844 research outputs found

    The human visual system's representation of light sources and the objects they illuminate

    Full text link
    The light sources in a scene can drastically affect the pattern of intensities falling on the retina. However, it is unclear how the visual system represents the light sources in a scene. One possibility is that a light source is treated as a scene component: an entity that exists within a scene and interacts with other scene components (object shape and object reflectance) to produce the retinal image. The aim of this thesis was to test two key predictions arising from a perceptual framework in which light sources and the objects they illuminate are considered to be scene components by the visual system. We begin examining the first prediction in Chapter 3, focusing on the role of a dynamic shape cue in the interaction between shape, reflectance, and lighting. In two psychophysics experiments, we show that the visual system can "explain away'" alternative interpretations of luminance gradients using the information provided by a dynamic shape cue (kinetic depth). In subsequent chapters, the research focus shifts to the second prediction, investigating whether multiple objects in a scene are integrated to estimate light source direction. In Chapter 4, participants were presented with scenes that contained 1, 9, and 25 objects and asked to judge whether the scenes were illuminated from the left or right, relative to their viewpoint. We found that increasing the number of objects in a scene worsened, if anything, discrimination sensitivity. To further understand this result, we conducted an equivalent noise experiment in Chapter 5 to examine the contributions of internal noise and integration to estimates of light source direction. Our results indicate that participants used only 1 or 2 objects to judge light source direction for scenes with 9 and 25 objects. Chapter 6 presents a shape discrimination experiment that required participants to make an implicit, rather than explicit, judgement of light source direction. Consistent with the results reported in Chapters 4 and 5, we find that shape discrimination sensitivity was comparable for scenes containing 1, 9, and 25 objects. Taken together, the findings presented here suggest that while object shape and reflectance may be represented as scene components, lighting seems to be associated with individual objects rather than having a scene-level representation

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    Selective rendering for efficient ray traced stereoscopic images

    Get PDF
    Depth-related visual effects are a key feature of many virtual environments. In stereo-based systems, the depth effect can be produced by delivering frames of disparate image pairs, while in monocular environments, the viewer has to extract this depth information from a single image by examining details such as perspective and shadows. This paper investigates via a number of psychophysical experiments, whether we can reduce computational effort and still achieve perceptually high-quality rendering for stereo imagery. We examined selectively rendering the image pairs by exploiting the fusing capability and depth perception underlying human stereo vision. In ray-tracing-based global illumination systems, a higher image resolution introduces more computation to the rendering process since many more rays need to be traced. We first investigated whether we could utilise the human binocular fusing ability and significantly reduce the resolution of one of the image pairs and yet retain a high perceptual quality under stereo viewing condition. Secondly, we evaluated subjects' performance on a specific visual task that required accurate depth perception. We found that subjects required far fewer rendered depth cues in the stereo viewing environment to perform the task well. Avoiding rendering these detailed cues saved significant computational time. In fact it was possible to achieve a better task performance in the stereo viewing condition at a combined rendering time for the image pairs less than that required for the single monocular image. The outcome of this study suggests that we can produce more efficient stereo images for depth-related visual tasks by selective rendering and exploiting inherent features of human stereo vision

    Practical Implementation of a Graphics Turing Test

    Get PDF
    We present a practical implementation of a variation of the Turing Test for realistic computer graphics. The test determines whether virtual representations of objects appear as real as genuine objects. Two experiments were conducted wherein a real object and a similar virtual object is presented to test subjects under specific restrictions. A criterion for passing the test is presented based on the probability for the subjects to be unable to recognise a computer generated object as virtual. The experiments show that the specific setup can be used to determine the quality of virtual reality graphics. Based on the results from these experiments, future versions of the Graphics Turing Test could ease the restrictions currently necessary in order to test object telepresence under more general conditions. Furthermore, the test could be used to determine the minimum requirements to achieve object telepresence.</p

    Art through the colors of graffiti: from the perspective of the chromatic structure

    Get PDF
    Graffiti is a general term that describes inscriptions on a wall, a practice with ancient origins, ranging from simple drawings and writings to elaborate pictorial representations. Nowadays, the term graffiti commonly describes the street art dedicated to wall paintings, which raises complex questions, including sociological, legal, political and aesthetic issues. Here we examine the aesthetics of graffiti colors by quantitatively characterizing and comparing their chromatic structure to that of traditional paintings in museums and natural scenes obtained by hyperspectral imaging. Two hundred twenty-eight photos of graffiti were taken in the city of São Paulo, Brazil. The colors of graffiti were represented in a color space and characterized by several statistical parameters. We found that graffiti have chromatic structures similar to those of traditional paintings, namely their preferred colors, distribution, and balance. In particular, they have color gamuts with the same degree of elongation, revealing a tendency for combining similar colors in the same proportions. Like more traditional artists, the preferred colors are close to the yellow–blue axis of color space, suggesting that graffiti artists’ color choices also mimic those of the natural world. Even so, graffiti tend to have larger color gamuts due to the availability of a new generation of synthetic pigments, resulting in a greater freedom in color choice. A complementary analysis of graffiti from other countries supports the global generalization of these findings. By sharing their color structures with those of paintings, graffiti contribute to bringing art to the cities.This work was supported by Fundação CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) to Carlo M. Gaddi (88882.376512/2019-01), and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019

    Enlightened Romanticism: Mary Gartside’s colour theory in the age of Moses Harris, Goethe and George Field

    Get PDF
    The aim of this paper is to evaluate the work of Mary Gartside, a British female colour theorist, active in London between 1781 and 1808. She published three books between 1805 and 1808. In chronological and intellectual terms Gartside can cautiously be regarded an exemplary link between Moses Harris, who published a short but important theory of colour in the second half of the eighteenth century, and J.W. von Goethe’s highly influential Zur Farbenlehre, published in Germany in 1810. Gartside’s colour theory was published privately under the disguise of a traditional water colouring manual, illustrated with stunning abstract colour blots (see example above). Until well into the twentieth century, she remained the only woman known to have published a theory of colour. In contrast to Goethe and other colour theorists in the late 18th and early 19th century Gartside was less inclined to follow the anti-Newtonian attitudes of the Romantic movement

    Perception of Lighting and Reflectance in Real and Synthetic Stimuli

    Get PDF
    The human visual system estimates the proportion of light reflected off of a surface despite variable lighting in a scene, a phenomenon known as lightness constancy. Classically, lightness constancy has been explained as a 'discounting' of the lighting intensity (Helmholtz, 1866), and this continues to be a common view today (e.g., Brainard & Maloney, 2011). However, Logvinenko and Maloney (2006) have made a radically different claim that the human visual system does not have any perceptual access to an estimation of lightness. The experiments described in Chapter 2 use a novel experimental paradigm to test this new theory proposed by Logvinenko and Maloney. We provide evidence against Logvinenko and Maloney's theory of lightness perception while adding to existing evidence that the visual system has good lightness constancy. In Chapter 3, we manipulate screen colour and texture cues to test the realism of computer-generated stimuli. We find that by matching the chromaticity of an LCD screen to the surrounding lighting and using a realistic texture, LCD screens can be made to appear similar to physical paper. Finally, Chapter 4 is an extension of the ideas from Chapter 3, in which the knowledge about how to adjust color and texture cues on an LCD monitor is applied to a lightness matching task. Here, the LCD screen is a small part of a larger physical setup. Additionally, levels of lightness constancy are compared across physical and simulated surfaces in the same novel experimental paradigm in Chapters 2 and 4. We find that physical and simulated surfaced elicit different levels of lightness constancy on the same task
    corecore