2 + l2

)
(11.7)

Since this study is based on a fictional launcher, a cursory mass distribution, mj , with
j = {1, . . . , n}, is adopted. The local masses must add to the total values of rigid-body mass,
CG and normal inertia, which are expressed by the following three conditions:

n∑
j=1

mj = m (11.8)

n∑
j=1

mjxj = mxCG (11.9)

n∑
j=1

mj
[
J0 +

(
xj − xCG

)2]
= JN (11.10)

In these conditions, m, xCG and JN are taken from the ascent design point of Sec. 10.1, and
xj and J0 are given by Eq. (11.6) and (11.7). Note that the masses of fuel and oxidizer in the
tanks are directly captured by the values of xCG and JN .

The values of mj are then defined by solving a linear least-squares problem minimising the
equality errors of Eq. (11.8) to (11.10), and subject to the following constraints:

200 kg ≤ mj ≤ 14000 kg ∀j,
6∑
j=1

mj ≤ 2

3
m (11.11)

These constraints specify lower and upper bounds for mj , and require that the first stage
(j = {1, . . . , 6}) accounts for less than 2/3 of the total mass. The obtained mass distribution is
depicted in Fig, 11.5a, where the x axis denotes the longitudinal stations along the launcher
and the n = 15 bars the corresponding beam elements (with length l = 2 m). In this figure, the
contributions of first stage, second stage and payload to the total mass are clearly visible. For a
more detailed mass distribution example, the reader is referred to [MG16].
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(a) Mass (b) Load gradient

Figure 11.5: Distributed launcher mass and load gradient

Due to the unavailability of detailed aerodynamic analyses, a similar approach is followed to
obtain a reasonable normal load distribution, N j

α, with j = {1, . . . , n}. Local loads are applied
at the element’ centroid, xj , and must equal the total load gradient when integrated, i.e.:

n∑
j=1

N j
α = Nα (11.12)

For more realistic values of N j
α, the load distribution is parameterised as proposed in [VS11]

for the same vehicle of [Orr10], which leads to the following three conditions:

5∑
j=1

N j
α + 1.1

15∑
j=14

N j
α = Nα (11.13)

N6
α + 0.1

15∑
j=14

N j
α = 0 (11.14)

13∑
j=7

N j
α − 0.2

15∑
j=14

N j
α = 0 (11.15)

These conditions impose that the main contributions to the total load come from the nose
(j = {14, 15}) and base (j = {1, . . . , 5}) of the launcher, and that there is a negative contribution
around the fin and inter-stage location (j = 6). Equation (11.12) is then recovered by summing
Eq. (11.13) to (11.15). Furthermore, the load distribution must ensure that the net load torque
about the rigid-body Centre of Pressure (CP) is null, which translates into:

n∑
j=1

N j
α

(
xj − xCP

)
= 0 (11.16)
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As before, Nα and xCP are defined in Sec. 10.1. The values of N j
α were obtained by solving

a linear least-squares problem minimising the equality errors of Eq. (11.13) to (11.16), and
subject to the following linear constraints:

N1
α ≥ N2

α ≥ N3
α ≥ N4

α ≥ N5
α, N14

α ≥ N15
α (11.17)

which are employed to ensure a smooth load distribution along the vehicle. The resulting
distribution is provided in Fig. 11.5b as a function of the element’s station. Note that, with this
approach, once the distributed RLV structure is implemented, any change of input data (due to
a change of trajectory or trajectory point) is fully automated.

In order to verify the choice, and Simscape implementation, of the distributed mass and load
gradient, the outcomes of the MB model are now compared to the responses obtained with the
Linear Time-Invariant (LTI) system of Chapter 10. To do so, the MB model is formed by rigidly
connecting the n elements defined above and this rigid-MB model is then employed (instead of
GRLV(s)) in the closed-loop design/analysis interconnections of Fig. 10.3. The expectation is
that the results between the LTI GRLV(s) model and the rigid-MB will be very similar.

Simulation results using the same 0.5 degree step command input and High-Frequency (HF)
wind gusts of Sec. 10.4 are depicted in Fig. 11.6a and b, respectively. Both LTI and MB models
have been closed with the same controller – the TVC-only, feedback-only control system defined

by Eq. (10.7) and K↑LR =
[
0 0

]T
.
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Figure 11.6: Comparison of closed-loop responses obtained with LTI and MB models

Figures 11.6a and b show the time responses of θ (blue), θ̇ (red) and ż (green) obtained
with the LTI model using dashed lines, with the MB model using solid lines and the difference
between the two models using dash-dotted lines. The correct behaviour of the MB model is
then corroborated by the overlapping dashed and solid lines of the same colour, as well as by
the quasi-zero values of the dash-dotted lines. Moreover, this small difference (in both figures) is
mostly caused by the ability of the MB model to account for the pitch damping effect at every

198



11.2. MULTIBODY MODEL DEVELOPMENT

beam element (last point in Sec. 11.2.1), while the LTI model only considers that effect at the
CP and fin locations (through the terms lα θ̇ and lf θ̇).

11.2.3 Implementation of structural elasticity

Once the distributed launcher structure is implemented, its flexibility can be modelled by
changing the way beam elements are connected.

There are essentially two MB approaches to capture deformations that are small, linear and
elastic: [i] the lumped-parameter method, in which rigid-body elements are coupled by joints with
internal mechanics that collectively account for the deformation, and [ii] the FEA-import method,
in which the flexible body is treated as the superposition of distinct deformation modes imported
from a FEA model. Both methods are extensively described and compared in [MSWW17]. The
former is generally slightly less accurate than the FEA-import method because the bending
moment at a particular element does not depend on the neighbouring deflection angles; however,
due to the unavailability of high-fidelity FEA data, the approach adopted in this thesis is the
lumped-parameter method.

In accordance with this method, the discrete elements are connected as illustrated in
Fig. 11.7. This figure shows the beam elements of Fig. 11.4 (n = 15 in total) with the associated
input/output signals, and the connection joints (n− 1 in total) which correspond to the blue
crosses in the bottom diagram of Fig. 11.2. Each connection contains one revolute joint with
internal mechanics and two transform blocks that specify the deformation frame.

Figure 11.7: Flexible vehicle structure interconnections

The internal mechanics of each joint j is defined by the generation of a restorative and
dissipative torque τ j(t):

τ j(t) = −ajr ξj(t)− bjr ξ̇j(t), j = {1, . . . , n− 1} (11.18)

In this equation, ξj(t) and ξ̇j(t) are the joint’s rotational state and derivative, and ajr and bjr
represent its stiffness and damping coefficients.

