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ABSTRACT  
 

  In current closed hydroponics, the nutrient solution monitoring and 

replenishment are conducted based on the electrical conductivity (EC) and pH, and 

the fertigation is carried out with the constant time without considering the plant 

status. However, the EC-based management is unable to detect the dynamic 

changes in the individual nutrient ion concentrations so the ion imbalance occurs 

during the iterative replenishment, thereby leading to the frequent discard of the 

nutrient solution. The constant time-based fertigation inevitably induces over- or 

under-supply of the nutrient solution for the growing plants. The approaches are 

two of the main causes of decreasing water and nutrient use efficiencies in closed 

hydroponics. Regarding the issues, the precision nutrient solution management that 

variably controls the fertigation volume and corrects the deficient nutrient ions 

individually would allow both improved efficiencies of fertilizer and water use and 

increased lifespan of the nutrient solution. The objectives of this study were to 

establish the precision nutrient solution management system that can automatically 

and variably control the fertigation volume based on the plant-growth information 

and supply the individual nutrient fertilizers in appropriate amounts to reach the 

optimal compositions as nutrient solutions for growing plants. To achieve the goal, 

the sensing technologies for the varying requirements of water and nutrients were 

investigated and validated. Firstly, an on-the-go monitoring system was constructed 
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to monitor the lettuces grown under the closed hydroponics based on the nutrient 

film technique for the entire bed. The region of the lettuces was segmented by the 

excess green (ExG) and Otsu method to obtain the canopy cover (CC). The 

feasibility of the image processing for assessing the canopy (CC) was validated by 

comparing the computed CC values with the manually analyzed CC values. From 

the validation, it was confirmed the image monitoring and processing for the CC 

measurements were feasible for the lettuces before harvest. Then, a transpiration 

rate model using the modified Penman-Monteith equation was fitted based on the 

obtained CC, radiation, air temperature, and relative humidity to estimate the water 

need of the growing lettuces. Regarding the individual ion concentration 

measurements, two-point normalization, artificial neural network, and a hybrid 

signal processing consisting of the two-point normalization and artificial neural 

network were compared to select an effective method for the ion-selective 

electrodes (ISEs) application in continuous and autonomous monitoring of ions in 

hydroponic solutions. The hybrid signal processing showed the most accuracy in 

sample measurements, but the vulnerability to the sensor malfunction made the 

two-point normalization method with the most precision would be appropriate for 

the long-term monitoring of the nutrient solution. In order to determine the optimal 

injection amounts of the fertilizer salts and water for the given target individual ion 

concentrations, a decision tree-based dosing algorithm was designed. The 

feasibility of the dosing algorithm was validated with the stepwise and varying 

target focusing replenishments. From the results, the ion-specific replenishments 

formulated the compositions of the nutrient solution successfully according to the 

given target values. Finally, the proposed sensing and control techniques were 

integrated to implement the precision nutrient solution management, and the 

performance was verified by a closed lettuce cultivation test. From the application 

test, the fertigation volume was reduced by 57.4% and the growth of the lettuces 

was promoted in comparison with the constant timer-based fertigation strategy. 
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Furthermore, the system successfully maintained the nutrient balance in the 

recycled solution during the cultivation with the coefficients of variance of 4.9%, 

1.4%, 3.2%, 5.2%, and 14.9%, which were generally less than the EC-based 

replenishment with the CVs of 6.9%, 4.9%, 23.7%, 8.6%, and 8.3% for the NO3, 

K, Ca, Mg, and P concentrations, respectively. These results implied the developed 

precision nutrient solution management system could provide more efficient supply 

and management of water and nutrients than the conventional methods, thereby 

allowing more improved water and nutrient use efficiencies and crop productivity. 

 

Keyword : Automated system, Closed-loop control, Closed hydroponics, On-

the-go crop monitoring, Precision nutrient solution supply, Ion-specific nutrient 

solution replenishment 
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CHAPTER 1. INTRODUCTION 
 

BACKGROUND  

Hydroponics, also called as soilless cultivation, can be defined as a cultivation 

technique that produces plants in soilless conditions in which the supply of water 

and minerals is carried out in nutrient solutions with or without a growing medium 

(e.g. stone wool, peat, perlite, pumice, coir, etc.) (Maucieri et al., 2019). 

Hydroponics has been widely utilized in greenhouses or plant factories because of 

the advantages such as the absence of soil-borne pathogens, efficient use of water, 

energy, space, and cost for growing plants (P Agung Putra & Henry Yuliando, 

2015; F. X. Rius-Ruiz et al., 2014). Furthermore, hydroponics has the capacity for 

increased yield, which could be about 10 times higher than the conventional 

production (Barbosa et al., 2015a; Sambo et al., 2019).  

In hydroponics, fertigation is the preferred approach to supplying nutrients and 

water, which is achieved by dissolving the soluble fertilizers in the irrigation water 

using injection equipment. This type of irrigation with the nutrient solution is 

called “fertigation” and it is one of the most important factors that are closely 

related to the crop yield and quality (Incrocci et al., 2017; P Agung Putra & Henry 

Yuliando, 2015; Raviv et al., 2019).  

Fundamentally, fertigation makes the water and nutrients supply inextricable in 

hydroponics. Although the combined supply usually allows more efficient nutrient 

and water use in plant production than the soil-based cultivation, the discharge of 

nutrient solutions from the soilless culture systems can be a threat of environments 

(Ahn & Son, 2019; D. H. Jung et al., 2015). The wasted nutrients and water are 

higher in the open hydroponic system where the nutrient solution flows through the 

growing bed and is discarded. For the reason, closed hydroponics that recirculates 

and reuses nutrient solutions is compulsory by legislation in many countries, 

particularly in environmentally protected areas, or those suffering the scarcity of 
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water resources (Gieling et al., 2005; W. Voogt & C. Sonneveld, 1997; Zekki et al., 

1996). 

Despite the advantages of closed hydroponic systems such as less pollution of 

ground and surface water, less waste of water and nutrients, and lower costs in crop 

production, the nutrient and water use efficiencies of closed soilless cultivation are 

aggravated (Matthew Bamsey et al., 2012; D. H. Jung et al., 2015; Meric et al., 

2011). Two of the main reasons are ion imbalance and fertigation scheduling.   

 

NUTRIENT IMBALANCE  

In closed hydroponic systems, the primary difficulty in managing the nutrient 

solutions is the imbalance of nutrient ions in the recycled nutrient solutions, which 

can induce the worsening of the edible parts’ quality and productivity (Matthew 

Bamsey et al., 2012; Sambo et al., 2019). In current hydroponic systems, pH and 

electrical conductivity (EC) of the solutions are usually monitored to evaluate the 

nutrient status of recirculating hydroponic solutions (Domingues et al., 2012; N. 

Katsoulas et al., 2015; Kozai et al., 2018; Son et al., 2020). The main problem with 

this practice is that because EC measurements provide no information on the 

concentrations of individual ions, real-time individual corrections to each nutrient 

are not possible (Cloutier et al., 1997). Since plants require varying concentrations 

of nutrient ions for their growth and environmental conditions, such an EC-based 

control may lead to accumulation or deficiency of certain nutrients (Matthew 

Bamsey et al., 2012; Gieling et al., 2005; Zheng, 2017). In actual, several studies 

reported the nutrient imbalance in nutrient solutions after recirculation (Ahn & 

Son, 2019; Myat Thaint Ko et al., 2014; M. T. Ko et al., 2013; F. X. Rius-Ruiz et 

al., 2014).  

One of the most common practices for managing the nutrient solutions based on 

individual nutrient ions is a periodical adjustment of recycled nutrient solutions, 

but it cannot help farmers to respond rapidly to unexpected changes in nutrient 
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ratios in hydroponic solutions (Matthew Bamsey et al., 2012). As a result, it would 

require frequent replacement of the nutrient solution, thereby reducing the nutrient 

and water use efficiencies. 

 Benchtop or portable analyzers equipped with ion-selective electrodes (ISEs) 

also could be used to measure the concentrations of individual ions in hydroponic 

solutions with the advantages such as rapid response, direct measurement of the 

analyte, low cost, and portability (Matthew Bamsey et al., 2012; Cloutier et al., 

1997; Gutierrez et al., 2007; H. J. Kim et al., 2013). However, for on-site nutrient 

monitoring, which requires frequent immersions of the ISEs in solutions, the 

accuracy of the determination of nutrient concentrations is strongly affected by the 

signal drift and reduced sensitivity over time, which could be caused by manual 

calibrations, sampling, and the maintenance involved in the operation of ISEs 

(Caceres et al., 2017; H. J. Kim et al., 2017; F. X. Rius-Ruiz et al., 2014; Vardar et 

al., 2015). In this regard, the ideal way to solve the nutrient imbalance is to use a 

feedback control system, which can conduct automatic corrections to each deficient 

nutrient based on the measurement of individual nutrient concentrations, thereby 

allowing both improved efficiency of fertilizer use and increased time of use of the 

nutrient solution (Dorneanu et al., 2005; D. H. Jung et al., 2015; Zheng, 2017). 

 

FERTIGATION SCHEDULING  

Irrigation management is directly related to water use efficiency in agriculture. 

Under-irrigation usually results in reduced crop yield and quality and over-

irrigation decreases the nutrient use efficiency of the crop and its vulnerability to 

diseases, the energy costs for water pumping (Pardossi et al., 2009), Therefore, 

efficient irrigation is important in horticulture, considering its implications on the 

success of the crop cultivation. Regarding the irrigation efficiency, two of the most 

important factors are the amount of water to be applied to the crop and the timing 

for application. In addition, not only irrigation but also fertilization is accomplished 
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by fertigation in hydroponics. It makes the scheduling of the fertigation more 

crucial in hydroponics.  

In hydroponics, most fertigation has been automated, but it does not mean the 

efficient fertigation is achieved (F. F. Montesano et al., 2018). The most common 

and relatively easy method is automation using timers based on grower’s 

experience without measurements to assess the adequate water inputs (Nemali et 

al., 2007; Nikolaou et al., 2019; Romero et al., 2012). 

More efficient fertigation could be achieved by applying a feedback based 

closed-loop fertigation system or a feed-forward control system (Kläring, 2001). 

The closed-loop system can evaluate the percentage of drainage or plant water 

status to manage the fertigation interval (Rodríguez et al., 2015). In the feed-

forward system, the crop water uptake is predicted by using growth and 

transpiration models (Prenger et al., 2005). However, the application of both 

systems usually depends on environmental variables, such as sunlight, humidity, 

and soil water content, which is not directly related to the plant responses (Baek et 

al., 2018). Those conventional approaches cannot respond to the varied plants’ 

growth and physiology, thereby limiting efficient fertigation (Del Amor et al., 

2010; Prenger et al., 2005).  

Recently, several studies have reported the applicability of the remote sensing 

technology for plant-based irrigation strategies by monitoring the plant status such 

as leaf water potential, canopy temperature, crop reflectance, or biomass (Daniel G 

Fernández-Pacheco et al., 2014; Incrocci et al., 2017; F. F. Montesano et al., 2018; 

Nikolaou et al., 2019; Prenger et al., 2005). Furthermore, machine-vision based 

approaches could give various and useful information including the morphology 

(size, shape, and texture), spectrum (color, temperature, and water contents) and 

temporal variations (growth rate, flowering, and fruiting) (Chen et al., 2016; Hu et 

al., 2018; Joo & Jeong, 2017; Lati et al., 2013; Li et al., 2014; Story & Kacira, 

2015; Te et al., 2011; Yeh et al., 2014). The vision-based crop management also has 
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been tried by several agricultural industries. For example, the HortiMaX 

(http://www.hortimax.com) developed a CropView system, which can provide real-

time monitoring of plant canopy and the Priva (http://www.priva-

international.com) developed a TopCrop Monitor that can estimate the plant 

transpiration by measuring the crop activity in the greenhouse based on plant 

temperature. However, the systems can only provide the information of plants 

within the image, not the entire plant canopy due to the fixed location. Also, little 

work has been done to correlate the obtained data with crop management  

(Nikolaos Katsoulas et al., 2016). Therefore, more researches on the imaging 

techniques are required for more efficient and practical agricultural application. In 

this context, the development of non-destructive, rapid, and reliable estimation 

methodology for the water needs of the growing plants based on the vision system 

would allow the optimization of the fertigation intervals, leading to improved water 

and nutrient use efficiencies. 

The current practices and the issues of the closed hydroponics are summarized in 

Table 1.1. 
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Table 1.1. Current practices of closed hydroponics in nutrient solution replenishment and the fertigation scheduling 
Category Method Limitation Applied system 

Nutrient solution 
replenishment 

EC-based replenishment 

 Lack of information about the individual ion 
concentration and balance 
 Need of periodical sample analysis 
 Need of periodical renewal of the nutrient 
solution 

 NFT (nutrient film technique) 
 Aeroponics 
 DFT (deep flow technique) 
 Ebb and flow 
 Drip system 

Fertigation 
scheduling 

Time clock 
 No considerations for the varied plant water 
uptake 

 NFT (nutrient film technique) 
 Aeroponics 
 DFT (deep flow technique) 
 Ebb and flow 
 Drip system 

Climate monitoring (e.g., 
evapotranspiration, solar 

radiation) 
 Indirect relationship to the plant responses 

 NFT (nutrient film technique) 
 Aeroponics 
 DFT (deep flow technique) 
 Ebb and flow 
 Drip system 

Substrate monitoring (e.g., 
volumetric water content,  
percentage of drainage) 

 Indirect relationship to the plant responses 
 Limited applicability for the water culture 

 Drip system 

Phyto-sensing (e.g., leaf water 
potential, canopy temperature, 

sap flow, crop reflectance) 

 Specific to each plant 
 Lack of information for entire plants 

 NFT (nutrient film technique) 
 Aeroponics 
 DFT (deep flow technique) 
 Ebb and flow 
 Drip system 
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OBJECTIVES 

The overall objectives of this research were 1) to establish a variable fertigation 

system that can measure the canopy covers of plants and adjust the fertigation 

volumes to be supplied based on the varying canopy covers and aerial 

environmental factors, and 2) to develop an automatic system that can measure the 

varied ion concentrations in the reused nutrient solution and replenish the nutrients 

for each deficient ion, thereby allowing more efficient management of nutrients 

and water in closed hydroponic systems.  

The specific objectives were as follows.   

1) To construct an on-the-go crop monitoring system that could collect the 

images of growing lettuces and compute the canopy cover, and 

characterize the transpiration rate of the growing lettuces using the canopy 

cover, air temperature, relative humidity, and radiation for adaptive 

fertigation strategy. 

2) To evaluate two or more types of signal processing methods for ion-

selective sensors to compensate the signal drifts over time and 

interferences from other ions present in hydroponic solutions, and select 

the effective method for application in continuous and autonomous 

monitoring of ions in hydroponic solutions.  

3) To develop an ion-specific nutrient dosing algorithm that could efficiently 

maintain the target concentrations of individual nutrients and employ the 

closed control scheme by evaluating the nutrient solution after the 

replenishment and carrying out additional injections for more accurate 

nutrient management.  

4) To testify the precision hydroponic nutrient solution management with the 

lettuce cultivation by adjusting the fertigation volumes to be supplied 

based on the estimated transpiration rate from the canopy cover of the 

growing lettuces in conjunction with the prevailing greenhouse 
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environment and correcting the ion concentrations in the recycled nutrient 

solution for deficient ions. 

 

ORGANIZATION OF THE DISSERTATION  

The organization of the dissertation is as follows.  

Chapter 2 provides literature reviews for related researches.  

Chapters 3, 4, and 5 describe the subsystems or the technologies for the 

precision nutrient solution supply and management system. 

In Chapter 3, the overall structure of the experimental hydroponic system was 

introduced. Then, an on-the-go canopy cover (CC) monitoring system and 

environmental sensors for the estimation of the transpiration rate using the 

modified Penman-Monteith equation were described with image acquisition and 

processing procedures for assessing the canopy cover of the growing lettuces. 

Finally, the performance of the CC and the transpiration rate estimation was 

discussed.    

  In Chapter 4, three signal processing methods including the two-point 

normalization (TPN), artificial neural network (ANN), and a hybrid method that 

employed both the TPN and the ANN, were compared to select the most applicable 

method for using an array of the ion-selective electrodes in hydroponic solutions. 

For the comparison of the three signal processing methods, the predictability of the 

ISE array was tested using 27-artificial samples and 8-real hydroponic samples, 

and the applicability was discussed. 

In Chapter 5, a decision tree (DT)-based dosing algorithm was designed to 

determine the proper amount of fertilizer salts to manage the ion concentrations 

close to the preset concentrations. Then, an ion-specific nutrient management 

system was developed using the DT-based dosing algorithm with a closed-loop 

control scheme to achieve the accurate resulting concentrations. The DT-based 

dosing algorithm was validated by the five replenishments for the randomly 
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determined three level-concentrations of NO3
-, K+, and Ca2+, and the results were 

compared with those obtained by the conventional simplex-based dosing algorithm. 

In addition, the Ca2+-focused replenishment scenario was conducted to clarify the 

system responses to the Ca concentrations, which would be smaller than the other 

measurable ions, i.e., K+ and NO3
-.   

Finally, in Chapter 6, the introduced subsystems and technologies were 

integrated and a lettuce cultivation test was conducted with the nutrient solution 

supply and management by the integrated system. The effectiveness of the system 

was investigated in two aspects. Regarding the nutrient solution supply, the 

efficiency of fertigation control based on the estimated water need was compared 

with the fertigation based on the timer. For evaluating the nutrient management 

performance, the nutrient ion balance during the cultivation was compared with the 

EC-based replenishment and the ion-specific replenishment. 

The general conclusions and further studies are explained in Chapter 7. 

For simplicity in describing the contents of the dissertation, the ions will 

hereafter be written without the charges.   
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CHAPTER 2. LITERATURE REVIEW 
 

VARIABILITY OF NUTRIENT SOLUTIONS IN HYDROPONICS 

In hydroponic cultivation systems, plants’ uptakes of water and nutrients are 

fully dependent on the nutrient solutions. For efficient plant growth, there would be 

optimal compositions and concentrations. Steiner investigated the optimal ratios of 

cations and anions with fixed levels of EC and pH for nutrient solutions. He tested 

1,600 combinations of the main nutrient ions (NO3, H2PO4, SO4, K, Ca, and Mg) 

and proposed a method to calculate the proper ion ratios for the optimized nutrient 

composition (Steiner, 1961). In 1966, Steiner verified the effects of the optimized 

nutrient compositions by applying the various nutrient solutions that were more 

than 10 combinations for soilless cultivations of tomato plants (Steiner, 1966). 

Wiser and Blom (2016) reported that the ion ratios of NO3, NH4, and P 

differently influenced on crop growth and height among marigolds, sunflowers, 

and tomatoes, indicating the optimal compositions would be varied for crop 

species . 

Schippers (1979) analyzed the concentrations of N, P, and K in the nutrient 

solutions of tomatoes, cucumbers, and lettuce, and confirmed the need for periodic 

analysis of nutrient solutions because the degree of ion absorption in the nutrient 

solution for each crop changed according to the growth of the crops . 

Terabayashi et al. (2004) confirmed that the maximum yield of tomato appeared 

when applying the varied nutrient compositions for each growth stage. 

J. Y. Lee et al. (2017) analyzed the changes of individual ion concentrations in 

nutrient solutions for tomato, and the uptake patterns could be divided into 5 stages 

of transplanting, adaptation, flowering, fruiting, and harvest. 

Nutrient solution compositions should be adjusted considering the environmental 

factors such as temperature, humidity, and light conditions. For example, the 

nutrient uptakes of radish were varied according to the seasonal change, which 
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might be due to the different light, temperature, and humidity conditions 

(Sonneveld & Van den Bos, 1995). 

Morimoto et al. (1996) observed daily changes in nutrient concentration of the 

solution in hydroponic tomato cultivation and reported the complex interactions in 

nutrient concentrations and environments. 

Noh et al. (2011) also configured the significant correlation (p≤0.01) between the 

light intensity and the nutrient uptake of Kalanchoe in an ebb and flow based 

soilless cultivation system.  

The aforementioned researches show the variability of the ion concentrations in 

nutrient solutions. Therefore, it is necessary to replenish the nutrients and water for 

nutrient solutions for maintaining the concentration of these nutrients in solution at 

proper levels for the success of closed hydroponic cultivation. 

 

L IMITATIONS OF CURRENT NUTRIENT SOLUTION MANAGEMENT 

IN CLOSED HYDROPONIC SYSTEM 

In general, nutrient management in closed hydroponics is conducted based on 

electrical conductivity (EC) and pH measurements. EC of the nutrient solutions is 

proportional to the total ions present, so it can be an indirect indicator of nutrient 

concentrations within nutrient solutions (Domingues et al., 2012; N. Katsoulas et 

al., 2015; Kozai et al., 2018; Son et al., 2020). pH determines the availability of 

nutrient ions for plants, and the proper level of pH for nutrient uptake is usually 

between pH 5.5 and pH 6.5 (G. De Rijck & Schrevens, 1997; Resh, 2016). 

Based on the EC and pH, Zekki et al. (1996) manually replenished the nutrient 

solutions every day and compared the productivity of the closed cultivation to the 

productivity of the open cultivation . He reported there was an accumulation of 

several nutrients such as K2SO4 and MgSO4, thereby reducing the total productivity 

in closed hydroponics. 

   In 1999, Savvas and Manos developed a computer algorithm that could 
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perform replenishment and reuse of the drain nutrient solution in close hydroponic 

systems while maintaining a target electrical conductivity in the nutrient solution. 

From the application tests for growing roses, gerbera, chrysanthemum, and 

carnation, they showed the reused nutrient solution could be corrected efficiently in 

terms of EC, but a nutrient imbalance occurred after a fortnight of drain solution 

reuse (D Savvas & Manos, 1999). 

Savvas (2002) improved the capability of maintaining the nutrient balance by 

supplying freshwater or adopting the ion uptake ratio, but these strategies limited 

by the water quality and imposed a partial discharge of nutrient solution.  

Ahn et al. (2010) monitored the reused nutrient solution of closed-hydroponic 

paprika using the EC based system and reported the deviation of nutrient ratio was 

proportional to the recycling rate of the drainage.  

Ko et al. (2013) also investigated the nutrient composition in the recycled 

nutrient solution and reported the significant reductions in NO3, K, Ca, and Mg, 

and the accumulation of SO4, Cl, and Na.  

The nutrient imbalance issue when reusing nutrient solution based on EC is still 

ongoing. Therefore, hydroponic growers who want to manage their nutrient 

solutions based on individual nutrient species and extend the lifespan of the 

nutrient solution, depend on relatively infrequent (e.g., 1–3 weeks) off-line analysis 

by manually sampling and mailing the nutrient solution to laboratories with huge 

and expensive analytical instruments such as a colorimetric spectrophotometer, an 

AAS (Atomic Absorption Spectrophotometer) analyzer, an ICP (Inductively 

Coupled Plasma) spectrometer, or ion chromatography system (M. Bamsey et al., 

2012; Gieling et al., 2005; W. Voogt & C. Sonneveld, 1997). In addition, the 

relatively low adjustment frequency of recycled nutrient solutions based on 

standard analysis could reduce the stability and operational cost in closed 

hydroponics. In this regard, automatic corrections to each deficient nutrient based 

on the measurement of individual nutrient concentrations would allow both 
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improved efficiency of fertilizer use and increased time of use of the nutrient 

solution. 

 

ION-SPECIFIC NUTRIENT MONITORING AND MANAGEMENT IN 

CLOSED HYDROPONICS 

The need for individual nutrient monitoring has led to the application of ion-

selective electrode (ISE) technology to measure hydroponic macronutrients due to 

several advantages of ISEs over standard chemical analytic techniques, such as 

rapid response, direct measurement of the analyte, low cost, and portability. 

In 1988, Bailey et al. developed an automated measuring system that could 

monitor pH, nitrate, potassium, calcium, sodium, and chloride in nutrient film 

solutions using ISEs. The accuracies of nitrate, sodium, and potassium 

measurements were within 10%, although the deviations of calcium and chloride 

were more than 20%. Based on the results, they concluded the ISEs would be 

applicable in horticulture, but frequent and regular calibrations should be 

conducted to accommodate the drift and extend the life of the ISE. 

Cloutier et al. (1997) evaluated the potential of the ISEs application in closed 

hydroponics. They found the sensitivities of the Ca, K, NH4, and NO3 varied by -

134%, -20.2%, -26.5%, and -12.0% over the 24 hours, respectively, indicating the 

significant automation requirements for the ISE calibration. 

Gieling et al. (2005) employed an array of ISEs and ion-selective field-effect 

transistor (ISFET) to measure the concentration of the individual ions in the 

drainage water and controlled the injection pumping times of the liquid single 

element nutrients. Although the concentrations of Ca, K, and NO3 in the drain were 

kept reasonably well at the set values, the feasibility was only validated for 6-days. 

Gutierrez et al. (2007) developed an electronic tongue with an array of solid-

state ISEs that could measure NH4, K, Na, Cl, and NO3, and applied a multilayer 

artificial neural network (ANN) model to enhance the predictability of the system 
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by compensating the strong interfering effects. However, the effect of response 

drifts of the sensor array was found. After 1 year, although they supplemented PO4 

electrodes to the electronic tongue system and validated the feasibility of the 

system in real greenhouse samples, the problems of the low reliability of PO4 

electrodes and the drifts in the sensor array were not solved (Gutierrez et al., 2008). 

Kim et al. (2013) fabricated NO3, K, and Ca ISEs and constructed a test stand 

with an array of ISEs which automatically conduct rinsing, normalization, sample 

injection, and sample analysis for hydroponic solutions. They reported the two-

point normalization was effective in minimizing potential drift and bias that might 

occur during continuous, thereby improving the applicability of the ISEs for 

hydroponic nutrients in greenhouses. 

In 2014, Rius-Ruiz et al. (2014) developed an analytical platform with K, NO3, 

Ca, and Cl solid-state electrodes to monitor the nutrient compositions in 

hydroponic solutions and replenish the solutions as optimal concentrations 

manually for 120 days. Specifically, they verified the two-point calibration was 

more effective in improving sample measurement accuracy than the one-point 

calibration.  

Jung et al. (2015) improved the system developed by Kim et al. (2013) by 

adding the control logic to measure the NO3, K, and Ca in the closed hydroponic 

system and manage the ion concentrations automatically using the three single 

element nutrients. Although the three ions were controlled to reach target 

concentrations of 280, 140, and 70 mg·L-1 within errors of -7.7±28.1, 20.8±28.5, 

and -5.6±8.2 mg·L-1 for NO3, K, and Ca ions, respectively, during the lettuce 

cultivation, the fertilization was limited by the coupled compositions of the 

nutrients. In 2019, the system was modified to manage the P and Mg 

concentrations by injecting the nutrients proportional to the supply of and NO3 and 

Ca ions, respectively, and the feasibility of the cobalt electrodes to measure P 

concentrations was evaluated. However, the effectiveness of the proportional 
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injection of Mg and P was not clear and the dosing algorithm was insufficiently 

analyzed.  

As described above, various hydroponic applications using ISEs for individual 

ionic concentration measurement and nutrient solution management were achieved. 

However, the electrode drift and the absence of the reliable ionophore that could 

measure the main nutrient ions of P, Mg, and SO4 hinder the application of ISEs in 

the hydroponic application. Specifically, P ion has various forms according to the 

pH of the solution and could be easily affected by other interfering ions (Gutierrez 

et al., 2008; H.-J. Kim et al., 2007). Mg and S ionophores developed until now 

have limitations of very low selectivity and sensitivity, so there is no successful 

application case in hydroponics (H. J. Kim et al., 2013; Lomako et al., 2006).  

The table below summarizes the researches on nutrient solution measurement 

and control (Table 2.1). 

