267 research outputs found

    Analysis of Soil Nitrate Ion Selective Electrode (ISE) Sensor using Arduino UNO

    Get PDF
    The ecological concern over soil and groundwater pollution caused by agricultural activities has led to the growing interest in precision agriculture. One of the most common types of fertilizer is the nitrogen fertilizer which needed in major amount for plant growth. Over fertilization will contaminate soil and groundwater which can have adverse effect on environment and human health. The main purpose of this research is to measure soil nitrate concentration using nitrate ion-selective electrode (ISE) sensor and Arduino programmable microcontroller. The optimum soil-to-water ratio and the effect of soil solution clarity will be investigated. Standard sampling procedures was conducted at oil palm plantation area, Felda Bukit Goh, Pahang, Malaysia. Validation of the results were carried out in the laboratory. The recorded data indicated accurate readings for Nitrate ISE Arduino was Rยฒ = 0.84. The soil-to-water ratio of 1:2.5 was observed as an optimal proportion ISE analysis. A clear soil solution was crucial for maintaining the accuracy of ISE sensor, to avoid declining of 46.2% accuracy. These results could assist researchers and farmers to accurately monitor the concentrations of soil nitrate on the field effectively as well as an insight to ISE sensor with Arduino technologies

    The fabrication of potentiometric membrane sensors and their applications

    Get PDF
    Ionophore-incorporated PVC-membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. The key ingredient of such plasticized PVC-members is the involved ionophore, defining the selectivity of the electrodes complex formation with the cation of interest. In the past few years, the development of new ion-selective electrodes for various ions has been reported inthe literature

    Simple and robust ion-selective electrodes for bio/environmental analysis

    Get PDF
    Chemical sensors have gone through a lot of optimisation renaissance over the years to have come from a typical bench-top tool for measurements of ions in standard solutions, to a more promising analytical technique capable of measuring the activities of free un-complexed nutrients in environmentally and biologically important samples. With various health issues arising due to the increasing anthropogenic contributions of man to the environment amongst other factors, and due to the need for more routine analysis especially do-it-yourself (DIY) of several analytes in physiological samples for clinical purposes, it is therefore imperative that simple, cheap, but robust sensors are developed, and optimised to meet these emerging needs. First part of this work involved fabricating solid-contact ion selective electrodes (SC-ISEs) based on the mechanical abrasion of graphite on easily modified acetate paper. Similarly results from the impedance spectra and the water layer test for electrodes with or without a conducting polymer (CP) layer indicated the suitability of the procedure. The fabricated paper electrodes importantly showed fast response time and great potential stability over the course of fourteen days. The same fabrication methodology was used to produce stable and functional solid-state paper reference electrode, and then, combined with other graphite-based paper ISEs to yield a single-strip solid contact electrode for simultaneous measurements of nitrate and ammonium in environmental samples. Satisfactory results from the comparison of measured concentrations by potentiometry and standard reference methods indicated this simplified electrode platform, designed from household materials can be used as a cheaper alternative to other solid contact electrodes. Subsequent works in this thesis involved the application of the fabricated SC-ISEs in optimization of measurement procedures of environmentally important nutrients and biologically important analytes. Routine monitoring of reactive nitrogen Nr (majorly NH4+ and NO3-) in environmental samples including soils from major land types is important to soil management system. In achieving a relatively rapid turn-around time of analysis, inorganic N species were extracted from various soil types using a single extracting solution (0.1 M MgSO4). Extractable-NH4+ and -NO3- in soils, and bioavailable NH4+ and NO3- in water samples measured concurrently using paper ISEs showed similar results to standard analytical methods. The analysis of urinary iodine (UI) is important to the public health due to serious health issues attached to its deficiency. As a result, iodide-selective electrodes based on [9] Mercuracarborand-3 (MC3) and [12] Mercuracarborand-4 (MC4) as ionophores, and NPOE and DOS as plasticizers were developed with a view to evaluate the concentration of iodide in urine. However, ion-selective electrodes (ISEs) are one of the very few experimental techniques whose limit of detection (LOD) is not defined as signal-to-noise ratio. As a result, the Bayesian model was applied to estimate the activities of nitrate and ammonium in soil and water samples, and iodide in urine samples. While the Bayesian estimates for nitrate and ammonium ions were satisfactory, significant discrepancy of estimated results for iodide in urine shows more work needs to be done in relation to designing more selective ionophores to complement non-linear approaches