The flexible behaviour of the structure is then determined by the ajr and bjr coefficients. For
homogeneous beams, the value of ajr can be found analytically [PHEL09] based on its Young’s
modulus, cross-section shape and discretisation level, and the value of bjr can be empirically set
by matching the lumped-parameter deformations to reliable benchmark data [MSWW17].
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In this thesis, as a cursory example, these coefficients are assumed uniform along the launcher
and selected as follows:

• The stiffness coefficient is chosen so that the frequency of the first resonant MB mode
matches the corresponding FEA estimate (ωf = 4.4 Hz);

• The damping coefficient is heuristically set to the smallest value that results in a numerically
stable MB model. It is important to note that the loss of numerical stability for quasi-zero
damping coefficients represents an inherent limitation of this multibody approach.

The adopted coefficients are provided in Table 11.1. For an example of non-uniform launcher
stiffness distribution, the reader is referred to [MG16].

The determination of the resonant modes is carried out based on the open-loop pitch rate
Power Spectral Density (PSD) at the vehicle’s CG. This PSD is determined by injecting the
control deflections associated to the simulation of Fig. 11.6a (i.e. the case of the rigid-MB model)
into the flexible-MB model.

The open-loop PSD produced with the selected values of ajr and bjr is depicted in Fig. 11.8
using a blue dashed line, in which the frequency peaks of the first three bending modes (not
to be confused with the joint number j) are clearly visible. The other lines of Fig. 11.8 are
subsequently described in Sec. 11.2.4.
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Figure 11.8: Bending motion tuning in the frequency-domain. PSDs are computed with respect
to the vehicle’s CG using a step response.

11.2.4 Inclusion of bending filters

When the same control loop is closed with the flexible-MB model, the system becomes severely
unstable due to the high power associated to the bending modes. This situation was expected
based on state-of-practice knowledge of launcher control and on the fact that the PSD of the
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first mode is higher than the steady-state dynamics of the system (i.e. the magnitude of the
blue dashed line in Fig. 11.8 is higher at 4.4 Hz than at lower frequencies).

In order to cope with the structural flexibility, the controller has to be augmented with
bending filters, which must provide two actions: [i] attenuate the amplification of high-frequency
internal dynamics and stabilise the system, and [ii] notch the remaining resonances in the system.
The first action can be achieved using a 2nd order Low-Pass Filter (LPF) to ensure the required
attenuation. The transfer function of this filter, HLPF(s), is defined as:

HLPF(s) =
ω2

L

s2 + 2ζLωL s + ω2
L

(11.19)

where ωL represents the roll-off frequency and ζL is its damping ratio.
The notch filter, Hnotch(s), in its simplest form, can be parameterised as follows [NMBR18]:

Hnotch(s) =
s2 + εN s + ω2

N

s2 + εN/κN s + ω2
N

(11.20)

In this transfer function, ωN represents the central notch frequency, κN is the gain applied at
that frequency and εN defines the selectivity of the filter. Smaller values of κN provide more
attenuation but introduce a larger phase lag into the system. The value of εN must be large
enough to cover the relevant frequency band but not too large in order not to affect other
dynamics. With the augmented controller, the bending filters of Eq. (11.19) and (11.20) are
then applied to both deflections, TVC and fins, as follows:

u = HLPF(s) Hnotch(s) I2×2

[
βTVC

βfin

]
(11.21)

In this thesis, the parameters that describe HLPF(s) and Hnotch(s) were tuned manually,
based on the PSD of Fig. 11.8 (e.g. ωN was set to the first resonant frequency ωf = 4.4 Hz,
and ωL was chosen sufficiently higher). All the adopted values are registered (together with
the lumped-parameter coefficients) in Table 11.1, and the obtained pitch rate PSD with the
bending filters is depicted in Fig. 11.8 using a blue solid line.

Table 11.1: Bending motion parameters

MB joints, ∀j Value

ajr (kN.m/rad) 146× 104

bjr (kN.m.s/rad) 100

HLPF(s) Value

ζL 0.8

ωL (rad/s) 40

Hnotch(s) Value

εN 6.0

κN (dB) −4.4

ωN (rad/s) 27.6

From Fig. 11.8, it can be observed that applying the filters of Eq. 11.21 (from the dashed to
the solid blue line) results in a significant attenuation of the bending modes, particularly the
first one, as required. The transfer function gain of the bending filters is also shown in Fig. 11.8
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with red colour: HLPF(s) using a dashed line and the combination HLPF(s)Hnotch(s) using a
solid line, with the additional 4.4 dB attenuation at the first bending mode.

For a clearer understanding of the importance of the notch filter Hnotch(s), Fig. 11.9a and b
illustrate the elastic displacement of the launcher respectively without and with that filter
(but both with the LPF, as otherwise the system is unstable). The plots show the closed-loop
response to a step command at t = 1 second (same as Fig. 11.6a) and different colours refer to
the displacement of different elements along the launcher, as indicated by the colour bar.

(a) Without notch filter (b) With notch filter

Figure 11.9: Impact of notching the first bending mode on the elastic displacement. The
displacement is computed with respect to the vehicle’s CG using a step response.

As expected, in both cases, the step command induces an oscillation starting at 1 second,
which increases towards the nose of the launcher where it reaches a maximum deflection of about
6 cm. However, while this oscillation persists for several seconds in Fig. 11.9a, the introduction
of the notch filter in Fig. 11.9b ensures its rejection soon after the step command is injected.

As mentioned before, the aim of this section was to exemplify the implementation of bending
filters in their simplest form but, in practice, more complex filters are often necessary to achieve
a better flight performance. The development of such filters, together with their systematic
tuning in conjunction with rigid-body gains, is thoroughly addressed in [NMBR18].

11.3 Results and discussion

In this section, the MB launcher model is employed for two dedicated analyses: first (Sec. 11.3.1)
to compare the accuracy of rigid-body and aeroelastic load predictions, and then (Sec. 11.3.2) to
verify whether the superior Load Relief (LR) capability of the control functionalities developed
in Chapter 10 also holds in the aeroelastic case.
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11.3.1 Analysis using feedback-only controller

A more detailed analysis of the closed-loop MB model with the same inputs used for Fig. 11.6
(and Sec. 10.4) is now provided. The distributed aeroelastic loads obtained using the TVC-only,

feedback-only control system, Eq. (10.7) and K↑LR =
[
0 0

]T
, in series with the bending filters

of Eq. (11.21), are depicted in Fig. 11.10. The distributed loads represent the local AoA (in
absolute value) as a function of launcher station (x axis) and time (y axis).

The top row of the figure, Fig. 11.10a and b, corresponds to the MB model with the n beam
elements rigidly connected, and the bottom, Fig. 11.10c and d, to the flexible vehicle structure
developed in Sec. 11.2.3. The left-hand side column of the figure, Fig. 11.10a and c, depicts the
responses to the 0.5 degree step command input, and the right-hand side, Fig. 11.10b and d, to
a 30 seconds HF wind field.