 

  



 

16 

Table 2.1. Researches on hydroponic systems for nutrient solution monitoring and 
management 

Author 
(Year) 

Plant species 
Nutrient 

solution sensor 

Nutrient 
solution 

management 
Limitations 

Zekki et al. 
(1996) 

Tomato 
(Capello) 

EC, pH 
Manual 

adjustment 
Accumulation 

of SO4 

Savvas & 
Manos (1999) 

Roses, gerbera, 
chrysanthemum 
and carnation 

EC, pH 

Stock solution 
injection based 
on the computer 

algorithm 

Accumulation 
of Na, Cl, Ca, 
Mg, and SO4 
Reduction of P, 

Zn, Mn, K, Fe, 
NO3, B 

Savvas (2002) Chrysanthemum EC, pH 

Stock solution 
injection based 
on the computer 

algorithm 

Accumulation 
of Ca and Mg 
Reduction of K 

Bailey et al. 
(1988) 

Tomato 
ISEs (NO3, 

K, Ca, Na, Cl, 
pH) 

Manual 
adjustment 

Low accuracy 
Low lifetime 
Bubbles in 
flow cell 

Gieling et al. 
(2005) 

Plant (Not 
described) 

ISE and 
ISPET 

Single element 
nutrients 
injection 

Short-
monitoring 
Deviation of 

NH4 and Ca 

Gutierrez et 
al. (2007) 

Rose (Rosa 
indica L. cv. 
Lovelly Red) 

ISEs (NH4, 
K, Na, Cl, and 

NO3) 
Monitoring 

Drifts in sensor 
array 

Low accuracy 
in Cl 

Gutierrez et 
al. (2008) 

Rose (Rosa 
indica L. cv. 
Lovelly Red) 

ISEs (NH4, 
K, Na, Cl, NO3, 

and PO4) 
Monitoring 

Drifts in sensor 
array 

Low accuracy 
in PO4 

Kim et al. 
(2013) 

Paprika 
ISEs (NO3, 

K, and Ca) 
Analysis 

Off-line 
analysis 

Low selectivity 
in Ca ISE 

Rius-Ruiz et 
al. (2014) 

Tomato 
(Solanum 

lycopersicum) 

ISEs (NO3, 
K, Ca and Cl) 

Monitoring, 
manual 

adjustment 

Low stability 
in NO3, Cl 

Jung et al. 
(2015) 

Lettuce 
ISEs (NO3, 

K, and Ca) 

NO3, K, and 
Ca salt solution 

injection 

Limited 
fertilization 

Low K 
estimation 

Jung et al. 
(2019) 

Lettuce 
ISEs (NO3, 

K, and Ca) 

NO3, K, Ca, 
Mg, and P salt 

solution injection 

Unclear 
performance of 

Mg and P 
management 
Low stability 
of cobalt 
electrodes 
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REMOTE SENSING TECHNIQUES FOR PLANT MONITORING   

In hydroponics, the supply of water and nutrients is dependent on the fertigation, 

so the efficient use of water and nutrient could be achieved by optimizing the 

fertigation. Precision fertigation, which provides water based on the water needs of 

the plant, would be an effective approach for saving water and nutrient while 

maximizing yield (Abioye et al., 2020; Jones, 2004; Zeng et al., 2009). To achieve 

precision fertigation, there is a need to assess the status of plants to adjust the 

fertigation at an appropriate level (Nikolaos Katsoulas et al., 2016). Machine vision 

would be an effective, non-invasive, and non-destructive sensing technology for 

measuring morphological and spectral characteristics in plant growth monitoring, 

post–harvest grading, transplant detection, and disease diagnosis (Kacira & Ling, 

2001). 

He et al. (2003) developed a stereovision system using two cameras and 

constructed three-dimensional (3D) color images of the transplant population from 

pairs of two-dimensional (2D) color images to estimate average height, leaf area, 

fresh mass, and dry mass determined from destructive measurements. From the 

results, the estimated values were correlated closely with the values determined 

from destructive measurements (R2: 0.7-0.9).  

Yeh et al. (2014) showed a more advanced stereo-vision system which could 

obtain the images of lettuces growing in the vertical bed automatically. They 

reported the system could enable the continuous and non-destructive estimation of 

the plant projected leaf area, height, and volume index. 

Recently, Hu et al. (2018) reported the newly developed depth camera could 

easily give information of the plant projected leaf area, fresh weight, and height 

that had high determination coefficients of 0.9 versus the standard analysis . 

A vision-based assessment of the crop water needs also has been widely 

investigated. One of the most important vision-based plant properties is the canopy 

cover (CC), which is also called the percentage of ground cover of vegetation 
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(PGC) (Allen et al., 1998; Daniel G. Fernández-Pacheco et al., 2014; Stojanova et 

al., 2010). CC is defined as “the vertical projection of the plant canopy onto an 

imaginary horizontal surface” (Stojanova et al., 2010). This parameter is a key 

component for estimating the crop water requirements using FAO-56 methodology 

due to its strong linear relationship with the leaf area index (Allen et al., 1998; 

Baret et al., 2000; Córcoles et al., 2013; Escarabajal-Henarejos et al., 2015; García-

Mateos et al., 2015; Gitelson et al., 2003; Lati et al., 2013; J. Y. Lee et al., 2017). 

Fernández-Pacheco et al. applied digital photography in plant growth monitoring 

and obtained the CC of the lettuces growing in the field. Then, they estimated the 

crop height using the CC and computed the crop coefficient Kc from the CC and 

the crop height. From the validation test, the linear regression analysis between the 

estimated Kc and the actual Kc showed a slope of the linear regression line very 

similar to 1 (0.966) and a squared correlation coefficient of 0.977, indicating the 

vision approach could be used to determine the crop water requirements. Similarly, 

González-Esquiva et al. (2017) reported that the canopy cover (CC) of the growing 

lettuces obtained from the digital photography could be utilized to calculate the 

crop coefficient below 1% of error.  

Story and Kacira (2015) developed a plant monitoring system that could 

dynamically collect the canopy images using color, near-infrared (NIR), and 

thermal cameras. From these three types of images, they showed the system could 

determine the water stress level as well as the plant morphology (top projected 

plant and canopy area).  

Nutrient uptakes and requirements of crops are also crucial considerations for 

the precision fertigation. Elvanidi et al. (2018) tried to detect the nitrogen 

deficiency in hydroponically grown tomatoes using a hyperspectral machine vision 

sensor. Through the background adjusted nitrogen index, they confirmed the 

possibility of the reflectance-based detection of nitrogen stress. 

Sun et al. (2018) suggested temporal dynamics of rice leaf in morphology and 
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color to identify NPK deficiencies. The results showed there were distinct leaf 

responses to NPK deficiencies. However, it would be difficult to independently 

distinguish the influences of NPK deficiencies on leaf extension and senescence.  

Nguyen et al. also investigated the hyperspectral remote sensing to assess 

nutrient status in bok choy and spinach grown under greenhouse conditions. The 

results demonstrated that individual spectral bands in three spectral regions (700–

709 nm, 780–787 nm, and 817–821 nm) were significantly correlated with leaf 

contents of N, K, Mg and Ca, thereby allowing more efficient fertilizer regimes.  

Although the studies showed a potential of the remote sensing for the plant 

nutrient uptakes and requirements, further studies are needed to use the remote 

sensing in agricultural application due to the variations in the reflectance according 

to the light conditions, ambient conditions, growth stages, or nutrient compositions 

in hydroponic solutions. Therefore, the fertigation control based on the crop water 

needs would be only possible as the first step for the precision fertigation.  

 

FERTIGATION CONTROL METHODS BASED ON REMOTE SENSING  

In practice, several studies reported the fertigation control using the vision-based 

estimation of the water needs of plants reduced water consumption and improved 

productivity. 

Prenger et al. (2005) estimated the crop evapotranspiration (ET) based on the 

crop water stress index (CWSI) using infrared thermometry (IRT) measurement of 

plant canopy temperature. When applying the closed-loop proportional irrigation 

control based on the estimated ET, only 52% of the water used for the conventional 

system was used while the height, fresh mass, and dry mass were not significantly 

different (95% confidence interval).   

Seeling et al. (2012) automated the irrigation control for growing cowpea based 

on the dynamics of leaf thickness and reported that between 25 and 45% of 

irrigation water could be conserved compared with a typical timed irrigation 
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schedule.   

Osroosh et al. (2016) variably controlled the irrigation for apple trees based on 

CWSI and weather and confirmed the strategy substantially reduced water applied 

(70%) while maintaining the stem water potential within the non-stressed range. 

By computer processing of digital photographs of vegetation cover, Escarabajal-

Henarejos et al. (2015) built a model for estimating the crop coefficient and 

validated the model performance during the subsequent 2 years. Furthermore, they 

applied the model to schedule crop irrigation and reported a 6.93% increase in 

production and a 17.80% reduction in water consumption compared to the grower’s 

irrigation control. 

Up to now, the fertigation control based on plant status measured by the remote 

sensing methods has been mainly investigated for the open field cultivations. In 

general, fertigation under the soilless culture requires a much more frequent control 

due to the small volume occupied by the root system and low water-holding 

capacities (M. Gallardo et al., 2013). Therefore, a fast and on-the-go monitoring of 

plant responses is necessary to accomplish precision fertigation in hydroponic 

cultivation.  

 

 

 

  



 

21 

CHAPTER 3. ON-THE-GO CROP MONITORING 
SYSTEM FOR ESTIMATION OF THE CROP 

WATER NEED 
 

ABSTRACT 

Precision fertigation in soilless cultivation is an important task to secure 

sustainable water use. However, the difficulty in assessing the water needs of the 

plants due to the varied plant growth and the environmental information hinders the 

establishment of the precision fertigation. In this study, an estimation model for the 

transpiration rate of the plants growing in hydroponics was characterized using the 

modified Penman-Monteith equation. Furthermore, an on-the-go crop monitoring 

system that can compute the canopy cover of the growing plants was established 

using a two-axis guided moving camera for monitoring the entire growing bed and 

sensors for measuring ambient conditions in the greenhouse. From the application 

test to the lettuces growing in the nutrient film technique cultivation, the developed 

system showed a high accuracy of 98.5 ±1.7% for the canopy cover measurements 

besides the saturated period, indicating the feasibility of estimating the growth 

information of the lettuces in hydroponics. In addition, the system showed high 

predictability for the transpiration rate with a highly linear relationship of a slope 

of 0.91, coefficient of determination (R2) >0.9, and standard error of the regression 

(SER) of <0.51 in comparison to the direct measurement. The results indicate the 

developed model could provide the water needs of the growing lettuces in a simple 

and real-time manner, thereby allowing more efficient and effective fertigation in 

hydroponics.  

 

INTRODUCTION  

The scarcity of water poses a limitation on agricultural water utilization, so there 

is a growing demand for developing efficient water management techniques 
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(García et al., 2020; Romero et al., 2012; Sesma et al., 2015). Specifically, 

irrigation or fertigation (i.e., irrigation combined with fertilization) is the greatest 

water user in agriculture (F. F. Montesano et al., 2018). However, irrigation or 

fertigation practices are generally based on the personal experience of the grower 

without considering the water needs of the growing plant (Bonachela et al., 2006; 

Chauhan et al., 2013). This approach usually causes over- or under-irrigation for 

crops, thereby leading to higher water consumption and less yield and quality of 

crops (Bonachela et al., 2006; Liu & Xu, 2018; Prenger et al., 2005). For these 

reasons, precision irrigation, which is a technique that provides water based on the 

water needs of the plant at the desired location, has been emerged and widely 

investigated in the last years (Mafuta et al., 2013; F. F. Montesano et al., 2018; 

Smith & Baillie, 2009).  

To achieve precision irrigation, an accurate and fast assessment of the water 

needs of the plants should be conducted. However, traditional estimations usually 

suffer from an inaccurate estimate of the crop water need because the crop water 

need is often affected by the climatic conditions and crop growth (Kläring, 2001; 

Prenger et al., 2005; Rodríguez et al., 2015). Moreover, all direct methods of 

measuring the crop growth are extremely laborious, destructive, site-specific, and 

costly in terms of time and money (Jiang et al., 2018; Nikolaos Katsoulas et al., 

2016; Kirk et al., 2009; Sigrimis et al., 2001).  

In this context, a vision-based approach would be an effective tool for obtaining 

the various parameters related to plant growth and water status in real-time 

(González-Esquiva et al., 2017; Lorente et al., 2012). Specifically, the most 

applicable parameter from the vision sensors for estimating the plant growth is the 

leaf area index, which has a linear relationship with the canopy cover (CC) 

(Córcoles et al., 2013). It could estimate the water need of plants because it is 

directly related to evapotranspiration (Escarabajal-Henarejos et al., 2015; Daniel G 

Fernández-Pacheco et al., 2014).  
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As one of the transpiration rate estimation methods using the LAI, the Penman-

Monteith (P-M) equation has been widely used (Ahn & Son, 2019; Allen et al., 

1998; Baille et al., 1994; J. W. Lee et al., 2013). In this regard, the estimation of the 

transpiration rate based on the automated measurement of the CC of the growing 

plants would allow the precision fertigation approach for hydroponic growers, 

thereby improving the water use efficiency. 

In this study, a P-M equation-based estimation model for the transpiration rates 

of the growing plants in hydroponics was developed. Specifically, the model used 

the CC obtained from an on-the-go image monitoring system and the 

environmental sensors to respond to the varied water needs of the plants according 

to the ambient conditions and the growing days. Crop cultivation test was carried 

out with lettuces (Lactuca sativa) which is one of the most popular vegetables and 

is the most consumed salad crop (Ryder, 1999). The specific objectives were to (1) 

develop an on-the-go crop monitoring system that can collect the environmental 

conditions and RGB images of the plants grown in hydroponics for computing the 

CC, (2) characterize the P-M equation-based crop water need estimation model in 

conjunction with the sensor data of the temperature, relative humidity, radiation, 

and CC, and (3) evaluate the performance of the model by comparing the estimated 

transpiration rate with the actual transpiration rate of the lettuces grown in the 

recirculating nutrient film technique (NFT) bed.  

 

MATERIALS AND METHODS 

HYDROPONIC GROWTH CHAMBER  

The experimental growth chamber is an even-span plastic greenhouse (Fig. 3.1 

a). The bottom area is approximately 7.44 m2, and the heights of the wall and top 

are 1.3 m and 2.2 m, respectively. In the growth chamber, a nutrient film technique 

(NFT)-based growing bed is installed with evenly-distributed 25 fluorescent lamps 

as shown in Figs. 3.1(b) and 3.1 (d). A total of 45 growing holes are prepared for 
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the growing bed with a distance of 0.02 m (Fig. 3.1c), which is constructed 

according to the hydroponic culture guideline for the lettuces of the RDA (Rural 

Development Administration, South Korea). During the cultivation, growing plants 

would be suspended on the holes while the growing bed is supported by eight 

poly(vinyl) chloride (PVC) cylinders. To equally supply hydroponic nutrient 

solutions over the growing bed, eight distribution nozzles were applied with a 

circulation pump (PP50Y, Hwarang System Co., Ltd., Incheon, South Korea). The 

leachate flows into a drainage hole located on the opposite side of the injection 

nozzles.  

The experimental growth chamber is located in the experimental room of Seoul 

National University (Seoul, Republic of Korea, latitude 37.45786°N, longitude 

126.94845°E). Although there is no precise environmental control or the bio-

filtration system in the room, it can provide the circumstance that is sufficiently out 

of the climatic elements (e.g. wind, rain, and sunlight) with the prevention of pest 

intrusion. The detailed structures and dimensions of the growth chamber are shown 

in Fig 3.1. 
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Fig. 3.1. Structures and dimensions of the experimental growth chamber: (a) 

Growth chamber; (b) Growing bed frame; (c) Growing bed; (d) 25-fluorescent 

lamps. There are 8 cylindrical supporters for the growing bed. 
 

CONSTRUCTION OF AN ON-THE-GO CROP MONITORING SYSTEM 

Considering the varied growth status according to the sites due to the different 

microclimates, light conditions, or the different growing days, an on-the-go 

monitoring system was necessary to observe the growing plants for the entire bed. 

In this study, the on-the-go crop image monitoring system was modified for the 

CC measurements based on the XY camera-guided system developed in the 

previous study (Jiang et al., 2018). Briefly, the XY camera-guided system consisted 

of a motion controller (MoonWalker MW DCM02, NTREX, South Korea), two 

motor servo drivers (MoonWalker i-servo SBL24D200U-B, NTREX, South 
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Korea), two step motors (BLM57090-1000, Leadshine, China), and two linear belt-

type actuators (MoonWalker MW-EQB40, NTREX, South Korea).  

The position of the camera and environmental sensors were determined 

considering several practical issues. The XY camera-guided system and the camera 

were installed at the height of 0.4 m from the growing bed to avoid any damage to 

the growing lettuces during the movement. A pyranometer (SP-110, Apogee 

Instruments Inc., USA) was placed on the side of the growing bed to prevent the 

effect of the shadow made by the leaves. For monitoring the air conditions, air 

temperature and humidity sensor (HD9008TRR, Delta Ohm, Italy), and CO2 sensor 

(GMT220, Vaisala, Finland) were installed in the center of the growth chamber. 

Fig. 3.2 shows the constructed crop monitoring system in the growth chamber 

with the sensor data flow.  

For the RGB image acquisition of the growing lettuces, a low-cost web camera 

(c270, Logitech, Switzerland) was applied to the moving frame. Specifically, the 

movement of the camera was controlled by pulse signals from the servo drivers and 

the spatial resolution of the system was 0.0127 mm·pulse-1. Based on the 

resolution, the XY moving pulse signals were calculated to determine the image 

acquisition for the entire growing bed. In addition, the single image frame was 

0.339 m×0.226 m (the dimension was 640×480 pixels) and the dimension of the 

growing bed was 1.02 m×1.86 m, so 3×8 images would be necessary to monitor 

the entire bed. Finally, a total of 24 positions for the image acquisitions were 

determined, and a reversed N-shaped route was employed for the effective camera 

movement (Fig. 3.3). After the one cycle of the image monitoring was ended, the 

camera was returned to the initial point and waited for the next monitoring. 

The camera control and computation were conducted using a program based on 

Python 3.7.3 programming language with several third-party libraries. The source 

code of the software is displayed in A1. The main system was programmed using 

LabVIEW (v2015, National Instruments, TX, USA). 
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The detailed specifications of the crop-monitoring system and the environmental 

sensors are shown in Table 3.1. 

 

 
Fig. 3.2. View of the crop monitoring system in conjunction with the control 

system 
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Fig. 3.3. Moving route of the image monitoring system. White arrows indicate the 

route for image acquisition, and yellow arrow indicates the route for the return. 
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Table 3.1. Specifications of components of the on-the-go monitoring system and 
the environmental sensors 

Component Specification Manufacturer/Model 

Data acquisition 
board 

A/D converter for atmosphere 
sensor signal 
Input channel: 16 bit analog input 
32 ch. 

Input range: ± 10 V  
Sampling rate: 250 kS·s-1  

National Instrument (TX, 
USA), NI-9205 

Air temperature and 
humidity sensor 

Temperature measurement range: -
40-80 °C 
Relative humidity measurement 
range: 5-98 % 
Power: 10-30 VDC  

Delta Ohm (Caselle di 
Selvazzano, Italy), 
HD9008TRR 

CO2 probe 
Measurement range: 0-2000 ppm 
Output range: 0-10 VDC 
Power: 24 VDC 

Vaisala (Vantaa, Finland), 
GMT220 

Pyranometer 

Spectral range: 360-1120 nm 
Measurement range: 0-2000 W·m-2 
Output range: 0-0.4 VDC 
Power: Self-powered 

Apogee Instruments Inc. 
(Logan, USA), SP-110 

Camera 

RGB camera 
Fixed focus 
Maximum resolution: 1280 x 720 
pixels 
Field of View: 60° 
Power: 5 VDC (USB) 

Logitech (Lausanne, 
Switzerland), c270 

Servo motor 
Rotational speed: 0–3000 rpm 
Nominal torque: 0.29 NM 
Power: 36 VDC  

Leadshine (Shenzhen, 
China), BLM57090 

Belt-type actuator 
Max Load: 8 kg 
Max speed: 1 m·s-1 
Power: 100 W  

NTREX (Incheon, South 
Korea), MW-EQB40 

Motor driver 
PWM modulation: 20 kHz  
Encoder: 1,000,000 pulse/rev 
Power: 24 VDC 

NTREX (Incheon, South 
Korea), SBL24D200U-B 

Motion controller 
PID position controller 
USB based data transfer 
PWM control range: 18-40 kHz 

NTREX (Incheon, South 
Korea), MW-DCM02 

 

IMAGE PROCESSING FOR CANOPY COVER ESTIMATION  

To compute the CC of the growing lettuces, a series of image processing was 

conducted. The flow of the CC computation is as follows. 

First, the obtained RGB image was converted to the Excess Green Index (ExG) 
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for identifying the vegetation fractions of plants in the obtained image. The ExG, 

which was first examined by Woebbecke et al., (1995), could be calculated using 

the following equation 1 (Woebbecke et al., 1995). 

ExG = 2g − r − b    (3.1) 

where r, g, and b are the chromatic coordinates obtained by eq. 3.2. 

r = 
∗
(
∗
�∗
�∗)    

g = �∗
(
∗
�∗
�∗)    (3.2) 

b = �∗
(
∗
�∗
�∗)  

where R*, G* and B*, are the normalized RGB (Red, Green and Blue) values, 

which are computed by dividing the actual pixel values of R, G and B by the 

maximum value of 255 for an 8-bit color channel (eq. 3.3). 

  �∗ = 

��� 

�∗ = �
���     (3.3) 

�∗ = �
���  

The ExG indices enhance the contrast between the plant area and the non-plant 

area, so it could be used to segment the plants from the background (D.-W. Kim et 

al., 2018; Riehle et al., 2020).  

Then, a threshold for the plant segmentation was calculated based on the Otsu 

method, which automatically calculates optimal threshold values, thereby 

minimizing inter-class variance and maximizing intra-class variance (Otsu, 1979). 

The basic principle used in the process was an assumption that dense green 

vegetation produces a high value, while background has a low value. Therefore, the 

ExG image could be converted to a binary image based on the Otsu’s threshold, 

which would be classified into two groups, i.e., plant or non-plant. 

 After the segmentation, the CC of the image was calculated as the ratio of the 

number of pixels segmented as a crop to the number of total pixels following 



 

31 

equation 3.4 (Escarabajal-Henarejos et al., 2015; D.-W. Kim et al., 2018).  

CC =  ������ ��  !"�#$ %�&���!'�% ($ (  #('& !' ( ��(��
������ �� &�&(#  !"�#$ !' ( ��(��              (3.4) 

The system calculated the CCs for all images, and the average value of the CCs 

was assumed as the representative growth status of the lettuces in the growth 

chamber. Fig. 3.4 shows the flow of the image processing for CC calculation. 

 

 
Fig. 3.4. Process of the CC calculation for the crop growth estimation 
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EVALUATION OF THE CC CALCULATION PERFORMANCE  

Accuracy of the crop segmentation method applied in the study was assessed by 

comparing with manually segmented crop pixel numbers using the commercial 

software (ENVI v5.4, L3Harris Geospatial, CO, USA) (eq. 3.5).  

Accuracy (%) = 100 − 1
' ∗ ∑ 3100 × 566789:;<=>?66@AB>AC

66@AB>AC 5!
D'!E1       (5) 

where n is the number of frames from the monitoring system, CCExg-Otsu is the CC 

determined by the ExG-Otsu based segmentation, and CCmanual is the CC 

determined by the manual segmentation. 

 

ESTIMATION MODEL FOR TRANSPIRATION RATE  

In this study, a simplified Penman-Monteith model modified by Baille at al. 

(1994) was used to estimate the transpiration rate of the growing lettuce (eq. 3.6) 

(Baille et al., 1994). 

F& = G ∗ H1 − I?J∗KLMN ∗ �OP!' + R ∗ SOT ∗ UVP            (3.6) 

where Et is the estimated transpiration rate (g·h-1), k is the light extinction 

coefficient, LAI is the leaf area index (m2·m-2), RADin is the radiation (W·m-2), 

VPD is the vapor pressure deficit (kPa), and a (g·J-1·m2) and b (g·h−1·kPa-1) are 

regression parameters. 

  In the case of the LAI, it could be substituted by the CC because the CC has a 

highly linear relationship with the LAI (Escarabajal-Henarejos et al., 2015; García-

Mateos et al., 2015). Then, the light extinction coefficient (k) was obtained based 

on the approximation equation (eq. 3.7) described in the previous study (Nobel et 

al., 1993). 

k ∗ CC = ln(�OPZ� �OP��&&��⁄ )   (3.7) 

where RADTop (W·m-2) is the radiation measured at the top of the canopy and 

RADBottom (W·m-2) is the radiation measured at the bottom of the canopy.  

The VPD in the growing chamber was computed from equations 3.8 and 3.9 
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(Abtew & Melesse, 2013). 

I$ = 0.611 ∗ exp (1`.�`∗Z
Z
�a`.a)    (3.8) 

UVP = I$ b1 − 
c
1dde      (3.9) 

where es is the saturation vapor pressure (kPa), T is the air temperature (°C), and 

RH is the relative humidity (%). 

 

DETERMINATION OF THE PARAMETERS OF THE TRANSPIRATION RATE MODEL  

For the determination of the constant parameters (i.e., k, a, and b), 45 lettuces 

were planted on a bed of 1.02 m×1.86 m with a distance of 0.2 m. The lighting 

period was introduced as a 12h light/12h dark alternation. 65 L of nutrient solution 

was prepared based on the composition of the modified Hoagland’s hydroponic 

nutrient solution (Table 3.2) (Hoagland & Arnon, 1950), and supplied to the 

growing bed by a relay-based circulation pump with a constant timer-based 

fertigation cycle of a 3 min on/7 min off cycle (PP50Y, Hwarang System Co., Ltd., 

Incheon, South Korea).  

To manage the recycled nutrient solution, electrical conductivity (EC) and pH of 

the recycling nutrient solution were monitored by an in-line EC probe (HI7635, 

Sistemes Electrònics Progrés S. A., Lleida, Spain) and a pH probe (HI1001, Hanna 

instruments, RI, USA), respectively. In addition, a reflective ultrasonic water-level 

transmitter (EchoPod UG01, Flowline, Inc., CA, USA) was employed to measure 

the remaining volume of the nutrient solution. Based on the status of the nutrient 

solution (i.e., EC, pH, and volume), the system replenished the nutrient solution 

every day using the calculation method reported in the previous study (D Savvas & 

Manos, 1999).  
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Table 3.2. Composition of the Hoagland’s nutrient solution (Hoagland & Arnon, 
1950) 

Solution Substance Amount (mg∙L-1 of water) 

A 

Ca(NO3)2∙4H2O 472.3 

KNO3 151.65 

Fe(EDTA) 21.055 

B 

KNO3 151.65 

MgSO4∙7H2O 246.48 

MnCl2∙4H2O 0.905 

ZnSO4∙7H2O 0.11 

NH4H2PO4 57.53 

H3BO3 1.43 

CuSO4∙5H2O 0.01 

Na2MoO4∙2H2O 0.01 

 

The light extinction coefficient, k was determined by calculating the averaged k 

for the growing lettuces in initial, mid, and end day during the cultivation based on 

equation 3.7. For the determination of the regression parameters (i.e., a and b), the 

transpiration rates of the lettuces were investigated during the growing period for 

regression. The regression analysis was conducted using SIGMA Plot 12.0 (Systat 

Software Inc., London, UK). 

During the cultivation, three of the growing lettuces were transferred to beakers 

with nutrient solutions individually, then they were grown for 1 hour under the 

growth chamber. The changed weight of the beaker was assumed as the 

evapotranspiration rate (Fig. 3.5a). And a beaker without lettuce was also measured 

in the same way to measure the evaporation rate (Fig. 3.5b). Finally, the 

transpiration rate of the growing lettuce was computed by subtracting the estimated 

evaporation rate from the estimated evapotranspiration rate. It was assumed that 

there was no effect from the different evaporation surfaces with or without the 

lettuce, or the spatial variation in the growing bed. During the night period, the 

transpiration rate would be small, so the variation in the coefficient was not 
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considered. Based on the procedure described above, the transpiration rate in the 

daytime was calculated almost every day. 

The experiment was carried out until the CC of the lettuces were saturated. 

 
Fig. 3.5. Schematic of calculating the evapotranspiration rate of the growing lettuce 

(a) and the evaporation rate of the nutrient solution (b). The actual transpiration 

rate could be obtained by subtracting the evaporation rate from the 

evapotranspiration rate. 
 

RESULTS AND DISCUSSION 

PERFORMANCE OF THE CC MEASUREMENT BY THE IMAGE MONITORING 

SYSTEM 

Fig. 3.6 shows the measured CC by the automated image monitoring system and 

the manual segmentation during the experimental period. The CCExG-Otsu showed a 

highly linear relationship for the CCmanual with a slope of 0.834 and a high 

coefficient of determination (R2) of 0.94 during the growing period (Fig. 3.6a). 

However, there were several underestimations from the ExG+Otsu method, which 

would induce a decrease of the linearity of the relationship. Specifically, the values 

of the CCExG-Otsu after the DAT 24 were underestimated when compared to the 

CCmanual, thereby deteriorating the accuracy of the CC measurements (Fig. 3.6b). 

Excluding the values after the DAT 24, the linear relationship between the plant 

pixels segmented by the ExG+Otsu method and manual operation was improved by 

a slope of 0.99 and an R2 of 0.99.  

The underestimation would be related to the vulnerability of the ExG+Otsu 
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method to the saturated color index or reflections in the vegetation, which was 

reported by other authors (García-Mateos et al., 2015; Riehle et al., 2020). As an 

example, a growing lettuce image obtained from the DAT 25 was investigated (Fig. 

3.7). The raw RGB image shows the lettuces were almost full (Fig. 3.7a), so the 

lettuce image segmented based on the ExG+Otsu should be also full. However, the 

ExG+Otsu method counted the part of lettuces as the background, thereby making 

holes in the lettuces (Fig. 3.7b).  

The ExG calculation uses the color values. The veins or the surfaces reflecting 

the light for the lettuce had color values close to white color, so they were regarded 

as the background, not lettuces. As the result, the accuracy of the ExG+Otsu 

method was decreased after the DAT 24, as shown in Fig. 3.8. However, the 

saturation effect of the CC measurement appeared in the late growth stage, just 

before harvest, so the application would be feasible considering the fertigation 

control would be necessary for the growing stage, not the harvesting stage. The 

accuracy of the CC estimation was 98.5 ±1.7 % until the saturation. 
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Fig. 3.6. Relationships between the CCs of the lettuces determined by ExG+Otsu 

method and the manual segmentation method during (a) the 27-day lettuce growing 

period and (b) the 23-day lettuce growing period 
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Fig. 3.7. An example of the saturated lettuce image obtained from the DAT 25: (a) 

raw image; (b) ExG+Otsu based segmented image 
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Fig. 3.8. Accuracy of the CC estimation during the cultivation. Error bars denote 
the standard deviation of the analyzed images. 