    Simple and robust ion-selective electrodes for bio/environmental analysis

    Get PDF
    Chemical sensors have gone through a lot of optimisation renaissance over the years to have come from a typical bench-top tool for measurements of ions in standard solutions, to a more promising analytical technique capable of measuring the activities of free un-complexed nutrients in environmentally and biologically important samples. With various health issues arising due to the increasing anthropogenic contributions of man to the environment amongst other factors, and due to the need for more routine analysis especially do-it-yourself (DIY) of several analytes in physiological samples for clinical purposes, it is therefore imperative that simple, cheap, but robust sensors are developed, and optimised to meet these emerging needs.First part of this work involved fabricating solid-contact ion selective electrodes (SC-ISEs) based on the mechanical abrasion of graphite on easily modified acetate paper. Similarly results from the impedance spectra and the water layer test for electrodes with or without a conducting polymer (CP) layer indicated the suitability of the procedure. The fabricated paper electrodes importantly showed fast response time and great potential stability over the course of fourteen days. The same fabrication methodology was used to produce stable and functional solid-state paper reference electrode, and then, combined with other graphite-based paper ISEs to yield a single-strip solid contact electrode for simultaneous measurements of nitrate and ammonium in environmental samples. Satisfactory results from the comparison of measured concentrations by potentiometry and standard reference methods indicated this simplified electrode platform, designed from household materials can be used as a cheaper alternative to other solid contact electrodes.Subsequent works in this thesis involved the application of the fabricated SC-ISEs in optimization of measurement procedures of environmentally important nutrients and biologically important analytes.Routine monitoring of reactive nitrogen Nr (majorly NH4+ and NO3-) in environmental samples including soils from major land types is important to soil management system. In achieving a relatively rapid turn-around time of analysis, inorganic N species were extracted from various soil types using a single extracting solution (0.1 M MgSO4). Extractable-NH4+ and -NO3- in soils, and bioavailable NH4+ and NO3- in water samples measured concurrently using paper ISEs showed similar results to standard analytical methods.The analysis of urinary iodine (UI) is important to the public health due to serious health issues attached to its deficiency. As a result, iodide-selective electrodes based on [9] Mercuracarborand-3 (MC3) and [12] Mercuracarborand-4 (MC4) as ionophores, and NPOE and DOS as plasticizers were developed with a view to evaluate the concentration of iodide in urine.However, ion-selective electrodes (ISEs) are one of the very few experimental techniques whose limit of detection (LOD) is not defined as signal-to-noise ratio. As a result, the Bayesian model was applied to estimate the activities of nitrate and ammonium in soil and water samples, and iodide in urine samples. While the Bayesian estimates for nitrate and ammonium ions were satisfactory, significant discrepancy of estimated results for iodide in urine shows more work needs to be done in relation to designing more selective ionophores to complement non-linear approaches

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: โ€ข To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. โ€ข To provide a working basis on โ€œnew generationโ€ technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WPโ€™s. Objectives & Rationale The objectives of deliverable 2.1 are: โ€ข To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized

    ๊ฐœ๋ณ„ ์ด์˜จ ๋ฐ ์ž‘๋ฌผ ์ƒ์œก ์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ์ •๋ฐ€ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ์–‘์•ก ๊ด€๋ฆฌ ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋ฐ”์ด์˜ค์‹œ์Šคํ…œยท์†Œ์žฌํ•™๋ถ€(๋ฐ”์ด์˜ค์‹œ์Šคํ…œ๊ณตํ•™), 2020. 8. ๊น€ํ•™์ง„.In current closed hydroponics, the nutrient solution monitoring and replenishment are conducted based on the electrical conductivity (EC) and pH, and the fertigation is carried out with the constant time without considering the plant status. However, the EC-based management is unable to detect the dynamic changes in the individual nutrient ion concentrations so the ion imbalance occurs during the iterative replenishment, thereby leading to the frequent discard of the nutrient solution. The constant time-based fertigation inevitably induces over- or under-supply of the nutrient solution for the growing plants. The approaches are two of the main causes of decreasing water and nutrient use efficiencies in closed hydroponics. Regarding the issues, the precision nutrient solution management that variably controls the fertigation volume and corrects the deficient nutrient ions individually would allow both improved efficiencies of fertilizer and water use and increased lifespan of the nutrient solution. The objectives of this study were to establish the precision nutrient solution management system that can automatically and variably control the fertigation volume based on the plant-growth information and supply the individual nutrient fertilizers in appropriate amounts to reach the optimal compositions as nutrient solutions for growing plants. To achieve the goal, the sensing technologies for the varying requirements of water and nutrients were investigated and validated. Firstly, an on-the-go monitoring system was constructed to monitor the lettuces grown under the closed hydroponics based on the nutrient film technique for the entire bed. The region of the lettuces was segmented by the excess green (ExG) and Otsu method to obtain the canopy cover (CC). The feasibility of the image processing for assessing the canopy (CC) was validated by comparing the computed CC values with the manually analyzed CC values. From the validation, it was confirmed the image monitoring and processing for the CC measurements were feasible for the lettuces before harvest. Then, a transpiration rate model using the modified Penman-Monteith equation was fitted based on the obtained CC, radiation, air temperature, and relative humidity to estimate the water need of the growing lettuces. Regarding the individual ion concentration measurements, two-point normalization, artificial neural network, and a hybrid signal processing consisting of the two-point normalization and artificial neural network were compared to select an effective method for the ion-selective electrodes (ISEs) application in continuous and autonomous monitoring of ions in hydroponic solutions. The hybrid signal processing showed the most accuracy in sample measurements, but the vulnerability to the sensor malfunction made the two-point normalization method with the most precision would be appropriate for the long-term monitoring of the nutrient solution. In order to determine the optimal injection amounts of the fertilizer salts and water for the given target individual ion concentrations, a decision tree-based dosing algorithm was designed. The feasibility of the dosing algorithm was validated with the stepwise and