(a) Rigid-body model, 0.5 deg step response (b) Rigid-body model, HF wind disturbance

(c) Aeroelastic model, 0.5 deg step response (d) Aeroelastic model, HF wind disturbance

Figure 11.10: Distributed load comparison using feedback-only controller. Top and bottom rows
show rigid-body and aeroelastic predictions. Left and right columns show responses to a step
command and HF wind field.
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The top row represents rigid-body predictions, which take into account the distributed
aerodynamics of Sec. 11.2.1 but not yet the effect of structural elasticity. In this case, at each
instant of time, the AoA is approximately constant along the launcher’s body, thus the step
response and wind disturbance results are equivalent to the nominal "no fin control, FB-only"
AoA responses of Fig. 10.12a and c, respectively. Note that the AoA is not exactly the same
along the launcher due to the pitch damping effect but, as anticipated by the analysis of Fig. 11.6,
differences are so small that they cannot be perceived in Fig. 11.10.

The impact of structural elasticity is then evidenced in the bottom row of Fig. 11.10 by
the presence of oscillations (recall Fig. 11.9) and AoA variations along the launcher’s body,
caused by the elastic deformation. In order to appreciate the variations of AoA, the differences
between rigid-body and aeroelastic predictions are illustrated in Fig. 11.11. This figure shows
the difference between the bottom and top row of Fig. 11.10, with the step command on the left
(Fig. 11.11a) and wind gusts on the right (Fig. 11.11b).

(a) 0.5 deg step response (b) HF wind disturbance

Figure 11.11: Distributed load underestimation in the absence of aeroelastic effects

The AoA differences of Fig. 11.11 confirm that, depending on the RLV station, rigid-body
predictions of aerodynamic loads may be both underestimated (yellow peaks) or overestimated
(blue peaks). The prediction error (in absolute value) tends to increase towards the nose of the
launcher (same as Fig. 11.9) as well as when the rigid-body AoA is already high, reaching a
maximum error of about 20% in Fig. 11.11a.

The fact that distributed loads may be severely underestimated using rigid-body models
entails that conclusions extracted from traditional point-mass (centralised) Qα tests along the
trajectory (such as Fig. 10.13a) may result in limited reliability. As showcased in this chapter,
the MB approach provides much more reliable and insightful load information without the need
for complicated and time-consuming FEA and CFD iterations.

204



11.3. RESULTS AND DISCUSSION

11.3.2 Analysis using controller with rWDO and fins

The same approach is now followed to assess the distributed loads generated if the load relief
functionalities developed throughout Chapter 10 are employed instead of the baseline controller.
Hence, the same tests carried out in the previous section are repeated with the combined
fins/TVC controller augmented with the Robust Wind Disturbance Observer (rWDO), defined
by Eq. (10.13), also in series with the bending filters of Eq. (11.21). The results are depicted
in Fig. 11.12, which presents the same layout and axis/colour scale of Fig. 11.10 for ease of
comparison.

(a) Rigid-body model, 0.5 deg step response (b) Rigid-body model, HF wind disturbance

(c) Aeroelastic model, 0.5 deg step response (d) Aeroelastic model, HF wind disturbance

Figure 11.12: Distributed load comparison using controller with rWDO and fins. Top and bottom
rows show rigid-body and aeroelastic predictions. Left and right columns show responses to a
step command and HF wind field.

Comparing Fig. 11.12 with 11.10, it is evident that the rWDO (plus fins) controller results
in much smaller aerodynamic loads for both step and HF disturbance cases (note that the yellow
and green peaks present in Fig. 11.10 have practically disappeared).
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This conclusion was already expected for rigid-body predictions, i.e. from the top row of
Fig. 11.10 to 11.12, since it corresponds to the AoA improvement observed in Fig. 10.12a and c,
from "no fin control, FB-only" to "with fin control, rWDO-LR". But the MB approach allows
to easily extend these conclusions to the aeroelastic case (bottom row of Fig. 11.12): although
the elastic oscillations lead to an increase of AoA variations (same as in Sec. 11.3.1), the LR
superiority of the controller with rWDO and fins still holds in the presence of aeroelastic effects
(comparing the bottom rows of Fig. 11.10 and 11.12).

To further appreciate this outcome, a few additional details are provided below. Figure 11.13
shows the control deflections (TVC on the top and fins on the bottom) associated with the
various wind simulations.

Figure 11.13: Wind response actuator signals related to Fig. 11.10b, 11.10d, 11.12b and 11.12d

In this figure, the actuator signals using the rigid-body model with feedback-only (related to
Fig. 11.10b) are depicted in black and are naturally characterised by zero fin deflections. The
aeroelastic model (Fig. 11.10d) then results in additional TVC oscillations, in green, around
the rigid-body response, which are caused by the aeroelastic effects. The rigid-body model
with rWDO and fins (related to Fig. 11.12b), on the other hand, requires larger TVC and
fin deflections, depicted in red, to successfully alleviate the AoA (recall Fig. 10.12c). Finally,
as before, the aeroelastic model (Fig. 11.12d) leads to small control oscillations around the
rigid-body case, which are represented in Fig. 11.13 using blue lines.

The aeroelastic LR improvement achieved with rWDO and fins is then illustrated, as a
function of the RLV station, in Fig. 11.14. For each element, the blue bar corresponds to the
largest positive difference between Fig. 11.10d and Fig. 11.12d over the 30 seconds wind response,
and the yellow bar represents the largest negative difference. In other words, the blue bars
indicate the maximum AoA relief achieved over time (the more positive the better) and the
yellow bars the local AoA degradation (the less negative the better).
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Figure 11.14: Distributed wind load variation achieved with rWDO and fins

The superiority of the LR functionality in the presence of aeroelastic effects is again confirmed
by the fact that the blue bars are significantly bigger than the yellow ones. This means that,
although the local AoA worsens under certain circumstances (on average by about 0.27 degrees),
it is globally outweighed by an achievable load alleviation of about 0.70 degrees. Similar to the
elastic oscillations, the intensity of these two phenomena grows in the direction of the launcher’s
nose.

The occasional AoA degradations observed in Fig. 11.14 are most likely induced by a
combination of elastic motion with the phase lag introduced by the rWDO. Recall that, as
highlighted in Sec. 11.2.4, the rigid-body gains and rWDO were designed independently of the
bending filters and vice-versa, which leaves room for performance improvement. The proposed MB
approach is also particularly suitable for joint rigid/flexible robust control synthesis because MB
models are highly compatible with the Linear Fractional Transformation (LFT) representation
of robust control used in references [PAL+16, PCH+18].
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12
Conclusions of Application II

The optimisation of launcher flight performance while meeting tight aerodynamic and thermal
load constraints is a challenging problem. Significant benefits can be achieved by jointly
addressing the two tasks of dimensioning (vehicle and components) and design (guidance and
control) but, in order to do this, a complete revision of the current process for launchers must
be performed to manage the more complex process of reusable launchers.