 

PLANT GROWTH MONITORING IN CLOSED HYDROPONICS 

Fig. 3.9 shows the automated vision-based plant growth monitoring system 

could monitor the growth information of the growing lettuces during the cultivation 

period. Although the holes induced by the saturated lettuces were displayed in Figs. 

3.9e and 3.9f, the increase of the lettuces according to the growing period could be 

configured through the segmented images. In addition, the collected images could 

provide information on the spatial-temporal variations in lettuce’s growth. Fig. 

3.10 shows the spatial map of the CC on the growing bed for DAT 11, 16, 22, and 

25. In DAT 11, the CCs of the lettuces at the left and right sides of the bed were 

slightly higher than the CCs of the top and bottom sides of the bed (Fig. 3.10a). 

The trend was consistent with the DAT 16 (Fig. 3.10b). However, the distributions 

of the CCs in DAT 22 and 25 became different for the DAT 11 and 16, indicating 

the growth of the lettuces would be varied according to the growing positions 

though the cultivation was conducted at the same bed and chamber (Figs. 3.10c and 

3.10d).  

The spatial variation would be caused by the different microclimates or light 
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distribution in the growth chamber. In particular, the spatial variation might be 

generated consistently in greenhouses or plant factories where the year-round 

production is conducted. The results showed the on-the-go monitoring scheme 

could detect the spatial variation during cultivation, thereby enabling the adaptive 

crop management for the spatial variation.  

 

 
Fig. 3.9. Panoramic images of the growing lettuces segmented from the 

background: (a) DAT 1; (b) DAT 5; (c) DAT 11; (d) DAT 16; (e) DAT 22; (f) DAT 

25 
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Fig. 3.10. Spatial map of the CC on the growing bed: (a) DAT 11; (b) DAT 16; (c) 

DAT 22; (d) DAT 25 
 

In this study, an average CC of the growing bed was used as a representative 
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growth parameter for the growing lettuces. The average CC obtained by the on-the-

go crop monitoring system shows the growth curve of the lettuces during the 

cultivation period (Fig. 3.11). Although there were underestimations in the late 

period, it happened in the harvesting time for the lettuces, so the CC measurement 

by the monitoring system would be applicable in estimating the growth of the 

lettuces as mentioned above. In addition, the similarity in error bars of the 

measured CCs and the actual CCs indicated the spatial variation of the lettuces 

could be observed by the system with the accuracy comparable to the manual 

detection. 

 

 
Fig. 3.11. Changes in the average CC of the lettuces according to the growing days. 

Error bars denote the standard deviation of the analyzed images.  
 

EVALUATION OF THE CROP WATER NEED ESTIMATION 

Fig. 4.11 shows the measured sensor data and the actual transpiration rate of the 

growing lettuce during the cultivation. The temperature, relative humidity, and 

radiation measured in the growth chamber were almost maintained at the constant 

levels during the experimental period (Figs. 4.11a, 4.11b, and 4.11d). Resultingly, 

the VPD, which was calculated from the temperature and relative humidity by 
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equations 3.8 and 3.9, also showed almost constant value during the period. On the 

other hand, the transpiration rate measured by the direct method was increased with 

the growing day, which was similar to the trend of the CC (Figs. 4.11e and 4.11f). 

The results indicate the transpiration rate of the lettuces would be strongly affected 

by the CC because they would uptake more water when they were grown. The 

result was corresponding to the result in the previous study (J. W. Lee et al., 2013).  

From the experiment, the light extinction coefficient, k for the growing lettuces 

was determined as 3.318. Then, the regression parameters (i.e., a and b) were 

calculated as 0.056 and 1.466, respectively, from the regression analysis for the 

actual transpiration rate based on the estimated CC and the environmental 

conditions (i.e., temperature, relative humidity, and radiation) in the growth 

chamber (Fig. 4.12a). Specifically, the regression curve provided a highly linear 

relationship with a slope of 0.91, coefficient of determination (R2) >0.9, and 

standard error of the regression (SER) of <0.51 (Fig. 4.12b). Therefore, the fitted 

transpiration estimation model based on the plant-growth information was expected 

to provide promising predictability for the water need of the growing lettuce.  
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Fig. 3.12. Changes in the measured parameters during the cultivation: (a) air 

temperature; (b) relative humidity; (c) VPD; (d) radiation; (e) CC; (f) actual 

transpiration rates of three lettuces. Error bars denote the standard deviation of the 

three lettuces for the measured transpiration. 
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Fig. 3.13. (a) Comparison and (b) relationship of the actual transpiration rate and 

the estimated transpiration rate for one lettuce. Error bars denote the standard 

deviation of the three lettuces for the measured transpiration. 
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CONCLUSIONS 

In this study, an on-the-go crop monitoring system for monitoring the plant CC 

and the ambient conditions was constructed.  

From the real lettuce cultivation experiment, the on-the-go monitoring system 

showed a highly linear relationship between the measured plant area pixels and the 

actual plant area pixels with a slope of 0.99 and a coefficient of determination (R2) 

of 0.99. In addition, the system proved the detectability for spatial-temporal 

variations of the growing lettuces. The accuracy of 98.5 ±1.7% besides the 

saturated period in estimating the CC showed the system could easily obtain the 

CC of the growing lettuces, thereby estimating the crop water needs of the growing 

plants for the entire bed based on the modified Penman-Monteith equation using 

the ambient conditions consisting of the air temperature, relative humidity, and 

radiation. 

The crop water need estimation model calibrated using the experimental results 

showed a highly linear relationship with a slope of 0.91, a coefficient of 

determination (R2) >0.9, and a standard error of the regression (SER) of <0.51 for 

the actual transpiration rate. Considering the high accuracy of the estimation 

model, it would be feasible for precision fertigation that conducts the fertigation 

based on the crop water need varying according to the growth and the 

environments of the plants grown in hydroponics. 

However, no consideration for the crop water need varying according to the 

growth stage would limit the system availability to only the vegetative growth of 

the leafy vegetables. Specifically, the vulnerability of the ExG-Otsu method to the 

light conditions might make it difficult to segment the plant area from the growing 

bed under the greenhouses which have more dynamic light conditions. Further 

researches on the remote sensors and image processing would be required to assess 

the crop water needs for more various plants and greenhouse applications.   
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CHAPTER 4. HYBRID SIGNAL-PROCESSING 
METHOD BASED ON NEURAL NETWORK FOR 
PREDICTION OF NO 3, K, CA, AND MG IONS IN 
HYDROPONIC SOLUTIONS USING AN ARRAY 

OF ION-SELECTIVE ELECTRODES 
 

ABSTRACT 

In closed hydroponics, fast and continuous measurement of individual nutrient 

concentrations is necessary to improve water- and nutrient-use efficiencies and 

crop production. Ion-selective electrodes (ISEs) could be one of the most attractive 

tools for hydroponic applications. However, signal drifts over time and 

interferences from other ions present in hydroponic solutions make it difficult to 

use the ISEs in hydroponic solutions. In this study, hybrid signal processing 

combining a two-point normalization (TPN) method for the effective compensation 

of the drifts and a back propagation artificial neural network (ANN) algorithm for 

the interpretation of the interferences was developed. In addition, the ANN-based 

approach for the prediction of Mg concentration which had no feasible ISE was 

conducted by interpreting the signals from a sensor array consisting of electrical 

conductivity (EC) and ion-selective electrodes (NO3, K, and Ca). From the 

application test using 8 samples from real greenhouses, the hybrid method based on 

a combination of the TPN and ANN methods showed relatively low root mean 

square errors of 47.2, 13.2, and 18.9 mg∙L−1 with coefficients of variation (CVs) 

below 10% for NO3, K, and Ca, respectively, compared to those obtained by 

separate use of the two methods. Furthermore, the Mg prediction results with a root 

mean square error (RMSE) of 14.6 mg∙L−1 over the range of 10–60 mg∙L−1 showed 

potential as an approximate diagnostic tool to measure Mg in hydroponic solutions. 

These results demonstrate that the hybrid method can improve the accuracy and 

feasibility of ISEs in hydroponic applications. 
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INTRODUCTION  

Hydroponics is a cultivation method that grows plants using nutrient solutions 

composed of water and nutrient salts without soil. Recently, hydroponics has been 

widely and rapidly utilized in agricultural industries because it is the most intensive 

and effective production method that can be designed to support year-round 

production with high yields and good quality (Barbosa et al., 2015b; P. Agung 

Putra & Henry Yuliando, 2015).  

Hydroponics is usually classified into open and closed types. In open 

hydroponics, the nutrient solution flows through the growing bed and is discarded, 

which can result in the pollution of ground- and surface water (Van Os, 1994; W 

Voogt & C Sonneveld, 1997). In closed hydroponics, which collects drainage 

solutions and reuses these by replenishing water and nutrients, the use and 

discharge of water and nutrients are less than for open hydroponics (M. T. Ko et al., 

2013; Meric et al., 2011; Zekki et al., 1996). Therefore, a transition from open 

hydroponics to closed hydroponics is seen increasingly often due to the more 

environmentally-friendly aspect of closed hydroponics (Meric et al., 2011). 

However, current practices for closed hydroponics still have several limitations, as 

described below. 

In closed hydroponics, the management of the reused solutions is mostly 

conducted by the conductivity and pH probes. However, the probes can only provide 

a total ion activity and pH, so the imbalance of nutrient ratios may occur in reused 

nutrient solutions due to the lack of information about the individual ion 

concentrations (Domingues et al., 2012; Gutierrez et al., 2007; D.-H. Jung et al., 

2019; N. Katsoulas et al., 2015; Dimitrios Savvas & Gizas, 2002). This makes the 

crop quality and productivity decrease. Therefore, growers usually flush the nutrient 

solutions and replace all solutions periodically, despite the environmental pollution 

and loss of fertilizers (Gieling et al., 2005). Although growers can analyze the 

individual ion concentrations of the nutrient solutions by periodic laboratory analysis, 
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a time delay between the sampling and the analysis limits the instantaneous feedback 

control of the nutrient solution composition (Matthew Bamsey et al., 2012; Gutierrez 

et al., 2008). In this regard, fast and continuous measurement of individual nutrient 

concentrations is necessary for the precise correction of the reused nutrient solutions, 

thereby allowing both improved efficiency of fertilizer use and reduced 

environmental pollution (W. J. Cho et al., 2017; Gutierrez et al., 2007; Vardar et al., 

2015). 

Ion-selective electrodes (ISEs) could be one of the most attractive tools to 

measure the individual ion concentrations of hydroponic solutions due to their 

advantages such as simplicity of use, fast response time, direct measurement of 

analyte, sensitivity over a wide concentration range, and portability (Heinen & 

Harmanny, 1991; H. J. Kim et al., 2013; F Xavier Rius-Ruiz et al., 2014). 

Specifically, the concept of a sensor array makes it possible to simultaneously 

determine individual ion concentrations in complex samples (J. Gallardo et al., 

2005; Gutierrez et al., 2007; Mimendia et al., 2010). However, several 

disadvantages of ISEs such as signal drift and distortions due to interfering ions 

make the application for hydroponics difficult (W. J. Cho et al., 2017; Gieling et 

al., 2005; Gutierrez et al., 2007; D. H. Jung et al., 2015). Therefore, it is essential to 

develop an effective data-processing method to compensate for the signal drift and 

interference (Bratov et al., 2010; Amy V Mueller & Hemond, 2016). 

One such method is a two-point normalization (TPN) method in conjunction 

with the use of the Nernst equation that consists of a sensitivity adjustment 

followed by an offset adjustment applied to all of the signal data measured with the 

ISEs (D. H. Jung et al., 2015; H. J. Kim et al., 2017; H. J. Kim et al., 2013). In 

previous studies, the TPN method was employed and shown to be effective in 

compensating for the signal drifts of a sensor array consisting of NO3, K, and Ca 

ISEs which were used for measuring hydroponic solutions (W.-J. Cho et al., 2018; 

W. J. Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; H. J. Kim et 
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al., 2017). However, the TPN method is relatively weak for the interference 

because the standard curve for the TPN is constructed based on the simplified 

Nernst equation. The simplified Nernst equation assumes the ion-selective 

membrane would be specific to the ion of interest, but the actual membrane 

responds to other interfering ions. As a result, electromotive forces (EMFs) 

generated from the ISEs are affected by the complex ion matrix in hydroponic 

solutions, thereby inducing errors in the ion concentrations predicted by the TPN 

method. In addition, use of the TPN method is still limited in measuring other ions, 

such as P and Mg, present in hydroponic solutions, because ionophores for 

selective recognition of the P and Mg with an acceptable level are not yet 

commercially available. 

Considering the complexity of ions present in hydroponic solutions, an artificial 

neural network (ANN) would be a proper method for compensating for the 

interferences on ISEs because ANN conducts the processing of non-linear 

multivariate interactions based on knowledge storage and learning and its property 

of controlling the number of hidden neurons and hidden layers makes it more 

flexible than other machine-learning techniques (Baret et al., 2000; Gutierrez et al., 

2008; Amy V. Mueller & Hemond, 2013; Amy V Mueller & Hemond, 2016; Ni et 

al., 2014). In addition, ANN could be utilized as a predictive tool through the 

reflection of inherent chemical relationships (Amy V. Mueller & Hemond, 2013). 

However, ANN is vulnerable to signal drifts. For example, drifts can make the 

signals different from the signals obtained during the training, then the predicted 

ion concentrations by the ANN model would deviate from the actual values. This 

indicates that the ANN model would be difficult to use in ISE measurements 

without the drift compensation (W. J. Cho et al., 2017). 

Based on the complementary properties of the TPN and ANN methods, in this 

study, we proposed a hybrid signal processing approach to effectively compensate 

for the signal drifts and interferences from other ions, thereby improving the 
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accuracy of ISEs in hydroponic applications. The specific objectives of this study 

were (1) to evaluate the hybrid processing method when compared to the TPN or 

ANN methods using a sensor array consisting of ion-selective electrodes for 

macronutrients (NO3, K, and Ca) and an electrical conductivity electrode, and (2) 

to investigate the possibility of an ANN-based prediction model for Mg 

concentration in hydroponic solutions, of which there are few robust ISEs. 

 

MATERIALS AND METHODS 

PREPARATION OF THE SENSOR ARRAY  

For the measurement of NO3 and K ions, two different polyvinyl chloride 

(PVC)-based ion-selective membranes were formulated based on the chemical 

compositions previously reported (Table 4.1) (D. H. Jung et al., 2015; H. J. Kim et 

al., 2017; H. J. Kim et al., 2013). The ion-selective membrane solutions were 

prepared by dissolving the chemicals with 2 mL of tetrahydrofuran (THF) solvent. 

The solutions were then poured into a 24-mm diameter glass ring (48953, Sigma-

Aldrich, St. Louis, MO, USA) with a flat glass plate (48952, Sigma-Aldrich, St. 

Louis, MO, USA) and evaporated for 24 h at room temperature. When the 

solutions were evaporated, ion-selective membrane films were punched with a 

diameter of 2.5 mm. The punched films were attached to the ends of laboratory-

made plastic bodies of 44 mm length using THF solvent. As a final step, the 

internal solutions, consisting of 0.01 M NaNO3 + 0.01 M NaCl for NO3 ISEs, and 

0.01 M KCl for K ISEs, were filled.  

For sensing Ca ions, a commercially available Ca ISE (Orion 9320BNWP, 

Thermo Fisher Scientific, Beverly, MA, USA) was used. A double junction glass 

electrode (Orion 900200, Thermo Fisher Scientific, Beverly, MA, USA) was used 

as the reference electrode for ISEs. In addition, a commercial conductivity probe 

(Orion 013610MD, Thermo Fisher Scientific, Beverly, MA, USA) was employed 

to measure the conductivity of the test samples.  
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Finally, the sensor array was composed of three ISEs for NO3, three ISEs for K, 

two ISEs for Ca, one reference electrode, and one conductivity probe. It has been 

reported that the ISEs prepared in the study are applicable for hydroponic solutions 

(W.-J. Cho et al., 2018; W. J. Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung 

et al., 2015; H. J. Kim et al., 2017; H. J. Kim et al., 2013). The performance 

characteristics of the ISEs reported in the previous studies are summarized in Table 

4.2. 

 

Table 4.1. Chemical compositions of NO3 and K ion-selective electrode (ISE) 
membranes used in this study* 

Component 
NO3 K 

Reagent Composition Reagent Composition 

Ionophore TDDA 
4.0% 

(8 mg) 
Valinomycin 

2.0% 
(4 mg) 

Plasticizer NPOE 
67.75% 

(135.5 mg) 
Dos 

64.7% 
(129.4 mg) 

Matrix PVC 
28.25% 

(56.5 mg) 
PVC 

32.8% 
(65.6 mg) 

Ionic 
additive 

  KTClPhB 
0.5% 

(1 mg) 
* TDDA = tetradodecylammonium nitrate, DOS = bis(2-ethyhexyl) sebacate, 

NPOE = 2-nitrophenyl octylether, PVC = high-molecular-weight polyvinyl 

chloride, and KTClPhB = potassium tetrakis(4-chlorophenyl)borate. 

 

Table 4.2. Performance characteristics of the NO3, K, and Ca ISEs reported in the 
previous studies 

Sensor 
Linear Range 

(mg∙L−1) 

Detection 
Limit 

(mg∙L−1) 

Response 
Time (s) 

Lifetime 
(days) 

References 

NO3 3–1600 3 ~50 ~60 (W.-J. Cho et al., 
2018; W. J. Cho 

et al., 2017; D. H. 
Jung et al., 2015) 

K 3–700 3 ~50 ~60 

Ca 3–700 3 ~50 ~40 

 

CONSTRUCTION AND EVALUATION OF DATA -PROCESSING METHODS 

Two conventional processing methods (TPN and ANN) were used and compared 

to validate the feasibility of the hybrid processing method (TPN-ANN). The 

working principle of the TPN method is that individual sensitivity slopes of each of 
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the ISE electrodes are normalized by multiplying the EMF data by the ratio of a 

reference EMF difference to a measured EMF difference using two different 

solutions with known concentrations of the primary ion corresponding to the 

electrodes. Offsets are then adjusted by subtraction of the difference between the 

highest reference point and the modified highest concentration point (Fig. 4.1a). 

The EMF data modified by use of the TPN method are applied to the simplified 

Nernst equation (eq. 4.1). 

EMF = Fh + Fi + j ∗ log G!   (4.1) 

where EO, EJ, S, and ai are the standard potential (mV), the liquid-junction potential 

(mV), Nernstian slope (59.16/zi mV/decade change in concentration for H2O at 

25 °C and zi is the charge number of the response ion i), and the activity of the 

response ion. 

The parameters of calibration equations determined in the previous study (D. H. 

Jung et al., 2015), i.e., S, EO, and EJ, could be utilized because the compositions of 

ISE membranes were the same (Table 4.3). The activity of the ion was assumed to 

be equal to the concentration. According to the procedures in previous studies (W.-

J. Cho et al., 2018; W. J. Cho et al., 2017; D. H. Jung et al., 2015; H. J. Kim et al., 

2017; H. J. Kim et al., 2013), the TPN was carried out prior to each sample 

measurement. 

The structure of the ANN used in this study was a feed-forward backpropagation 

neural network, which consisted of an input layer, hidden layers, and an output 

layer (Fig. 4.1b). The numbers of neurons in the input layer and the output layer 

were 9 (signals from eight ISEs and one conductivity probe) and 4 (NO3, K, Ca, 

and Mg), respectively. Although ANNs with multiple hidden layers and neurons 

have a stronger generalization ability, the training time is usually increased and 

more samples are required to avoid an over-fitting issue (Chai et al., 2019). 

Therefore, for the application of the ANN, the parameters of ANN such as the 

number of hidden layers or hidden neurons should be determined carefully. 
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The optimal numbers of hidden layers and neurons were determined via trial and 

error method. Briefly, the number of input neurons was fixed as 10 and the number 

of hidden layers was set to 1, 2, 3, 5, and 10. Three replicate results were then 

obtained for each layer number and their root mean square errors (RMSEs) were 

calculated and compared to select the optimal number of hidden layers. Similarly, 

the number of hidden neurons was tested using ranges of 8 to 16 with an interval of 

2 because the neuron number is highly related to the predictability of the ANN 

model [31]. The model performance was evaluated based on RMSEs of three 

replicate training results. 

During the learning process, the learning rate of 0.01 and the Levenberg–

Marquardt algorithm, which is one of the optimizer algorithms for avoiding local 

minima and overfitting, were used (H. Yu & Wilamowski, 2011). The input data 

(Xs) for ANN was rescaled (Xr) using min-max scaling (eq. 4.2) to make each input 

have equal meanings and dimensions for the neural network. 

l� = mn?m@oB
m@A8?m@oB    (4.2) 

where Xmin and Xmax are the minimum value and the maximum value of the input 

dataset, respectively. 

As a next step, a conversion of input values to output values was carried out to 

calculate the interconnections between input values and output values, which is 

called an activation function. Due to the non-linear interactions among the ISEs, 

non-linear activation functions such as the tanh (tansig) (Freeman & Skapura, 

1991) and rectified linear unit (ReLU) (Hara et al., 2015; Nair & Hinton, 2010) 

were considered for the hidden layer. Specifically, the application of the tansig 

showed the high accuracy in ISE signal processing in the previous study (Gutierrez 

et al., 2007). However, the tansig function limits the output range as −1 to 1. As a 

result, the output would be diminished when the hidden layer number is increased, 

thereby reducing the predictability of the ANN model. This problem is called the 

“vanishing information problem” (Kamimura, 2016). ReLU makes the output 
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sparser so it can be effective in multi-layer neural networks (Freeman & Skapura, 

1991; H. Yu & Wilamowski, 2011). Therefore, ReLU was used for the neural 

networks of the hidden layers of 5 and 10. 

After the determination of the parameters for the ANN, the original ANN was 

trained using the raw EMFs from the sensor array. In the case of the hybrid 

method, the ANN was applied using the EMFs after the TPN to achieve the drift 

compensation for the enhancement of the signal processing (Fig. 4.1c). 

For the data processing, Python 3.7.3 programming language and several third-

party libraries were used. The performances of the constructed processing methods 

were evaluated by the determination coefficients (R2) and RMSEs of the 

correlation between the predicted concentrations and the actual concentrations. 

 

 
Fig. 4.1. Structures of the ISE data processing methods used in this study: (a) TPN; 
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(b) ANN; (c) hybrid method 
 

Table 4.3. Calibration equations for NO3, K, and Ca ISEs from the study of Jung et 
al. (2015) 

Ion Calibration equation*  
Coefficient of 

determination (R2) 
Standard error of 
calibration (SEC) 

NO3 Fpq�ha = −44.4 × log s�ha + 257.3 0.95 10.8 
K Fpqw = 60.5 × log sw − 49.6 0.99 6.1 
Ca Fpq6( = 27.3 × log s6( − 50.3 0.99 2.8 

* C represents the concentration of the solution. 

 

PREPARATION OF SAMPLES  

Two-point normalization solutions and training samples were necessary to 

generate the primary information for the model training of TPN and ANN, 

respectively. Referring to the procedure described by the previous study (Gutierrez 

et al., 2007), 27 solutions were designed by a fractional factorial design with three 

levels of concentration and four factors (NO3, K, Ca, and Mg) using a commercial 

statistical software (JMP, SAS Institute, Inc., Cary, NC, USA). Briefly, various 

mixtures of the primary ions (NO3, K, Ca, and Mg) were prepared to have 

concentrations of 100–1000, 30–300, 24–240, and 10–100 mg∙L−1 for NO3, K, Ca, 

and Mg, respectively, by adding the calculated stock solutions of ammonium 

nitrate, magnesium sulfate, potassium sulfate, and calcium chloride to a base 

solution. In order to generate training samples with a similar background of real 

hydroponic solutions, a mixture of the modified Hoagland’s hydroponic nutrient 

solution (Hoagland & Arnon, 1950) and tap water (1/1 (v/v)) was used as the base 

solution for the training samples. The samples of the lowest levels and the highest 

levels of NO3, K, Ca, and Mg ions (i.e., 100 and 1000 mg·L−1, 30 and 300 mg·L−1, 

24 and 240 mg·L−1, 10 and 100 mg·L−1, respectively) were additionally prepared 

for two-point normalization solutions. 

For evaluating the feasibility of the processing methods in real hydroponic 

application, a total of 8 samples were manually collected from nutrient solution 
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mixing tanks of various hydroponic systems (Table 4.4). Specifically, the samples 

had different compositions for six kinds of plants (kale, Atractylodes japonica, 

Glehnia littoralis, beet, basil, and paprika), which spanned a wide range of ion 

concentrations. 

The actual concentrations of the samples were determined by a standard soil-

water testing laboratory (National Instrumentation for Environmental Management 

(NICEM), Seoul, South Korea) using an ion chromatograph (ICS-5000, Thermo 

Fisher Scientific, Waltham, MA, USA) with a low detection limit of 0.05 mg∙L−1 

for NO3, and an inductively coupled plasma-optical emission spectrometer (iCAP 

7400, Thermo Fisher Scientific, Waltham, MA, USA) with a detection limit of 0.6 

μg∙L−1 for K, Ca, and Mg, respectively. The measured ion concentrations of the 

samples are shown in A2. 
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Table 4.4. Hydroponic samples used in this study 

Sample 
Growing 
Period 

 
Hydroponic 

System 

Nutrient 
Solution 
Recipe 

Sampling Sites 

Basil 1 5 weeks 
 Deep Flow 
Technique (DFT) 

(closed) 

Yamazaki’s 
hydroponic 

nutrient solution 

Experimental farm of 
Seoul National 

University (SNU) 

Kale 3 weeks 

 
Nutrient Film 

Technique (NFT) 
(closed) 

Otsuka House’s 
hydroponic 

nutrient solution 

Smart farm of Korea 
Institute of Science 

and Technology 
(KIST) 

Basil 2 5 weeks 
 

DFT (closed) 
Yamazaki’s 
hydroponic 

nutrient solution 

Experimental farm of 
SNU 

Beet 5 weeks 
 

NFT (closed) 
Otsuka House’s 

hydroponic 
nutrient solution 

Smart farm of KIST 

Atractylodes 
japonica  

6 weeks 
 

NFT (closed) 
Hoagland’s 
hydroponic 

nutrient solution 

Plant factory of Jeju 
National University 

(JNU) 

Glehnia 
littoralis 1 

8 weeks 
 

NFT (closed) 
Hoagland’s 
hydroponic 

nutrient solution 
Plant factory of JNU 

Paprika 14 weeks 
 

Drip Irrigation 
(open) 

Grodan’s 
hydroponic 

nutrient solution 
Smart farm of KIST 

Glehnia 
littoralis 2 

6 weeks 
 

NFT (closed) 
Hoagland’s 
hydroponic 

nutrient solution 

Plant factory of 
Chungbuk National 

University 
 

PROCEDURE OF SAMPLE MEASUREMENTS 

In order to accurately and simultaneously obtain the signals from the sensor array 

and effectively apply the TPN prior to each sample measurement, a laboratory-made 

automated test stand used in the previous study was used (W.-J. Cho et al., 2016). 

The schematic diagram of the automated test stand is shown in Fig. 4.2a. The test 

stand includes a Teflon-based sensor array chamber equipped with a servomotor, 

sample containers, a main computer system with a signal-conditioning data 

acquisition board, a motor controller, discrete pressure pumps for samples, and a 

control box for pump and motor operation (Fig. 4.2b).  

For each sample measurement, about 50 mL of sample solution was 

automatically injected into the sample holder by the pressure pumps and stirred by 
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rotating the holder at approximately 30 rpm during data collection. Each test 

sequence began with a rinsing of the electrodes by introducing the distilled water 

(DW). Sixty seconds after the sample injection, the signals of the electrodes were 

logged with the mean of a 1 s burst of 1 kHz data. After each measurement, the 

holder was rinsed with distilled water and the rotational speed was increased to 

approximately 400 rpm to expel solutions centrifugally. The test sequence was 

controlled by software developed based on LabVIEW (A3). Fig. 4.3 represents the 

overall process of the sample measurements in this study. Three iterations were 

conducted for the prepared samples and Excel 2016’s statistical tools (Microsoft, 

Redmond, WA, USA) were used to analyze the data. The specifications of 

components in the test stand are listed in Table 4.5. 
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Fig. 4.2. View of the schematic diagram of the test stand (a) and the automated test 

stand (b) 
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Fig. 4.3. Block diagram of the sample measurement process 
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Table 4.5. Specifications of components of the automated test stand 
Component Specification Manufacturer/Model 

Data acquisition 
board 

A/D converter 
Input channel: 16 bit analog input 
Sampling rate: 250 kS∙s-1  

National Instrument (TX, 
USA), PCI-6221 

Signal conditioner 

Isolated analog input board for 
ISEs 
Input range: ± 10 V  
Gain: 1 

National Instrument (TX, 
USA), SCC-AI13 

Pump 

Diaphragm pump 
Flow rate: 2-2.51 L∙min−1 
Maximum pressure height: 8.2 
kgf/cm2 
Power: 24 VDC 

KOTEC (Incheon, South 
Korea), R-1305 

Servo motor 
Rotational speed: 0–3000 rpm 
Power: 100 W  

Mitsubishi (Tokyo, Japan), 
HG-MR 

Motor controller 

Speed frequency response: 2.5 
kHz  
Encoder: 4,194,304 pulse∙rev-1 
Power: 200 VAC 

Mitsubishi (Tokyo, Japan), 
MELSERVO-J4 

Digital output 
controller  

Pump relay control 
Digital I/O channel: Bidirectional 
5 V/TTL 32 ch. 

