2,736 research outputs found

    An In-Depth Study on Open-Set Camera Model Identification

    Full text link
    Camera model identification refers to the problem of linking a picture to the camera model used to shoot it. As this might be an enabling factor in different forensic applications to single out possible suspects (e.g., detecting the author of child abuse or terrorist propaganda material), many accurate camera model attribution methods have been developed in the literature. One of their main drawbacks, however, is the typical closed-set assumption of the problem. This means that an investigated photograph is always assigned to one camera model within a set of known ones present during investigation, i.e., training time, and the fact that the picture can come from a completely unrelated camera model during actual testing is usually ignored. Under realistic conditions, it is not possible to assume that every picture under analysis belongs to one of the available camera models. To deal with this issue, in this paper, we present the first in-depth study on the possibility of solving the camera model identification problem in open-set scenarios. Given a photograph, we aim at detecting whether it comes from one of the known camera models of interest or from an unknown one. We compare different feature extraction algorithms and classifiers specially targeting open-set recognition. We also evaluate possible open-set training protocols that can be applied along with any open-set classifier, observing that a simple of those alternatives obtains best results. Thorough testing on independent datasets shows that it is possible to leverage a recently proposed convolutional neural network as feature extractor paired with a properly trained open-set classifier aiming at solving the open-set camera model attribution problem even to small-scale image patches, improving over state-of-the-art available solutions.Comment: Published through IEEE Access journa

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    Artificial Intelligence Based Classification for Urban Surface Water Modelling

    Get PDF
    Estimations and predictions of surface water runoff can provide very useful insights, regarding flood risks in urban areas. To automatically predict the flow behaviour of the rainfall-runoff water, in real-world satellite images, it is important to precisely identify permeable and impermeable areas. This identification indicates and helps to calculate the amount of surface water, by taking into account the amount of water being absorbed in a permeable area and what remains on the impermeable area. In this research, a model of surface water has been established, to predict the behavioural flow of rainfall-runoff water. This study employs a combination of image processing, artificial intelligence and machine learning techniques, for automatic segmentation and classification of permeable and impermeable areas, in satellite images. These techniques investigate the image classification approaches for classifying three land-use categories (roofs, roads, and pervious areas), commonly found in satellite images of the earth’s surface. Three different classification scenarios are investigated, to select the best classification model. The first scenario involves pixel by pixel classification of images, using Classification Tree and Random Forest classification techniques, in 2 different settings of sequential and parallel execution of algorithms. In the second classification scenario, the image is divided into objects, by using Superpixels (SLIC) segmentation method, while three kinds of feature sets are extracted from the segmented objects. The performance of eight different supervised machine learning classifiers is probed, using 5-fold cross-validation, for multiple SLIC values, while detailed performance comparisons lead to conclusions about the classification into different classes, regarding Object-based and Pixel-based classification schemes. Pareto analysis and Knee point selection are used to select SLIC value and the suitable type of classification, among the aforementioned two. Furthermore, a new diversity and weighted sum-based ensemble classification model, called ParetoEnsemble, is proposed, in this classification scenario. The weights are applied to selected component classifiers of an ensemble, creating a strong classifier, where classification is done based on multiple votes from candidate classifiers of the ensemble, as opposed to individual classifiers, where classification is done based on a single vote, from only one classifier. Unbalanced and balanced data-based classification results are also evaluated, to determine the most suitable mode, for satellite image classifications, in this study. Convolutional Neural Networks, based on semantic segmentation, are also employed in the classification phase, as a third scenario, to evaluate the strength of deep learning model SegNet, in the classification of satellite imaging. The best results, from the three classification scenarios, are compared and the best classification method, among the three scenarios, is used in the next phase of water modelling, with the InfoWorks ICM software, to explore the potential of modelling process, regarding a partially automated surface water network. By using the parameter settings, with a specified amount of simulated rain falling, onto the imaged area, the amount of surface water flow is estimated, to get predictions about runoff situations in urban areas, since runoff, in such a situation, can be high enough to pose a dangerous flood risk. The area of Feock, in Cornwall, is used as a simulation area of study, in this research, where some promising results have been derived, regarding classification and modelling of runoff. The correlation coefficient estimation, between classification and runoff accuracy, provides useful insight, regarding the dependence of runoff performance on classification performance. The trained system was tested on some unknown area images as well, demonstrating a reasonable performance, considering the training and classification limitations and conditions. Furthermore, in these unknown area images, reasonable estimations were derived, regarding surface water runoff. An analysis of unbalanced and balanced data-based classification and runoff estimations, for multiple parameter configurations, provides aid to the selection of classification and modelling parameter values, to be used in future unknown data predictions. This research is founded on the incorporation of satellite imaging into water modelling, using selective images for analysis and assessment of results. This system can be further improved, and runoff predictions of high precision can be better achieved, by adding more high-resolution images to the classifiers training. The added variety, to the trained model, can lead to an even better classification of any unknown image, which could eventually provide better modelling and better insights into surface water modelling. Moreover, the modelling phase can be extended, in future research, to deal with real-time parameters, by calibrating the model, after the classification phase, in order to observe the impact of classification on the actual calibration

