33 research outputs found

    Scientific and Technical Assistance for the Deployment of a Flexible Airborne Spectrometer System During C-MAPExp and COMEX

    Get PDF
    The COMEX (CO2 and MEthane eXperiment) campaign supports the mission definition of CarbonSat and HyspIRI (Hyperspectral Infrared Imager) by providing representative airborne remote sensing data MAMAP (Methane Airborne MAPper) for CarbonSat; the Airborne Visual InfraRed Imaging Spectrometer (Classic & Next Generation) AVIRISC/AVIRISNG for HyspIRI as well as ground-based and airborne insitu data. The objectives of the COMEX campaign activities are (see Campaign Implementation Plan (RD4)): 1. Investigate spatial/spectral resolution tradeoffs for CH4 anomaly detection and flux inversion by comparison of MAMAPderived emission estimates with AVIRIS/AVIRISNG derived data. 2. Evaluate sunglint observation geometry on CH4 retrievals for marine sources. 3. Characterize the effect of Surface Spectral Reflectance (SSR) heterogeneity on trace gas retrievals of CO2 and CH4 for medium and lowresolution spectrometry. 4. Identify benefits from joint SWIR/TIR (ShortWave InfraRed/Thermal InfraRed ) data for trace gas detection and retrieval by comparison of MAMAP and AVIRIS/AVIRISNG NIR/SWIR data with MAKO (Aerospace Corp.)TIR data. The ability to derive emission source strength for a range of strong emitting targets by remote sensing will be evaluated from combined AVIRISNG and MAMAP data, adding significant value to the HyspIRI campaign AVIRISNG dataset. The data will be used to quantify anomalies in atmospheric CO2 and CH4 from strong local greenhouse gas sources e.g. localized industrial complexes, landfills, etc. and to derive CO2 and CH4 emissions estimates from atmospheric gradient measurements. The original campaign concept was developed by University of Bremen and BRI. The COMEX campaign is funded bilaterally by NASA and ESA (European Space Agency). Whereas NASA funds the US part of the project via a contract with Dr. Ira Leifer, BRI (Bubbleology Research International), the contribution of MAMAP to the COMEX campaign is funded by ESA within the COMEXE project and NASA with respect to a 50 percent contribution to the flight-related costs of flying MAMAP on a US aircraft. The Data Acquisition Report (RD9) describes the instrumentation used, the measurements made by the team during the COMEX campaign in May/June 2014 and August/September 2014 in California, and an initial assessment of the data quality

    Report on how EIONET and EEA can contribute to the urban in situ requirements of a future Copernicus anthropogenic CO2 observing system

    Get PDF
    This report provides a technical review of CO2 and CH4 emissions monitoring methods based on surface mixing ratio measurements, total column mixing ratio measurements and flux measurements. The review demonstrated that all these measurements would fulfil respective in situ requirements of the Copernicus CO2 MVS capacity, contributing to the validation of space observations in and around cities and/or the system’s city-scale emissions estimates. The review furthermore elaborated on the benefits to climate change mitigation monitoring in the respective cities and how these methods could be implemented to monitor local emissions.Negotiated procedure No EEA/IDM/R0/17/008. Services supporting the European Environment Agency’s (EEA) crosscutting coordination of the Copernicus In Situ Componen

    What Can We Infer About the Atmospheric Composition Within the South Coast Air Basin from Remote Sensing?