National Instrument (TX, 
USA), NI-9403 

Solid state relay 

Pump control 
Input voltage range: 4~32 VDC 
Output voltage range: 10~200 
VDC  

Woonyoung (Cheonan, 
South Korea), 
WYNSG1C205D4 

 

RESULTS AND DISCUSSION 

DETERMINATION OF THE ARTIFICIAL NEURAL NETWORK (ANN) STRUCTURE  

The RMSEs according to the hidden layers and the hidden neurons are shown in 

Fig. 4.4. When the layer number was increased, the RMSEs of the prediction was 

increased (Fig. 4.4a). Specifically, the ANN with single-hidden layer shows 

significantly low average RMSEs when compared to the ANN with multi-hidden 

layer. Therefore, the optimization of neuron numbers was conducted using a single 

hidden layer. In the same way, the number of neurons in the hidden layer was 

determined to be 14. The final structure of ANN used in this study is shown in Fig. 

4.5. 
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Fig. 4.4. Trends of the root mean square errors (RMSEs) according to the number 

of hidden layers (a) and hidden neurons (b). Error bars indicate the standard 

deviations of three replicates (n = 3, Duncan’s multiple range test, a~c: p < 0.05, 

A~D: p < 0.01). 
 

 
Fig. 4.5. Diagram of the determined neural network structure for the ANN and the 

hybrid method (w: weight value, b: bias) 
 

EVALUATION OF THE PROCESSING METHODS IN TRAINING SAMPLES 

In the training step, the performances of the ANN-based processing methods 

(ANN and TPN-ANN) training and the TPN method were evaluated. The 

prediction results according to the processing methods are shown in Fig. 4.6. In 

NO3 prediction (Fig. 4.6a), the TPN showed a linear and accurate prediction result 

with R2 of 0.99, a slope of 0.87, and a RMSE of 89.1 mg∙L−1. In the case of the 

ANN and the hybrid method, there was no significant difference in the prediction 
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results despite the lower RMSE of the hybrid method (ANN: 22.3 mg∙L−1, TPN-

ANN: 19.2 mg∙L−1). Specifically, the highly linear relationships with R2 of 0.99 

and slopes of 1.00 supported the proposition that the training of the ANN 

components would be well achieved. 

The K prediction results showed similar trends in R2, slopes, and RMSEs (Fig. 

4.6b). The TPN method showed a good prediction result with an R2 of 0.99, a slope 

of 1.01, and an RMSE of 9.3 mg∙L−1. In the ANN training, the RMSE was 26.3 

mg∙L−1, which was slightly higher than the RMSE of the TPN. However, the R2 of 

0.97 and the slope of 0.94 showed the training was conducted at an acceptable level 

[29]. The TPN-ANN method showed improved training performance with a R2 of 

0.99, a slope of 1.00, and an RMSE of 3.7 mg∙L−1. 

In the Ca prediction results, it was remarkable that the ANN-based approaches 

had more stable and linear responses when compared to the TPN-based approach 

(Fig. 4.6c). Specifically, the TPN showed a linear relationship with R2 of 0.82 and a 

slope of 1.57, a RMSE of 93.0 mg∙L−1, which was relatively high considering the 

Ca concentration of training samples ranging from 30 to 300 mg∙L−1. The ANN-

based methods showed better performances with R2 of 0.97 and slopes of 0.97 and 

0.96, and low RMSEs of 18.0 and 18.9 mg∙L−1 for the ANN and the TPN-ANN 

methods, respectively. 

The Mg prediction result (Fig. 4.6d) was only achieved by the ANN-based 

methods because the TPN has no predictability in ions without a directly related 

measurable sensor. The training results show that the ANN-based Mg prediction 

had a slope of 0.29, a R2 of 0.51, and a RMSE of 29.3 mg∙L−1. The result of the 

hybrid processing method showed an improved slope, R2, and RMSE, which were 

0.4, 0.69, and 24.9 mg∙L−1, respectively. Although the values are somewhat 

subjective factors for evaluating the model performance, it would be possible to 

use the prediction model based on the hybrid method for the approximate 

quantitative prediction of Mg concentration according to the criteria of the previous 
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study (Baret et al., 2000). The correlation values between the predicted 

concentrations with the actual concentrations are presented in Table 4.6. 

 

 
Fig. 4.6. Relationships between ion concentrations determined by the sensor array 

with three data processing methods and standard analyzers: (a) NO3, (b) K, (c) Ca, 

and (d) Mg. Error bars indicate standard deviations of three replicates. 
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Table 4.6. Correlation between the predicted concentrations with the actual 
concentrations for NO3, K, Ca, and Mg 

Ion 
Processing 

Method 
Linear 

Relationship
*
 

Confidence Intervals for 
Regression Slope 

Coefficient of 

Determination (R
2
) 

RMSE 
[b]

 

(mg∙L
−1

) Lower 95% Upper 95% 

NO
3
 

TPN Y = 0.87X + 6.07 0.846 0.889 0.99 89.1  
ANN Y = 1.00X + 0.52 0.984 1.014 0.99 22.3  

TPN-ANN Y = 1.00X + 2.7 0.981 1.006 0.99 19.2  

K 
TPN Y = 1.01X + 0.28 0.988 1.025 0.99 9.3  
ANN Y = 0.94X + 7.18 0.884 1.005 0.97 26.3  

TPN-ANN Y = 1.00X − 0.12 0.992 1.007 0.99 3.7  

Ca 
TPN Y = 1.57X − 62.46 1.364 1.768 0.82 93.0  
ANN Y = 0.97X + 6.4 0.918 1.02 0.97 18.0  

TPN-ANN Y = 0.96X + 4.41 0.908 1.014 0.97 18.9  

Mg 
ANN Y = 0.29X + 37.47 0.186 0.392 0.51 29.3  

TPN-ANN Y = 0.4X + 34.79 0.306 0.485 0.69 24.9  
* X represents the concentrations predicted by the processing methods and Y 

represents the concentrations determined by the standard analysis. [b] RMSE = 

y∑ ("z{ ?"o)|}o
� ; where ~�{ : concentration estimated by ISE, ~!: actual concentration 

determined by standard instruments, N: number of sample measurements. TPN: 

two-point normalization 

 

APPLICATION OF THE PROCESSING METHODS IN REAL HYDROPONIC SAMPLES  

After the training and evaluation of the processing methods in laboratory-made 

samples, the applicability of the processing methods for the sensor array was 

validated by the prediction of the ion concentrations of real hydroponic samples. 

Fig. 4.7 shows the ion concentrations of the real hydroponic samples determined by 

the standard analyzers and the sensor array with the three processing methods. For 

NO3 and K concentrations, the ANN-based prediction was less accurate than the 

TPN-based prediction. Specifically, the ANN-based prediction made significant 

deviations (p < 0.01) in most sample measurements comparing the actual 

concentrations (Fig. 4.7a and 4.7b). The hybrid method (TPN-ANN) predicted the 

concentration to be closer to the actual concentrations in NO3 and K than other 

methods, which indicated that the hybrid method improved the accuracy of the 

sensor array by effectively processing the signals. 

When comparing the RMSEs obtained with the three methods (Table 4.7), even 
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though the TPN showed lower RMSEs than those of the ANN (TPN: 75.4 and 19.8 

mg∙L−1, ANN: 133.5 and 144.7 mg∙L−1 for NO3 and K, respectively), the hybrid 

method (TPN-ANN) showed the best predictability with RMSEs of 47.2 and 13.2 

mg∙L−1
, and coefficients of variation (CVs) below 10% for NO3 and K, respectively. 

Moreover, in the Ca prediction (Fig. 4.7 and Table 4.7), the RMSE of 18.9 mg∙L−1 

obtained with the TPN-ANN was the lowest. In the Mg prediction, although the 

error bars showed relatively high CVs (26.6% and 28.6% for ANN and TPN-ANN 

methods), the Mg prediction results were almost comparable to the actual values, 

implying that the TPN-ANN method would offer the potential for use in 

hydroponic magnesium sensing. 

 

 
Fig. 4.7. Comparisons of the actual concentrations with the predicted 

concentrations by three signal-processing methods using 8 different hydroponic 

samples: (a) NO3, (b) K, (c) Ca, and (d) Mg. Error bars indicate standard deviations 

of three replicates. 
 

Fig. 4.8 shows changes in EMFs obtained with two-point normalization 

solutions (the high and low concentrations for NO3 (Fig. 4.8a), K (Fig. 4.8b), and 
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Ca (Fig. 4.8c), respectively) during the ANN training. As shown in the figures, the 

EMFs were varied over time, indicating the need for compensating for sensitivity 

and offset changes over time. In addition, the EMF differences obtained with the 

low and high concentration solutions, i.e., sensitivities, were nearly constant, 

implying that the use of the two-point normalization method would be effective in 

minimizing the signal drifts of all of the tested ISEs during the measurement. This 

confirmed a reason of worse predictabilities of the ANN compared to those 

obtained with the TPN and TPN-ANN methods might be related to no use of the 

TPN. 

 

Table 4.7. Comparison of processing methods to predict NO3, K, Ca, and Mg 
concentrations in hydroponic samples 

Predicted Ion 
Conc. Range  

(mg∙L−1) 
Processing Method 

Accuracy  
(RMSE, mg∙L−1) 

Precision 
(CV [a], %) 

NO3 120–1025 
TPN 75.4 1.1 
ANN 133.5 17.9 

TPN-ANN 47.2 2.9 

K 13–430 
TPN 19.8 2.4 
ANN 144.7 30.1 

TPN-ANN 13.2 4.6 

Ca 0–210 
TPN 48.8 3.3 
ANN 26.1 13.8 

TPN-ANN 18.9 6.6 

Mg 10–60 
TPN Not measurable 
ANN 29.4 26.6 

TPN-ANN 14.6 28.6 

[a] CV = ��
"̅ × 100; SD =  y∑ ("z{ ?"̅=A@�C�)|}o

�?1 ;where ~�{ : concentration estimated by 

ISE, ~̅$(� #�: average concentration estimated by ISE for each sample, N: number 

of sample measurements, ~̅: average concentration of N measurements 
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Fig. 4.8. Representative electromotive force (EMF) values showing drifts of (a) 

NO3, (b) K, and (c) Ca ISEs from two-point normalization during the measurement 

(‘Low’ and ‘High’ in legends indicate the EMF values from the low and high 

concentrations of two-point normalization solutions, respectively). 
 

In this study, we suggested a hybrid signal-processing method to improve the 

accuracy and feasibility of ISEs in hydroponic application by effectively 

compensating for the signal drifts and interferences from other ions. 

The optimization results of the number of hidden layers showed a single hidden 

layer ANN had the lowest RMSE for NO3, K, Ca, and Mg prediction (Fig. 4.4a). In 

actual fact, the ANN models with more hidden layers do not guarantee better 

performance than those with fewer layers if the number of hidden layers is 

sufficient for the given non-linear problem (J. Yu et al., 2019). Similarly, the 

performance of the ANN model was not increased according to the number of 

hidden neurons (Fig. 4.4b), as reported in the previous study (Baret et al., 2000). 

In the training sample measurements (Fig. 4.6, Table 4.6), the application of the 

TPN showed a strongly linear relationship with R2 of 0.99 despite a slight 

underestimation of NO3 concentrations between the actual and predicted 
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concentrations similar to that reported in previous studies (W.-J. Cho et al., 2018; 

D. H. Jung et al., 2015; H. J. Kim et al., 2017). This might be caused by signal 

interferences from other ions, such as Cl and SO4 in training samples. Moreover, 

TPN-based Ca prediction has a deviated slope of 1.57, which might be due to the 

presence of Mg ions, which have a similar chemical behavior to Ca ions (Saurina et 

al., 2002). The cross-interference would affect the Nernstian slope, thereby 

inducing inaccuracy in prediction (Wang et al., 2017).  

To solve the interference issue, the ANN, which would possibly compensate for 

the interfering responses by training the various backgrounds, was employed and 

improved the performance of the actual test (Fig 4.6a and 4.6c). It supports the 

theory that ANN would be effective for the non-linear interference by adjusting the 

relationship as reported in the previous studies (Chai et al., 2019; Gutierrez et al., 

2007, 2008; Amy V. Mueller & Hemond, 2013; Wang et al., 2017). In addition, we 

applied the ANN to predict the Mg concentration because we expected the ANN 

would extract the signals from the Mg ions through the training with defined 

background samples. Although the results were not satisfactory (Fig. 4.6d, Table 

4.6), the ANN-based models could be used to discriminate between high and low 

concentrations of Mg according to the criterion of the previous study (Saeys et al., 

2005). 

In real sample application, the TPN-ANN was the best processing method, 

followed by TPN and ANN (Fig. 4.7, Table 4.7). As mentioned above, the Ca 

prediction by the TPN was vulnerable to interferences. Although the TPN made Ca 

predictions more precise than the ANN in several samples, e.g., Basil 1, 

Atractylodes japonica, Glehnia littoralis 1, and Glehnia littoralis 2, relatively high 

variations in Ca predictions depending on the samples showed that the TPN could 

be affected by the changes of background ions. In contrast, the ANN-based 

methods were effective in managing the interferences in actual tests, showing they 

were less affected by the samples in most cases (Fig. 4.7c). However, the ANN 
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method showed high RMSEs in the predictions of NO3, K, and Mg. The main 

reason for the errors in the ANN-based prediction would be due to the signal drifts. 

This limitation of the ANN was similar to the results of several studies (Baret et al., 

2000; Gutierrez et al., 2007, 2008).  

The TPN method proved its effectiveness in drift compensation with improved 

accuracy. However, there were deviations in Ca prediction similar to those in the 

training sample measurement, which could be due to the interference by the 

various background ions.  

The hybrid method showed the best predictability in real hydroponic sample 

application by successfully combining the strengths of the TPN and the ANN, as 

expected. It meant the hybrid method could compensate for the signal drifts and 

then calculate the concentrations considering the non-linear influences from the 

interference through the neural network. As a result, the hybrid method improved 

the accuracy and the precision of the prediction of the ion concentrations with the 

lowest RMSEs of 47.2, 13.2, and 18.9 mg∙L−1 and CVs below 10% for NO3, K, and 

Ca, respectively. 

In Mg prediction, the RMSE of 29.4 mg∙L−1 in the ANN-based prediction is high 

considering the range of 10–60 mg∙L−1 in real samples. However, by applying the 

hybrid method, the RMSE of the prediction was reduced to 14.6 mg∙L−1. 

Considering the lack of the ISEs for the direct measurement of Mg, it would be 

possible to improve the predictability by adding more ISEs which are more closely 

related to the Mg ion. 

 

CONCLUSIONS 

In this study, a hybrid signal-processing approach combining the TPN and the 

ANN was proposed to improve the applicability of the ISEs in hydroponics by 

effectively managing the signal drift and the interference. The parameters of the 

method were optimized by the 27 training samples, which imitated the hydroponic 
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background. The feasibility and the performance of the method was validated 

through eight of the real hydroponic sample applications. 

From the results, the conventional processing methods such as the TPN and the 

ANN were sometimes unsatisfactory for prediction of the ion concentrations in 

hydroponic samples due to their vulnerability to the interference or the drift. The 

hybrid method improved the RMSEs to 47.2, 13.2, 18.9, and 14.6 mg∙L−1, which 

were approximately half the values of the conventional methods, with CVs below 

10% for NO3, K, Ca, and Mg, respectively. Furthermore, the hybrid method 

showed potential as an approximate diagnostic tool for Mg prediction despite the 

lack of direct Mg ISEs in the sensor array.  

The structure of the hybrid method can be utilized fundamentally for other ISEs. 

Therefore, the TPN-ANN method was proved to be possibility of use in the ISEs to 

measure the individual ions in hydroponic solutions while minimizing the effects of 

signal drifts and the interference. However, the input layer of nine sensor nodes 

could impose the use of the sensor array that were perfectly operated. On the 

contrary, the TPN can be used for each ISE and showed the best precision. 

Considering the long-term monitoring of the ISEs in hydroponic solutions, the 

stability and the reliability would be more important. Therefore, the TPN was 

chosen to be more feasible approach for the ISE array in aspect of the practical use.  

 

* Note: Young-Yeol Cho, Jeju National University, Myung-Min Oh and Moon-

Sun Yeom, Chungbuk National University, and Soo Hyun Park and Jai-Eok Park, 

Korea Institute of Science and Technology (KIST) donated the hydroponic samples 

used in this study. The development of the automated test stand was financially 

supported by the R&D center for Green Patrol Technologies, for KEITI (Korea 

Environmental Industry & Technology Institute), Republic of Korea. (E614-00184-

0401-1) and the Rural Development Administration, Republic of Korea 

(PJ01385203201901). I would like to express my sincere gratitude to their support.  
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CHAPTER 5. DECISION TREE-BASED ION-
SPECIFIC NUTRIENT MANAGEMENT 

ALGORITHM FOR CLOSED HYDROPONICS  
 

ABSTRACT 

The maintenance of ion balance in closed hydroponic solution is essential to 

improve the crop quality and the recycling efficiency of the nutrient solution. In the 

last decade, the ion-specific nutrient monitoring based on the ion-selective sensors 

has been implemented and shown potential in hydroponic applications. However, 

the absence of the robust ion sensors for several major ions such as P, Mg, and SO4, 

and the coupling ions of the fertilizer salts make it difficult to efficiently manage 

the nutrient ions based on the measured ion concentrations. Therefore, it is 

necessary to develop an effective calculation process for formulating optimal 

compositions of fertilizer salts to replenish the recycled hydroponic solutions while 

minimizing the accumulation or deficiency of the ions which are not measurable. 

In this study, a decision tree-based closed control method was developed to 

calculate the optimal volumes of individual nutrient stock solutions to be supplied 

based on the measurement of present concentrations in a mixing tank. In a five 

stepwise test with the varying target concentrations and nutrient solution volumes, 

the system formulated the nutrient solutions according to the given target with the 

average relative errors of 10.6 ±8.0%, 7.9 ±2.1%, 8.0 ±11.0%, and 4.2 ±3.7%, 

respectively, for the Ca, K, and NO3 concentrations and volume of the nutrient 

solution. The closed control logic conducted in the Ca focused management 

scenario showed more accurate ion-specific management would be possible, 

reducing the relative errors of Ca concentration and volume from -10.2% and -

1.5% to -1.5% and -0.6%, respectively.  
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INTRODUCTION  

When dealing with closed hydroponic solutions, the maintenance of ion balances 

in nutrient solutions is fundamental not only to ensure the productivity and quality 

of crops, but to elongate the recycling period of the nutrient solution for reducing 

the water and nutrient discharge, thereby allowing more economic and 

environmental benefits (Matthew Bamsey et al., 2012; Sambo et al., 2019).  

Most soilless cultivation systems replenish the nutrient solution based on the pH 

and electrical conductivity (EC) of the solutions, which cannot cope with the 

varying concentrations of individual ions (Cloutier et al., 1997; Domingues et al., 

2012; N. Katsoulas et al., 2015; Kozai et al., 2018; Son et al., 2020). However, the 

ion-specific nutrient management based on the ion-selective sensors has been 

investigated and showed potential in hydroponic applications (Matthew Bamsey et 

al., 2012; Gieling et al., 2005; Gutierrez et al., 2007, 2008; D.-H. Jung et al., 2019; 

D. H. Jung et al., 2015; H. J. Kim et al., 2013; F Xavier Rius-Ruiz et al., 2014; 

Vardar et al., 2015). Furthermore, several studies reported the development of the 

automated nutrient management system using ion-selective electrodes (ISEs) that 

could measure the concentrations of individual ions in hydroponic solutions and 

dose the nutrients according to each deficient ions (W. J. Cho et al., 2017; Gieling 

et al., 2005; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; Xu et al., 2020). These 

are important developments that could allow both improved efficiency of fertilizer 

use and increased time of use of the nutrient solution in closed hydroponics.  

However, it is difficult to conduct the ion-specific management exactly because 

there are few robust ISEs for several major ions such as P, Mg, and SO4. In 

addition, the commercially available nutrients consist of coupled ions, thereby 

limiting the fully independent ion replenishment for hydroponic solutions (W. J. 

Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; H. J. Kim et al., 

2013).  

In the previous studies, two types of dosing algorithms were representatively 



 

76 

applied to automatically calculate the amounts of stock nutrient solutions to be 

supplied based on the measured ion concentrations. One system used a simplex 

algorithm with a set of given constraints to determine the injection volumes of 

stock solutions simultaneously (G De Rijck & Schrevens, 1994; Gieling et al., 

2005; D. H. Jung et al., 2015). However, this approach was often impossible to find 

a final solution of the calculation due to the presence of the coupled ions in the 

fertilizers, thereby leading to the deviated concentrations from the target values and 

there was no consideration of the important nutrient ions such as P and Mg.  

Another dosing algorithm was based on the sequential calculation based on the 

pre-determined priority of the ions (W. J. Cho et al., 2017; D.-H. Jung et al., 2019). 

It employed six fertilizers to mitigate the problem of decoupled replenishment 

among nutrients and manage the P and Mg ions by applying linear concentration 

ratios related to NO3 and Ca ions, respectively. However, the system could not 

flexibly respond to the low changes of NO3 and Ca, so the P and Mg ions were 

gradually diminished. Also, micronutrients including Fe, Zn, Cu, etc., were not 

considered. It is thus important to develop an improved fertilizer dosing algorithm 

that can maintain the individual ion concentrations at the required levels while 

minimizing the accumulation or deficiency of the ions which are not measurable. 

The main purpose of this study was to develop an ion-specific dosing algorithm 

that can conduct efficient dosing operations by determining the proper amount of 

fertilizers while minimizing the coupled injection of the nutrient ions. The specific 

objectives were (1) to build a decision tree model based closed control method with 

the NO3, K, and Ca ISEs for the sequential decision of the operation time for each 

individual fertilizer and (2) to evaluate the effectiveness of the developed algorithm 

by applying the algorithm to an automated nutrient management system and 

conducting validation tests. 
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MATERIALS AND METHODS 

DECISION TREE-BASED DOSING ALGORITHM  

In hydroponics, all essential nutrients are supplied as nutrient solutions made by 

dissolving fertilizers in water. Fertilizer salts can be dissolved as more than two 

ions, the relative proportion of fertilizers should be considered. The use of various 

fertilizers would be helpful to flexibly control the individual ion concentrations, but 

there are several practical issues. For example, the supply of Ca ions cannot be 

decoupled from the NO3, because there is no other available fertilizer salt (Resh, 

2016). In addition, add-up of the fertilizers would require more space of tanks and 

increase the complexity of the calculation and system operation. Therefore, a total 

of seven fertilizers consisting of Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, 

NH4NO3, MgSO4·7H2O, and K2SO4 were selected as the stock solutions to have at 

least two salts for each ion besides the Ca and Mg. Then, the priority of the ions 

was determined based on the universal nutrient solution calculation method, i.e., 

Ca > P = K > NO3 > NH4 (Sonneveld et al., 1997).   

In order to calculate the proper mass of the fertilizer salts based on the given ion 

concentrations and the priority, a decision tree was used. The decision tree method 

is a machine-learning method for constructing a series of dichotomous 

classifications (Namazkhan et al., 2020). The decision tree algorithm makes tree-

shaped diagrams with a number of branches with decision and leaf nodes. Each 

decision node has a predictor variable to obtain a more proper answer for the given 

variable, and the leaf node shows the final optimized result under the framework of 

the decision tree model. The decision tree-based dosing algorithm consists of three 

parts. The first part is the calculation of the amounts of major ions considering the 

current nutrient solution volume, the target nutrient solution volume, and the ion 

compositions in water (eq. 5.1). The SO4 is not considered because it is not harmful 

to crops (Sonneveld et al., 1997). 

�6( = �6( × U&(���& − P6( × U�����'& − �6( × HU&(���& − U�����'&N  
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�w = �w × U&(���& − Pw × U�����'& − �w × HU&(���& − U�����'&N  

��ha = ��ha × U&(���& − P�ha × U�����'& − ��ha × HU&(���& − U�����'&N  

��c� = ��?� × ��ha − ��c� × HU&(���& − U�����'&N  

��� = ��� × U&(���& − s�� × U�����'& − ��� × HU&(���& −
U�����'&N , or �6(?�� × �6( − ��� × HU&(���& − U�����'&N   

�� = �� × U&(���& − s� × U�����'& − �� × HU&(���& − U�����'&N, or ��?� ×
��ha − �� × HU&(���& − U�����'&N     (5.1) 

where  

Nx = amounts of ions (x = Ca, K, NO3, NH4, Mg, or P) to be replenished (mg) 

Tx = target concentrations of ions (x = Ca, K, NO3, NH4, Mg, or P)  

Dy = concentrations of ions (y = Ca, K, or NO3) determined by ISEs (mg·L-1) 

Wx = concentrations of ions (x = Ca, K, NO3, NH4, Mg, or P) in water 

determined by standard analyzers (mg·L-1) 

V target = target volume of the nutrient solution in the mixing tank (L) 

Vcurrent = current volume of the nutrient solution in the mixing tank (L) 

Cz = concentrations of ions (z = Mg or P) determined by the standard 

instruments 

RN-N, RCa-Mg, RN-P = absorption ratios of NO3 to NH4, Ca to Mg, and NO3 to P 

In this study, the absorption ratio of 0.029 was used for NO3-NH4 based on the 

previous study (D Savvas et al., 2006; Sonneveld et al., 1997). The relationships 

between P and NO3 ions and between Mg and Ca ions could be set as 0.0108:1 and 

0.5882:1, respectively.  

The next part is the decision tree-based calculation of the required amounts of 

fertilizer salts while minimizing the over injection. Fig. 5.1 shows the calculation 

steps of the decision tree-based approach. There are two trees in the algorithm.  

One is to calculate the proper mass of the Mg(SO4)2·7H2O. There is only one salt 

for replenishing the Mg, and the injection of the Mg(SO4)2·7H2O does not affect 
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the other nodes, so the tree is operated independently (Fig. 5.1a).  

Another tree is for calculating the amounts of the other salts, i.e., 

Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, and K2SO4. The salts in 

the second tree are interconnected with each other, so the tree categorizes the salts 

according to the determined priority. Then, the calculation of the amounts of the 

salts is achieved sequentially. For example, if the NH4 was required to be 

replenished, the amount of the NH4H2PO4 would be calculated based on the needed 

mass of the NH4. The next node then assesses the effect of the calculated amount of 

the NH4H2PO4 in H2PO4. If there was no over-dose of H2PO4, the NH4H2PO4 would 

be injected as the calculation. If not, the amount of the NH4H2PO4 to be supplied 

would be re-calculated based on the required amount of the H2PO4, because the 

priority of the P is higher than the NH4. In this case, the second final amount of the 

NH4H2PO4 would be supplied rather than the first final amount of the NH4H2PO4. 

In the same manner, the amounts of the other salts could be calculated by the 

decision tree-based approach (Fig. 5.1b). 

After the amounts of the salts to be supplied were determined, the running time 

of the pump corresponding to each fertilizer salt was obtained by eq. 5.2. 

V" = �8
68×�8                            (5.2) 

where 

x = Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, or 

K2SO4 

Px = running time of metering pump for stock solution of fertilizer salt, x (s) 

Mx = mass amount of stock solution of fertilizer salt, x (mg) 

Cx = concentration of stock solution of fertilizer salt, x (mg∙L-1) 

Dx = discharge volume of metering pump for seven stock solutions of fertilizer salts 

(L∙s-1) 

The final part of the dosing algorithm is for the micronutrients and water 

replenishment. Currently, there are few commercially available ionophores for 
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micronutrient ions, so the replenishment of the micronutrients is carried out by 

injecting the micronutrients proportional to the difference between the target 

volume and the current volume of the nutrient solution (eq. 5.3).  

V� = 6@×H�<A���<?��>���B<N
�@                             (5.3) 

where 

Pm = running time of metering pump for concentrated solution of micronutrients (s) 

Cm = multiple of concentrated solution of micronutrients to the final working 

concentration (dimensionless) 

Dm = discharge volume of metering pump for concentrated solution of 

micronutrients (L∙s-1) 

 Then, the volume of water to add could be obtained by subtracting the total 

volumes of the stock solutions and the concentrated micronutrient solution from 

the difference between the target volume and the current volume of the nutrient 

solution (eq. 5.4). 