In this second part of the thesis, a flight mechanics benchmark of an RLV was developed to
study and address the critical coupling between guidance and control. It incorporates the main
critical components for studying such effects, although some standard simplifying assumptions
were employed in the interest of reducing the complexity to focus on the aims of the thesis.
Despite these assumptions, the validity and relevance of the benchmark was demonstrated in
Chapter 8 using traditional G&C techniques. This integrated G&C approach allowed to perform
preliminary assessments of different RLV recovery strategies using a baseline Constrained
Terminal Velocity Guidance (CTVG) law and of the controllability challenges encountered,
while highlighting the existing room for improvement.

In terms of guidance, the potential for improvement was exploited throughout Chapter 9 in
two ways: first via a trade-off analysis of the physics of the powered descent and landing problem,
and then by developing and implementing a more sophisticated algorithm coined Descending
over Extended envelopes using Successive ConvExificatioN-baseD Optimisation (DESCENDO).

Regarding the trade-off analysis, improvements were possible because the proposed method
enabled a quick and clear mapping of the impact of different parameters and of the achievable
compromises in terms of recovery propellant, dynamic pressure and/or touchdown speed.
Nonetheless, major improvements do require the application of more sophisticated guidance
techniques. The DESCENDO algorithm addressed this need. It is a convex optimisation-based
path planning strategy developed to provide a balance between computational efficiency and
trajectory optimality that is suitable for the extended flight envelope encountered by RLVs.
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The effectiveness of DESCENDO and its superiority over the baseline CTVG were then
verified using the reusable launcher benchmark. But the major significance of the DESCENDO
algorithm, and of the trade-off map method, lies in the fact that they enable a less conservative
exploitation of the parameter trade-off space. The reduced conservativeness, in turn, supports a
deeper understanding of reusable flight mechanics, as well as G&C margin policies related to
the physical limits of performance.

While this development was carried out assuming that launcher attitude commands were
perfectly tracked, subsequently Chapter 10 focused on the impact of attitude control on the
loads experienced by RLVs and on how these loads could be minimised through proper launcher
control design. Two complementary flight control functionalities for enhanced Load Relief (LR)
were proposed.

The first functionality consisted of augmenting a feedback-only controller with a disturbance
observer for onboard wind anticipation. It was validated via an achievable performance analysis,
which showed that this approach allows control priorities (e.g. minimum load vs. minimum error)
to be adjusted along the mission without retuning the stabilisation/tracking feedback loop. It
was also shown that the introduction of a wind observer results in reduced robust stability but,
if the observer design is performed appropriately, this reduction is still within acceptable bounds.
The second functionality introduced fin control in ascent flight, which significantly improved
attitude tracking by counteracting the drift caused by the TVC side-force.

Based on the presented analyses, the best LR performance was achieved by combining fin
control with the wind disturbance observer. Several disturbance observers were successfully
designed and verified using robust control techniques – using one point during the ascent and
another one during the descent. Despite this local illustration, the proposed framework allows
to easily repeat the procedure for other points, as well as to address other effects not considered
in this thesis (e.g. actuator, sensor, bending and sloshing dynamics).

Finally, the reusable launcher benchmark was extended with a MultiBody (MB) model that
captures the effects of distributed aerodynamics and structural flexibility. As demonstrated
in Chapter 11, this modelling paradigm provides an extremely insightful tool for aeroelastic
launcher load prediction. As an example, this tool was employed to highlight the performance
impact of bending filter design, as well as to confirm the superiority of the controller using wind
disturbance observation and fins even in the presence of aeroelastic effects.

In this thesis, the adopted launcher system only included an aeroelastic model for analysis
purposes, but the same framework can be extended to MB-based control synthesis, including
joint rigid/flexible design. This capability, together with the developed coupled benchmark, the
proposed DESCENDO algorithm and LR functionalities, establish the fundamental building
blocks to tackle the complex process of aeroelastic reusable launcher load management.
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13
Conclusions & Recommendations

This chapter concludes the thesis. First, the conclusions drawn in Chapter 7 and 12, for
Application I and II, respectively, are reviewed in Sec. 13.1 while highlighting the thesis’
contributions listed in Sec. 1.5. Subsequently, based on the encountered room for improvement,
the most interesting future lines of research are recommended and briefly discussed in Sec. 13.2.

13.1 Review of conclusions

This thesis investigated the benefits that specific Guidance & Control (G&C) techniques can
bring for improved exploration and access to space. Despite the strengths of the investigated
techniques, there is still a big gap between their academic development and industrial application.
By tailoring and applying these techniques to two case studies that are well-representative of those
strengths, the high-level outcome of the thesis was a Technology Readiness Level (TRL) increase
of modelling, design and analysis approaches for planetary landers and reusable launchers.

The first application case, fuel-optimal Descent & Landing (D&L) on small planetary bodies,
was motivated by the need to improve the effectiveness of state-of-practice D&L solutions.
To facilitate such an improvement, a reconciliation of G&C architectures for D&L was
proposed and distinct methods based on open and closed-loop guidance with and without
control compensation were analysed. Special attention was dedicated to the integration of legacy
industry knowledge with sophisticated robust control design techniques that allow to account for
the effects of variable and uncertain environments (such as Phobos’ gravity field) in a systematic
manner. This capability in turn paves the way for more reliable planetary landers.

Building up on this knowledge, a methodology for performance quantification and
optimisation of guidance laws was then developed. This methodology employs a systematic

211



CHAPTER 13. CONCLUSIONS & RECOMMENDATIONS

evaluation of high-fidelity models to generate performance trade-off maps of Constrained
Terminal Velocity Guidance (CTVG) tuning selections. The trade-off maps can be generated
before the mission and applied once the spacecraft approaches the target body, having in
consideration the actual propellant available and without the need for expensive computations.
It was demonstrated that, for a landing on Phobos, propellant consumption savings of around 40%
could be achieved compared to state-of-practice tuning solutions, derived under the assumption
of simplified and well-known gravity fields.

An alternative D&L approach was then investigated, relying on a simpler (open-loop)
guidance law but augmenting it with a robust control compensator. This marked the earliest
application of robust control synthesis techniques to spacecraft orbital control, as
they were well-established for attitude control only. The effectiveness of this approach lied in
the use of structured H∞ optimisation which, in addition to its ability to specify the controller
structure and take advantage of legacy knowledge, enables the synthesis of controllers that are
valid for multiple plants. Design challenges related to the use of non-smooth optimisation were
investigated and, despite these challenges, this approach was successfully transferred to Airbus
and its teams are currently employing structured H∞ in the preparation of future missions.