varying target focusing replenishments. From the results, the ion-specific replenishments formulated the compositions of the nutrient solution successfully according to the given target values. Finally, the proposed sensing and control techniques were integrated to implement the precision nutrient solution management, and the performance was verified by a closed lettuce cultivation test. From the application test, the fertigation volume was reduced by 57.4% and the growth of the lettuces was promoted in comparison with the constant timer-based fertigation strategy. Furthermore, the system successfully maintained the nutrient balance in the recycled solution during the cultivation with the coefficients of variance of 4.9%, 1.4%, 3.2%, 5.2%, and 14.9%, which were generally less than the EC-based replenishment with the CVs of 6.9%, 4.9%, 23.7%, 8.6%, and 8.3% for the NO3, K, Ca, Mg, and P concentrations, respectively. These results implied the developed precision nutrient solution management system could provide more efficient supply and management of water and nutrients than the conventional methods, thereby allowing more improved water and nutrient use efficiencies and crop productivity.ํ˜„์žฌ์˜ ์ˆœํ™˜์‹ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ์‹œ์Šคํ…œ์—์„œ ์–‘์•ก์˜ ๋ถ„์„๊ณผ ๋ณด์ถฉ์€ ์ „๊ธฐ์ „๋„๋„ (EC, electrical conductivity) ๋ฐ pH๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์–‘์•ก์˜ ๊ณต๊ธ‰์€ ์ž‘๋ฌผ์˜ ์ƒ์œก ์ƒํƒœ์— ๋Œ€ํ•œ ๊ณ ๋ ค ์—†์ด ํ•ญ์ƒ ์ผ์ •ํ•œ ์‹œ๊ฐ„ ๋™์•ˆ ํŽŒํ”„๊ฐ€ ๋™์ž‘ํ•˜์—ฌ ๊ณต๊ธ‰๋˜๋Š” ํ˜•ํƒœ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ EC ๊ธฐ๋ฐ˜์˜ ์–‘์•ก ๊ด€๋ฆฌ๋Š” ๊ฐœ๋ณ„ ์ด์˜จ ๋†๋„์˜ ๋™์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ฐ์ง€ํ•  ์ˆ˜ ์—†์–ด ๋ฐ˜๋ณต๋˜๋Š” ๋ณด์ถฉ ์ค‘ ๋ถˆ๊ท ํ˜•์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜์–ด ์–‘์•ก์˜ ํ๊ธฐ๋ฅผ ์•ผ๊ธฐํ•˜๋ฉฐ, ๊ณ ์ •๋œ ์‹œ๊ฐ„ ๋™์•ˆ์˜ ์–‘์•ก ๊ณต๊ธ‰์€ ์ž‘๋ฌผ์— ๋Œ€ํ•ด ๊ณผ์ž‰ ๋˜๋Š” ๋ถˆ์ถฉ๋ถ„ํ•œ ๋ฌผ ๊ณต๊ธ‰์œผ๋กœ ์ด์–ด์ ธ ๋ฌผ ์‚ฌ์šฉ ํšจ์œจ์˜ ์ €ํ•˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด, ๊ฐœ๋ณ„ ์ด์˜จ ๋†๋„์— ๋Œ€ํ•ด ๋ถ€์กฑํ•œ ์„ฑ๋ถ„๋งŒ์„ ์„ ํƒ์ ์œผ๋กœ ๋ณด์ถฉํ•˜๊ณ , ์ž‘๋ฌผ์˜ ์ƒ์œก ์ •๋„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ํ•„์š”ํ•œ ์ˆ˜์ค€์— ๋งž๊ฒŒ ์–‘์•ก์„ ๊ณต๊ธ‰ํ•˜๋Š” ์ •๋ฐ€ ๋†์—…์— ๊ธฐ๋ฐ˜ํ•œ ์–‘์•ก ๊ด€๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด ๋ฌผ๊ณผ ๋น„๋ฃŒ ์‚ฌ์šฉ ํšจ์œจ์˜ ํ–ฅ์ƒ๊ณผ ์–‘์•ก์˜ ์žฌ์‚ฌ์šฉ ๊ธฐ๊ฐ„ ์ฆ์ง„์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ž๋™์œผ๋กœ, ๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋ณ€์ ์œผ๋กœ ์ž‘๋ฌผ ์ƒ์œก ์ •๋ณด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์–‘์•ก ๊ณต๊ธ‰๋Ÿ‰์„ ์ œ์–ดํ•˜๊ณ , ์ž‘๋ฌผ ์ƒ์žฅ์— ์ ํ•ฉํ•œ ์กฐ์„ฑ์— ๋งž๊ฒŒ ํ˜„์žฌ ์–‘์•ก์˜ ์ด์˜จ ๋†๋„ ์„ผ์‹ฑ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ ์ ˆํ•œ ์ˆ˜์ค€๋งŒํผ์˜ ๋ฌผ๊ณผ ๊ฐœ๋ณ„ ์–‘๋ถ„ ๋น„๋ฃŒ๋ฅผ ๋ณด์ถฉํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ฐ€ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ์–‘์•ก ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ•ด๋‹น ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด, ๋ณ€์ดํ•˜๋Š” ๋ฌผ๊ณผ ์–‘๋ถ„ ์š”๊ตฌ๋Ÿ‰์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ์ˆ ๋“ค์„ ๋ถ„์„ํ•˜๊ณ  ๊ฐ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ์ˆ ๋“ค์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋จผ์ €, ์ž‘๋ฌผ์˜ ๋ฌผ ์š”๊ตฌ๋Ÿ‰์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ์˜์ƒ ๊ธฐ๋ฐ˜ ์ธก์ • ๊ธฐ์ˆ ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์˜์ƒ ๊ธฐ๋ฐ˜ ๋ถ„์„ ํ™œ์šฉ์„ ์œ„ํ•ด ๋ฐ•๋ง‰๊ฒฝ ๊ธฐ๋ฐ˜์˜ ์ˆœํ™˜์‹ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ํ™˜๊ฒฝ์—์„œ ์ž๋ผ๋Š” ์ƒ์ถ”์˜ ์ด๋ฏธ์ง€๋“ค์„ ์ „์ฒด ๋ฒ ๋“œ์— ๋Œ€ํ•ด ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋Š” ์˜์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜์˜€๊ณ , ์ˆ˜์ง‘ํ•œ ์˜์ƒ ์ค‘ ์ƒ์ถ” ๋ถ€๋ถ„๋งŒ์„ excess green (ExG)๊ณผ Otsu ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ถ„๋ฆฌํ•˜์—ฌ ํˆฌ์˜์ž‘๋ฌผ๋ฉด์  (CC, canopy cover)์„ ํš๋“ํ•˜์˜€๋‹ค. ์˜์ƒ ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์˜ ์ ์šฉ์„ฑ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ง์ ‘ ๋ถ„์„ํ•œ ํˆฌ์˜์ž‘๋ฌผ๋ฉด์  ๊ฐ’๊ณผ ์ด๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋น„๊ต ๊ฒ€์ฆ ๊ฒฐ๊ณผ์—์„œ ํˆฌ์˜์ž‘๋ฌผ๋ฉด์  ์ธก์ •์„ ์œ„ํ•œ ์˜์ƒ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„์ด ์ˆ˜ํ™• ์ „๊นŒ์ง€์˜ ์ƒ์ถ”์— ๋Œ€ํ•ด ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ดํ›„ ์ˆ˜์ง‘ํ•œ ํˆฌ์˜์ž‘๋ฌผ๋ฉด์ ๊ณผ ๊ธฐ์˜จ, ์ƒ๋Œ€์Šต๋„, ์ผ์‚ฌ๋Ÿ‰์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์œก ์ค‘์ธ ์ƒ์ถ”๋“ค์ด ์š”๊ตฌํ•˜๋Š” ๋ฌผ์˜ ์–‘์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด Penman-Monteith ๋ฐฉ์ •์‹ ๊ธฐ๋ฐ˜์˜ ์ฆ์‚ฐ๋Ÿ‰ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ ์‹ค์ œ ์ฆ์‚ฐ๋Ÿ‰๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๋†’์€ ์ผ์น˜๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ์ด์˜จ ๋†๋„ ์ธก์ •๊ณผ ๊ด€๋ จํ•˜์—ฌ์„œ๋Š”, ์ด์˜จ์„ ํƒ์„ฑ์ „๊ทน (ISE, ion-selective electrode)๋ฅผ ์ด์šฉํ•œ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ์–‘์•ก ๋‚ด ์ด์˜จ์˜ ์—ฐ์†์ ์ด๊ณ  ์ž์œจ์ ์ธ ๋ชจ๋‹ˆํ„ฐ๋ง ์ˆ˜ํ–‰์„ ์œ„ํ•ด 2์  ์ •๊ทœํ™”, ์ธ๊ณต์‹ ๊ฒฝ๋ง, ๊ทธ๋ฆฌ๊ณ  ์ด ๋‘˜์„ ๋ณตํ•ฉ์ ์œผ๋กœ ๊ตฌ์„ฑํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ฐฉ์‹์ด ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•์„ฑ์„ ๋ณด์˜€์œผ๋‚˜, ์„ผ์„œ ๊ณ ์žฅ์— ์ทจ์•ฝํ•œ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋กœ ์ธํ•ด ์žฅ๊ธฐ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์•ˆ์ •์„ฑ์— ์žˆ์–ด์„œ๋Š” ๊ฐ€์žฅ ๋†’์€ ์ •๋ฐ€๋„๋ฅผ ๊ฐ€์ง„ 2์  ์ •๊ทœํ™” ๋ฐฉ์‹์„ ์„ผ์„œ ์–ด๋ ˆ์ด์— ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ ํ•ฉํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ฃผ์–ด์ง„ ๊ฐœ๋ณ„ ์ด์˜จ ๋†๋„ ๋ชฉํ‘œ๊ฐ’์— ๋งž๋Š” ๋น„๋ฃŒ ์—ผ ๋ฐ ๋ฌผ์˜ ์ตœ์  ์ฃผ์ž…๋Ÿ‰์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์˜์‚ฌ๊ฒฐ์ •ํŠธ๋ฆฌ ๊ตฌ์กฐ์˜ ๋น„๋ฃŒ ํˆฌ์ž… ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œํ•œ ๋น„๋ฃŒ ํˆฌ์ž… ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ๊ณผ์— ๋Œ€ํ•ด์„œ๋Š” ์ˆœ์ฐจ์ ์ธ ๋ชฉํ‘œ์— ๋Œ€ํ•œ ๋ณด์ถฉ ๋ฐ ํŠน์ • ์„ฑ๋ถ„์— ๋Œ€ํ•ด ์ง‘์ค‘์ ์ธ ๋ณ€ํ™”๋ฅผ ๋ถ€์—ฌํ•œ ๋ณด์ถฉ ์ˆ˜ํ–‰ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ œ์‹œํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ๋ชฉํ‘œ๊ฐ’๋“ค์— ๋”ฐ๋ผ ์„ฑ๊ณต์ ์œผ๋กœ ์–‘์•ก์„ ์กฐ์„ฑํ•˜์˜€์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์‹œ๋˜์—ˆ๋˜ ์„ผ์‹ฑ ๋ฐ ์ œ์–ด ๊ธฐ์ˆ ๋“ค์„ ํ†ตํ•ฉํ•˜์—ฌ NFT ๊ธฐ๋ฐ˜์˜ ์ˆœํ™˜์‹ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ๋ฐฐ๋“œ์— ์ƒ์ถ” ์žฌ๋ฐฐ๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์‹ค์ฆํ•˜์˜€๋‹ค. ์‹ค์ฆ ์‹คํ—˜์—์„œ, ์ข…๋ž˜์˜ ๊ณ ์ • ์‹œ๊ฐ„ ์–‘์•ก ๊ณต๊ธ‰ ๋Œ€๋น„ 57.4%์˜ ์–‘์•ก ๊ณต๊ธ‰๋Ÿ‰ ๊ฐ์†Œ์™€ ์ƒ์ถ” ์ƒ์œก์˜ ์ด‰์ง„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋™์‹œ์—, ๊ฐœ๋ฐœ ์‹œ์Šคํ…œ์€ NO3, K, Ca, Mg, ๊ทธ๋ฆฌ๊ณ  P์— ๋Œ€ํ•ด ๊ฐ๊ฐ 4.9%, 1.4%, 3.2%, 5.2%, ๊ทธ๋ฆฌ๊ณ  14.9% ์ˆ˜์ค€์˜ ๋ณ€๋™๊ณ„์ˆ˜ ์ˆ˜์ค€์„ ๋ณด์—ฌ EC๊ธฐ๋ฐ˜ ๋ณด์ถฉ ๋ฐฉ์‹์—์„œ ๋‚˜ํƒ€๋‚œ ๋ณ€๋™๊ณ„์ˆ˜ 6.9%, 4.9%, 23.7%, 8.6%, ๊ทธ๋ฆฌ๊ณ  8.3%๋ณด๋‹ค ๋Œ€์ฒด์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์ด์˜จ ๊ท ํ˜• ์œ ์ง€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์„ ํ†ตํ•ด ๊ฐœ๋ฐœ ์ •๋ฐ€ ๊ด€๋น„ ์‹œ์Šคํ…œ์ด ๊ธฐ์กด๋ณด๋‹ค ํšจ์œจ์ ์ธ ์–‘์•ก์˜ ๊ณต๊ธ‰๊ณผ ๊ด€๋ฆฌ๋ฅผ ํ†ตํ•ด ์–‘์•ก ์ด์šฉ ํšจ์œจ์„ฑ๊ณผ ์ƒ์‚ฐ์„ฑ์˜ ์ฆ์ง„์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค.CHAPTER 1. INTRODUCTION 1 BACKGROUND 1 Nutrient Imbalance 2 Fertigation Scheduling 3 OBJECTIVES 7 ORGANIZATION OF THE DISSERTATION 8 CHAPTER 2. LITERATURE REVIEW 10 VARIABILITY OF NUTRIENT SOLUTIONS IN HYDROPONICS 10 LIMITATIONS OF CURRENT NUTRIENT SOLUTION MANAGEMENT IN CLOSED HYDROPONIC SYSTEM 11 ION-SPECIFIC NUTRIENT MONITORING AND MANAGEMENT IN CLOSED HYDROPONICS 13 REMOTE SENSING TECHNIQUES FOR PLANT MONITORING 17 FERTIGATION CONTROL METHODS BASED ON REMOTE SENSING 19 CHAPTER 3. ON-THE-GO CROP MONITORING SYSTEM FOR ESTIMATION OF THE CROP WATER NEED 21 ABSTRACT 21 INTRODUCTION 21 MATERIALS AND METHODS 23 Hydroponic Growth Chamber 23 Construction of an On-the-go Crop Monitoring System 25 Image Processing for Canopy Cover Estimation 29 Evaluation of the CC Calculation Performance 32 Estimation Model for Transpiration Rate 32 Determination of the Parameters of the Transpiration Rate Model 33 RESULTS AND DISCUSSION 35 Performance of the CC Measurement by the Image Monitoring System 35 Plant Growth Monitoring in Closed Hydroponics 39 Evaluation of the Crop Water Need Estimation 42 CONCLUSIONS 46 CHAPTER 4. HYBRID SIGNAL-PROCESSING METHOD BASED ON NEURAL NETWORK FOR PREDICTION OF NO3, K, CA, AND MG IONS IN HYDROPONIC SOLUTIONS USING AN ARRAY OF ION-SELECTIVE ELECTRODES 48 ABSTRACT 48 INTRODUCTION 49 MATERIALS AND METHODS 52 Preparation of the Sensor Array 52 Construction and Evaluation of Data-Processing Methods 53 Preparation of Samples 57 Procedure of Sample Measurements 59 RESULTS AND DISCUSSION 63 Determination of the Artificial Neural Network (ANN) Structure 63 Evaluation of the Processing Methods in Training Samples 64 Application of the Processing Methods in Real Hydroponic Samples 67 CONCLUSIONS 72 CHAPTER 5. DECISION TREE-BASED ION-SPECIFIC NUTRIENT MANAGEMENT ALGORITHM FOR CLOSED HYDROPONICS 74 ABSTRACT 74 INTRODUCTION 75 MATERIALS AND METHODS 77 Decision Tree-based Dosing Algorithm 77 Development of an Ion-Specific Nutrient Management System 82 Implementation of Ion-Specific Nutrient Management with Closed-Loop Control 87 System Validation Tests 89 RESULTS AND DISCUSSION 91 Five-stepwise Replenishment Test 91 Replenishment Test Focused on The Ca 97 CONCLUSIONS 99 CHAPTER 6. ION-SPECIFIC AND CROP GROWTH SENSING BASED NUTRIENT SOLUTION MANAGEMENT SYSTEM FOR CLOSED HYDROPONICS 101 ABSTRACT 101 INTRODUCTION 102 MATERIALS AND METHODS 103 System Integration 103 Implementation of the Precision Nutrient Solution Management System 106 Application of the Precision Nutrient Solution Management System to Closed Lettuce Soilless Cultivation 112 RESULTS AND DISCUSSION 113 Evaluation of the Plant Growth-based Fertigation in the Closed Lettuce Cultivation 113 Evaluation of the Ion-Specific Management in the Closed Lettuce Cultivation 118 CONCLUSIONS 128 CHAPTER 7. CONCLUSIONS 130 CONCLUSIONS OF THE STUDY 130 SUGGESTIONS FOR FUTURE STUDY 134 LIST OF REFERENCES 136 APPENDIX 146 A1. Python Code for Controlling the Image Monitoring and CC Calculation 146 A2. Ion Concentrations of the Solutions used in Chapter 4 (Unit: mgโˆ™Lโˆ’1) 149 A3. Block Diagrams of the LabVIEW Program used in Chapter 4 150 A4. Ion Concentrations of the Solutions used in Chapters 5 and 6 (Unit: mgโˆ™Lโˆ’1) 154 A5. Block Diagrams of the LabVIEW Program used in the Chapters 5 and 6 155 ABSTRACT IN KOREAN 160Docto