V� = �<A���<?��>���B<?∑ �=<��� =�C><o�B ��� 8?�@
��                             (5.4) 

where 

x = Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, or 

K2SO4 

Pw = running time of metering pump for water (s) 

Vstock solution for x = volume of stock solution of fertilizer salt, x to add (L) 

Vw = volume of concentrated solution of micronutrients to add 

Dw = discharge volume of metering pump for water (L∙s-1) 
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Fig. 5.1. Decision tree model for calculating the amounts of the fertilizer salts to be 

replenished, for Mg(SO4)2·7H2O (a) and other salts (b). The Xinjected (X: NH4, 

H2PO4, K, or NO3) represents the injected amount of the ion by the previously 

injected salt. The node including ‘final’ indicates the leaf node, and the higher 

number behind the ‘final’ means the result would be a more appropriate amount of 

the salt.  
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DEVELOPMENT OF AN ION-SPECIFIC NUTRIENT MANAGEMENT SYSTEM  

The ion-specific nutrient management system should have the capability of 

automatically measuring the ion concentrations of the nutrient solution, 

replenishing the nutrient solution considering the ion balance, and supplying the 

managed nutrient solution to the growing bed. In this study, the ion-specific 

nutrient management system was constructed for the NFT growing bed described 

in Chapter 3. 

Fig. 5.2 shows an overview of the developed ion-specific nutrient 

management system and the specifications of the system are listed in Table 5.1. 

Relating to solutions used by the system, a nutrient mixing tank and twelve 

reservoirs for the seven stock solutions, one micronutrient stock solution, one pH 

control solution, water, and the two-point normalization solutions were imposed 

(Fig. 5.2a). For the two-point normalization, two mixed solutions containing NO3, 

K, and Ca ions at two different concentrations, i.e., 100 and 1,000 mg∙L−1, 30 and 

300 mg∙L−1, and 26 and 260 mg∙L−1, respectively, were prepared based on the 

composition of the modified Hoagland’s hydroponic nutrient solution to minimize 

the background effects from the real hydroponic solutions (W.-J. Cho et al., 2019; 

Hoagland & Arnon, 1950). The ion concentrations of the prepared stock solutions, 

pH control solution, and the two-point normalization solutions are displayed in A4.  

To check the volume of the nutrient solution tank, a reflective ultrasonic water-

level transmitter (EchoPod UG01, Flowline, Inc., CA, USA) was installed on the 

mixing tank (Fig. 5.2a). 

For the two-point normalization, sampling, drainage, and the stock solutions, 

peristaltic pumps were employed due to the advantages such as sanitized transport 

of the fluid, self-priming operation, absence of backflow, and high repeatability 

(Klespitz & Kovács, 2014). The flow rate of the peristaltic pump determines the 

minimum injection volume, which is important because it is directly related to the 

accuracy of the replenishment. Therefore, the flow rates of the pumps for stock 
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solutions and water were determined to have the relative error from the minimum 

injection volume less than 0.1%, considering the concentrations of the stock 

solutions were prepared as 20,000 mg·L-1, and the multiple of the concentrated 

minor elements solution was 200. Furthermore, novoprene tubing, which is 

resistant to chemicals, was employed for the injection pumps (SR10/50, ASF 

THOMAS, Puchheim, Germany) for fertilizer salts (i.e., Ca(NO3)2·4H2O, KH2PO4, 

NH4H2PO4, KNO3, NH4NO3, MgSO4·7H2O, and K2SO4), micronutrients, and acid, 

considering their high concentrations. Similarly, PharMed BPT tubing was applied 

to the pumps for the two-point normalization solutions. Drainage, sampling, and 

water pumps used silicone tubing because there were relatively low concentrations 

of ions.  

For the quantification of NO3 and K ions, ISEs using two different polyvinyl 

chloride (PVC)-based ion-selective membranes were fabricated according to the 

chemical compositions and procedures reported in the previous studies (W. J. Cho 

et al., 2017; D. H. Jung et al., 2015; H. J. Kim et al., 2013) (Chapter 4). For the Ca 

ions, a commercially available Ca ISE (Orion 9320BN, Thermo Fisher, MA, USA) 

was used. Finally, an array of ISEs composed of three ISEs for NO3, three ISEs for 

K, two ISEs for Ca, and one reference electrode was installed to a sample chamber 

to measure the ion concentrations of nutrient solutions. A double-junction electrode 

(Orion 900200, Thermo Fisher, MA, USA) was used as the reference electrode. To 

minimize the residual solutions after the drainage, which could induce errors in 

measurements, the bottom of the sensor array chamber was designed to have a 

slope of 15° for more clear drainage (Fig. 5.2c).  

An isolation circuit board (NI SCC-AI13, National Instruments, TX, USA) was 

used to buffer the impedance of each electrode, and the buffered signals were 

collected by a data acquisition board (NI PCI-6221, National Instruments, TX, 

USA). Also, an in-line EC probe (HI7635, Sistemes Electrònics Progrés S. A., 

Lleida, Spain), a pH probe (HI1001, Hanna instruments, RI, USA), and a 
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transmitter (TK4S, Autonics, Busan, South Korea) with a PT100 were employed 

for the EC, pH, and solution temperature measurements, respectively (Figs. 5.2a 

and 5.2d).  

 

 
Fig. 5.2. Views of the ion-specific nutrient management system: (a) overview of the 

constructed ion-specific nutrient management system; (b) internal view of the 

control box I; (c) Sample chamber and sensor array of the system; (d) Supplying 

pump and pipe with an in-line EC probe and a pH probe 
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Table 5.1. Specifications of components of the Ion-specific management system 
Component Specification Manufacturer/Model 

Sample chamber 
A chamber of Poly(methyl 
methacrylate): 100 mL 

Megascience (Seoul, South 
Korea), Sensor chamber 

Sensor array 

K ISE 
 Measuring range: 3-700 mg·L-1 

 Detection limit: 3 
 Response time: ~50s 
NO3 ISE  
Measuring range: 3-1600 mg·L-1 

 Detection limit: 3 
 Response time: ~50s 
Ca ISE 
 Measuring range: 3-700 mg·L-1 

 Detection limit: 3 
 Response time: ~50s 
Reference electrode: Double-junction  

K, NO3: Laboratory-made 
Ca: Thermo Fisher Scientific 
(MA, USA), 9320BN 
Reference: Thermo Fisher 
Scientific (MA, USA), 
900200 

EC probe 

Flow-thru EC monitoring 
Automatic temperature 
compensation: 0-50 °C 
EC reading range: 0-20.0 dS·m-1 
Max. pressure: 5.1 kgf·cm2 

Sistemes Electrònics Progrés 
S. A. (Lleida, Spain), 
HI7635 

pH probe 
Flow-thru pH monitoring 
pH reading range: 0-14.0 pH 
Max. pressure: 6.1 kgf·cm-2 

Hanna instruments (RI, 
USA), HI1001 

EC/pH 
transmitter 

pH/EC output range: 4-20 mA 
Power: 12 VDC 

Sistemes Electrònics Progrés 
S. A. (Lleida, Spain), pH/CE 
transmitter 

Temperature 
sensor 

Transmitter with a PT100 probe 
Temperature range: -50-150 °C 
Output range: 4-20 mA 
Power: 220 VAC 

Autonics (Busan, South 
Korea), TK4S 

Two-point 
normalization 

pumps 

Peristaltic pump 
Flow rate: 0.037 L·min-1 
Tubing material: PharMed BPT 
Inner tubing diameter: 1.5 mm  
Power: 24 VDC 

ASF THOMAS (Puchheim, 
Germany), SR10/30 

Sampling & 
drainage pumps 

Peristaltic pump  
Flow rate: 0.22 L·min-1  
Tubing material: Silicon 
Inner tubing diameter: 1.6 mm  
Power: 24 VDC 

ASF THOMAS (Puchheim, 
Germany), SR10/50 

Stock solution 
pumps 

Peristaltic pump  
Flow rate: 0.1 L·min-1  
Tubing material: Novoprene 
Inner tubing diameter: 1.6 mm  
Power: 24 VDC 

ASF THOMAS (Puchheim, 
Germany), SR10/50 

  



 

86 

Table 5.1. (Continued) 
Component Specification Manufacturer/Model 

Water 
replenishment 

pump 

Peristaltic pump  
Flow rate: 0.525 L·min-1  
Tubing material: Silicon 
Inner tubing diameter: 4.8 mm  
Power: 24 VDC 

BOXER (Ottobeuren, 
Germany), QQ15 

Nutrient 
solution 

supplying pump 

Centrifugal pump 
Flow rate: 33.3 L∙min-1  
Maximum pressure height: 10.19 
kgf∙cm-2 
Power: 3PH 380 VAC 

Hwarang System Co., Ltd. 
(Incheon, South Korea), 
PP50Y 

Main control 
system 

CPU: 3.4 GHz (i7 4770, Intel) 
Memory: DDR3 8gb 
OS: Window 7 
Main program: LabVIEW (v2015, 
National Instruments, TX, USA) 

Hewlett-Packard (CA, 
USA), EliteDesk 800 G1 
TWR 

Solution tanks 

Two-point normalization solutions (5 
L for each) 

Korea First Safety (Incheon, 
South Korea), 5L HDPE (high 
density polyethylene) tank 

Stock solutions (2 L for each) 

Korea First Safety (Incheon, 
South Korea), 2L HDPE (high 
density polyethylene) water 
tank 

Nutrient solution mixing tank (Max. 
100 L) 

Bestplastic (Gyeonggi-do, 
South Korea), 100L PE 
(polyethylene) water tank 

Water-level 
sensor 

Reflective Ultrasonic Level 
Transmitters 
Measurement range: 0.038-1.5 m 
Automatic temperature 
compensation: -40-80 °C 
Signal output range: 4-20 mA 
Power: 24 VDC 

Flowline, Inc. (CA, USA), 
EchoPod UG01 

Data acquisition 
board 

A/D converter for EC, pH, water 
temperature, and water level sensors 
Input channel: 16 bit analog input 8 
ch. 

Input range: ± 20 mA  
Sampling rate: 200 kS∙s-1  

National Instrument (TX, 
USA), NI-9203 

Data acquisition 
board 

A/D converter for ISE signals 
Input channel: 16 bit analog input 
Sampling rate: 250 kS∙s-1  

National Instrument (TX, 
USA), PCI-6221 

Signal 
conditioner 

Isolated analog input board for ISEs 
Input range: ± 10 V  
Gain: 1 

National Instrument (TX, 
USA), SCC-AI13 

Relay 

Solid state relay 
Input voltage range: 0~60 VDC 
Output voltage range: 0~60 VDC 
Channel: 8 ch.  

National Instrument (TX, 
USA), NI-9485 
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IMPLEMENTATION OF ION-SPECIFIC NUTRIENT MANAGEMENT WITH CLOSED-

LOOP CONTROL  

Fig. 5.3 shows the sequence of ion-specific nutrient management. When the 

preset time was reached, the system conducted the ion-specific measurement using 

the sensor array with the two-point normalization. For the two-point normalization, 

two known standard solutions of low and high concentrations were injected into the 

sample chamber and measured by the ISE array sequentially. Then, each ISE was 

standardized based on the calibration equations for NO3, K, or Ca reported in the 

previous study (D. H. Jung et al., 2015). After the measurements of the two-point 

normalization solutions, the nutrient solution was automatically sampled and 

transported to the chamber. The first nutrient solution sample was used to rinse the 

chamber to remove any residue of the previously injected solution. The second 

nutrient solution was measured by the ISE array and the NO3, K, and Ca 

concentrations were estimated based on the two-point normalization method. Once 

the nutrient solution measurement sequence was finished, the two-point 

normalization solution of low concentration was pumped into the chamber for 

conditioning of the ISEs.   

In order to avoid the unnecessary replenishment, the estimated NO3, K, and Ca 

concentrations and the volume of the nutrient solution were judged based on the 

low limits that could be determined by the user. The adjustment of the excess 

nutrient ions in nutrient solutions is only possible if the nutrient solution is 

discarded or diluted by water, but it inevitably induces waste of water and nutrient. 

In addition, overflow of the nutrient solution could be occurred by an excessive 

replenishment. Therefore, the judgement on the replenishment was constructed to 

be triggered only by the deficiency of the measurable ions (i.e., Ca, K, and NO3) 

and the current volume of the nutrient solution.  

If the replenishment was triggered, the amounts of stock solutions and water to 

be replenished and the running times of the pumps were calculated according to the 
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decision tree-based dosing algorithm. Finally, the nutrient and water replenishment 

were conducted by operating the pumps based on the determined running times. 

The proposed decision tree-based dosing algorithm is a proportional model, 

assuming the responses of the pumps and the mixing process in the nutrient 

solution would be linear. However, there would be some errors in the pump 

operations or concentrations of the stock solutions, so it was necessary to apply a 

closed-loop control scheme to the ion-specific nutrient management for more 

accurate replenishment. In general, the ion sensing by the ISEs takes more than 10 

minutes due to the rinsing, sampling, drainage, two-point normalization, and 

stabilizing times for the measurements (D.-W. Kim et al., 2017). Therefore, it is 

difficult to apply the instantaneous feedback control to the pump operations 

corresponding to the ion concentrations. Alternatively, an evaluation of the 

management was conducted after the replenishment to achieve the closed-loop 

control. 

The overall operation of the system was controlled by a personal computer with 

a program based on LabVIEW (v2015, National Instruments, TX, USA) (A5).  
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Fig. 5.3. Flow of the ion-specific nutrient management operation with the closed-

loop control 
 

SYSTEM VALIDATION TESTS 

The performance of the system was validated through a stepwise management 

test. Specifically, the test began with a mixture of the modified Hoagland’s 

hydroponic nutrient solution (Hoagland & Arnon, 1950). Then, the system 

conducted a serial of nutrient managements according to the given target 

concentrations of NO3, K, and Ca, with the increasing levels of the target nutrient 

solution volume. The target concentrations were randomly determined with three 

levels of 80, 100, and 120% for the standard concentrations. The desired values for 

the stepwise management test are summarized in Table 5.2. After each 

replenishment, the nutrient solution was sampled and analyzed by a commercial 
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soil and water quality analysis center (NICEM, Seoul, South Korea) to determine 

actual concentrations using standard analyzers, i.e., ion chromatography for NO3 

and ICP spectrophotometry for K and Ca measurements. Then, the performance of 

the replenishment sequence was evaluated by comparing the target and actual 

concentrations determined by standard methods. 

The automated ion-specific nutrient management was performed with the lower 

limits of 20% and 10% to the ion concentrations and the nutrient solution volume, 

respectively, for the closed-loop control. The two-point normalization solutions 

were prepared to have NO3, K, and Ca ions at two different concentrations (100 

and 1,000 mg·L-1, 30 and 300 mg·L-1, 24 and 240 mg·L-1, respectively) with the 

same background components as the nutrient solution.  

To evaluate the performance of the proposed dosing algorithm, simulated 

calculations for the ion concentrations during the stepwise test were conducted 

based on the conventional simplex matrix method (Gieling et al., 2005; D. H. Jung 

et al., 2015) 

 

Table 5.2. Target values of hydroponic solutions to be supplied in the stepwise test 

Step 
Target ion concentration (mg·L-1) 

Target water volume (L) 
Ca NO3 K 

Initial 80 434 117 10 
1st 80 347.2 93.6 15 
2nd 96 347.2 117 20 
3rd 64 434 140.4 25 
4th 80 434 93.6 30 
5th 96 520.8 140.4 40 

   

The variation of the Ca concentration in the stepwise test was lower than that of 

NO3 or K concentration so the response of the system to the Ca was investigated 

with more detail as follows.  

1) A new nutrient solution was prepared using the used nutrient solution of 

Hoagland’s composition.  

2) 6L of water was supplied to the mixing tank to verify the system could detect 
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the decrease of the ion concentrations.  

3) 5L of water was supplied again.  

4) After the water replenishment, the target levels of water and Ca were set as the 

65 L and 110 mg·L-1, respectively, then the system conducted the replenishment.  

5) The system evaluated the status of the replenished solution.  

6) The target volume and Ca concentration were revised as 66 L and 130 mg·L-1, 

respectively, then the system conducted the replenishment.  

7) After the replenishment, the system evaluated the resulting solution.  

During the validation, the allowable error percentages were set as 5% and 2.5% 

for the Ca concentration and the solution volume, respectively.  

 

RESULTS AND DISCUSSION 

FIVE -STEPWISE REPLENISHMENT TEST 

For the given target concentrations of the five-steps, the system conducted the 

replenishment based on the developed dosing algorithm, and the NO3, K, and Ca 

ions in the resulting solutions were measured by the system and the standard 

analyzers (Fig. 5.4).  

From the Ca concentration, there was an over-injection in the 3rd step, thereby 

inducing the 13.6% higher resulting concentration in the 4th step (Fig. 5.4a). It 

would be due to the underestimation in the 3rd step. However, the Ca concentration 

measured by the system in the 4th step was comparable to the actual concentration, 

so the Ca concentration accurately followed the target concentration in the 5th step.  

Although the K concentration was higher than the target value in the 4th step, it 

was due to the effect of the high K concentration in the previous step (Fig. 5.4b). 

The K concentration and the volume measured by the system in the 3rd step were 

155.7 mg·L-1 and 22.52 L, which could make the K concentration of the solution as 

116.88 mg·L-1 at the target volume of the 4th step without the K injection. In actual, 

the K concentration measured by the system was 113.8 mg·L-1, which was almost 

same as the expected concentration. The underestimated K concentration by 11% 

was appeared in the 5th step, but the closed-loop control was not conducted because 
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it was within the constraint of 20%.  

Besides the above cases, the resulting NO3 concentrations and the nutrient 

solution volumes were well followed the target values (Figs. 5.4c and 5.4d). 

Overall, the Ca, K, and NO3 concentrations and volume of the nutrient solution 

were controlled with the average relative errors of 10.6 ±8.0%, 7.9 ±2.1%, 8.0 

±11.0%, and 4.2 ±3.7%, respectively, for the stepwise test.  

 
Fig. 5.4. Changes in ion concentrations and nutrient solution volume for the 

stepwise test: (a) Ca; (b) K; (c) NO3; (d) Nutrient solution volume. Error bars 

denote the standard deviation of the multiple ISEs for NO3, K, and Ca. 
 

Based on the time log of the fertilizer pumps and the measured ion 

concentrations, the amounts of the fertilizer salts to add determined by the 

decision-tree method and the simplex method were obtained and compared (Table 

5.3). The required volumes of the concentrated solution for minor elements were 

same because it was determined according to the water volume to add. The 

determined amounts of Ca(NO3)2·4H2O and MgSO4·7H2O were also same for the 

simplex method and the decision-tree method. However, the required amounts of 
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KH2PO4, NH4H2PO4, KNO3, NH4NO3, and K2SO4 were differently calculated 

according to the dosing algorithms. Specifically, although the use of KNO3 in the 

simplex method was less than the decision-tree method, the simplex method 

determined to use the KH2PO4, NH4H2PO4, NH4NO3, and K2SO4 salts more than 

the decision-tree method. As the result, the total amounts of the fertilizer salts to 

add were higher in the simplex method than the decision-tree method. 

In actual, the dosing amounts calculated from the simplex method could have 

negative values to make an exact solution for the given target concentrations. 

However, it is impossible to conduct the negative dosing for the specific ion 

because the pump cannot remove the nutrient salt individually. Therefore, the 

operation times for the pumps were just displayed as 0. However, the other salts 

including the same ions with the nutrient salts had the negative dosing amounts 

should have large amounts for the replenishment to compensate for the negative 

amounts of ions. Although the simplex method could be modified to calculate the 

approximated solution consisting of the positive numbers, it would require more 

complex calculation and processing times. On the other hand, the decision-tree 

method was operated to minimize the over-injection by the compromise of the 

injection mass based on the preset nutrient priority.  

Fig. 5.5 shows the resulting amounts of NO3, K, and Ca ions to add determined 

by the simplex method and the decision-tree method in comparison with the actual 

required ion mass. The calculated amounts of the Ca ion were same with the 

required amounts, showing both methods could make the exact solution (Fig. 5.5a). 

Although the over-injections of the NO3 ions were observed in both methods due to 

the coupling of the NO3 with the Ca, the amounts were slightly higher in the 

simplex method (Fig. 5.5b). It might be due to the effect of the negative numbers 

from the exact solutions by the simplex method as mentioned above. It was more 

obviously shown in K, showing the decision-tree method would be more feasible 

than the original simplex method (Fig. 5.5c) 

The ion concentration measurements by the system using the ISEs showed the 

feasibility by the comparison of the ion concentrations determined by the system 

and the standard analyzers (Fig. 5.6). In terms of RMSE, the accuracies of the ISE 

array measurements were 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, 
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respectively.  

The results proved the system based on the developed dosing algorithm could 

effectively control the individual ion concentrations by calculating the optimal 

injection volumes of the seven kinds of fertilizer salts for the given target ion 

concentrations. 
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Table 5.3. Amounts of the fertilizer salts to add determined by the simplex method and the decision-tree method for the five-stepwise test 

Step 

Simplex method Decision-tree method 

Injected salts (mg) Minor 

(ml) 

Injected salts (mg) Minor 

(ml) Ca(NO3)2·4H2O KH2PO4 NH4H2PO4 KNO3 NH4NO3 MgSO4·7H2O K2SO4 Ca(NO3)2·4H2O KH2PO4 NH4H2PO4 KNO3 NH4NO3 MgSO4·7H2O K2SO4 

1st 1983 0 223.8 0 0 1618.4 853.2 24.4 1983 81.8 152.5 0 0 1618.4 541.5 24.4 

2nd 3946.7 0 337.5 0 0 557.1 2928.4 30.15 3946.7 99.9 207.9 0 0 557.1 2428.8 30.15 

3rd 0 1626.5 0 4565.6 1611.6 842.8 0 29.7 0 0 21.3 4778.8 1142.8 842.8 0 29.7 

4th 5443.2 0 699.1 0 0 1971.8 1353.1 37.4 5443.2 89.2 339.7 0 0 1971.8 0 37.4 

5th 3412.9 901.2 0 2482.5 870.7 1066.7 474.2 21.9 3412.9 0 252 3582.3 0 1066.7 103.1 21.9 

Total* 14785.8 2527.7 1260.4 7048.1 2482.3 6056.4 5608.9 143.55 14785.8 270.9 973.4 8361.1 1142.8 6056.4 3073.4 143.55 

Total**  39769.6 143.55 34663.8 143.55 

* Total amounts for each fertilizer salts 

** Total amounts for all fertilizer salts 
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Fig. 5.5. Amounts of the three nutrient ions required for the five-stepwise 

replenishment: (a) Ca; (b) NO3; (c) K 
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Fig. 5.6. Comparison of ion concentrations in the resulting solutions of the 

stepwise test predicted by standard analysis and ISEs 
 

REPLENISHMENT TEST FOCUSED ON THE CA 

Fig. 5.8 shows the NO3, K, and Ca concentrations and the volume of the nutrient 

solution were changed according to the sequences. Obviously, the volume of the 

nutrient solution was increased corresponding to the water supplement and the 

replenishment sequences (Fig. 5.7a). Specifically, the volume levels of the nutrient 

solution were within the allowable error ranges, but the replenishments were 

conducted to follow the given target levels of Ca in sequences of 4 and 6. 

The system noticed the changes in the ion concentrations induced by the water 

supplement (Figs. 5.7b, 5.7c, and 5.7d). Although the K measurement made an 

overestimation in sequence 3, the trends of the NO3, K, and Ca concentrations were 

almost similar to the actual concentrations determined by the standard analyzers. 

One of the noticeable points was the effect of the closed-loop control in 

sequence 4. The system conducted a replenishment for the target Ca level of 110 

mg·L-1, but the first resulting solution showed 98.8 mg·L-1 of Ca concentration. 

The error was 10.2%, which was higher than the constraint level of 2.5%. As the 
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result, a closed-loop control was triggered and an additional replenishment was 

conducted in sequence 4 and fulfilled more accurate Ca management by reducing 

the relative error as 1.5%. The relative error of the volume was also reduced from -

1.5% to -0.6%, though both were within the constraint of 5%. After the 

replenishment, the target volume and Ca concentration were revised as 66 L and 

130 mg·L-1, respectively (Sequence 5).  

In sequence 6, the system just checked the status of the current nutrient solution, 

so the measured concentrations and the nutrient solution volume must have been 

the same conditions in sequence 5.  

Finally, the system conducted the replenishment for the given targets of 66 L and 

130 mg·L-1 Ca, and the volume and Ca concentration of the resulting solution were 

measured as 65.8 L and 135.5 mg·L-1 of Ca. The errors of the measured volume and 

Ca concentrations were -0.3% and 4.2% for the target levels, respectively, so the 

closed-loop control was not triggered.  
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Fig. 5.7. Changes in ion concentrations and nutrient solution volume for the Ca 

focused replenishment test. Dash line means the target values for the sequences. 

Line arrow and dotted line arrow indicate the water supplement and the 

replenishment, respectively. Error bars denote the standard deviation of the 

multiple ISEs for NO3, K, and Ca. 
 

CONCLUSIONS 

In this study, a decision tree-based dosing algorithm for closed-loop control of 

the hydroponic solution was developed and applied to an automated ion-specific 

nutrient management system with an array of NO3, K, and Ca ISEs. The 

performance of the dosing algorithm was evaluated based on the five stepwise test 

and the Ca focused replenishment test.  

In the five-stepwise test, the varied concentrations of NO3, K, and Ca which 

were corresponding to the 80, 100, and 120% of the standard Hoagland’s solution 

were randomly selected as the target concentrations while the target volume of the 

nutrient solution was increased. The results proved the system was able to 

formulate the nutrient solution within a set of given constraints that concern the 

individual ions using the decision-tree method. Specifically, The system controlled 

the ion concentrations in the nutrient solution with the average relative errors of 
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10.6 ±8.0%, 7.9 ±2.1%, 8.0 ±11.0%, and 4.2 ±3.7%, respectively, for the Ca, K, 

and NO3 concentrations and volume of the nutrient solution. Moreover, during the 

test, the ISE array measurements showed the RMSEs of 29.5, 10.1, and 6.1 for 

NO3, K, and Ca, respectively, indicating the measurements by the system would be 

feasible.  

The replenishment test focusing on the Ca concentration showed the system was 

able to catch the variations in ion concentrations and the nutrient solution volume 

and actively cope with the changes to achieve the given target values. From the 

results, the system observed the decrease and increase of the ion concentrations 

according to the water supplement or nutrient salt replenishment. Specifically, 

when the managed Ca concentration was not reached to the ranges of the allowable 

level of the given target concentration 110 mg·L-1, i.e., 104.5-115.5 mg·L-1 the 

closed-loop control was conducted and the satisfactory result was achieved (108.3 

mg·L-1). It showed the effectiveness of closed-loop control in nutrient solution 

replenishment.    

 

* Note: Dae-Hyun Jung and Chan-Woo Jeon shared their knowledge to design 

the decision tree-based dosing algorithm. The research was financially supported 

by the Rural Development Administration, Republic of Korea 

(PJ01385203201901). I would like to express my sincere gratitude to their support.  
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CHAPTER 6. ION-SPECIFIC AND CROP 
GROWTH SENSING BASED NUTRIENT 

SOLUTION MANAGEMENT SYSTEM FOR 
CLOSED HYDROPONICS  

 

ABSTRACT 

Precision nutrient solution management in closed hydroponics is an important 

task to secure sustainable water and nutrient uses. However, the difficulty in 

assessing the water needs of the plants due to the varied plant growth and the ion 

balance in recycled nutrient solution hinder the establishment of the precision 

hydroponic nutrient solution management. In this study, a hydroponic nutrient 

solution management system that could variably supply the nutrient solution based 

on the plant-growth information while managing the ion balance of the nutrient 

solution was developed. In application test with the lettuces growing in the nutrient 

film technique, the developed system reduced the nutrient solution supply by 

57.4% in comparison with the timer-based fertigation strategy, while meeting the 

actual daily water consumption of the plants with an error of 7.3%, when the 

lettuces were saturated. In addition, the promoted increasing rate of the leaf area 

showed the plant-based fertigation could provide higher productivity than the 

timer-based fertigation. During the cultivation period, the system maintained the 

target concentrations of 436, 117, and 80 mg·L-1 with the RMSEs of 50.6, 12.5, and 

33.3 mg·L-1 for NO3, K, and Ca ions, respectively. Although the Ca concentration 

higher than the target value could not be recovered by the system, the overdose of 

the Ca in the nutrient solution was prevented. In addition, the system showed the 

feasibility of the closed-loop control to accurately replenish the deficient ions, 

showing the daily example that the relative errors of -19, -9.9, 40.6, and -3.6% 

were reduced as the 4.2, 9.4, 10.1, and -0.02% for the NO3, K, and Ca 

concentrations and the nutrient solution volume, respectively. The low CVs of 

7.0%, 9.9%, 4.7%, 4.6%, and 17.5% for the actual NO3, K, Ca, Mg, and P 
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concentrations in the nutrient solution supported the feasibility of the system in 

maintaining the ion balance.  

 

INTRODUCTION  

In hydroponics, fertigation (i.e., irrigation combined with fertilization) is one of 

the most important factors that are closely related to the crop yield and quality 

(Incrocci et al., 2017; P Agung Putra & Henry Yuliando, 2015). Fundamentally, 

fertigation is the only way for supplying the water and nutrients to plants in soilless 

cultivation, so it is the key factor directly related to the water and nutrient use 

efficiencies. Furthermore, the efficient fertigation has become more important in 

closed soilless cultivation because the inefficient fertigation could lead to the 

discharge of the reused nutrient solution, thereby inducing the environmental 

pollution and waste of the resources such as nutrients and water (Ahn & Son, 2019; 

Matthew Bamsey et al., 2012; D. H. Jung et al., 2015).  