In addition to control design, the thesis showed how robust control techniques can be
effective to validate modelling choices and complement state-of-practice verification
& validation methods of space systems. On the one hand, critical uncertainty combinations
can be computed via µ analysis and employed to complement and enhance conventional Monte-
Carlo campaigns. On the other hand, closed-loop sensitivities allow to quantify the impact of
each uncertain parameter, which is key to develop the simplest mathematical model that still
captures the most relevant physical phenomena of the real system.

Using µ and IQC analysis, it was proven that the developed control compensators are robust
in the presence of gravitational uncertainties and nonlinear issues and that, for a landing of
Phobos, the former effects are indeed the most critical ones. From a safety-oriented point of view,
the ability to provide this kind of formal proofs of robustness makes robust control techniques
more attractive than other recent alternatives such as adaptive or intelligent control.

The second application case, Reusable Launch Vehicle (RLV) G&C with active load relief,
was aimed at the optimisation of launcher development and operation costs, which is notably
demanding due to fundamental couplings between flight mechanics and closed-loop algorithms.
In order to study and address these critical couplings, a novel benchmark/framework for
RLV G&C design was developed in this part of the thesis. Despite relying on a few standard
simplifying assumptions in the interest of reducing complexity, the coupled benchmark allowed
the assessment of different RLV recovery strategies using a baseline CTVG law and of the
controllability challenges encountered.

Following this assessment, D&L performance could be improved first by using the trade-off
map method proposed in the first part of the thesis, and then by developing an onboard
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convex optimisation-based recovery guidance algorithm coined Descending over Ex-
tended envelopes using Successive ConvExificatioN-baseD Optimisation (DESCENDO). The
DESCENDO algorithm employs the principles of lossless and successive convexification to
provide a balance between computational efficiency and trajectory optimality that is specifically
tailored to the extended flight envelope encountered by RLVs. These principles were implemented
and verified in a closed-loop fashion, which is particularly novel in the literature. The trade-off
map method and the DESCENDO algorithm enable a less conservative exploitation of the
design parameter space, as well as of G&C margins related to the physical limits of performance.

The limits of performance were subsequently enlarged thanks to the development of two
control functionalities for enhanced launcher Load Relief (LR). The first functionality consisted of
augmenting a feedback-only controller with a disturbance observer for onboard wind anticipation,
designed and verified using robust control tools. This marked the earliest application of robust
wind disturbance observation to improve the control of launcher aerodynamic loads.
The second functionality introduced fin control in both descent and ascent flight. The use of fins
during launch is not industrial practice, but the thesis showed that further LR improvements
are possible by doing so. Wind observation paves the way for an increase of wind resilience
and operational availability, together with a decrease of structural mass and launch costs. One
additional strength of this approach is related to the possibility of control priorities to be
adjusted along the mission without having to alter the stabilisation/tracking properties.

To conclude the thesis, the RLV benchmark was extended with a MultiBody (MB) model
that captures the effects of distributed aerodynamics and structural elasticity. The accurate
modelling of these effects is becoming ever more important, as the next-generation of lighter
and more flexible launchers tends to have a smaller separation between flexible and rigid-body
frequencies. Moreover, the MB approach allows the integration of distinct domains in a single
multi-physics framework that can be quickly built and analysed. Hence, the proposed approach
enables more accurate load predictions and faster design iterations between trajectory,
structure and flight control.

The MB launcher model was then employed to confirm the superiority of the LR control
functionalities even in the presence of aeroelastic effects, and to compare the accuracy of
rigid-body and aeroelastic load predictions. This comparison showed that distributed loads
may be severely underestimated using rigid-body models, and therefore insights from the MB
approach can be used to revise the traditional point-mass (centralised) Qα verification along
the trajectory.

13.2 Recommendations for future work

This section discusses possible lines for future research on the most interesting technical aspects
encountered throughout the thesis.
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CHAPTER 13. CONCLUSIONS & RECOMMENDATIONS

Coping with nonlinear effects on structured H∞ optimisation

The main limitation of the first part of the thesis was the inability of structured H∞ to capture
more performing guidance tuning solutions identified using the trade-off maps of Chapter 4
(although the state-of-practice tuning selections could be successfully recovered). This was
caused by the inherent loss of the propagation of nonlinear dynamics throughout the D&L
trajectory. Hence, the applicability of structured H∞ optimisation to problems where nonlinear
effects are critical remains an open research question. This applicability can be tackled either by
adopting a different type of formulation for the guidance problem or by modifying the behaviour
of the structured H∞ algorithm itself.

Advancement of convexification-based D&L algorithms

As it was mentioned before, the amount of research on convexification-based guidance (and
computational G&C in general) has increased exponentially in the past couple of years, which
opens up various possibilities to improve the DESCENDO algorithm developed in Chapter 9.

As a first step, motivated by [SA18], it would be recommended to incorporate attitude
kinematics and free final-time in the optimisation problem. Moreover, the versatility of successive
convexification enables the formulation of additional continuous or state-triggered non-convex
constraints [RSM+19], including dynamic pressure and heat flux. Finally, although the applica-
tion of convexification-based guidance to Phobos D&L was not investigated (as the focus was
on strategies that are more likely to be adopted in the short-term future), high-order gravita-
tional harmonics can be handled via successive convexification, so this would also represent an
extremely interesting line of research.

Load relief with wind measurements and preview

Chapter 10 demonstrated the benefits of anticipating the effects of wind by augmenting a
state-of-practice launcher control architecture with a simple disturbance observer. Following
this demonstration, further LR improvements can be achieved in two ways: [i] replacing the
observer with a Light Detection And Ranging (LiDAR) sensor that provides real-time wind
measurements, and [ii] employing estimates or measurements of the disturbance ahead of the
plant with enough lead time, which is known as preview control.

The use of a LiDAR sensor has the advantage of avoiding the small robust stability degrada-
tion caused by the wind observation delay, but involves an additional instrumentation complexity.
This option was first proposed in [Mar02] but did not become industrial practice due to the
conservative character of space industry, motivating the present disturbance observer develop-
ment as a more gradual approach. Preview control enables a more accurate wind anticipation
(due to the use of past wind information) and it is inclusively compatible with onboard convex
optimisation algorithms [CAW+15]. The application of preview control has been investigated in
the field of aeronautics (e.g. [THS18, FJD19]), but not launchers.
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13.2. RECOMMENDATIONS FOR FUTURE WORK

Flight testing using the EAGLE demonstrator

As introduced in Sec. 1.4, the second part of the thesis accounts for the possibility/potential to
verify the developed G&C elements using the EAGLE demonstrator of Fig. 1.6. Having in mind
the TRL of the algorithms and of the demonstrator itself, the most interesting element that is
suitable for flight testing would be the robust wind disturbance observation functionalities.