    TECHNIQUES FOR STUDYING THE BIOGEOCHEMISTRY OF NUTRIENTS IN THE TAMAR CATCHMENT

    Get PDF
    Chapter One describes nitrogen and phosphorus species in the aquatic environment, their role in eutrophication, current legislation relevant to nutrient water quality and catchment management and the role of predictive modelling of nutrient export with respect to the management of river catchments. It also summarises analytical techniques for the determination of nitrogen and phosphorus species in natural waters and the use of generic ecotoxicological assays to link nutrient water quality and organism health. Data integrity is essential to biogeochemical studies that inform scientific research and environmental management. Reliable, accurate data permit valid conclusions to be drawn. The quality assurance and quality control measures undertaken to ensure good analytical data in this study, including participation in the certification of a seawater certified reference material for nutrients (MOOS-1), are discussed in Chapter Two. In Chapter Three, the nutrient biogeochemistry of the waters leaving the Tamar catchment and entering the Tamar estuary is discussed. Historical nutrient and physico-chemical data for the Tamar River at Gunnislake were used to identify long-term environmental trends (1974 to 2004) and nutrient and physico-chemical data collected in this study between May 2003 and May 2004 was used to identify short-term trends over the study period. The nutrient export coefficient modelling approach was used to model phosphorus and nitrogen export from the Tamar catchment (Chapter Four). A TP export model from the Tamar catchment was successfully constructed using historical land use data and catchment demographics, calibrated with hindcasted water quality data, and validated with TP field data (May 2003 and May 2004) collected in this study. Modelled P (43. 5 tonnes P yห‰ยน) export agreed within 8 % with the measured P load (40.1 tonnes P yห‰ยน). An annual TN model was also constructed and calibrated for the Tamar catchment using the May 2003 to May 2004 field data. The calibrated model agreed within I % of the measured TN export (2053 tonnes N yห‰ยน). The development and deployment of a portable Fl analyser for continuous, real-time monitoring of FRP in the Tamar catchment is discussed in Chapter Five. The optimised method can be used for the determination of FRP in freshwater systems (4-150 ยตg Lห‰ยน P) and in coastal waters (10-150 ยตg Lห‰ยน P) and is capable of sampling with high temporal resolution (up to 15 samples hห‰ยน) . The analyser was used in situ (bank-side and shipboard deployment) to provide real-time FRP data and in the laboratory to determine FRP in freshwater samples. All data were in good agreement with values obtained using a validated air-segmented, continuous flow laboratory reference method The acute toxicity of nitrate and nitrite on the freshwater swan mussel, Anodonta cygnea, was investigated (Chapter Six). A 96 h LC50 value of 222 mg Lห‰ยน N for the exposure of A. cygnea to nitrite was established in this study. Toxicity studies indicated that nitrate was not toxic to A. cygnea. Established indicators of physiological stress were used to determine the effect of environmentally high and extreme levels of nitrite on A. cygnea. There was no significant difference in cardiac activity, condition index or lysosomal stability between control organisms (0 mg Lห‰ยน N) and organisms exposed to sub-lethal nitrite concentrations (0.1, 1.0, 22.2 mg Lห‰ยน N). Therefore, nitrite concentrations encountered in typical freshwater catchments such as the Tamar catchment are unlikely to induce physiological stress in A.cygnea

    A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible?