For these reasons, precision nutrient solution management, which is a technique 

that provides water and nutrients based on the needs of the plant, has been emerged 

and widely investigated in the last years (Matthew Bamsey et al., 2012; García et 

al., 2020; Mafuta et al., 2013; F. F. Montesano et al., 2018; Sambo et al., 2019; 

Smith & Baillie, 2009). Currently, there are two challenging issues for precision 

hydroponics: ion imbalance of the recycled nutrient solution and fertigation control 

based on the response of plants.    

Imbalance of nutrient ions in the recycled nutrient solutions is usually occurred 

by the replenishment based on the electrical conductivity (EC) of the solutions, 

which could not provide information on the concentrations of individual ions 

despite the varied uptakes of the growing plants for the individual ions (Matthew 

Bamsey et al., 2012; Gieling et al., 2005; Zheng, 2017). Similarly, the inefficient 

fertigation scheduling comes from the limitations of the current sensor technology. 

In actual, a lack of the non-destructive, accurate, and rapid monitoring techniques 
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for the crop growth makes it difficult to estimate the water needs of the plants 

(Jiang et al., 2018; Nikolaos Katsoulas et al., 2016; Kirk et al., 2009; Sigrimis et 

al., 2001).  

The overall goal of this research was to develop a precision nutrient solution 

management system that can effectively replenish the fertilizer solutions to 

maintain target concentrations of macronutrients based on the measurement and 

control of individual macronutrients while variably controlling the fertigation 

interval based on the plant growth by measuring the canopy cover (CC) of growing 

plants. Specific objectives were to (1) integrate the on-the-go crop monitoring 

system for the canopy cover assessment with the ion-specific nutrient measurement 

and replenishment system to develop a precision hydroponic system and (2) 

investigate the performance of the integrated system in the ion balance 

management and water use efficiency for the closed hydroponic lettuce cultivation.  

 

MATERIALS AND METHODS 

SYSTEM INTEGRATION  

The precision nutrient solution management could be conducted by a 

combination of two main subsystems. One is the on-the-go crop monitoring system 

with the environmental sensors developed in Chapter 3, and another is the ion-

specific nutrient management system developed in Chapter 5. The schematic 

diagram of the integrated system is shown in Fig. 6.1. 

The overall process for the observations or controls of the system was 

programmed using LabVIEW (v2015, National Instruments, TX, USA) besides the 

image monitoring and processing for the CC. The image monitoring and processing 

were conducted based on Python 3.7.3 program with several third-party libraries 

(A1). After the CC measurement, the obtained CC was transferred to the LabVIEW 

program through a TCP/IP network. The process flow of the integrated precision 

nutrient solution management system is shown in Fig. 6.2. The LabVIEW program 
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is displayed in A5. 

 

  
Fig. 6.1. Schematic diagram of the precision nutrient solution management system 

for closed hydroponics 
   

 

Fig. 6.2. Views of the precision nutrient solution management system with data 

flow 
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A user interface (UI) of the program was designed with three parts. At the main 

display, the starting time of the ion-specific management, system operation status, 

the standard concentrations of the two-point normalization solutions, the types of 

the ISEs connected to the data acquisition board, and the recently measured 

nutrient solution status including the concentrations of NO3, K, and Ca, 

temperature, EC, and pH (Fig. 6.3a).  

The second display tab shows the measured volume of the nutrient solution, 

constraints of the solution volume and ion concentrations for the closed-loop 

control, the types of fertilizer salts (i.e., Ca(NO3)2·4H2O, KH2PO4, NH4H2PO4, 

KNO3, NH4NO3, MgSO4·7H2O, K2SO4, and minor stock solutions) for the pumps, 

the volume rates of the pumps for fertilizer stock solutions, water, and pH control 

solution, concentrations of the stock solutions, the target ion concentrations of 

NO3, K, Ca, Mg, and P, the target nutrient solution volume, ratios of NO3 to P and 

Mg to Ca for the proportional injections, the operation times of the pumps 

calculated from the dosing algorithm, and the diagnostic index based on the sensor 

sensitivity for the ISEs (Fig. 6.3b).  

The final tap provides the setting of the number of growing plants, the fraction 

of drain, and the fertigation duration for the growing bed calculated based on the 

plant-growth information (Fig. 6.3c).   
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Fig. 6.3. User interface of the precision nutrient solution management system: (a) 

main display with the ion concentrations and the ISE settings; (b) stock solutions 

and pumps settings; (c) fertigation settings 
 

IMPLEMENTATION OF THE PRECISION NUTRIENT SOLUTION MANAGEMENT 

SYSTEM 

Fig. 6.4 shows the overall flow of the precision nutrient solution management 

system. The flow consisted of five separate operations, i.e., crop monitoring, aerial 

environment monitoring, nutrient solution circulation, nutrient solution 

measurement, and nutrient replenishment. 

In the crop monitoring sequence, the RGB camera position was initialized to 

precisely move to the determined positions for the image acquisition when a preset 

time was reached. Then, the RGB images of the growing plants were obtained by 

the moving camera, and the pixels of the images were converted to the excess 

green (ExG). Then, the plant area was segmented based on the Otsu threshold and 
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the ratio of the plant pixels to the whole pixels was calculated as the CC. After the 

images acquisition was over, the aggregated CC values of the images were divided 

by the number of the images to calculate the average CC of the growing plants.  

The aerial environment (i.e., temperature, relative humidity, and radiation) of the 

growing bed was monitored to predict the transpiration rate of the growing plants. 

Every 10 minutes, the average air temperature and relative humidity monitored 

during the time were updated and used to calculate the vapor pressure deficit 

(VPD). Then, the VPD and the average CC obtained from the crop monitoring 

sequence were applied to the transpiration rate estimation model based on the 

modified Penman-Monteith equation (Baille et al., 1994; J. W. Lee et al., 2013). In 

this study, the parameters for the lettuces determined in Chapter 3 were used. 

Although the estimated Et from the model could be assumed as the water need of 

the plant, several steps for the conversion of the estimated crop water need to the 

fertigation volume were required because the root zone of the growing plants was 

relatively small in comparison with the entire bed and the water uptake could be 

affected by the environmental conditions or the compositions of the nutrient 

solutions (M. Gallardo et al., 2013; Schwarz & Kuchenbuch, 1993). In this study, 

the complicated interactions in the plant water uptake were simplified as follows.  

1) The root zone area of the growing lettuce was assumed same as the hole area 

and consistent during the cultivation.  

2) The supplied nutrient solution was assumed to be uniformly distributed for 

the growing bed. 

3) The root zone water potential was assumed as constant during the 

cultivation, so the ratio of the water uptake for the fertigation would be 

parameterized by a simple linear model as the previous study (Feddes, 1982; 

Herkelrath et al., 1977). The effects of the nutrient ion compositions or the 

ion concentrations were not considered. 

In addition, the final fertigation volume should be higher than the volume 
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estimated based on the crop water need to clear out the contamination and to 

maintain favorable conditions in the root environment (F. Montesano et al., 2016; 

Rodríguez et al., 2015; Sigrimis et al., 2001). Finally, the fertigation volume to be 

supplied according to the estimated crop water need was defined as the following 

equation (eq. 6.1). The density of the nutrient solution was almost 1 g·ml-1, so the 

unit of the Et could be assumed as 1 ml·h-1.  

Fertigation volume rate (L ∙ 10 ¡¢£?1) =  ¤<×¥¦
§¦× ¥

¥¦¦¦
¨×3 ©×ª|

« ÷&�&(# ��% (��(D×(1?�) (6.1) 

where α is the root water uptake coefficient for the supplied nutrient solution, d is 

the diameter of the growing hole, and f is the leaching fraction for the fertigation. 

In this study, α was calculated as 0.00034 by measuring the nutrient solution 

consumption for the fertigation during the cultivation conducted in Chapter 3. The 

leaching fraction (f) was determined as 0.25, which is suggested by Rodríguez et al. 

(2015). 

Then, the fertigation duration was determined by dividing the pump flow rate 

(ml·s-1) into the estimated fertigation volume (eq. 6.2). The pump rate indicates the 

volume increasing rate under the holes of the growing bed when the pump is 

operated. 

Fertigation duration (s ∙ 10 ¡¢£?1) = ¯��&!�(&!�' °�#��� �(&� (K∙1d �!':¥)
���  �#�� �(&� (K∙$:¥)  (6.2) 

Based on the resulting time, the fertigation system operated the fertigation pump 

for the determined fertigation duration. After the fertigation time had been elapsed, 

the system stopped the pump and waited until the update of the environmental 

parameters (eq. 6.3).  

Waiting time (s ∙ 10 ¡¢£?1) = 600 − ²I³´¢µG´¢¶£ ·¸³G´¢¶£  (6.3) 

The nutrient solution measurement and replenishment were conducted in serial. 

Specifically, the nutrient solution measurement included the two-point 

normalization. As reported in previous studies (D. H. Jung et al., 2015; H. J. Kim et 

al., 2013), the two-point normalization method, consisting of a sensitivity 
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adjustment followed by an offset adjustment, was used to standardize the responses 

of multiple electrodes for each ion so that the calibration equations for each ISE 

developed in a previous study (D. H. Jung et al., 2015) could be applied across all 

electrodes of a given type. Details of the procedures and a description of the two-

point normalization were provided in previous studies (D. H. Jung et al., 2015; H. 

J. Kim et al., 2013).  

Two mixed solutions containing NO3, K, and Ca ions at two different 

concentrations (100 and 1,000 mg·L-1, 30 and 300 mg·L-1, 24 and 240 mg·L-1, 

respectively) were used as known standard solutions of low and high 

concentrations to determine the slope and offset values. The concentration ranges 

for the NO3, K, and Ca ions were chosen to encompass the typical concentration 

ranges used in hydroponic solutions in South Korea. Using this approach, any drift 

in the ISE signal was intermittently determined using the two normalization 

solutions, and the drift effect was compensated when the ISE measurement was 

made. After the measurement, the two-point normalization solution of the low 

concentrations was injected into the chamber to protect the leaching of the ions 

from the membranes after the sample measurement sequence was completed. 

The replenishment sequence was started when the ion concentrations and the 

volume of the nutrient solution were lower than the preset constraints. If the status 

of the nutrient solution was not reached to the allowable levels of ion 

concentrations and volume, the decision tree-based ion-specific dosing algorithm 

was computed to calculate the required volumes of the fertilizer salts and determine 

the operating times of the fertilizer pumps and water pump for replenishment. After 

the replenishment, the nutrient solution measurement sequence was conducted 

again to evaluate the resulting solution for the closed-loop control, as described in 

Chapter 5. 

While the nutrient solution measurement and replenishment sequences were 

operated, the circulation of the nutrient solution for the growing bed was stopped to 
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remove any effects on the measurements. 
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Fig. 6.4. Flowchart of the proposed precision nutrient solution management system operations
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APPLICATION OF THE PRECISION NUTRIENT SOLUTION MANAGEMENT SYSTEM 

TO CLOSED LETTUCE SOILLESS CULTIVATION  

To evaluate the performance of the system, 45 lettuces were transplanted to the 

experimental growth chamber where the system was applied. The lighting period 

was introduced as a 12h light/12h dark alternation and the crop-growth monitoring 

was conducted once a day, at the beginning time of lighting (i.e., 12:10 AM). The 

measurement and the replenishment of the recycled nutrient solution were 

conducted once a day, at 10:00 AM. The experiment was carried out until the CC of 

the lettuces were saturated. For the closed-loop control, the lower limits of 15% 

and 64.5L to the ion concentrations and the nutrient solution volume were applied, 

respectively. 

For the comparison, additional cultivation was conducted based on the EC-based 

replenishment according to the conventional nutrient replenishment equation (eq. 

6.4) (D Savvas & Manos, 1999).  

UZsZ = U6s6 + U¹s¹ + U�s�, UZ = U6 − U¹ − U�   (6.4) 

where VT (L) is the target volume for the nutrient solution, CT (mEq·L-1) is the 

target total equivalent concentration, VC is the current volume, CC (mEq·L-1) is the 

total equivalent concentration in the current nutrient solution, VW (L) is the amount 

of tap water input to the mixing tank, Cw (mEq·L-1) is the total equivalent 

concentration in tap water, VS (L) is the amount of stock solution input to the 

mixing tank, and CS (mEq·L-1) is the total equivalent concentration of the stock 

solution. In this study, the total equivalent concentration was converted to EC 

based on the third-order relationship between EC and the total equivalent 

concentration of nutrient solution presented by Barradas et al. (2018). 

For the two cultivation periods, subsamples of the hydroponic solutions were 

manually taken and sent to a standard chemical testing laboratory (NICEM, Seoul, 

South Korea) to determine their actual concentrations using standard methods, i.e., 

ion chromatography (ICS-5000, Thermo Scientific, MA, USA) for NO3 and 
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inductively coupled plasma (ICP) spectrophotometry (iCAP 7400, Thermo 

Scientific, MA, USA) for K, Ca, Mg, and P. The actual concentrations were used to 

validate the performance of the ion balance maintenance by the system.  

The performance of the ion balance maintenance was evaluated based on the 

coefficient of variation (CV) of the concentrations of Ca, K, NO3, Mg, and P during 

the experimental period (eq. 6.5).  

CV = ��
"̅ × 100, jP = y∑ ("o?"̅)|}o

�?1     (6.5) 

where ~̅ is the average concentration for each ion, SD is the standard deviation of 

the sample measurements, N is the number of sample measurement by the standard 

methods, and xi is the actual concentration for each ion. 

 

RESULTS AND DISCUSSION 

EVALUATION OF THE PLANT GROWTH -BASED FERTIGATION IN THE CLOSED 

LETTUCE CULTIVATION  

Fig. 6.5 shows the monitored environmental conditions and plant-growth 

information during the lettuce cultivation. The behavior of the air temperature was 

almost similar to the radiation, indicating the fluorescent lamps would generate 

heat (Figs. 6.5a and 6.5e). Also, it can be observed that the estimated transpiration 

rate and fertigation volume were small when the CC of the growing lettuces was 

small (Figs. 6.5f, 6.5g, and 6.5h). From the CC data, the growth of the lettuces 

could be observed until DAT 17 (Fig. 7.5f). However, after DAT 17, the CC value 

was almost steady, indicating the lettuces would be saturated and waited for the 

harvest.  

The fertigation volumes from DAT 17 to DAT 20 were varied during the day-

time despite the almost same CC, which would be affected by the radiation and the 

VPD (Figs. 6.5d, 6.5e, and 6.5h). It means the proposed fertigation system could 

cope with the varying lighting conditions by distinguishing the day and night and 
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considering the ambient conditions. 

To validate the effectiveness of the plant growth-based fertigation, the daily 

fertigation volume for the last day of the experimental period (DAT 21) was 

compared with the volume simulated from the timer-based fertigation of 3 min 

on/7 min off cycle (Fig. 6.6). In the case of the timer-based fertigation, the 

fertigation volume would be consistent and the over-fertigation occurred during the 

period (Fig. 6.6a). On the contrary, the plant-based fertigation variably supplied the 

nutrient solution during the day, significantly reducing the cumulative water use 

(Fig. 6.7b). The results indicate the timer-based fertigation cannot respond to the 

changes in the weather conditions, which would cause the over- or under-

fertigation. In addition, the daily cumulative fertigation volume, which is directly 

related to the water use efficiency of the fertigation, shows the plant-based 

fertigation would use much lower nutrient solution than the timer-based fertigation 

(Fig. 6.6b).  

In actual, the effective fertigation volume of the developed system, which was 

obtained by multiplying the root water uptake coefficient for the supplied nutrient 

solution, was 2.06 L, but the simulated fertigation volume of the timer-based 

fertigation method was 4.84 L for DAT 21. It means the developed system could 

reduce the 57.4% of the nutrient solution in comparison with the timer-based 

fertigation. Although the timer-based control could reduce the supplied nutrient 

solution by adjusting the fertigation on/off cycle, it is inevitable the under-

fertigation or over-fertigation would be inevitable during the overall growing 

period due to the varying crop water requirements. In addition, the reduction of the 

nutrient solution in the tank during the DAT 21 was 1.92 L, which would be 

regarded as the actual water consumption for growing the plants. Compared to the 

value, there was only 7.3% of error in the estimated water consumption from the 

plant-based fertigation, showing the proposed method was well followed the actual 

water need of the plants. Table 6.1 summarizes the expected water consumptions 
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by the growing lettuces determined from the plant-based fertigation, the timer-

based fertigation, and the water-level sensor for the DAT 21. 

The average CCs during the experimental period are displayed with the average 

CCs of the lettuces cultivated by the timer-based fertigation in Chapter 3 to 

compare the performance of the system on the growth (Fig. 6.7). The CC of the 

plant-based fertigation was saturated in DAT 17. However, the CC of the timer-

based fertigation was saturated in DAT 23, indicating the growth rate of the timer-

based fertigation was lower than the plant-based fertigation despite the over 

fertigation. It might indicate that the fertigation volume meeting the plant demand 

would be more effective in crop productivity, as reported in the previous study (Liu 

& Xu, 2018). 
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Fig. 6.5. Environmental conditions and the plant-growth information monitored by the system during the lettuce cultivation: (a) 

air temperature; (b) relative humidity; (c) CO2 concentration; (d) VPD calculated from the temperature and relative humidity; (e) 

radiation; (f) CC; (g) estimated transpiration rate; (h) the determined fertigation volume
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Fig. 6.6. Comparison of the plant-based fertigation proposed in this study and the 

conventional timer-based fertigation (simulation) during the DAT 21 in terms of the 

fertigation volume (a) and the cumulative fertigation volume (b) 
 

Table 6.1. The expected uptake volumes according to the plant-based fertigation, 

the timer-based fertigation, and the actual consumption for the DAT 21 

Method 
Plant-based 

fertigation 
Timer-based 

fertigation 
Actual 

consumption 
Volume (L) 2.06 4.84 1.92 

Accuracy error (%) 7.3 152.1 - 
 

 
Fig. 6.7. Comparison of the average CCs from the plant-based fertigation and the 

timer-based fertigation. Error bars denote the standard deviation of the analyzed 

frames. Arrows indicate the CC saturation time. 
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EVALUATION OF THE ION-SPECIFIC MANAGEMENT IN THE CLOSED LETTUCE 

CULTIVATION  

Fig. 6.8 shows changes in the ion concentrations measured with the ISE array of 

the system for NO3, K, and Ca (Fig. 6.8a), the amounts of six nutrient ions 

replenished (Fig. 6.8b), and the volume of hydroponic solution contained in the 

mixing tank (Fig. 6.8c) during the growing period.  

On the first day, about 60 L of the hydroponic solution was prepared manually, 

and the remaining volume for the target volume of 65 L was replenished 

automatically by the system. After the replenishment, the concentrations of Ca and 

NO3 were slightly over the target concentrations. In addition, the Ca concentration 

in the nutrient solution was higher than the target value in most cases (Fig. 6.8a). 

Possible causes for the high Ca concentration of the nutrient solution might be the 

over-injection of the Ca(NO3)2·4H2O salt and the Ca in water used for 

replenishment. In actual, the concentration of the Ca(NO3)2·4H2O stock solution 

was higher than the expected (A4). As the result, the RMSEs of NO3, K, and Ca 

were 50.6, 12.5, and 33.3 mg∙L−1, respectively, for the target concentrations, 

showing the RMSE of Ca was relatively high considering the target concentration 

of 80 mg∙L−1. The result showed the limitation of the dosing algorithm that could 

not conduct the dilution.  

However, the system could reduce the unnecessary injection of the fertilizer 

salts. In actual, the fertilizer salts were almost not injected for DAT of 2~5, 10, 16, 

18, and 19 because the system calculated the contents of the ions in the solution 

would be sufficient to achieve the target values after the water replenishment. 

Besides, the system showed it could effectively replenish the nutrient solution for 

each deficient nutrient based on the measurement of individual nutrient 

concentrations. Specifically, four days of the study period (i.e., DAT 3, 5, 15, and 

17) when the closed-loop control was operated showed that the system could 

manage the nutrient solution more accurately.  
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As an example, Fig. 6.9 shows the daily result of the ion-specific nutrient 

management for DAT 15. In control step 1, the system measured the ion 

concentrations in the nutrient solution and the relative errors of NO3, K, and Ca 

concentrations and volume were -15.9, -6.5, 45.9, and -3.6%, respectively, which 

were less than the lower limits of the NO3 and nutrient solution volume. Therefore, 

the system calculated the mass of each ion and water to rehabilitate the nutrient 

solution as the target condition (Fig. 6.9a). Then, the injection pumps were 

operated to supply the calculated amounts of nutrient ions and water to the mixing 

tank (Figs. 6.9b and 6.9c).  

After the replenishment, the system rechecked the ion concentrations of the 

resulting solution (step 2). In step 2, the ion concentrations were well managed 

within the lower limits, but the relative error of the nutrient solution volume was 

still larger than the limit of 64.5L (-0.77%) for the closed-loop control (Fig. 6.9c). 

Therefore, an additional replenishment was triggered. Finally, the measured 

relative errors of NO3, K, and Ca concentrations and volume in step 3 were 4.2, 

9.4, 10.1, and -0.02%, respectively, so the replenishment was stopped. The changes 

of the NO3, K, and Ca concentrations and nutrient solution volume according to the 

closed-loop controls are summarized in Table 6.2. 

As a result of the ion-specific management by the system, the average 

concentrations of NO3, K, and Ca were 445.6, 116.6, and 108.9 mg∙L−1, 

respectively, which were comparable to the target concentrations. 

Fig. 6.10 shows changes in EMFs obtained with two-point normalization 

solutions (the high and low concentrations for NO3 (Fig. 6.10a), K (Fig. 6.10b), 

and Ca (Fig. 6.10c), respectively) during the experimental period. As shown in the 

figures, the EMFs were varied over time, but the differences between the low and 

high concentration solutions, i.e., sensitivities, were nearly constant. The results 

mean the two-point normalization would be effective to improve the accuracy of 

the measurements by compensating for the drifting behaviors over time. 
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Fig. 6.8. Changes in ion concentrations measured by the system (a), the calculated 

injection mass of the individual ions from the stock solutions (b), and the volume 

of the nutrient solution (c) during the 20-day lettuce growing period 
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Fig. 6.9. Changes in ion concentrations measured by the system (a), the calculated 

injection mass of the individual ions from the stock solutions (b), and the volume 

of the nutrient solution (c) during a day of DAT 15 
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Table 6.2. Changes in the ion concentrations and the nutrient solution volume 
measured by the system for the closed-loop control 

DAT Control step 

Concentrations of the ions (mg·L-1)*  Nutrient 
solution 

volume (L)*  NO3 K Ca 

3 

1 489.3 (12.2%) 124.1 (6.1%) 109.6 (37.0%) 62.3 (-4.2%) 

2 461.4 (5.8%) 121.2 (3.6%) 93.6 (17.0%) 64.4 (-0.9%) 

3 452.4 (3.8%) 118.1 (1.0%) 100.53 (25.7%) 65.7 (1.0%) 

5 

1 481.8 (10.5%) 124.0 (5.9%) 117.6 (47.0%) 63.6 (-2.1%) 

2 471.1 (8.1%) 116.7 (-0.3%) 109.4 (36.8%) 63.3 (-2.6%) 

3 438.9 (0.7%) 128.4 (9.8%) 100.1 (25.2%) 64.6 (-0.7%) 

15 

1 366.7 (-15.9%) 109.4 (-6.5%) 116.7 (45.9%) 62.67 (-3.6%) 

2 482.7 (10.7%) 111.5 (-4.7%) 91.5 (14.4%) 63.83 (-1.8%) 

3 454.4 (4.2%) 128.0 (9.4%) 88.1 (10.1%) 64.99 (-0.02%) 

17 

1 442.7 (1.5%) 103.9 (-11.2%) 106.6 (33.2%) 60.5 (-7.0%) 

2 414.1 (-5.0%) 105.8 (-9.6%) 91.6 (14.5%) 64.4 (-0.9%) 

3 472.0 (8.3%) 124.6 (6.5%) 93.1 (16.4%) 65.2 (0.2%) 

Target value 436 117 80 65 

Lower limit 370.6 (-15%) 99.5 (-15%) 68 (-15%) 64.5 (-0.77%) 

* The percentage in parenthesis indicate the relative error to the target value. 
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Fig. 6.10. EMF responses for the two-point normalization solutions during the 

experimental period: (a) the responses of three NO3 ISEs; (b) the responses of three 

K ISEs; the responses of two Ca ISEs. ‘Low’ and ‘High’ in legends indicate the 

EMF values from the low and high concentrations of two-point normalization 

solutions. 
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Fig. 6.11 shows the trend of the ion balance based on the actual ion 

concentrations of NO3, K, Ca, Mg, and P present in the hydroponic solutions 

managed by the EC-based replenishment and the ion-specific replenishment. 

During the cultivation, the EC-based replenishment showed the CVs of 6.9%, 

4.9%, 23.7%, 8.6%, and 8.3% for NO3, K, Ca, Mg, and P concentrations, 

respectively. In the case of the ion-specific replenishment, the CVs of NO3, K, Ca, 

Mg, and P concentrations were 4.9%, 1.4%, 3.2%, 5.2%, and 14.9%, respectively. 

Although the CV of the P from the ion-specific replenishment was slightly higher 

than the EC-based replenishment, the P ratio was the smallest among the five 

nutrient ions so the CV could be increased by the small changes. On the other hand, 

the CV of the K ratio, which was the second-largest ratio among the five nutrient 

ions, showed a higher value in the EC-based replenishment. The comparative 

results of the EC-based replenishment and the ion-specific replenishment for the 

CVs of the five macronutrient ions in the nutrient solutions are summarized in 

Table 6.3. 

Specifically, the Mg and P concentrations, which were controlled based on the 

linear relationships in the ion-specific replenishment, were managed as 29.9 ±1.4 

mg·L-1and 10.2 ±1.8 mg·L-1, respectively, showing they were maintained at 

constant levels comparable to the conventional EC-based replenishment (Mg: 31.6 

±2.2 mg·L-1 and P: 13.1 ±0.7 mg·L-1) (Fig. 6.12). 

The EC and pH of the nutrient solution were more varied in the ion-specific 

management, showing the CVs of 5.9% and 5.4% with the average values of 1.32 

dS·m-1 and pH 5.7, respectively, while the CVs of the EC and pH managed by the 

EC-based replenishment were 1.1% and 2.7% with the average values of 1.393 

dS·m-1 and pH 6.9, respectively (Figs. 6.13a and 6.13b). The result showed the 

conventional EC-based replenishment could maintain the EC of the nutrient 

solution successfully. However, the accumulation of the SO4 obviously was not 

considered in the EC-based replenishment (Fig. 6.13c), thereby inducing the ion 
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imbalance as reported in the previous studies (M. T. Ko et al., 2013; Sambo et al., 

2019; Zekki et al., 1996).  

 

 

 
Fig. 6.11. Changes in ion ratios in the nutrient solutions managed by (a) the ion-

specific replenishment and (b) the EC-based replenishment 
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Fig. 6.12. Changes in Mg and P concentrations under the ion-specific 

replenishment and the EC-based replenishment 
 

Table 6.3. Comparison of the nutrient ion balances in the nutrient solutions 

managed by the EC-based replenishment and the ion-specific replenishment* 

Nutrient ion 
Ca NO3 K Mg P 

EC Ion EC Ion EC Ion EC Ion EC Ion 
Initial ratio 

(%) 
15.0 15.2 62.1 61.6 16.7 17.6 4.2 4.2 2.0 1.5 

Average 
ratio (%) 

14.4 16.2 60.8 60.1 18.6 17.5 4.3 4.6 1.8 1.6 

Maintenance 
(CV, %) 

6.9 4.9 6.6 1.4++ 23.7 3.2++ 8.6 5.2+ 8.3 14.9 

* Statistical differences were calculated by using Student's paired t-test (+P<0.05: 

++P<0.01) 
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Fig. 6.13. Changes in (a) EC and (b) pH monitored by the system and (c) SO4 

concentration under the ion-specific replenishment and the EC-based 

replenishment 
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CONCLUSIONS 

In this study, a precision nutrient solution management system that could both 

variably control the fertigation volume based on the ambient condition and the 

plant-growth information and correct each deficient nutrient ion based on the 

measurement of individual nutrient concentrations was developed and the 

performance of the system was evaluated by the application test in closed lettuce 

soilless cultivation.  

Regarding the fertigation duration, the developed system succeeded in 

controlling the fertigation time according to the varied ambient conditions of the 

VPD and the radiation as well as the growth of the lettuces. In the intensive 

investigation of the DAT 21, the system proved the supplied nutrient solution 

volume could be reduced by 57.4% in comparison with the timer-based fertigation 

strategy, showing an error of 7.3% in estimating the daily water consumption of the 

plants. In addition, the reduced growing period for the CC saturation implied the 

plant-based fertigation could provide more yields than the timer-based fertigation 

by shortening the growing period.  

The individual ion concentrations in nutrient solution were well maintained 

based on the measured ion concentrations using an array of ISEs in conjunction 

with a newly developed decision tree-based nutrient dosing algorithm for growing 

lettuces in closed hydroponic systems. Although the Ca concentration higher than 

the target value showed the limitation of the system in dilution of the solution, the 

system minimized the overdose of the Ca in the nutrient solution and proved it was 

able to accurately replenish the deficient ions through the closed-loop control loop. 