    Get PDF
    To observe a change in a gas (e.g., CO2) flux from an area, the change must exceed the error of the flux estimate. Changing bias could be misinterpreted as a change in flux, and should be avoided. Errors can arise in column CO2 (XCO2) retrievals, in mis-interpreting XCO2 variations, or in the models to estimate fluxes. My thesis work has focused on recognizing and quantifying these errors and biases. The most widely-used ground-based observations of XCO2 are from the Total Carbon Column Observing Network (TCCON), which uses observations from similar spectrometers at high (0.02 cm-1) resolution. Within the past 5 years there has been increased use of portable, lower resolution (0.5 cm-1) spectrometers for focused, short-term campaigns. This thesis discusses sources of errors and biases in retrievals from these lower resolution spectrometers. Previous error estimates for the TCCON were made by propagating various perturbations through the retrieval. These uncertainty estimates were about 0.2 % for CO2 and 0.4 % for CH4. A pair of portable 0.5 cm-1 resolution spectrometers were used to empirically diagnose the magnitude of bias among TCCON sites. Median estimates were about 0.1 %. Column measurements have increased in popularity within the last 15 years because of their reduced sensitivity to the dry mole fractions (DMF) of gases near the surface. However, in the presence of a sharp gradient between the atmospheric mixed layer (ML) and free troposphere rapid changes in terrain may cause the ML height above ground level and XCO2 to vary significantly over a small area. This explains ~20-36 % of the difference in XCO2 between 2 sites (Caltech and JPL) within 10 km of each other in the South Coast Air Basin (SoCAB). Dynamical models may have biases (e.g., in wind speed) compared to true atmospheric behavior. This may cause biases in flux estimates. An estimate of the SoCAB CO2 flux using readily available model data is higher than those reported by bottom-up methods, perhaps due to a high wind speed bias. The flux is also sensitive to sub-sampling, which highlights the need to filter out biased data and the benefits additional observations could provide. Carbon dioxide is not the only radiative forcer---aerosols are the largest source of uncertainty on the global radiative forcing budget, and additional measurements may better constrain their impacts. Estimate of changes in aerosol optical depth (AOD) can be made using portable spectrometers. While these estimates are not highly accurate, they are a value-added product and may increase the understanding of atmospheric behavior.</p

    Using airborne remote sensing and in-situ observations to assess emissions of complex CH4 sources

    Get PDF
    Methane (CH4) is the second most important anthropogenic greenhouse gas. Its atmospheric concentration is significantly influenced by human activities and has increased over the past years. The adverse effects of such a greenhouse gas on the climate system has identified need to control its emissions. However, an accurate assessment of the different emission sources by existing observations remains challenging. Consequently, the methane budget still has significant uncertainties, especially for local sources. In this study, an attempt was made to quantify emissions for areal sources and complex source regions (about 1 to 90 km2 in area) using passive remote sensing data and in-situ data. The data set was collected during the COMEX (CO2 and MEthane eXperiment) research campaign in California in 2014. It comprised observations of CH4 by airborne remote sensing non-imaging (Methane Airborne MAPper, MAMAP) and imaging (Airborne Visible / Infrared Imaging Spectrometer - Next Generation, AVIRIS-NG) instruments as well as aircraft in-situ observations of CH4 and carbon dioxide (CO2) with a Picarro greenhouse gas in-situ analyser. The main objective was the quantitative analysis of emissions from prominent CH4 sources such as landfills and oil fields and, if present, also accompanying CO2 emissions. In particular, the unique spectroscopic measurements in the short wave infrared region from the MAMAP remote sensing instrument have successfully been used for this purpose. This was also the first time that CH4 emissions from an entire landfill and an oil field complex were quantitatively estimated from airborne remote sensing data. Elevated CH4 concentrations (or 'CH4 plumes') were detected downwind from landfills and across oil fields by remote sensing aircraft surveys using the MAMAP instrument. Following each remote sensing survey, the detected plumes were sampled within the atmospheric boundary layer by in-situ instruments on the same aircraft for atmospheric parameters such as wind information and dry gas mole fractions of CH4 and CO2. These measurements facilitated an independent assessment and verification of the surface fluxes. During the COMEX campaign, four landfills in the Los Angeles Basin were surveyed, where one landfill repeatedly showed a clear emission plume on four flight days. Additionally, an oil field complex in the San Joaquin Valley was investigated on seven days. Emission rates estimated from the MAMAP remote sensing and Picarro in-situ observations via mass balance approaches vary between 11.6 and 17.8 ktCH4/yr for the landfill, and between 31.0 and 47.1 ktCH4/yr for the oil field complex for several overpasses. Case-dependent relative uncertainties are between 17% to 45%. Furthermore, the in-situ and remote sensing based emission rates agree well within the error bars. The reported inventory value of the landfill of 11.5 ktCH4/yr for 2014 by the US Environmental Protection Agency (EPA) is on average 2.8 ktCH4/yr lower than the top-down estimate from this study. The top-down estimates of the oil field complex are consistent with the latest inventory estimate but can differ significantly if basic assumptions of production rates and emission factors are used yielding only around 6 ktCH4/yr. The imaging capabilities of the AVIRIS-NG instrument aboard a simultaneously flown second aircraft additionally allowed the identification of a possible leak in the landfill cover and the exact source positions of the emitters across the oil field complex

