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Precision Hydroponic Nutrient
Solution Management System based on
lon-Specific and Crop Growth Sensing

Woo-Jae Cho

ABSTRACT

In current closed hydroponics, the nutrient solutrmmitoring and
replenishment are conducted based on the electricalictivity (EC) and pH, and
the fertigation is carried out with the constant tawithout considering the plant
status. However, the EC-based management is unable tb tihetelynamic
changes in the individual nutrient ion concentrationdiedadn imbalance occurs
during the iterative replenishment, thereby leading tdrétient discard of the
nutrient solution. The constant time-based fertigaii@vitably induces over- or
under-supply of the nutrient solution for the growingpdaThe approaches are
two of the main causes of decreasing water and nutrgenefficiencies in closed
hydroponics. Regarding the issues, the precision nus@uation management that
variably controls the fertigation volume and corréhtsdeficient nutrient ions
individually would allow both improved efficiencies ofrfidizer and water use and
increased lifespan of the nutrient solution. The objestof this study were to
establish the precision nutrient solution managemsgstem that can automatically
and variably control the fertigation volume based on taetggrowth information
and supply the individual nutrient fertilizers in appriate amounts to reach the
optimal compositions as nutrient solutions for growiren. To achieve the goal,
the sensing technologies for the varying requirementsatérvand nutrients were

investigated and validated. Firstly, an on-the-go mainigosystem was constructed



to monitor the lettuces grown under the closed hydrasdmased on the nutrient
film technique for the entire bed. The region of thtules was segmented by the
excess green (ExG) and Otsu method to obtain the canepy (€C). The
feasibility of the image processing for assessing émepy (CC) was validated by
comparing the computed CC values with the manually arlggevalues. From
the validation, it was confirmed the image monitoring amatg@ssing for the CC
measurements were feasible for the lettuces beforedtaihen, a transpiration
rate model using the modified Penman-Monteith equates fitted based on the
obtained CC, radiation, air temperature, and relativeidiityrto estimate the water
need of the growing lettuces. Regarding the individual amtentration
measurements, two-point normalization, artificial nenegwork, and a hybrid
signal processing consisting of the two-point normdbraand artificial neural
network were compared to select an effective methothéion-selective
electrodes (ISEs) application in continuous and auteasmmonitoring of ions in
hydroponic solutions. The hybrid signal processing skicilve most accuracy in
sample measurements, but the vulnerability to the serafumation made the
two-point normalization method with the most precisiauld be appropriate for
the long-term monitoring of the nutrient solution. Inertb determine the optimal
injection amounts of the fertilizer salts and waterthar given target individual ion
concentrations, a decision tree-based dosing algorithndesagned. The
feasibility of the dosing algorithm was validated wile stepwise and varying
target focusing replenishments. From the results, thepenific replenishments
formulated the compositions of the nutrient solution essfully according to the
given target values. Finally, the proposed sensing andoteethniques were
integrated to implement the precision nutrient solutimnagement, and the
performance was verified by a closed lettuce cultivatést. From the application
test, the fertigation volume was reduced by 57.4% andrtwetly of the lettuces

was promoted in comparison with the constant timsetdertigation strategy.



Furthermore, the system successfully maintained theentivalance in the
recycled solution during the cultivation with the coeéfits of variance of 4.9%,
1.4%, 3.2%, 5.2%, and 14.9%, which were generally less tkeaaGHbased
replenishment with the CVs of 6.9%, 4.9%, 23.7%, 8.6%, and 8.8%ddNQ,

K, Ca, Mg, and P concentrations, respectively. These resytied the developed
precision nutrient solution management system couddigee more efficient supply
and management of water and nutrients than the conventiatiabds, thereby

allowing more improved water and nutrient use efficien@and crop productivity.
Keyword : Automated system, Closed-loop control, Closed hydrajso®n-
the-go crop monitoring, Precision nutrient solution sypipin-specific nutrient

solution replenishment

Student Number : 2015-30385
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CHAPTER 1. INTRODUCTION

BACKGROUND

Hydroponics, also called as soilless cultivation, caddfined as a cultivation
technique that produces plants in soilless condifiomehich the supply of water
and minerals is carried out in nutrient solutions witkvithout a growing medium
(e.g. stone wool, peat, perlite, pumice, coir, etc.) (Mauciei. €2019).
Hydroponics has been widely utilized in greenhousesamt ictories because of
the advantages such as the absence of soil-borne patheffmient use of water,
energy, space, and cost for growing plants (P Agung Pukter&y Yuliando,
2015; F. X. Rius-Ruiz et al., 2014). Furthermore, hydroponics has the cgdacit
increased yield, which could be about 10 times higher theodnventional
production(Barbosa et al., 2015a; Sambo et al., 2019).