    Get PDF
    Efficient characterization of wastewater stream quality is vital to ensure the safe discharge or reuse of treated wastewater (WW). There are numerous parameters employed to characterize water quality, some required by directives (e.g. biological oxygen demand (BOD), total nitrogen (TN), total phosphates (TP)), while others used for process controls (e.g. flow, temperature, pH). Well-accepted methods to assess these parameters have traditionally been laboratory-based, taking place either off-line or at-line, and presenting a significant delay between sampling and result. Alternative characterization methods can run in-line or on-line, generally being more cost-effective. Unfortunately, these methods are often not accepted when providing information to regulatory bodies. The current review aims to describe available laboratory-based approaches and compare them with innovative real-time (RT) solutions. Transitioning from laboratory-based to RT measurements means obtaining valuable process data, avoiding time delays, and the possibility to optimize the (WW) treatment management. A variety of sensor categories are examined to illustrate a general framework in which RT applications can replace longer conventional processes, with an eye toward potential drawbacks. A significant enhancement in the RT measurements can be achieved through the employment of advanced soft-sensing techniques and the Internet of Things (IoT), coupled with machine learning (ML) and artificial intelligence (AI)

    Membrane Based intensification of ammonia removal from wastewater

    Get PDF
    The aim of this research was to study a novel membrane based oxygen intensification system to enhance a biological wastewater treatment process for ammonia removal. Specifically, this work is concerned with the biological nitrification process which occurs in ion exchange packed columns during ammonia removal from wastewater. Two types of commercial clinoptilolite were used, namely KMI and BIT, as ion exchangers. Removal of ammonium ion by ion exchange offers a number of advantages such as the capability to handle shock loadings and to purify wastewater to a very high specification. Also, ion exchangers can be used to provide a solid surface for bacterial growth which enhances performance. The uptake removal rates of ammonium ions onto KMI and BIT clinoptilolite using DI water, RO water, and filtered tap water were examined. The presence of major metal ions that normally exist in wastewater such as K+, Ca++, and Mg++ and their impact on ammonia adsorption was tested. The experimental data were fitted using Langmuir and Freundlich isotherms and compared to related works done previously. KMI clinoptilolite exhibited the highest uptake capacity, and KMI clinoptilolite preference for the metal ions was found to be in the order Mg++ยกร–K+Ca++. The kinetics of the ammonium ion removal were studied at bench scale using KMI and BIT clinoptilolite. The process variables include: initial ammonia concentration, amount of clinoptilolite in contact with the solution, clinoptilolite particle size, and mixing speed. To model the kinetics removal rates two types of diffusion was assumed to be possible rate limiting steps, namely the external film diffusion and the intraparticle diffusion. Two models were selected to fit the controlled diffusion resistances, Furusawa-Smith to model the external film resistance and McKay model to model the intraparticle film resistance. The values of the external and internal mass transfer coefficients were calculated and tabulated. Five air permeable membranes were used, four porous membranes and a dense membrane. The porous membranes were Polyethersulfone (PES), Polytetrafluoroethylene (PTFE), Polypropylene (PP), and Nylon. The dense membrane was a silicon tube membrane. All membranes were assessed for aeration. The overall mass transfer coefficients were calculated using the two-film theory model. The highest oxygen transfer rate was observed in PTFE membrane, and in the following order of lower performance PP PES Nylon silicon tube. For the column studies, different loading rates were used, 0.96, 0.25, and 0.03 Kg N/(m3day) depending on the type of the experiment. For the bacteria-free silicon membrane column, the inlet ammonia concentration, bed height, and inlet flowrate were examined. Biologically activated silicon membrane column exhibited no difference in the ammonia removal comparing to bacteria-free column under the same operating conditions. The porous membrane columns were designed to enhance the aeration for the combined biologically active ion exchanger packed bed column. It was found that the porous membrane columns were significantly enhanced by introducing the nitrifying bacteria into the columns. For example, the uptake capacity of PP membrane column was increased from 0.43 to 0.67 meq/g by introducing the biological material into the PP column. The breakthrough bed volumes (BVs) were estimated and the uptake column capacities were calculated for all the used columns. The breakthrough curves were modeled using the Bohart-Adams and Thomas models. To assess the bio-regeneration as an alternative to the chemical regeneration, nitrifying bacteria circulated in PP and PES columns to treat exhausted KMI clinoptilolite. The results showed that some regeneration may be achieved, but complete regeneration would require higher concentrations of biomass which is recommended for future study
    • โ€ฆ
    corecore