    Development and Applications of Opposed Migration Aerosol Classifiers (OMACs)

    Get PDF
    Particle electrical mobility classification has made important contributions in atmospheric and climate science, public health and welfare policy, and nanotechnology. The measurement of the particle size distribution is integral to characterization of the sub-micrometer aerosol particle population. The differential mobility analyzer (DMA) has been the primary instrument for such measurements. Aerosol particles are transmitted through the DMA on the condition that their migration time across an electrode separation distance is approximately equal to the advective transport time from the inlet to the outlet; these two travel times are induced by an electric field between the electrodes and an orthogonal particle-free carrier gas flow. However, scientific interest has increasingly shifted toward both the nanometer-scale particle size distribution and the miniaturization of instruments. The classical DMA suffers from severe resolution degradation and diffusional losses of nanometer-scale particles, as well as being ill-suited for lightweight, low-power applications. It is relatively recently that miniaturization of DMAs for portable applications has appeared in the scientific literature. Additionally, an abundance of efforts on DMA design have yielded instruments that can probe the nanometer-scale particle size regime, though their use is restricted to the laboratory as they require powerful pumps and operate at near-turbulent flow conditions. The opposed migration aerosol classifier (OMAC) is a novel concept for particle electrical mobility classification introduced about a decade ago. In contrast to the DMA, the OMAC transmits particles on the condition that their migration velocity in an electric field is approximately equal to the advective transport velocity by a particle-free flow; the migration velocity is induced by an electric field between two porous electrodes, through which a particle-free cross-flow moves in an anti-parallel direction to the electric field. Because of this flow field arrangement, the length scale over which diffusion must act to affect resolution is the entire electrode separation distance in the OMAC, whereas in the DMA it is smaller by about a factor of the sample-to-carrier gas flow rate ratio. As a result, resolution degradation due to diffusion occurs at a lower operating voltage in the OMAC compared to the DMA. Not only does this suggest a larger dynamic range for the OMAC, but also the capability to classify nanometer-scale particles with greater resolution and lower operating voltages and flow rates. Motivated by the theoretical advantages of an OMAC compared to a DMA, this thesis details the design and characterization of OMAC classifiers to verify the performance of realized OMACs. The capabilities of prototype radial geometry OMACs were first investigated. They demonstrated sub-20 nm particle diameter classification at high resolution using modest flow rates, making them amenable to non-laboratory applications. Additionally, the delayed resolution degradation of OMACs was validated by the maintenance of resolution at operating voltages below those at which a DMA would have experienced severely degraded resolution. Various applications were then carried out to validate the use of OMACs in both nanometer-scale and sub-micrometer particle size regimes. The first OMAC application was in the field of biomolecule analysis, in which the radial OMAC was operated as an ion mobility spectrometer coupled to a mass spectrometer to resolve conformations of sub-2 nm biomolecules. The resolving power of the radial OMAC was high enough to differentiate peptide stereoisomers and populations of thermally-induced biomolecule conformations. In the aerosol measurement field, aerosol particle size distributions are typically obtained by passing the sample through an ionization source to impart charges on the sample particles, before mobility separation and detection. The detected signal must be inverted, using detector efficiencies, classifier transfer functions, and charge distributions, to obtain the true particle size distribution. While detector efficiencies and classifier transfer functions are typically well-quantified for the specific instruments used in the measurement, the charge distribution is almost never calculated for the specific measurement conditions. This is due both to the computational expense of, as well as the present impracticability of obtaining all the information needed for carrying out such calculations. Aerosol scientists typically use one parameterization of the charge distribution, regardless of the measurement conditions. Thus, the charge distribution represents the greatest source of bias in particle size distribution measurements. Having demonstrated high resolution of sub-2 nm ions, the radial OMAC was then used to obtain mobility distributions of gas ions formed in a bipolar aerosol charger. These ion mobility distributions were then used to quantify the particle size distribution bias due to the use of the common charge distribution parameterization. In atmospheric nucleation field, the radial OMAC was deployed as part of an airborne particle detection payload over a large cattle feedlot. Again, the radial OMAC demonstrated the ability to obtain nanometer-scale particle size distributions, that, when paired with a concurrently-deployed DMA, allowed for the measurement of ambient particle size distributions over the entire sub-micrometer size range. A spatially-dense set of such particle size distributions allowed for the calculation of particle growth rates from a clear nucleation event from cattle feedlot emissions. Finally, OMACs were evaluated for their performance at low-flow rate operation to obtain sub-micron particle size distribution for deployment as portable exposure monitors, distributed network area monitors, and unmanned aerial vehicle instrumentation. The radial OMAC showed high fidelity to a reference instrument in reported ambient particle size distributions for nearly 48 hours of unattended operation. A planar geometry OMAC prototype was designed and characterized as well, indicating design and construction issues that caused deviations from ideal behavior. The planer OMAC qualitatively agreed with a reference instrument in reported ambient particle size distributions for about 12 hours of unattended operation. Both radial and planar OMACs were more compact, lower in weight, and less demanding in power consumption than a classical DMA, showing high potential for further miniaturized instrumentation development.</p