In hydroponics, fertigation is the preferred approacéupplying nutrients and
water, which is achieved by dissolving the soluble feetik in the irrigation water
using injection equipment. This type of irrigation witle nutrient solution is
called “fertigation” and it is one of the most importéattors that are closely
related to the crop yield and qual(fyicrocci et al., 2017; P Agung Putra & Henry
Yuliando, 2015; Raviv et al., 2019).

Fundamentally, fertigation makes the water and nusisapply inextricable in
hydroponics. Although the combined supply usually alomore efficient nutrient
and water use in plant production than the soil-basdivatibn, the discharge of
nutrient solutions from the soilless culture systemsheaa threat of environments
(Ahn & Son, 2019; D. H. Jung et al., 2015). The wasted nutrients and water are
higher in the open hydroponic system where the nutra@uatisn flows through the
growing bed and is discarded. For the reason, closedpgias that recirculates
and reuses nutrient solutions is compulsory by legislationany countries,

particularly in environmentally protected areas, osthsuffering the scarcity of



water resource@ieling et al., 2005; W. Voogt & C. Sonneveld, 1997; Zekki et al.,
1996).

Despite the advantages of closed hydroponic systeaisas less pollution of
ground and surface water, less waste of water and nstraard lower costs in crop
production, the nutrient and water use efficienciedaxfad soilless cultivation are
aggravated (Matthew Baey et al., 2012; D. H. Jung et al., 2015; Meric et al.,

2011). Two of the main reasons are ion imbalance atigdton scheduling.

NUTRIENT IMBALANCE

In closed hydroponic systems, the primary difficulty in aging the nutrient
solutions is the imbalance of nutrient ions in the ¢y nutrient solutions, which
can induce the worsening of the edible parts’ quality aodymtivity (Matthew
Bamsey et al., 2012; Sambo et al., 2019). In current hydroponic systems, pH and
electrical conductivity (EC) of the solutions are usuallynitored to evaluate the
nutrient status of recirculating hydroponic solutiGPsmingues et al., 2012; N.
Katsoulas et al., 2015; Kozai et al., 2018; Son et al., 2020). The main problem with
this practice is that because EC measurements providéonmation on the
concentrations of individual ions, real-time individaalrections to each nutrient
are not possible (Cloutier et al., 1997). Since plants regairying concentrations
of nutrient ions for their growth and environmental ctiods, such an EC-based
control may lead to accumulation or deficiency of cartaitrients (Matthew
Bamsey et al., 2012; Gieling et al., 2005; Zheng, 2017). In actual, several studies
reported the nutrient imbalance in nutrient solutions aéteirculation (Ahn &

Son, 2019; Myat Thaint Ko et al., 2014; M. T. Ko et al., 2013; F. X. Rius-Ruiz et
al., 2014).

One of the most common practices for managing the nus@tations based on

individual nutrient ions is a periodical adjustmente&dtycled nutrient solutions,

but it cannot help farmers to respond rapidly to unexgechanges in nutrient

2 .
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ratios in hydroponic solutions (Matthew Bamsey et al., 2042 a result, it would
require frequent replacement of the nutrient solutioergby reducing the nutrient
and water use efficiencies.

Benchtop or portable analyzers equipped with ion-se&eetectrodes (ISES)
also could be used to measure the concentrationsieifdndl ions in hydroponic
solutions with the advantages such as rapid responeet dieasurement of the
analyte, low cost, and portability (Matthew Bamsey et 8ll.22Cloutier et al.,

1997; Gutierrez et al., 2007; H. J. Kim et al., 2013). However, for on-site nutrient
monitoring, which requires frequent immersions of thesl8Esolutions, the
accuracy of the determination of nutrient concentratisisgrongly affected by the
signal drift and reduced sensitivity over time, which ddu# caused by manual
calibrations, sampling, and the maintenance involveddrofieration of ISEs
(Caceres et al., 2017; H. J. Kim et al., 2017; F. X. Rius-Ruiz et al., 2014; Vardar et
al., 2015). In this regard, the ideal way to solve the nutingimalance is to use a
feedback control system, which can conduct automaticamns to each deficient
nutrient based on the measurement of individual nutrimtentrations, thereby
allowing both improved efficiency of fertilizer use amdiieased time of use of the

nutrient solutionDorneanu et al., 2005; D. H. Jung et al., 2015; Zheng, 2017).