Multibody-based launcher control design

In this thesis, the adopted launcher system only included an aeroelastic model for analysis
purposes, yet significant gains can be expected if such a model is employed for control design
as well. The MB launcher modelling approach presented in Chapter 11 is particularly suitable
for this purpose, not only because it offers the possibility to make quick changes in model
configuration, but also because it is highly compatible with the LFT representation of robust
control. Recent developments of MB-based robust control synthesis in other areas include
[PAL+16], which addresses the integrated design and control of a satellite with uncertain flexible
appendages, and [PCH+18], where the disturbance propagation between microvibration sources
and sensitive instruments is tackled.

Impact of additional dynamical RLV perturbations

The final recommendation is to model and study the impact of critical dynamical RLV effects
that were not considered in the thesis. Structural flexibility was only analysed using one point
during the ascent, so the analysis should be repeated for other points during ascent as well as
descent, where aeroelastic couplings are expected to be stronger since the launcher is flying
with quasi-emptied propellant tanks. Also tightly related to level of propellant in the tanks, the
impact of sloshing dynamics was not yet investigated and should be addressed. In addition,
actuators and sensors were assumed ideal in the second part of the thesis, but their inherent
limitations should also be considered as they can have deep G&C design implications. The
main driving implications are expected to be related to engine throttling magnitude and rate
constraints, and to sensor disturbances induced by the flexible RLV structure.

Although the above effects have not been addressed, they can be systematically managed
using the robust control framework thanks to its key capabilities (recall Table 2.2). In other
words, the same robust control approaches exploited throughout the thesis can be used to design
for incrementally more challenging dynamical models and sizing cases.
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List of Publications

During the PhD period, a total of 5 first-authored journals, 6 first-authored conferences,
2 co-authored journals and 4 co-authored conferences were published, together with 2 invited
presentations at international workshops. They are listed below for each application case
(i.e. Phobos D&L and reusable launcher G&C). The last four publications were also produced
during this period, but are not included in the thesis as they were part of collaborations within
the TASC research group1.

Application I: Fuel-optimal descent & landing on small planetary bodies

Journals

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "Systematic Performance-
oriented Guidance Tuning for Descent & Landing on Small Planetary Bodies," Acta
Astronautica, 158, May 2019 [SMJ+19];

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "Synthesis and Analysis of
Robust Control Compensators for Space Descent & Landing," International Journal of
Robust and Nonlinear Control, 28 (13), Sep. 2018 [SMJ+18c];

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "Review of Guidance Tech-
niques for Landing on Small Bodies," Progress in Aerospace Sciences, 103, Nov. 2018
[SMJ+18a];

• E. Joffre, M. Zamaro, N. Silva, A. Marcos, and P. Simplício, "Trajectory Design and
Guidance for Landing on Phobos," Acta Astronautica, 151, Oct. 2018 [JZS+18].

1 Website: https://www.tasc-group.com/

235

https://www.tasc-group.com/


APPENDIX A. LIST OF PUBLICATIONS

Conferences

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "Robust Control Compen-
sation for Space Descent & Landing," The 16th European Control Conference, Limassol
(Cyprus), 12–16 Jun. 2018 [SMJ+18b], invited for publication in the European
Journal of Control ;

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "Parameterised Laws for
Robust Guidance and Control of Planetary Landers," The 4th CEAS Specialist Conference
on GNC, Warsaw (Poland), 25–27 Apr. 2017 [SMJ+17b];

• P. Simplício, A. Marcos, E. Joffre, M. Zamaro, and N. Silva, "A Systematic Performance-
oriented Tuning for Space Exploration Descent & Landing Guidance," The 7th European
Conference for Aeronautics and Space Sciences, Milan (Italy), 3–6 Jul. 2017 [SMJ+17a],
invited for publication in Acta Astronautica ;

• E. Joffre, M. Zamaro, N. Silva, A. Marcos, P. Simplício, and B. Richardson, "Landing
on Small Bodies Trajectory Design, Robust Nonlinear Guidance and Control," The 27th
AAS/AIAA Space Flight Mechanics Meeting, San Antonio (TX), 5–9 Feb. 2017 [JZS+17];

• E. Joffre, M. Zamaro, N. Silva, A. Marcos, P. Simplício, and B. Richardson, "Results
of new Guidance and Control Strategies for Landing on Small Bodies," The 10th ESA
Conference on Guidance, Navigation & Control Systems, Salzburg (Austria), 29 May–2
Jun. 2017.

Invited presentations

• "Robust Guidance and Control for Space Descent and Landing," International Workshop
on Robust Modelling, Design & Analysis, University of Bristol (UK), 18–19 Sep. 2017.

Application II: Reusable launcher guidance & control with active load relief

Journals

• P. Simplício, A. Marcos, and S. Bennani, "Reusable Launchers: Development of a Coupled
Flight Mechanics, Guidance and Control Benchmark," Journal of Spacecraft and Rockets,
Articles in Advance, Sep. 2019 [SMB19d];

• P. Simplício, A. Marcos, and S. Bennani, "Guidance of Reusable Launchers: Improving
Descent and Landing Performance," Journal of Guidance, Control and Dynamics, 42 (10),
Oct. 2019 [SMB19b].
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Conferences

• P. Simplício, A. Marcos, and S. Bennani, "New Control Functionalities for Launcher Load
Relief in Ascent and Descent Flight," The 8th European Conference for Aeronautics and
Space Sciences, Madrid (Spain), 1–4 Jul. 2019 [SMB19c], winner of the Best Student
Paper Award ;

• P. Simplício, A. Marcos, and S. Bennani, "A Reusable Launcher Benchmark with Advanced
Recovery Guidance," The 5th CEAS Specialist Conference on GNC, Milan (Italy), 3–5
Apr. 2019 [SMB19a].

Invited presentations
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ix B
Mars-Phobos System Parameters

This appendix contains the most relevant parameters of the Mars-Phobos system introduced
in Sec. 3.1. Table B.1 provides an overview of the system’s physical and orbital properties.
Table B.2 gathers the nominal values of the normalised coefficients for the spherical harmonics
series expansion of Phobos’ gravity field.

Table B.1: Physical and orbital properties of Mars (around the Sun) and Phobos (around Mars).
Source: [ZB15]

Property Mars Phobos

Mass (kg) 6.42× 1023 1.07× 1016

Mean dimension (km) 3.39× 103 sphere 13.1× 11.1× 9.3 ellipsoid

Revolution period (days) 687 0.32

Rotation period (days) 1.03 0.32

Semi-major axis (km) 2.28× 108 9.38× 103

Eccentricity (-) 0.0934 0.0156

Inclination (deg) 1.85 1.07
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Table B.2: Normalised coefficients for the series expansion of Phobos’ gravity field. Source: [CR89]

Order n Degree m Cn,m coefficient Sn,m coefficient

1 0 0 0

1 1 0 0

2 0 -0.04698 0

2 1 0.00136 0.00138

2 2 0.02276 -0.000202

3 0 0.00293 0

3 1 -0.00309 0.00181

3 2 -0.00847 -0.000655

3 3 0.00224 -0.01392

4 0 0.00762 0

4 1 0.00347 -0.000776

4 2 -0.00288 -0.00112

4 3 -0.0028 0.00337

4 4 -0.0012 -0.000622
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ix C
Reusable Launcher Model Linearisation

The study of the combined use of Thrust Vector Control (TVC) and fins during descent flight is
particularly novel in launcher control literature. Descent flight control of a Vertical Take-off and
Vertical Landing (VTVL) vehicle has been addressed in [Boe99], but only TVC was considered.
Although flight dynamics models are nonlinear, models for control design and analysis are often
linearised. Hence, a linear representation of the more general Reusable Launch Vehicle (RLV)
dynamics in ascent and descent flight is derived in this appendix.