    Water Surfaces Detection from Sentinel-1 SAR Images using Deep Learning

    Get PDF
    Nowadays, Synthetic Aperture Radar (SAR) images have been widely used in the industry and the scientific community for different remote sensing applications. The main advantage of SAR technology is that it can acquire images from nighttime since it does not require sunlight. Additionally, it can capture images under the cloud where the traditional optical sensor is limited. It is very convenient to use SAR image for surface water detection because the flatness of the calm water surface reflects off all the energy from the radar and this makes the surface water appears in a SAR image as dark pixels. The traditional way to mark out water from SAR images is by just using the thresholding method which a pixel is classified as water when its value is below a certain threshold. This method works fine in a plain rural area, but the complex features of urban areas make it more challenging, for example, highways and buildings’ shadows can be easily misclassified as water. To solve this problem, we propose the Fully Convolutional Neural Network (FCN) Encoder method, a deep learning model based on the convolutional implementation of sliding windows. The FCN Encoder is designed to detect water from SAR images by considering both the pixel intensity and the spatial information of the pixel (i.e., its neighborhood). In our experiments, we first train the network using the So2sat dataset, which contains patches of Sentinel-1 satellite SAR images. Next, we use the trained neural network to detect water from SAR images of several cities. The obtained results show satisfactory scores and also visually appear accurate. In the final optimization phase, we: a) train the FCN Encoder with our custom HARD dataset - a dataset with images that are harder to classify, and b) we optimize the hyperparameters of the model. We test the resulted classifier on public SAR images and compare it with other methods such as Smooth Labeling, Random Forest, and FCN Segmentation

    GlacierNet2: A Hybrid Multi-Model Learning Architecture for Alpine Glacier Mapping

    Full text link
    In recent decades, climate change has significantly affected glacier dynamics, resulting in mass loss and an increased risk of glacier-related hazards including supraglacial and proglacial lake development, as well as catastrophic outburst flooding. Rapidly changing conditions dictate the need for continuous and detailed observations and analysis of climate-glacier dynamics. Thematic and quantitative information regarding glacier geometry is fundamental for understanding climate forcing and the sensitivity of glaciers to climate change, however, accurately mapping debris-cover glaciers (DCGs) is notoriously difficult based upon the use of spectral information and conventional machine-learning techniques. The objective of this research is to improve upon an earlier proposed deep-learning-based approach, GlacierNet, which was developed to exploit a convolutional neural-network segmentation model to accurately outline regional DCG ablation zones. Specifically, we developed an enhanced GlacierNet2 architecture thatincorporates multiple models, automatic post-processing, and basin-level hydrological flow techniques to improve the mapping of DCGs such that it includes both the ablation and accumulation zones. Experimental evaluations demonstrate that GlacierNet2 improves the estimation of the ablation zone and allows a high level of intersection over union (IOU: 0.8839) score. The proposed architecture provides complete glacier (both accumulation and ablation zone) outlines at regional scales, with an overall IOU score of 0.8619. This is a crucial first step in automating complete glacier mapping that can be used for accurate glacier modeling or mass-balance analysis

    Towards Daily High-resolution Inundation Observations using Deep Learning and EO

    Full text link
    Satellite remote sensing presents a cost-effective solution for synoptic flood monitoring, and satellite-derived flood maps provide a computationally efficient alternative to numerical flood inundation models traditionally used. While satellites do offer timely inundation information when they happen to cover an ongoing flood event, they are limited by their spatiotemporal resolution in terms of their ability to dynamically monitor flood evolution at various scales. Constantly improving access to new satellite data sources as well as big data processing capabilities has unlocked an unprecedented number of possibilities in terms of data-driven solutions to this problem. Specifically, the fusion of data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions, which have low spatial but high temporal resolutions could yield high-resolution flood inundation at a daily scale. Here a Convolutional-Neural-Network is trained using flood inundation maps derived from Sentinel-1 Synthetic Aperture Radar and various hydrological, topographical, and land-use based predictors for the first time, to predict high-resolution probabilistic maps of flood inundation. The performance of UNet and SegNet model architectures for this task is evaluated, using flood masks derived from Sentinel-1 and Sentinel-2, separately with 95 percent-confidence intervals. The Area under the Curve (AUC) of the Precision Recall Curve (PR-AUC) is used as the main evaluation metric, due to the inherently imbalanced nature of classes in a binary flood mapping problem, with the best model delivering a PR-AUC of 0.85

    Deep Learning Models for River Classification at Sub-Meter Resolutions from Multispectral and Panchromatic Commercial Satellite Imagery

    Full text link
    Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.Comment: 21 pages, 10 figures, 3 table

    Simple and Complex Human Action Recognition in Constrained and Unconstrained Videos

    Get PDF
    Human action recognition plays a crucial role in visual learning applications such as video understanding and surveillance, video retrieval, human-computer interactions, and autonomous driving systems. A variety of methodologies have been proposed for human action recognition via developing of low-level features along with the bag-of-visual-word models. However, much less research has been performed on the compound of pre-processing, encoding and classification stages. This dissertation focuses on enhancing the action recognition performances via ensemble learning, hybrid classifier, hierarchical feature representation, and key action perception methodologies. Action variation is one of the crucial challenges in video analysis and action recognition. We address this problem by proposing the hybrid classifier (HC) to discriminate actions which contain similar forms of motion features such as walking, running, and jogging. Aside from that, we show and proof that the fusion of various appearance-based and motion features can boost the simple and complex action recognition performance. The next part of the dissertation introduces pooled-feature representation (PFR) which is derived from a double phase encoding framework (DPE). Considering that a given unconstrained video is composed of a sequence of simple frames, the first phase of DPE generates temporal sub-volumes from the video and represents them individually by employing the proposed improved rank pooling (IRP) method. The second phase constructs the pool of features by fusing the represented vectors from the first phase. The pool is compressed and then encoded to provide video-parts vector (VPV). The DPE framework allows distilling the video representation and hierarchically extracting new information. Compared with recent video encoding approaches, VPV can preserve the higher-level information through standard encoding of low-level features in two phases. Furthermore, the encoded vectors from both phases of DPE are fused along with a compression stage to develop PFR
    • …
    corecore