3,538 research outputs found

    Evaluating color texture descriptors under large variations of controlled lighting conditions

    Full text link
    The recognition of color texture under varying lighting conditions is still an open issue. Several features have been proposed for this purpose, ranging from traditional statistical descriptors to features extracted with neural networks. Still, it is not completely clear under what circumstances a feature performs better than the others. In this paper we report an extensive comparison of old and new texture features, with and without a color normalization step, with a particular focus on how they are affected by small and large variation in the lighting conditions. The evaluation is performed on a new texture database including 68 samples of raw food acquired under 46 conditions that present single and combined variations of light color, direction and intensity. The database allows to systematically investigate the robustness of texture descriptors across a large range of variations of imaging conditions.Comment: Submitted to the Journal of the Optical Society of America

    Improving Texture Categorization with Biologically Inspired Filtering

    Full text link
    Within the domain of texture classification, a lot of effort has been spent on local descriptors, leading to many powerful algorithms. However, preprocessing techniques have received much less attention despite their important potential for improving the overall classification performance. We address this question by proposing a novel, simple, yet very powerful biologically-inspired filtering (BF) which simulates the performance of human retina. In the proposed approach, given a texture image, after applying a DoG filter to detect the "edges", we first split the filtered image into two "maps" alongside the sides of its edges. The feature extraction step is then carried out on the two "maps" instead of the input image. Our algorithm has several advantages such as simplicity, robustness to illumination and noise, and discriminative power. Experimental results on three large texture databases show that with an extremely low computational cost, the proposed method improves significantly the performance of many texture classification systems, notably in noisy environments. The source codes of the proposed algorithm can be downloaded from https://sites.google.com/site/nsonvu/code.Comment: 11 page

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    Learning Multi-Scale Representations for Material Classification

    Full text link
    The recent progress in sparse coding and deep learning has made unsupervised feature learning methods a strong competitor to hand-crafted descriptors. In computer vision, success stories of learned features have been predominantly reported for object recognition tasks. In this paper, we investigate if and how feature learning can be used for material recognition. We propose two strategies to incorporate scale information into the learning procedure resulting in a novel multi-scale coding procedure. Our results show that our learned features for material recognition outperform hand-crafted descriptors on the FMD and the KTH-TIPS2 material classification benchmarks
    • …
    corecore