In particular, the trend and the CVs of the ion balances obtained from the nutrient 

solutions showed that the developed system was able to maintain the five ion 

balances more constantly than the conventional EC-based replenishment while 

recycling the nutrient solution over the growing period despite the absence of the 

Mg and P sensors. 
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CHAPTER 7. CONCLUSIONS 
  

CONCLUSIONS OF THE STUDY  

In this study, a precision nutrient solution management system that can variably 

control the fertigation duration according to the crop water needs based on the 

canopy cover and replenish the deficient ions and water for the recycled nutrient 

solution based on a sensor array of NO3, K, and Ca ion-selective electrodes (ISEs) 

was developed. Conclusions based on the results are: 

1) An on-the-go crop monitoring system was constructed and proved that it 

could collect the images of the growing lettuces over the entire growing bed 

and compute the canopy cover (CC) with the accuracy of 98.5 ±1.7% during 

the vegetative growth period. Furthermore, the transpiration rates of the 

growing lettuces were successfully characterized based on the modified 

Penman-Monteith equation. Specifically, the modified Penman-Monteith 

equation was calibrated using the automatically updated CC, radiation, air 

temperature, and relative humidity and showed strong predictability for the 

transpiration rate, which had a highly linear relationship for the directly 

measured transpiration rates, showing a slope of 0.91, coefficient of 

determination (R2) >0.9, and standard error of the regression (SER) of <0.51. 

The results proved the on-the-go crop monitoring system would enable the 

simple and fast assessment of the water needs of the growing lettuces.  

2) Three types of signal processing methods, i.e., two-point normalization 

(TPN), artificial neural network (ANN), and a hybrid method combining the 

TPN and the ANN, were evaluated for the predictability of the NO3, K, and 

Ca ISEs in hydroponic solution. The hybrid method showed the best 

accuracy in measuring ion concentrations in hydroponic solutions, but the 

vulnerability to the sensor malfunction may induce errors in nutrient solution 

monitoring and replenishment that require the long-term use of the ISEs. 
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Therefore, the two-point normalization-based compensation was selected as 

the applicable method for ion-specific monitoring and replenishment. 

3) A decision tree-based approach for calculating the required fertilizer salts to 

replenish the recycled hydroponic solutions while minimizing the 

accumulation or deficiency of the ions was developed and validated. The 

successful formulation of the nutrient solution for the given target ion 

concentrations and the nutrient solution volume in the two-validation tests 

supported the proposed dosing algorithm could efficiently determine the 

fertilizer salts to be replenished. Furthermore, the closed-loop control 

showed it could allow more accurate ion-specific management. 

4) A precision nutrient solution management that variably controls the 

fertigation volume based on the crop water needs and replenishes the 

deficient nutrients based on the individual ion concentrations was applied for 

the NFT-based lettuce cultivation using the on-the-go crop image monitoring 

system and the ion-specific nutrient management system. The application 

test showed the capability of variably controlling the fertigation volumes 

based on the varied canopy cover and the environmental conditions. 

Specifically, the estimated fertigation volume calculated from the estimated 

crop water need was comparable to the actual water consumption, indicating 

the appropriate volume of the nutrient solution would be supplied to the 

growing lettuces. Furthermore, the nutrient ion balance in the nutrient 

solution was maintained by the system over the lettuce growing period, 

showing the less CVs in ion concentrations of NO3, K, Ca, and Mg than the 

EC-based replenishment. The system could variably supply the nutrient 

solution according to the crop water need and prolong the lifespan of the 

recycled nutrient solution, thereby allowing more efficient water and nutrient 

use in closed hydroponics.  
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Although the general objectives of the study were accomplished, the proposed 

plant-based fertigation strategy was established based on the 2D canopy cover-

based crop water need estimation. Therefore, it would be only feasible for shoots or 

leafy vegetables in the vegetative growth stage, which have relatively low heights 

and complexity in water and nutrient uptakes. On the other hand, the ion-specific 

monitoring and replenishment can be used for any mixing tank, so it would be 

feasible for most closed hydroponic methods such as DFT, NFT, drip system, or 

aeroponics. The comparison of the conventional system and the developed system 

is summarized in Table 8.1. 
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Table 7.1. Comparison of the conventional system and the developed system 

Category 
Limitations of the 

conventional systems 
Strength of the developed 

system in this study 
 

Applicable system On-going issues 

Nutrient 
solution 

management 

 Lack of information 
about the individual ion 
concentration and 
balance 

 Impossible to correct 
the deficiency of each 
ion 

 Short nutrient solution 
lifespan due to ion 
imbalance 

 NO3, K, Ca monitoring 
 Correction of each 

deficiency of NO3, K, Ca 
while managing Mg, P, and 
Minor elements 

 Increased nutrient solution 
lifespan  



 NFT (nutrient film 
technique) 

 Aeroponics 
 DFT (deep flow 

technique) 
 Ebb and flow 
 Drip system 

 Need of the mixing tank (Batch-
tank) 

 Complicated system (increased 
number of stock solution tanks and 
sensors) 

 Limited ion sensing (Mg, P) 
 No active control for the over-

concentrated ions 

Fertigation 
scheduling 

 No considerations for 
the varied plant water 
uptake 

 Indirect relationship to 
the plant responses 

 Lack of consideration 
for the spatial variability 
in plant growth 

 Variable fertigation 
according to the canopy 
cover and the 
environmental conditions 

 On-the-go monitoring for 
entire growing crops 



 Transplant production 
system 

 Plant factories or 
greenhouses growing 
the leafy vegetables 
with short heights 

 No consideration for the complex 
interactions of the growing stage, 
root growth, ion compositions in 
nutrient and water uptakes by crops 

 Spatial limitation (Increase of 
processing time and hardware for 
the spacious bed, need of 
installation space) 

 Lack of information about the 
varied crop nutrient need 
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SUGGESTIONS FOR FUTURE STUDY  

Based on the results obtained from this study, future studies are recommended as 

follows: 

1) The water needs of plants are varied according to the growth stages or the 

plant species. However, the CC is insufficient to provide the crop water 

needs varied with the growth stages or the specific plant species. Further 

researches on remote sensing and image processing techniques for other 

effective parameters that can allow more accurate and precise crop water 

need estimation for the varying growth stages and species are necessary for 

more efficient water uses in hydroponics.  

2) The simplifications in the conversion of the estimated transpiration rate to 

the fertigation volume would induce errors in fertigation. In addition, the 

experimental hydroponic system used in this study was conducted without 

water-holding substrates. Therefore, further investigations are needed for the 

application of the system to the other cultivation methods, specifically in the 

substrate culture method, which is mainly used for the fruit vegetables or the 

transplant production systems because the varied water holding capacity of 

the substrates or the water transfer efficiency should be considered in the 

conversion of the crop water needs to the fertigation duration.   

3) To develop robust, and highly selective ion sensors for Mg and P is needed 

to cope with the varying plant uptakes according to the environmental 

conditions, plant species, or plant growth stages, thereby allowing more 

efficient and accurate replenishment for the closed hydroponic solutions. 

4) In this study, only crop water need was considered in fertigation due to the 

difficulty in assessing the nutrient uptakes of plants. Further studies on the 

adaptive management of ion concentrations in nutrient solution according to 

the growth stages are needed to achieve more improved nutrient use 

efficiency and crop yields. A possible approach might be to use the 
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relationship between the transpiration and the nutrient uptake, thereby 

controlling the target ion concentrations in hydroponic nutrient solutions 

(Houshmandfar et al., 2018).  

 

 

 

 

  

  



 

136 

LIST OF REFERENCES 
 

Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Rahman, 
M. K. I. A., . . . Ramli, M. S. A. (2020). A review on monitoring and advanced 
control strategies for precision irrigation. Computers and Electronics in 
Agriculture, 173, 105441. doi:https://doi.org/10.1016/j.compag.2020.105441 

Abtew, W., & Melesse, A. (2013). Vapor pressure calculation methods Evaporation and 
evapotranspiration (pp. 53-62): Springer. 

Ahn, T. I., Shin, J. W., & Son, J. E. (2010). Analysis of changes in ion concentration with 
time and drainage ratio under EC-based nutrient control in closed-loop soilless 
culture for sweet pepper plants (Capsicum annum L. 'Boogie'). Journal of Bio-
Environment Control, 19(4), 298-304.  

Ahn, T. I., & Son, J. E. (2019). Theoretical and Experimental Analysis of Nutrient 
Variations in Electrical Conductivity-Based Closed-Loop Soilless Culture Systems 
by Nutrient Replenishment Method. Agronomy, 9(10), 649.  

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-
Guidelines for computing crop water requirements-FAO Irrigation and drainage 
paper 56. Fao, Rome, 300(9), D05109.  

Baek, S., Jeon, E., Park, K. S., Yeo, K.-H., & Lee, J. (2018). Monitoring of Water 
Transportation in Plant Stem With Microneedle Sap Flow Sensor. Journal of 
Microelectromechanical Systems, 27(3), 440-447.  

Bailey, B. J., Haggett, B. G. D., Hunter, A., Albery, W. J., & Svanberg, L. R. (1988). 
Monitoring Nutrient Film Solutions Using Ion-Selective Electrodes. Journal of 
Agricultural Engineering Research, 40(2), 129-142. doi:Doi 10.1016/0021-
8634(88)90110-2 

Baille, M., Baille, A., & Laury, J. C. (1994). A simplified model for predicting 
evapotranspiration rate of nine ornamental species vs. climate factors and leaf 
area. Scientia Horticulturae, 59(3-4), 217-232.  

Bamsey, M., Graham, T., Thompson, C., Berinstain, A., Scott, A., & Dixon, M. (2012). Ion-
specific nutrient management in closed systems: the necessity for ion-selective 
sensors in terrestrial and space-based agriculture and water management systems. 
Sensors (Basel), 12(10), 13349-13392. doi:10.3390/s121013349 

Bamsey, M., Graham, T., Thompson, C., Berinstain, A., Scott, A., & Dixon, M. (2012). Ion-
specific nutrient management in closed systems: the necessity for ion-selective 
sensors in terrestrial and space-based agriculture and water management systems. 
Sensors, 12(10), 13349-13392.  

Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., . . . 
Halden, R. U. (2015a). Comparison of land, water, and energy requirements of 
lettuce grown using hydroponic vs. conventional agricultural methods. 
International journal of environmental research and public health, 12(6), 6879-
6891.  

Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., . . . 
Halden, R. U. (2015b). Comparison of Land, Water, and Energy Requirements of 
Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. 
International journal of environmental research and public health, 12(6), 6879-
6891. doi:10.3390/ijerph120606879 

Baret, M., Massart, D., Fabry, P., Conesa, F., Eichner, C., & Menardo, C. (2000). 
Application of neural network calibrations to an halide ISE array. Talanta, 51(5), 
863-877. doi:https://doi.org/10.1016/s0039-9140(99)00334-3  

Barradas, J. M., Dida, B., Matula, S., & Dolezal, F. (2018). A model to formulate nutritive 
solutions for fertigation with customized electrical conductivity and nutrient ratios. 



 

137 

Irrigation Science, 36(3), 133-142.  
Bonachela, S., González, A. M., & Fernández, M. D. (2006). Irrigation scheduling of 

plastic greenhouse vegetable crops based on historical weather data. Irrigation 
Science, 25(1), 53.  

Bratov, A., Abramova, N., & Ipatov, A. (2010). Recent trends in potentiometric sensor 
arrays—A review. Analytica Chimica Acta, 678(2), 149-159. 
doi:https://doi.org/10.1016/j.aca.2010.08.035  

Córcoles, J. I., Ortega, J. F., Hernández, D., & Moreno, M. A. (2013). Estimation of leaf 
area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems 
engineering, 115(1), 31-42.  

Caceres, R., Pol, E., Narvaez, L., Puerta, A., & Marfa, O. (2017). Web app for real-time 
monitoring of the performance of constructed wetlands treating horticultural 
leachates. Agricultural water management, 183, 177-185. 
doi:10.1016/j.agwat.2016.09.004 

Chai, H., Chen, X., Cai, Y., & Zhao, J. (2019). Artificial Neural Network Modeling for 
Predicting Wood Moisture Content in High Frequency Vacuum Drying Process. 
Forests, 10(1), 16. doi:https://doi.org/10.3390/f10010016  

Chauhan, Y. S., Wright, G. C., Holzworth, D., Rachaputi, R. C., & Payero, J. O. (2013). 
AQUAMAN: a web-based decision support system for irrigation scheduling in 
peanuts. Irrigation Science, 31(3), 271-283.  

Chen, W.-T., Yeh, Y.-H. F., Liu, T.-Y., & Lin, T.-T. (2016). An Automated and Continuous 
Plant Weight Measurement System for Plant Factory. Frontiers in plant science, 7, 
392.  

Cho, W.-J., Kim, D.-W., Jung, D. H., Cho, S. S., & Kim, H.-J. (2016). An automated water 
nitrate monitoring system based on ion-selective electrodes. Journal of Biosystems 
Engineering, 41(2), 75-84.  

Cho, W.-J., Kim, H.-J., Jung, D.-H., Han, H.-J., & Cho, Y.-Y. (2019). Hybrid Signal-
Processing Method Based on Neural Network for Prediction of NO3, K, Ca, and 
Mg Ions in Hydroponic Solutions Using an Array of Ion-Selective Electrodes. 
Sensors, 19(24), 5508.  

Cho, W.-J., Kim, H.-J., Jung, D.-H., Kim, D.-W., Ahn, T. I., & Son, J.-E. (2018). On-site 
ion monitoring system for precision hydroponic nutrient management. Computers 
and Electronics in Agriculture, 146, 51-58. 
doi:https://doi.org/10.1016/j.compag.2018.01.019 

Cho, W. J., Kim, H. J., Jung, D. H., Kang, C. I., Choi, G. L., & Son, J. E. (2017). An 
Embedded System for Automated Hydroponic Nutrient Solution Management. 
Transactions of the ASABE, 60(4), 1083-1096. 
doi:https://doi.org/10.13031/trans.12163  

Cloutier, G. R., Dixon, M. A., & Arnold, K. E. (1997). Evaluation of sensor technologies 
for automated control of nutrient solutions in life support systems using higher 
plants. Paper presented at the Proceedings of the sixth European symposium on 
space environmental control systems, Noordwijk, the Netherlands. 

De Rijck, G., & Schrevens, E. (1994). Application of mixture-theory for the optimisation of 
the composition of the nutrient solution. Paper presented at the International 
Symposium on Growing Media & Plant Nutrition in Horticulture 401. 

De Rijck, G., & Schrevens, E. (1997). pH Influenced by the elemental composition of 
nutrient solutions. Journal of plant nutrition, 20(7-8), 911-923. 
doi:10.1080/01904169709365305 

Del Amor, F. M., Cuadra-Crespo, P., Walker, D. J., Cámara, J. M., & Madrid, R. (2010). 
Effect of foliar application of antitranspirant on photosynthesis and water relations 
of pepper plants under different levels of CO2 and water stress. Journal of plant 
physiology, 167(15), 1232-1238.  



 

138 

Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated 
system developed to control pH and concentration of nutrient solution evaluated in 
hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53-
61. doi:https://doi.org/10.1016/j.compag.2012.02.006  

Dorneanu, S. A., Coman, V., Popescu, I. C., & Fabry, P. (2005). Computer-controlled 
system for ISEs automatic calibration. Sensors and Actuators B-Chemical, 105(2), 
521-531. doi:10.1016/j.snb.2004.07.014 

Elvanidi, A., Katsoulas, N., Augoustaki, D., Loulou, I., & Kittas, C. (2018). Crop 
reflectance measurements for nitrogen deficiency detection in a soilless tomato 
crop. Biosystems engineering, 176, 1-11.  

Escarabajal-Henarejos, D., Molina-Martínez, J., Fernández-Pacheco, D., Cavas-Martínez, 
F., & García-Mateos, G. (2015). Digital photography applied to irrigation 
management of Little Gem lettuce. Agricultural water management, 151, 148-157.  

Feddes, R. A. (1982). Simulation of field water use and crop yield: Pudoc. 
Fernández-Pacheco, D. G., Escarabajal-Henarejos, D., Ruiz-Canales, A., Conesa, J., & 

Molina-Martínez, J. M. (2014). A digital image-processing-based method for 
determining the crop coefficient of lettuce crops in the southeast of Spain. 
Biosystems engineering, 117, 23-34.  

Fernández-Pacheco, D. G., Escarabajal-Henarejos, D., Ruiz-Canales, A., Conesa, J., & 
Molina-Martínez, J. M. (2014). A digital image-processing-based method for 
determining the crop coefficient of lettuce crops in the southeast of Spain. 
Biosystems engineering, 117, 23-34. 
doi:https://doi.org/10.1016/j.biosystemseng.2013.07.014 

Freeman, J. A., & Skapura, D. M. (1991). Neural networks: algorithms, applications, and 
programming techniques: Addison Wesley Longman Publishing Co., Inc. 

Gallardo, J., Alegret, S., Munoz, R., Leija, L., Hernandez, P. R., & Del Valle, M. (2005). 
Use of an Electronic Tongue Based on All‐Solid‐State Potentiometric Sensors for 
the Quantitation of Alkaline Ions. Electroanalysis: An International Journal 
Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(4), 348-355. 
doi:https://doi.org/10.1002/elan.200303097  

Gallardo, M., Thompson, R. B., & Fernández, M. D. (2013). Water requirements and 
irrigation management in Mediterranean greenhouses: the case of the southeast 
coast of Spain. Good Agricultural Practices for greenhouse vegetable crops, 109.  

García-Mateos, G., Hernández-Hernández, J., Escarabajal-Henarejos, D., Jaén-Terrones, S., 
& Molina-Martínez, J. (2015). Study and comparison of color models for 
automatic image analysis in irrigation management applications. Agricultural 
water management, 151, 158-166.  

García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-Based Smart 
Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT 
Systems for Irrigation in Precision Agriculture. Sensors, 20(4), 1042.  

Gieling, T. H., van Straten, G., Janssen, H. J. J., & Wouters, H. (2005). ISE and chemfet 
sensors in greenhouse cultivation. Sensors and Actuators B-Chemical, 105(1), 74-
80. doi:https://doi.org/10.1016/j.snb.2004.02.045  

Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. 
(2003). Remote estimation of leaf area index and green leaf biomass in maize 
canopies. Geophysical research letters, 30(5).  

González-Esquiva, J., Oates, M. J., García-Mateos, G., Moros-Valle, B., Molina-Martínez, 
J. M., & Ruiz-Canales, A. (2017). Development of a visual monitoring system for 
water balance estimation of horticultural crops using low cost cameras. Computers 
and Electronics in Agriculture, 141, 15-26.  

Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., & del Valle, M. (2007). 
Application of a potentiometric electronic tongue to fertigation strategy in 



 

139 

greenhouse cultivation. Computers and Electronics in Agriculture, 57(1), 12-22. 
doi:https://doi.org/10.1016/j.compag.2007.01.012 

Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., & del Valle, M. (2008). 
Nutrient solution monitoring in greenhouse cultivation employing a potentiometric 
electronic tongue. J Agric Food Chem, 56(6), 1810-1817. 
doi:https://doi.org/10.1021/jf073438s 

Hara, K., Saito, D., & Shouno, H. (2015). Analysis of function of rectified linear unit used 
in deep learning. Paper presented at the 2015 International Joint Conference on 
Neural Networks (IJCNN). 

He, D., Matsuura, Y., Kozai, T., & Ting, K. (2003). A binocular stereovision system for 
transplant growth variables analysis. Applied Engineering in Agriculture, 19(5), 
611.  

Heinen, M., & Harmanny, K. (1991). Evaluation of the performance of ion-selective 
electrodes in an automated NFT system. Paper presented at the I International 
Workshop on Sensors in Horticulture 304. 

Herkelrath, W., Miller, E., & Gardner, W. (1977). Water uptake by plants: II. The root 
contact model. Soil Science Society of America Journal, 41(6), 1039-1043.  

Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants 
without soil. Circular. California agricultural experiment station, 347(2nd edit).  

Houshmandfar, A., Fitzgerald, G. J., O'Leary, G., Tausz‐Posch, S., Fletcher, A., & Tausz, M. 
(2018). The relationship between transpiration and nutrient uptake in wheat 
changes under elevated atmospheric CO2. Physiologia plantarum, 163(4), 516-
529.  

Hu, Y., Wang, L., Xiang, L., Wu, Q., & Jiang, H. (2018). Automatic Non-Destructive 
Growth Measurement of Leafy Vegetables Based on Kinect. Sensors, 18(3), 806.  

Incrocci, L., Massa, D., & Pardossi, A. (2017). New trends in the fertigation management of 
irrigated vegetable crops. Horticulturae, 3(2), 37.  

Jiang, J.-s., Kim, H.-J., & Cho, W.-J. (2018). On-the-go image processing system for spatial 
mapping of lettuce fresh weight in plant factory. IFAC-PapersOnLine, 51(17), 
130-134.  

Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. 
Journal of experimental botany, 55(407), 2427-2436.  

Joo, H.-J., & Jeong, H.-Y. (2017). Growth analysis system for IT-based plant factory. 
Multimedia Tools and Applications, 76(17), 17785-17799.  

Jung, D.-H., Kim, H.-J., Cho, W.-J., Park, S. H., & Yang, S.-H. (2019). Validation testing of 
an ion-specific sensing and control system for precision hydroponic macronutrient 
management. Computers and Electronics in Agriculture, 156, 660-668.  

Jung, D. H., Kim, H. J., Choi, G. L., Ahn, T. I., Son, J. E., & Sudduth, K. A. (2015). 
Automated Lettuce Nutrient Solution Management Using an Array of Ion-
Selective Electrodes. Transactions of the ASABE, 58(5), 1309-1319. 
doi:https://doi.org/10.13031/trans.58.11228  

Kacira, M., & Ling, P. (2001). Design and development of an automated and Non–contact 
sensing system for continuous monitoring of plant health and growth. Transactions 
of the ASAE, 44(4), 989.  

Kamimura, R. (2016). Solving the Vanishing Information Problem with Repeated Potential 
Mutual Information Maximization, Cham. 

Katsoulas, N., Elvanidi, A., Ferentinos, K. P., Kacira, M., Bartzanas, T., & Kittas, C. 
(2016). Crop reflectance monitoring as a tool for water stress detection in 
greenhouses: A review. Biosystems engineering, 151, 374-398.  

Katsoulas, N., Savvas, D., Kitta, E., Bartzanas, T., & Kittas, C. (2015). Extension and 
evaluation of a model for automatic drainage solution management in tomato 
crops grown in semi-closed hydroponic systems. Computers and Electronics in 



 

140 

Agriculture, 113, 61-71. doi:https://doi.org/10.1016/j.compag.2015.01.014 
Kim, D.-W., Jung, D.-H., Cho, W.-J., Sim, K.-C., & Kim, H.-J. (2017). On-site water nitrate 

monitoring system based on automatic sampling and direct measurement with ion-
selective electrodes. Journal of Biosystems Engineering, 42(4), 350-357.  

Kim, D.-W., Yun, H. S., Jeong, S.-J., Kwon, Y.-S., Kim, S.-G., Lee, W. S., & Kim, H.-J. 
(2018). Modeling and testing of growth status for Chinese cabbage and white 
radish with UAV-based RGB imagery. Remote Sensing, 10(4), 563.  

Kim, H.-J., Hummel, J. W., Sudduth, K. A., & Birrell, S. J. (2007). Evaluation of phosphate 
ion-selective membranes and cobalt-based electrodes for soil nutrient sensing. 
Transactions of the ASABE, 50(2), 415-425.  

Kim, H. J., Kim, D. W., Kim, W. K., Cho, W. J., & Kang, C. I. (2017). PVC membrane-
based portable ion analyzer for hydroponic and water monitoring. Computers and 
Electronics in Agriculture, 140, 374-385. doi:10.1016/j.compag.2017.06.015 

Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., & Sudduth, K. A. (2013). 
Automated sensing of hydroponic macronutrients using a computer-controlled 
system with an array of ion-selective electrodes. Computers and Electronics in 
Agriculture, 93, 46-54. doi:https://doi.org/10.1016/j.compag.2013.01.011 

Kirk, K., Andersen, H. J., Thomsen, A. G., Jørgensen, J. R., & Jørgensen, R. N. (2009). 
Estimation of leaf area index in cereal crops using red–green images. Biosystems 
engineering, 104(3), 308-317. 
doi:https://doi.org/10.1016/j.biosystemseng.2009.07.001 

Kläring, H.-P. (2001). Strategies to control water and nutrient supplies to greenhouse crops. 
A review.  

Klespitz, J., & Kovács, L. (2014). Peristaltic pumps—A review on working and control 
possibilities. Paper presented at the 2014 IEEE 12th International Symposium on 
Applied Machine Intelligence and Informatics (SAMI). 

Ko, M. T., Ahn, T. I., Shin, J. H., & Son, J. E. (2014). Effects of renewal pattern of recycled 
nutrient solution on the ion balance in nutrient solutions and root media and the 
growth and ion uptake of paprika (Capsicum annuum L.) in closed soilless 
cultures. Korean Journal of Horticultural Science & Technology, 32(4), 463-472.  

Ko, M. T., Ahn, T. I., & Son, J. E. (2013). Comparisons of Ion Balance, Fruit Yield, Water, 
and Fertilizer Use Efficiencies in Open and Closed Soilless Culture of Paprika 
(Capsicum annuum L.). Korean Journal of Horticultural Science & Technology, 
31(4), 423-428. doi:https://doi.org/10.7235/hort.2013.13028 

Kozai, T., Tsukagoshi, S., & Sakaguchi, S. (2018). Toward Nutrient Solution Composition 
Control in Hydroponic System Smart Plant Factory (pp. 395-403): Springer. 

Lati, R. N., Filin, S., & Eizenberg, H. (2013). Estimating plant growth parameters using an 
energy minimization-based stereovision model. Computers and Electronics in 
Agriculture, 98, 260-271.  

Lee, J. W., Eom, J. N., Kang, W. H., Shin, J. H., & Son, J. E. (2013). Prediction of 
transpiration rate of lettuces (Lactuca sativa L.) in plant factory by Penman-
Monteith model. Protected Horticulture and Plant Factory, 22(2), 182-187.  

Lee, J. Y., Rahman, A., Azam, H., Kim, H. S., & Kwon, M. J. (2017). Characterizing 
nutrient uptake kinetics for efficient crop production during Solanum 
lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system. 
PloS one, 12(5), e0177041.  

Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant 
phenotyping. Sensors, 14(11), 20078-20111.  

Liu, Z., & Xu, Q. (2018). An Automatic Irrigation Control System for Soilless Culture of 
Lettuce. Water, 10(11), 1692.  

Lomako, S., Astapovich, R., Nozdrin-Plotnitskaya, O., Pavlova, T., Lei, S., Nazarov, V., . . . 
Egorov, V. (2006). Sulfate-selective electrode and its application for sulfate 



 

141 

determination in aqueous solutions. Analytica Chimica Acta, 562(2), 216-222.  
Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, 

J. (2012). Recent advances and applications of hyperspectral imaging for fruit and 
vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121-1142.  

Mafuta, M., Zennaro, M., Bagula, A., Ault, G., Gombachika, H., & Chadza, T. (2013). 
Successful deployment of a wireless sensor network for precision agriculture in 
Malawi. International Journal of Distributed Sensor Networks, 9(5), 150703.  

Maucieri, C., Nicoletto, C., Os, E. v., Anseeuw, D., Havermaet, R. V., & Junge, R. (2019). 
Hydroponic Technologies. In S. Goddek, A. Joyce, B. Kotzen, & G. M. Burnell 
(Eds.), Aquaponics Food Production Systems: Combined Aquaculture and 
Hydroponic Production Technologies for the Future (pp. 77-110). Cham: Springer 
International Publishing. 

Meric, M., Tuzel, I., Tuzel, Y., & Oztekin, G. (2011). Effects of nutrition systems and 
irrigation programs on tomato in soilless culture. Agricultural water management, 
99(1), 19-25. doi:https://doi.org/10.1016/j.agwat.2011.08.004  

Mimendia, A., Gutiérrez, J. M., Leija, L., Hernández, P. R., Favari, L., Muñoz, R., & del 
Valle, M. (2010). A review of the use of the potentiometric electronic tongue in the 
monitoring of environmental systems. Environmental Modelling & Software, 
25(9), 1023-1030. doi:https://doi.org/10.1016/j.envsoft.2009.12.003 

Montesano, F., Van Iersel, M., & Parente, A. (2016). Timer versus moisture sensor-based 
irrigation control of soilless lettuce: Effects on yield, quality and water use 
efficiency. Horticultural Science, 43(2), 67-75.  

Montesano, F. F., Van Iersel, M. W., Boari, F., Cantore, V., D’Amato, G., & Parente, A. 
(2018). Sensor-based irrigation management of soilless basil using a new smart 
irrigation system: Effects of set-point on plant physiological responses and crop 
performance. Agricultural water management, 203, 20-29.  

Morimoto, T., Hatou, K., & Hashimoto, Y. (1996). Intelligent control for a plant production 
system. Control Engineering Practice, 4(6), 773-784.  