    Non-covalent interactions in organotin(IV) derivatives of 5,7-ditertbutyl- and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine as recognition motifs in crystalline self- assembly and their in vitro antistaphylococcal activity

    Get PDF
    Non-covalent interactions are known to play a key role in biological compounds due to their stabilization of the tertiary and quaternary structure of proteins [1]. Ligands similar to purine rings, such as triazolo pyrimidine ones, are very versatile in their interactions with metals and can act as model systems for natural bio-inorganic compounds [2]. A considerable series (twelve novel compounds are reported) of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl- 1,2,4-triazolo[1,5-a]pyrimidine (dptp) were synthesized and investigated by FT-IR and 119Sn M\uf6ssbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution [3]. The X-ray crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 were described, in this latter pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the -OH group of the ethanol moieties. The network of hydrogen bonding and aromatic interactions involving pyrimidine and phenyl rings in both complexes drives their self-assembly. Noncovalent interactions involving aromatic rings are key processes in both chemical and biological recognition, contributing to overall complex stability and forming recognition motifs. It is noteworthy that in Ph2SnCl2(EtOH)2(dptp)2 \u3c0\u2013\u3c0 stacking interactions between pairs of antiparallel triazolopyrimidine rings mimick basepair interactions physiologically occurring in DNA (Fig.1). M\uf6ssbauer spectra suggest for Et2SnCl2(dbtp)2 a distorted octahedral structure, with C-Sn-C bond angles lower than 180\ub0. The estimated angle for Et2SnCl2(dbtp)2 is virtually identical to that determined by X-ray diffraction. Ph2SnCl2(EtOH)2(dptp)2 is characterized by an essentially linear C-Sn-C fragment according to the X-ray all-trans structure. The compounds were screened for their in vitro antibacterial activity on a group of reference staphylococcal strains susceptible or resistant to methicillin and against two reference Gramnegative pathogens [4] . We tested the biological activity of all the specimen against a group of staphylococcal reference strains (S. aureus ATCC 25923, S. aureus ATCC 29213, methicillin resistant S. aureus 43866 and S. epidermidis RP62A) along with Gram-negative pathogens (P. aeruginosa ATCC9027 and E. coli ATCC25922). Ph2SnCl2(EtOH)2(dptp)2 showed good antibacterial activity with a MIC value of 5 \u3bcg mL-1 against S. aureus ATCC29213 and also resulted active against methicillin resistant S. epidermidis RP62A

    Nuevas estrategias basadas en geotecnologías de aplicación a la agricultura y ganadería de precisión