This derivation is based on the axisymmetric launcher of Fig. 8.5 with quasi-zero roll rate,
for which pitch and yaw motions can be assumed uncoupled and the task of attitude control
design and analysis can be performed in a single plane. The model of the vehicle in the pitch
plane is provided in Fig. 10.1, reproduced below for ease of readability.

N

A

x

z

mg

zL

xL

vw

T

xCG

xCP

xPVP

βTVC

αCP
θ

Ffin

βfinxfin

V

αfin

V

Figure 10.1: RLV model diagram (repeated from page 169)
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Since this work is mostly dedicated to the atmospheric flight phase, the use of cold gas
thrusters is not accounted for in the model. In addition, the main focus is on the impact of
uncertainties and wind disturbances on flight performance, hence the effects of actuator, sensor,
bending and sloshing dynamics are not considered for the sake of simplicity.

Nonlinear equations of motion

The nonlinear equations of motion under analysis are obtained by writing Eq. (8.8) and (8.9) in
the vehicle’s body axes, depicted in Fig. 10.1 as {x, z}. Here, θ, θ̇ and θ̈ represent pitch angle
and first/second-order derivatives, and z, ż and z̈ are the lateral drift and derivatives.

Referring to Fig. 10.1, the sum of forces in the z axis yields:

m
(
z̈ − θ̇ẋ

)
= −QSrefCN

(
αCP

)
+ 2QSfinCf (αfin) cosβfin − T sinβTVC +mg cos θ (C.1)

with all the variables introduced in Sec. 8.1. Note also that the dependence on time has been
omitted for improved readability, as well as the subscript "y" for pitch-plane fin and TVC
deflections, βfin and βTVC.

Equivalently, the sum of lateral moments corresponds to:

JN θ̈ = lαQSrefCN
(
αCP

)
− 2lfQSfinCf (αfin) cosβfin − lcT sinβTVC (C.2)

where:

lα = xCP − xCG, lf = xfin − xCG, lc = xCG − xPVP (C.3)

Steady-state solutions

The steady-state solutions of Eq. (C.1) and (C.2) consist in the set of Angle of Attack (AoA),
pitch, fin and TVC angles (α0, θ0, βfin,0 and βTVC,0) required to trim the vehicle, i.e. to cancel
out its acceleration. For the translational motion, z̈ = 0 gives:

−mq0V cosα0 = −QSrefCN
(
αCP

0

)
+2QSfinCf (αfin,0) cosβfin,0−T sinβTVC,0+mg cos θ0 (C.4)

where q0 represents the trim pitch rate and V cosα0 is the longitudinal velocity (i.e. along the
x axis). In terms of rotational motion, θ̈ = 0 results in:

0 = lαQSrefCN
(
αCP

0

)
− 2lfQSfinCf (αfin,0) cosβfin,0 − lcT sinβTVC,0 (C.5)

Perturbed equations of motion

In order to linearise the equations of motion, each term is first replaced by the corresponding
steady-state plus a perturbation, e.g. ν = ν0 + δν. Applying this transformation to Eq. (C.1)
yields:

242



m
(
δz̈ − q0V cosα0 − q0δẋ− V cosα0 δθ̇ − δθ̇δẋ

)
= −QSrefCN

(
αCP

0 + δαCP
)

+ 2QSfinCf (αfin,0 + δαfin) cos (βfin,0 + δβfin)− T sin (βTVC,0 + δβTVC) +mg cos (θ0 + δθ)

(C.6)

and Eq. (C.2) becomes:

JN δθ̈ = lαQSrefCN
(
αCP

0 + δαCP
)

− 2lfQSfinCf (αfin,0 + δαfin) cos (βfin,0 + δβfin)− lcT sin (βTVC,0 + δβTVC) (C.7)

Aerodynamics linearisation

Aerodynamic forces are linearised around the steady-state AoA using the corresponding force
gradient coefficient. The RLV normal force, applied at its Centre of Pressure (CP), is then
approximated by:

CN
(
αCP

0 + δαCP
)
≈ CN

(
αCP

0

)
+ CNαδα

CP (C.8)

Regarding the fins, it is convenient to recall Eq. (8.30), i.e.:

αfin = βfin − αfin (C.9)

which states that the fin AoA αfin depends on the fin deflection βfin and on the vehicle’s AoA at
the fin’s location αfin. Based on Eq. (C.9), the force generated by the fins is linearised as follows:

Cf (αfin,0 + δαfin) ≈ Cf (αfin,0) + Cfαδαfin

≈ Cf (αfin,0) + Cfαδβfin − Cfαδα
fin

(C.10)

Small angle approximations

The linearisation of the model relies on a set of well-known approximations for functions of a
small perturbation δν, including:

δν δν ≈ 0 (C.11)

cos δν ≈ 1 (C.12)

sin δν ≈ δν (C.13)

cos (ν0 + δν) ≈ cos ν0 − sin ν0 δν (C.14)

sin (ν0 + δν) ≈ sin ν0 + cos ν0 δν (C.15)

Multiplying Eq. (C.10) by (C.14) with ν = βfin, it is also useful to consider the following
relationship:

Cf (αfin,0 + δαfin) cos (βfin,0 + δβfin) ≈

≈ Cf (αfin,0) cosβfin,0 + [Cfα cosβfin,0 − Cf (αfin,0) sinβfin,0] δβfin − Cfα cosβfin,0 δα
fin (C.16)
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Using the approximations of Eq. (C.8), (C.11) and (C.14) to (C.16), as well as Eq. (C.4) to
remove the steady-state terms, the translational dynamics of Eq. (C.6) can now be recast as:

m

(
δz̈ −((((((q0V cosα0 − q0δẋ− V cosα0 δθ̇ −��

�*≈ 0

δθ̇δẋ

)
= −QSref

{
���

��CN
(
αCP

0

)
+ CNαδα

CP
}

+ 2QSfin

{
((((

((((
(

Cf (αfin,0) cosβfin,0 + [Cfα cosβfin,0 − Cf (αfin,0) sinβfin,0] δβfin − Cfα cosβfin,0 δα
fin
}