Mueller, A. V., & Hemond, H. F. (2013). Extended artificial neural networks: Incorporation 
of a priori chemical knowledge enables use of ion selective electrodes for in-situ 
measurement of ions at environmentally relevant levels. Talanta, 117, 112-118. 
doi:https://doi.org/10.1016/j.talanta.2013.08.045 

Mueller, A. V., & Hemond, H. F. (2016). Statistical generation of training sets for 
measuring NO 3−, NH 4+ and major ions in natural waters using an ion selective 
electrode array. Environmental Science: Processes & Impacts, 18(5), 590-599. 
doi:https://doi.org/10.1039/c6em00043f  

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann 
machines. Paper presented at the Proceedings of the 27th international conference 
on machine learning (ICML-10). 

Namazkhan, M., Albers, C., & Steg, L. (2020). A decision tree method for explaining 
household gas consumption: The role of building characteristics, socio-
demographic variables, psychological factors and household behaviour. Renewable 
and Sustainable Energy Reviews, 119, 109542.  

Nemali, K. S., Montesano, F., Dove, S. K., & van Iersel, M. W. (2007). Calibration and 
performance of moisture sensors in soilless substrates: ECH2O and Theta probes. 
Scientia Horticulturae, 112(2), 227-234.  

Nguyen, H. D. D., Pan, V., Pham, C., Valdez, R., Doan, K., & Nansen, C. (2020). Night-
based hyperspectral imaging to study association of horticultural crop leaf 
reflectance and nutrient status. Computers and Electronics in Agriculture, 173, 
105458.  

Ni, W., Nørgaard, L., & Mørup, M. (2014). Non-linear calibration models for near infrared 
spectroscopy. Analytica Chimica Acta, 813, 1-14. 



 

142 

doi:https://doi.org/10.1016/j.aca.2013.12.002 
Nikolaou, G., Neocleous, D., Katsoulas, N., & Kittas, C. (2019). Irrigation of Greenhouse 

Crops. Horticulturae, 5(1), 7.  
Nobel, P., Forseth, I., & Long, S. (1993). Canopy structure and light interception 

Photosynthesis and production in a changing environment (pp. 79-90): Springer. 
Noh, E.-H., Jun, H.-J., & Son, J.-E. (2011). Growth Characteristics and Nutrient Uptake of 

Kalanchoe Plants (Kalanchoe blossfeldiana'Marlene') at Different Light Intensities 
and Nutrient Strengths in Ebb and Flow Subirrigation Systems. Korean Journal of 
Horticultural Science and Technology, 29(3), 187-194.  

Osroosh, Y., Peters, R. T., Campbell, C. S., & Zhang, Q. (2016). Comparison of irrigation 
automation algorithms for drip-irrigated apple trees. Computers and Electronics in 
Agriculture, 128, 87-99. doi:https://doi.org/10.1016/j.compag.2016.08.013 

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE 
transactions on systems, man, and cybernetics, 9(1), 62-66.  

Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., . . . Balendonck, 
J. (2009). Root zone sensors for irrigation management in intensive agriculture. 
Sensors, 9(4), 2809-2835.  

Prenger, J., Ling, P., Hansen, R., & Keener, H. (2005). Plant response-based irrigation 
control system in a greenhouse: system evaluation. Transactions of the ASAE, 
48(3), 1175-1183.  

Putra, P. A., & Yuliando, H. (2015). Soilless Culture System to Support Water Use 
Efficiency and Product Quality: A Review. Agriculture and Agricultural Science 
Procedia, 3, 283-288. doi:https://doi.org/10.1016/j.aaspro.2015.01.054 

Putra, P. A., & Yuliando, H. (2015). Soilless culture system to support water use efficiency 
and product quality: a review. Agriculture and Agricultural Science Procedia, 3(1), 
283-288.  

Raviv, M., Lieth, J. H., & Bar-Tal, A. (2019). Soilless culture: Theory and practice: Theory 
and practice: Elsevier. 

Resh, H. M. (2016). Hydroponic food production: a definitive guidebook for the advanced 
home gardener and the commercial hydroponic grower: CRC Press. 

Riehle, D., Reiser, D., & Griepentrog, H. W. (2020). Robust index-based semantic 
plant/background segmentation for RGB-images. Computers and Electronics in 
Agriculture, 169, 105201.  

Rius-Ruiz, F. X., Andrade, F. J., Riu, J., & Rius, F. X. (2014). Computer-operated analytical 
platform for the determination of nutrients in hydroponic systems. Food chemistry, 
147, 92-97. doi:https://doi.org/10.1016/j.foodchem.2013.09.114  

Rius-Ruiz, F. X., Andrade, F. J., Riu, J., & Rius, F. X. (2014). Computer-operated analytical 
platform for the determination of nutrients in hydroponic systems. Food Chem, 
147, 92-97. doi:10.1016/j.foodchem.2013.09.114 

Rodríguez, D., Reca, J., Martínez, J., & Urrestarazu, M. (2015). New adaptive hybrid-
automatic irrigation control system for soilless culture. Journal of Irrigation and 
Drainage Engineering, 141(7), 04014083.  

Romero, R., Muriel, J., García, I., & de la Peña, D. M. (2012). Research on automatic 
irrigation control: State of the art and recent results. Agricultural water 
management, 114, 59-66.  

Ryder, E. J. (1999). Lettuce, endive and chicory: Cab International. 
Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for onsite and online analysis 

of pig manure using visible and near infrared reflectance spectroscopy. Biosystems 
engineering, 91(4), 393-402. 
doi:https://doi.org/10.1016/j.biosystemseng.2005.05.001  

Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., . . . Astolfi, S. 
(2019). Hydroponic solutions for soilless production systems: Issues and 



 

143 

opportunities in a smart agriculture perspective. Frontiers in plant science, 10.  
Saurina, J., López-Aviles, E., Le Moal, A., & Hernández-Cassou, S. (2002). Determination 

of calcium and total hardness in natural waters using a potentiometric sensor array. 
Analytica Chimica Acta, 464(1), 89-98. doi:https://doi.org/10.1016/s0003-
2670(02)00474-9  

Savvas, D. (2002). SW—Soil and Water: Automated Replenishment of Recycled 
Greenhouse Effluents with Individual Nutrients in Hydroponics by Means of Two 
Alternative Models. Biosystems engineering, 83(2), 225-236.  

Savvas, D., & Gizas, G. (2002). Response of hydroponically grown gerbera to nutrient 
solution recycling and different nutrient cation ratios. Scientia Horticulturae, 96(1-
4), 267-280. doi:https://doi.org/10.1016/s0304-4238(02)00054-7  

Savvas, D., & Manos, G. (1999). Automated composition control of nutrient solution in 
closed soilless culture systems. Journal of Agricultural Engineering Research, 
73(1), 29-33.  

Savvas, D., Passam, H., Olympios, C., Nasi, E., Moustaka, E., Mantzos, N., & Barouchas, 
P. (2006). Effects of ammonium nitrogen on lettuce grown on pumice in a closed 
hydroponic system. HortScience, 41(7), 1667-1673.  

Schippers, P. (1979). Composition changes in the nutrient solution during the growth of 
plants in recirculating nutrient culture. Paper presented at the Symposium on 
Research on Recirculating Water Culture 98. 

Schwarz, D., & Kuchenbuch, R. (1993). Water uptake by tomato plants grown in closed 
hydroponic systems dependent on the EC-level. Paper presented at the 
International Symposium on Water Quality & Quantity-Greenhouse 458. 

Seelig, H.-D., Stoner, R. J., & Linden, J. C. (2012). Irrigation control of cowpea plants 
using the measurement of leaf thickness under greenhouse conditions. Irrigation 
Science, 30(4), 247-257. doi:10.1007/s00271-011-0268-2 

Sesma, J., Molina-Martínez, J., Cavas-Martínez, F., & Fernández-Pacheco, D. (2015). A 
mobile application to calculate optimum drip irrigation laterals. Agricultural water 
management, 151, 13-18.  

Sigrimis, N., Arvanitis, K., Pasgianos, G., & Ferentinos, K. (2001). Hydroponics water 
management using adaptive scheduling with an on-line optimiser. Computers and 
Electronics in Agriculture, 31(1), 31-46.  

Smith, R., & Baillie, J. (2009). Defining precision irrigation: A new approach to irrigation 
management. Paper presented at the Irrigation Australia 2009: Irrigation Australia 
Irrigation and Drainage Conference: Proceedings. 

Son, J. E., Kim, H. J., & Ahn, T. I. (2020). Chapter 20 - Hydroponic systems. In T. Kozai, 
G. Niu, & M. Takagaki (Eds.), Plant Factory (Second Edition) (pp. 273-283): 
Academic Press. 

Sonneveld, C., & Van den Bos, A. (1995). Effects of nutrient levels on growth and quality 
of radish (Raphanus sativus L.) grown on different substrates. Journal of plant 
nutrition, 18(3), 501-513.  

Sonneveld, C., Voogt, W., & Spaans, L. (1997). A universal algorithm for calculation of 
nutrient solutions. Paper presented at the International Symposium on Growing 
Media and Hydroponics 481. 

Steiner, A. A. (1961). A universal method for preparing nutrient solutions of a certain 
desired composition. Plant and Soil, 15(2), 134-154. doi:10.1007/bf01347224 

Steiner, A. A. (1966). The influence of the chemical composition of a nutrient solution on 
the production of tomato plants. Plant and Soil, 24(3), 454-466. 
doi:10.1007/bf01374052 

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating 
vegetation height and canopy cover from remotely sensed data with machine 
learning. Ecological Informatics, 5(4), 256-266.  



 

144 

Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided 
greenhouse crop diagnostics system. Machine Vision and Applications, 26(4), 495-
506. doi:10.1007/s00138-015-0670-5 

Sun, Y., Tong, C., He, S., Wang, K., & Chen, L. (2018). Identification of nitrogen, 
phosphorus, and potassium deficiencies based on temporal dynamics of leaf 
morphology and color. Sustainability, 10(3), 762.  

Te, L., Cheng, L., Chih, L., & CHENG, C. (2011). A three-dimensional imaging approach 
for plant feature measurement using stereo vision. Tarım Makinaları Bilimi 
Dergisi, 7(2).  

Terabayashi, S., Muramatsu, I., Tokutani, S., Ando, M., Kitagawa, E., Shigemori, T., . . . 
Fujime, Y. (2004). Relationship between the weekly nutrient uptake rate during 
fruiting stages and fruit weight of tomato (Lycopersicon esculentum Mill.) grown 
hydroponically. Journal of the Japanese Society for Horticultural Science, 73(4), 
324-329.  

Van Os, E. (1994). Engineering and environmental aspects of soilless growing systems. 
Hydroponics and Transplant Production 396, 25-32. 
doi:https://doi.org/10.17660/actahortic.1995.396.2  

Vardar, G., Altıkatoğlu, M., Ortaç, D., & Cemek, M. (2015). Measuring calcium, potassium, 
and nitrate in plant nutrient solutions using ion‐selective electrodes in hydroponic 
greenhouse of some vegetables. Biotechnol Appl Biochem, 62(5), 663-668. 
doi:https://doi.org/10.1002/bab.1317 

Voogt, W., & Sonneveld, C. (1997). Nutrient Management in Closed Growing Systems for 
Greenhouse Production. In E. Goto, K. Kurata, M. Hayashi, & S. Sase (Eds.), 
Plant Production in Closed Ecosystems: The International Symposium on Plant 
Production in Closed Ecosystems held in Narita, Japan, August 26–29, 1996 (pp. 
83-102). Dordrecht: Springer Netherlands. 

Voogt, W., & Sonneveld, C. (1997). Nutrient management in closed growing systems for 
greenhouse production Plant production in closed ecosystems (pp. 83-102): 
Springer. 

Wang, L., Cheng, Y., Lamb, D., Lesniewski, P. J., Chen, Z., Megharaj, M., & Naidu, R. 
(2017). Novel recalibration methodologies for ion-selective electrode arrays in the 
multi-ion interference scenario. Journal of Chemometrics, 31(2), e2870. 
doi:https://doi.org/10.1002/cem.2870 

Wiser, L., & Blom, T. J. (2016). The Effect of Nitrogen and Phosphorus Ratios and 
Electrical Conductivity on Plant Growth. American Journal of Plant Sciences, 
7(12), 1590.  

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. (1995). Color indices 
for weed identification under various soil, residue, and lighting conditions. 
Transactions of the ASAE, 38(1), 259-269.  

Xu, K., Kitazumi, Y., Kano, K., & Shirai, O. (2020). Automatic Management of Nutrient 
Solution for Hydroponics-Construction of multi-ion stat. Anal Sci, 20A002. 
doi:10.2116/analsci.20A002 

Yeh, Y.-H. F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., & Lin, T.-T. (2014). An 
automated growth measurement system for leafy vegetables. Biosystems 
engineering, 117, 43-50.  

Yu, H., & Wilamowski, B. M. (2011). Levenberg-marquardt training. Industrial electronics 
handbook, 5(12), 1.  

Yu, J., Mo, W., Huang, Y.-K., Ip, E., & Kilper, D. C. (2019). Model transfer of QoT 
prediction in optical networks based on artificial neural networks. Journal of 
Optical Communications and Networking, 11(10), C48-C57. 
doi:https://doi.org/10.1364/JOCN.11.000C48 

Zekki, H., Gauthier, L., & Gosselin, A. (1996). Growth, productivity, and mineral 



 

145 

composition of hydroponically cultivated greenhouse tomatoes, with or without 
nutrient solution recycling. Journal of the American Society for Horticultural 
Science, 121(6), 1082-1088. doi:https://doi.org/10.21273/jashs.121.6.1082  

Zeng, C.-Z., Bie, Z.-L., & Yuan, B.-Z. (2009). Determination of optimum irrigation water 
amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse. 
Agricultural water management, 96(4), 595-602.  

Zheng, Y. (2017). Current nutrient management practices and technologies used in North 
American greenhouse and nursery industries. Paper presented at the International 
Symposium on New Technologies for Environment Control, Energy-Saving and 
Crop Production in Greenhouse and Plant 1227. 

 

  



 

146 

APPENDIX 
 

A1. PYTHON CODE FOR CONTROLLING THE IMAGE MONITORING AND CC 

CALCULATION  

import serial 
import time 
import cv2 
import numpy as np 
import os 
import openpyxl 
import datetime 
import socket 
 
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
sock.connect(('localhost', 6340)) 
 
baud = 115200 
port = 'com11' 
ser = serial.Serial(port,baud,timeout=0) 
 
while True: 
    now = time.localtime() 
    h = now.tm_hour 
    m = now.tm_min 
 
    if h == 13 and m == 50: #CC update time 
        wb = openpyxl.Workbook() 
        sheet = wb.get_active_sheet() 
        sheet.title='Surface of Crop' 
 
        sheet.cell(row=1, column=1).value='crop pixel' 
        sheet.cell(row=1, column=3).value='crop surface' 
        sheet.cell(row=1, column=5).value='Leaf Area Index' 
 
        crop = 0 
        surface = 0 
        CC = 0 
        MODE = 0 
 
 
        #Initial position 
        position_x = 0 
        position_y = 0 
        #num_x = int(100 / (600/15)) + 1 
        #num_y = int(200 / (480/15)) + 1 
        num_x = int(100/35.2) + 1 
        num_y = int(200/26.4) + 1 
        num_total = num_x * num_y 
        temp_x_go = 0 
 
        position_x = 6210 
        position_y = -10810 
        Temp2Con_x = 'go_position1 = ' + str(position_x) + '\r\n' # x-axis 
        Temp2Con_y = 'go_position3 = ' + str(position_y) + '\r\n' # y-axis 
        ser.write(Temp2Con_x.encode()) 
        time.sleep(1.5) 
        ser.write(Temp2Con_y.encode()) 
        time.sleep(1.5) 
 
        cap_initial = cv2.VideoCapture(0) 
        _, Check = cap_initial.read(0) 
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        Check_image = Check[0:480, 0:640] 
         
        count_ = 0 
        for y in range(0,Threshold_array_check[1] - 1): 
            for x in range(0,Threshold_array_check[0] - 1): 
                pixel_ = thres_check[x, y]  
                if pixel_ == 255: 
                    count_ += 1 
 
        position_x = 0 
        position_y = 0 
        Temp2Con_x = 'go_position1 = ' + str(position_x) + '\r\n'  
        Temp2Con_y = 'go_position3 = ' + str(position_y) + '\r\n'  
        ser.write(Temp2Con_x.encode()) 
        time.sleep(1.5) 
        ser.write(Temp2Con_y.encode()) 
        time.sleep(1.5) 
 
        position_x = 6610 
        position_y = -39210 
        num = 0 
          
        cap = cv2.VideoCapture(0) 
        for i in range(0,num_total + 1): 
 
            print('i =' ,i)  
             
            if i == 0: 
                x = 0 
                y = 0 
            elif (i % num_y) == 0:   
                x = 1 
                y = 0 
            elif (i % num_y) != 0:  
                x = 0 
                y = 1 * (-1)**(int(i/num_y)) 
            elif i == num_total: 
                x = 0 
                y = 0 
 
            position_x = position_x + 17826 * x 
            position_y = position_y - 26739 * y 
            Temp2Con_x = 'go_position1 = ' + str(position_x) + '\r\n' #  
            Temp2Con_y = 'go_position3 = ' + str(position_y) + '\r\n' #  
            ser.write(Temp2Con_x.encode()) 
            time.sleep(1.5) 
            ser.write(Temp2Con_y.encode()) 
            time.sleep(1.5) 
 ''' 
            _, org = cap.read(0) 
            img = org[0:480, 0:640] 
            rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
            '''ExG conversion''' 
            R, G, B = cv2.split(rgb) 
            R=R/255 
            G=G/255 
            B=B/255 
            r = R/(R+G+B) 
            g = G/(R+G+B) 
            b = B/(R+G+B) 
 
            ExG = 2*g - r - b 
          ExG=255*ExG 
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   otsu_thr, otsu_mask = cv2.threshold(ExG, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) 
 
    thres = cv2.inRange(ExG,,otsu_thr, 255) 
            crop_only = cv2.bitwise_and(img,img, mask= thres) 
            '''realtime image''' 
                if i != 0: 
                cv2.imshow("Org",img) 
                cv2.imshow("crop",crop_only) 
                cv2.imshow("threshold",thres) 
                 
                Threshold_array = thres.shape 
                count = 0 
                for y in range(0,Threshold_array[1]): 
                  for x in range(0,Threshold_array[0]): 
                    pixel = thres[x, y]  
                    if pixel == 255: 
                        count += 1 
                crop = crop + count 
                surface = (crop * (16/6405)) 
                CC = surface/(640*480*24) 
                '''cmd''' 
                print(count,"pixels are crop.") 
                print("accumulate crop pixel = ", crop) 
                print("accumulate crop surface = ", surface, "cm^2") 
                print("accumulate CC = ", CC) 
                 
            key = cv2.waitKey(1500) 
            num += 1 
            if key == 27: 
                break 
 
        cap_initial.release() 
        cap.release() 
        cv2.destroyAllWindows() 
 
        '''(0,0) return_end''' 
        Temp2Con_x = 'go_position1 = ' + str(0) + '\r\n' #  
        Temp2Con_y = 'go_position3 = ' + str(0) + '\r\n' #  
        ser.write(Temp2Con_x.encode()) 
        time.sleep(1.5) 
        ser.write(Temp2Con_y.encode()) 
        time.sleep(1.5) 
 
        print("\n") 
        CC = round(CC,4) 
        print("Canopy cover =", CC) 
 
        cc = str(CC) 
        sock.send(cc.encode('utf-8')) #   
 
        time.sleep(5) 
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A2. ION CONCENTRATIONS OF THE SOLUTIONS USED IN CHAPTER 4 (UNIT : 

MG ∙L−1) 

Solution NO3 K Ca Mg 
1 101.9 39.4 143.02 101.13 
2 539.5 167.71 156.36 104.4 
3 102.8 37.6 150.78 13.63 
4 554.9 294 41.09 12.59 
5 101.1 296.23 40.32 52.54 
6 1001.4 165.31 40.32 103.01 
7 1002.6 302.57 259.21 12.91 
8 547.1 162.14 41.73 50.28 
9 102.1 161.51 144.73 13.35 
10 993.5 302 163.41 55.43 
11 547.6 165.66 275.94 12.62 
12 1001.8 161.76 162 12.59 
13 918.7 39.69 284.85 58.22 
14 538 308.16 165.55 101.51 
15 104.4 168.4 277.67 61.68 
16 531.2 37.01 163.91 58.99 
17 1002 303.9 160.43 58.54 
18 1000.3 36.02 41.9 100.14 
19 101.4 298.82 39.45 60.72 
20 101.4 304.69 265.15 12.68 
21 555.3 39.24 286.71 58.73 
22 1015.5 168.13 281.78 101.73 
23 512.7 312.96 280.85 103.64 
24 102 40.01 283.47 106.26 
25 99.1 303.27 40.61 96.41 
26 553.4 32.72 40.26 13.8 
27 1052.7 31.8 41.03 12.84 

Two-point normalization 
(Low) 

109.1 32.7 37.8 13.5 

Two-point normalization 
(High) 

1007.8 303.9 256.7 113.1 

Basil 1 425.9 143.2 75.6 9.8 
Kale 385.7 196.8 61.8 30.3 

Basil 2 432.2 260.9 69.8 38.3 
Beet 405.2 13.4 190.7 25.8 

Atractylodes japonica  513.9 310.5 0.9 31.1 
Glehnia littoralis 1 121.9 77.5 0.3 20.3 

Paprika 1025.5 427.2 210.4 56.6 
Glehnia littoralis 2 450.8 111.5 84.3 25.2 
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A3. BLOCK DIAGRAMS OF THE LABVIEW  PROGRAM USED IN CHAPTER 4 

a) LabVIEW block diagram for the initialization of the system 

 

 

b) LabVIEW block diagram for waiting the selection of the test type 
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c) LabVIEW block diagram for the rinse sequence 

 

 

d) LabVIEW block diagram for the ISE sensitivity test sequence 
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e) LabVIEW block diagram for the sample measurement test sequence 

 

 

f) LabVIEW block diagram for the ISE selectivity test sequence 
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g) LabVIEW block diagram for the solution drainage sequence 

 

 

h) LabVIEW block diagram for the system exit 
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A4. ION CONCENTRATIONS OF THE SOLUTIONS USED IN CHAPTERS 5 AND 6 

(UNIT : MG∙L−1) 

Solution Concerned ion Concentration (mg∙L-1) 

Two-point normalization solution 
(high) 

Ca 248.03 

K 308.91 

NO3 981.7 

Two-point normalization solution 
(low) 

Ca 28.37 

K 35.39 

NO3 100.9 

Stock solution 1 
(Ca(NO3)2∙4H2O) 

Ca 3489.11 

NO3 11243.6 

Stock solution 2 (KH2PO4) 
K 6450.5 

P 4149.582 

Stock solution 3 (NH4H2PO4) 
NH4 3340.28 

P 4732.319 

Stock solution 4 (KNO3) 
K 7627.55 

NO3 13564.3 

Stock solution 5 (NH4NO3) 
NH4 4430.25 

NO3 16608 

Stock solution 6 (MgSO4∙7H2O) Mg 2071.4 

Stock solution 7 (K2SO4) K 8857.83 

pH control solution (H2SO4) H pH 2.0 

Tap water 

Ca 16.13-23.4 

K 2.66-3.51 

NO3 5.9-9.2 

P 0.113-0.136 

Mg 3.24-4.77 

NH4 Not detected 

SO4 3.24-15.6 
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A5. BLOCK DIAGRAMS OF THE LABVIEW PROGRAM USED IN THE CHAPTERS 5 

AND 6 

a) LabVIEW block diagram for the environmental monitoring 

 

 

b) LabVIEW block diagram for the TCP/IP communication 

 

 

c) LabVIEW block diagram for the ion-specific management and fertigation 
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개별 이온 및 작물 생육 센싱 기반의 

정밀 수경재배 양액 관리 시스템 

 

조 우 재 

 

ABSTRACT IN KOREAN 
 

현재의 순환식 수경재배 시스템에서 양액의 분석과 보충은 전기전도도 

(EC, electrical conductivity) 및 pH를 기반으로 수행되고 있으며, 양액의 공

급은 작물의 생육 상태에 대한 고려 없이 항상 일정한 시간 동안 펌프가 

동작하여 공급되는 형태이다. 그러나 EC 기반의 양액 관리는 개별 이온 

농도의 동적인 변화를 감지할 수 없어 반복되는 보충 중 불균형이 발생

하게 되어 양액의 폐기를 야기하며, 고정된 시간 동안의 양액 공급은 작

물에 대해 과잉 또는 불충분한 물 공급으로 이어져 물 사용 효율의 저하

를 일으킨다. 이러한 문제들에 대해, 개별 이온 농도에 대해 부족한 성분

만을 선택적으로 보충하고, 작물의 생육 정도에 기반하여 필요한 수준에 

맞게 양액을 공급하는 정밀 농업에 기반한 양액 관리를 수행하면 물과 

비료 사용 효율의 향상과 양액의 재사용 기간 증진을 기대할 수 있다. 

본 연구의 목적은 자동으로, 그리고 가변적으로 작물 생육 정보에 기반

하여 양액 공급량을 제어하고, 작물 생장에 적합한 조성에 맞게 현재 양

액의 이온 농도 센싱에 기반하여 적절한 수준만큼의 물과 개별 양분 비

료를 보충할 수 있는 정밀 수경재배 양액 관리 시스템을 개발하는 것이
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다. 해당 목표를 달성하기 위해, 변이하는 물과 양분 요구량을 측정할 수 

있는 모니터링 기술들을 분석하고 각 모니터링 기술들에 대한 검증을 수

행하였다. 먼저, 작물의 물 요구량을 실시간으로 관측할 수 있는 영상 기

반 측정 기술을 조사하였다. 영상 기반 분석 활용을 위해 박막경 기반의 

순환식 수경재배 환경에서 자라는 상추의 이미지들을 전체 베드에 대해 

수집할 수 있는 영상 모니터링 시스템을 구성하였고, 수집한 영상 중 상

추 부분만을 excess green (ExG)과 Otsu 방법을 통해 분리하여 투영작물면

적 (CC, canopy cover)을 획득하였다. 영상 처리 기술의 적용성 평가를 위

해 직접 분석한 투영작물면적 값과 이를 비교하였다. 비교 검증 결과에

서 투영작물면적 측정을 위한 영상 수집 및 분석이 수확 전까지의 상추

에 대해 적용 가능함을 확인하였다. 이후 수집한 투영작물면적과 기온, 

상대습도, 일사량을 기반으로 생육 중인 상추들이 요구하는 물의 양을 

예측하기 위해 Penman-Monteith 방정식 기반의 증산량 예측 모델을 구성

하였으며 실제 증산량과 비교하였을 때 높은 일치도를 확인하였다. 개별 

이온 농도 측정과 관련하여서는, 이온선택성전극 (ISE, ion-selective 

electrode)를 이용한 수경재배 양액 내 이온의 연속적이고 자율적인 모니

터링 수행을 위해 2점 정규화, 인공신경망, 그리고 이 둘을 복합적으로 

구성한 하이브리드 신호 처리 기법의 성능을 비교하여 분석하였다. 분석 

결과, 하이브리드 신호 처리 방식이 가장 높은 정확성을 보였으나, 센서 

고장에 취약한 신경망 구조로 인해 장기간 모니터링 안정성에 있어서는 

가장 높은 정밀도를 가진 2점 정규화 방식을 센서 어레이에 적용하는 것

이 적합할 것으로 판단하였다. 또한, 주어진 개별 이온 농도 목표값에 맞

는 비료 염 및 물의 최적 주입량을 결정하기 위해 의사결정트리 구조의 

비료 투입 알고리즘을 제시하였다. 제시한 비료 투입 알고리즘의 효과에 

대해서는 순차적인 목표에 대한 보충 및 특정 성분에 대해 집중적인 변
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화를 부여한 보충 수행 실험을 통해 검증하였으며, 그 결과 제시한 알고

리즘은 주어진 목표값들에 따라 성공적으로 양액을 조성하였음을 확인하

였다. 마지막으로, 제시되었던 센싱 및 제어 기술들을 통합하여 NFT 기

반의 순환식 수경재배 배드에 상추 재배를 수행하여 실증하였다. 실증 

실험에서, 종래의 고정 시간 양액 공급 대비 57.4%의 양액 공급량 감소

와 상추 생육의 촉진을 확인하였다. 동시에, 개발 시스템은 NO3, K, Ca, 

Mg, 그리고 P에 대해 각각 4.9%, 1.4%, 3.2%, 5.2%, 그리고 14.9% 수준의 

변동계수 수준을 보여 EC기반 보충 방식에서 나타난 변동계수 6.9%, 

4.9%, 23.7%, 8.6%, 그리고 8.3%보다 대체적으로 우수한 이온 균형 유지 

성능을 보였다. 이러한 결과들을 통해 개발 정밀 관비 시스템이 기존보

다 효율적인 양액의 공급과 관리를 통해 양액 이용 효율성과 생산성의 

증진에 기여할 수 있을 것으로 판단되었다. 

   

주요어: 자동화 시스템, 폐루프 제어, 순환식 수경재배, 작물영상 모니터

링, 정밀 양액 공급, 이온 기반 양액 보충 
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