    Get PDF
    [ES]Las geotecnologías han emergido como la piedra angular del nuevo paradigma digital en el que están actualmente inmersas la agricultura y la ganadería contemporáneas, es decir, la nueva revolución agrícola, conocida como Agricultura 4.0, en la que se enmarcan las denominadas agricultura y ganadería de precisión. La obligada modernización a la que se ven sometidas las prácticas agroganaderas tradicionales viene desencadenada por el incipiente crecimiento demográfico y la consecuente demanda de productos agroalimentarios. Esta drástica transformación del mundo rural se torna imprescindible no solo para conseguir abastecer las necesidades de una población creciente, sino para rescatar a un sector primario cada vez más castigado por los elevados precios de los insumos y los escasos beneficios que se perciben. Como avales también de esta necesaria reconversión de los sistemas de manejo agropecuarios, entran también en juego pilares fundamentales de la productividad agrícola y ganadera como son la sostenibilidad medioambiental y el bienestar animal, ambos muy demandados en los productos de primera necesidad por una sociedad cada vez más concienciada con la producción respetuosa con el medio y con los animales. En este contexto, las geotecnologías no deben ser tomadas como herramientas que amenacen con sustituir los conocimientos agroganaderos tradicionales o que promuevan su desaparición. El enfoque es categóricamente opuesto, ya que tratan de perfeccionar la toma de decisiones de los agricultores y ganaderos, fundada en dicha sabiduría tradicional. Esta complementariedad resultará en nuevos modelos de gestión de los sistemas agropecuarios, que serán ostensiblemente más respetuosos con el medio que los sustenta, a la par que se maximizará el respeto hacia los principios básicos de sostenibilidad y bienestar animal. Por lo tanto, en este trabajo se plantea la siguiente hipótesis: la implementación de nuevas estrategias metodológicas basadas en geotecnologías en el sector agroganadero contribuirán a reducir los costes de producción, el tiempo empleado por agricultores y ganaderos en sus labores y el impacto medioambiental que dichas labores pudieran ocasionar, generando beneficios de corte económico, social y medioambiental. Considerando la hipótesis anteriormente expuesta, el objetivo de la presente tesis doctoral se centró en demostrar el potencial de las geotecnologías como herramientas alternativas y complementarias destinadas a la mejora de la gestión de los sistemas de manejo agroganaderos en el ámbito económico, medioambiental y desde el punto de vista del bienestar animal. Así mismo, se planteó que dichas estrategias geotecnológicas sirvan también para ahondar en el aprendizaje de nuevos conocimientos agrícolas y ganaderos. Para lograr este objetivo, se plantearon una serie de aportaciones que permitieran dilucidar la idoneidad de dichas geotecnologías en la gestión agroganadera

    Low-Dose Radiation Effects on Animals and Ecosystems

    Get PDF
    This open access book summarizes the latest scientific findings regarding the biological effects of the Fukushima Daiichi Nuclear Power Plant (FNPP) accident in 2011. Various cases of changes in animals and organisms have been reported since the FNPP accident. However, it is often unknown whether they are actually due to radiation, since the dose or dose-rate are not necessarily associated with the changes observed. This book brings together the works of radiation biologists and ecologists to provide reliable radioecology data and gives insight into future radioprotection. The book examines the environmental pollution and radiation exposure, and contains valuable data from abandoned livestock in the ex-evacuation zone and from wild animals including invertebrates and vertebrates, aqueous and terrestrial animals, and plants that are subjected to long-term exposure in the area still affected by radiation. It also analyzes dose evaluation, and offers new perspectives gained from the accident, as well as an overview for future studies to promote radioprotection of humans and the ecosystem. Since the biological impact of radiation is influenced by various factors, it is difficult to scientifically define the effects of low-dose/low-dose-rate radiation. However, the detailed research data presented can be combined with the latest scientific and technological advances, such as artificial intelligence, to provide new insights in the future. This book is a unique and valuable resource for researchers, professionals and anyone interested in the impact of exposure to radiation or contamination with radioactive materials
    corecore