− T {���
��sinβTVC,0 + cosβTVC,0 δβTVC}+mg {���cos θ0 − sin θ0 δθ} (C.17)

Equivalently, using the approximations of Eq. (C.8), (C.15) and (C.16), with Eq. (C.5) to
eliminate the steady-state terms, the rotational dynamics of Eq. (C.7) becomes:

JN δθ̈ = lαQSref

{
���

��CN
(
αCP

0

)
+ CNαδα

CP
}

−2lfQSfin

{
((((

((((
(

Cf (αfin,0) cosβfin,0 + [Cfα cosβfin,0 − Cf (αfin,0) sinβfin,0] δβfin − Cfα cosβfin,0 δα
fin
}

− lcT {���
��sinβTVC,0 + cosβTVC,0 δβTVC} (C.18)

Angle of attack linearisation

In addition to the aerodynamic forces, the AoA is affected by pitch and drift variations, δθ
and δż, as well as by wind gusts with velocity vw (assumed constant along the launcher body).
Using a small angle approximation for the inverse tangent of Eq. (8.14), AoA perturbations at
the vehicle’s Centre of Gravity (CG) correspond to:

δα ≈ δθ +
δż − vw

V cosα0
(C.19)

At other locations, local velocity variations also depend on the effect of the vehicle’s rotation,
and therefore AoA perturbations at the CP and fin’s location are respectively given by:

δαCP ≈ δα− lα
V cosα0

δθ̇, δαfin ≈ δα− lf
V cosα0

δθ̇ (C.20)

Replacing Eq. (C.19) in the local perturbations δαCP and δαfin of Eq. (C.20) and the latter
in Eq. (C.17), the translational dynamics is re-written as:

m
(
δz̈ − q0δẋ− V cosα0 δθ̇

)
= −QSrefCNα

{
δθ +

δż

V cosα0
− vw

V cosα0
− lα
V cosα0

δθ̇

}
− 2QSfinCfα cosβfin,0

{
δθ +

δż

V cosα0
− vw

V cosα0
− lf
V cosα0

δθ̇

}
+ 2QSfin [Cfα cosβfin,0 − Cf (αfin,0) sinβfin,0] δβfin

− T cosβTVC,0 δβTVC −mg sin θ0 δθ (C.21)
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Following the same procedure, the rotational dynamics of Eq. (C.18) becomes:

JN δθ̈ = lαQSrefCNα

{
δθ +

δż

V cosα0
− vw

V cosα0
− lα
V cosα0

δθ̇

}
+ 2lfQSfinCfα cosβfin,0

{
δθ +

δż

V cosα0
− vw

V cosα0
− lf
V cosα0

δθ̇

}
− 2lfQSfin [Cfα cosβfin,0 − Cf (αfin,0) sinβfin,0] δβfin

− lcT cosβTVC,0 δβTVC (C.22)

Final assumptions

Finally, the following two assumptions are also applied:

q0 δẋ ≈ 0 (C.23)

Cf (αfin,0) sinβfin,0 ≈ 0 (C.24)

The first assumption, Eq. (C.23), is very realistic since q0 and δẋ are very small (particularly
compared to δż) and allows to uncouple the longitudinal and lateral dynamics. The second one,
Eq. (C.24), is not genuinely necessary for the linearisation as that term is already linear, but it
is also realistic because both Cf (αfin,0) (recall Eq. (8.29)) and sinβfin,0 are small in atmospheric
flight.

In previous works on ascent flight control [SBM+16, NMS+19], it was further assumed that
trim angles are close to zero, i.e. cosα0 ≈ cosβTVC,0 ≈ 1, but this simplification is not applicable
in the general RLV case.

Linear equations of motion

With the assumptions of Eq. (C.23) and (C.24), Eq. (C.21) can be further re-organised into:

m
(
δz̈ − u0 δθ̇

)
= −Nα′ δθ −

Nα′

V cosα0
δż +

Nα′

V cosα0
vw +

lαNα + lfNf cosβfin,0

V cosα0
δθ̇

+Nf cosβfin,0 δβfin − T cosβTVC,0 δβTVC −ma0 δθ (C.25)

and Eq. (C.22) into:

δθ̈ = µα′ δθ +
µα′

V cosα0
δż − µα′

V cosα0
vw −

lαµα + lfµf cosβfin,0

V cosα0
δθ̇

− µf cosβfin,0 δβfin − µc cosβTVC,0 δβTVC (C.26)

To arrive at these two equations, a few additional variables are defined, which include trim
velocity and acceleration:

u0 = V cosα0, a0 = g sin θ0 (C.27)

aerodynamic and fin force gradients:
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Nα = QSrefCNα , Nf = 2QSfinCfα , Nα′ = Nα +Nf cosβfin,0 (C.28)

and moment proneness coefficients:

µα =
Nα

JN
lα, µf =

Nf

JN
lf , µc =

T

JN
lc, µα′ = µα + µf cosβfin,0 (C.29)

State-space representation

The perturbed RLV dynamics of Eq. (C.25) and (C.26) can then be written in the state-space
form as follows: [

δθ̇ δθ̈ δż δz̈
]T

= ARLV

[
δθ δθ̇ δz δż

]T
+BRLV

[
u

vw

]
(C.30)

where the vector u =
[
δβTVC δβfin

]T
gathers TVC and fin control inputs, and with matrices

ARLV and BRLV given by:

ARLV =


0 1 0 0

µα′ −
lαµα + lfµf cosβfin,0

V cosα0
0

µα′

V cosα0

0 0 0 1

−Nα′

m
− a0

lαNα + lfNf cosβfin,0

mV cosα0
+ u0 0 − Nα′

mV cosα0

 (C.31)

BRLV =


0 0 0

−µc cosβTVC,0 −µf cosβfin,0 − µα′

V cosα0

0 0 0

− T
m

cosβTVC,0
Nf

m
cosβfin,0

Nα′

mV cosα0

 (C.32)

Gravity turn case

It is important to highlight that during a gravity turn trajectory (which is the case for most of
the launch phase, recall Fig. 8.7), the commanded pitch reference is such that the centripetal
acceleration q0u0 is equalised by the gravity. In (and only in) these specific conditions, it is
common practice [Gre70, Suz04, WDW08, OJWM09] to linearise the equations of motion using
a local trajectory frame, {xL, zL} in Fig. 10.1, as the term u0 can be set to zero with the
remaining trim acceleration on that frame given by:

a0 =
T cosβTVC,0 −A

m
(C.33)

where A represents the axial drag force component.
In practice, care must be taken when switching between the conventions of Eq. (C.27)

and (C.33) essentially because the drift motion will be quantified with respect to different
reference frames (i.e., body in the former case and trajectory in the latter).
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