FERTIGATION SCHEDULING

Irrigation management is directly related to watereffieiency in agriculture.
Under-irrigation usually results in reduced crop yiehdl quality and over-
irrigation decreases the nutrient use efficiency of tbp and its vulnerability to
diseases, the energy costs for water pumping (Pardossi22@9), Therefore,
efficient irrigation is important in horticultureposidering its implications on the
success of the crop cultivation. Regarding the irrigatiboiehcy, two of the most
important factors are the amount of water to be applie¢de crop and the timing

for application. In addition, not only irrigation but afsstilization is accomplished
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by fertigation in hydroponics. It makes the schedutihthe fertigation more
crucial in hydroponics.

In hydroponics, most fertigation has been automated, doeg not mean the
efficient fertigation is achieved (F. F. Montesano et &l18. The most common
and relatively easy method is automation using timerscas grower’'s
experience without measurements to assess the adevatet inputs (Nemali et
al., 2007; Nikolaou et al., 2019; Romero et al., 2012).

More efficient fertigation could be achieved by applyanfgedback based
closed-loop fertigation system or a feed-forward cdrgyetem (Klaring, 2001).
The closed-loop system can evaluate the percentagainhde or plant water
status to manage the fertigation interval (Rodrigties. £2015). In the feed-
forward system, the crop water uptake is predicted mgugiowth and
transpiration models (Prenger et al., 2005). However, thecapph of both
systems usually depends on environmental variables, sustiméght, humidity,
and soil water content, which is not directly relatechtoplant responses (Baek et
al., 2018). Those conventional approaches cannot respdne varied plants’
growth and physiology, thereby limiting efficient fertiigan (Del Amor et al.,

2010; Prenger et al., 2005).

Recently, several studies have reported the appligabflihe remote sensing
technology for plant-based irrigation strategies by taoimg the plant status such
as leaf water potential, canopy temperature, crop refleetar biomass (Daniel G
FernandeZacheco et al., 2014; Incrocci et al., 2017; F. F. Montesano et al., 2018;
Nikolaou et al., 2019; Prenger et al., 2005). Furthermore, machine-vision based
approaches could give various and useful informatioluding the morphology
(size, shape, and texture), spectrum (color, temperatuteyater contents) and
temporal variations (growth rate, flowering, and fngfi(Chen et al., 2016; Hu et
al., 2018; Joo & Jeong, 2017; Lati et al., 2013; Li et al., 2014; Story & Kacira,

2015; Te et al., 2011; Yeh et al., 2014). The vision-based crop management also has
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been tried by several agricultural industries. For exanipéeHortiMaX
(http://www.hortimax.com) developed a CropView system,civldan provide real-
time monitoring of plant canopy and the Priva (http:Ampriva-
international.com) developed a TopCrop Monitor thatestimate the plant
transpiration by measuring the crop activity in the gneeise based on plant
temperature. However, the systems can only providentbemation of plants
within the image, not the entire plant canopy due to the fiaeation. Also, little
work has been done to correlate the obtained data veithreanagement
(Nikolaos Katsoulas et al., 2016). Therefore, more reseamhéhe imaging
techniques are required for more efficient and practigatultural application. In
this context, the development of non-destructive, ragid, reliable estimation
methodology for the water needs of the growing plargedh@n the vision system
would allow the optimization of the fertigation intats, leading to improved water
and nutrient use efficiencies.

The current practices and the issues of the closgibpgnics are summarized in

Table 1.1.



Table 1.1. Current practices of closed hydroponics in nutrient solution istpteant and the fertigation scheduling

Category Method Limitation

Applied system

® Lack of information about the individual ion
concentration and balance

EC-based replenishment ® Need of periodical sample analysis
® Need of periodical renewal of the nutrient
solutior

Nutrient solution
replenishment

® NFT (nutrient film technique)
® Aeroponics

® DFT (deep flow technique)
® Ebb and flow

® Drip systen

® No considerations for the varied plant water

Time clock uptake

® NFT (nutrient film technique)
® Aeroponics

® DFT (deep flow technique)
® Ebb and flow

® Drip systen

Climate monitoring (e.qg.,
evapotranspiration, solar ® Indirect relationship to the plant responses

S radiation
Fertigation )

scheduling

® NFT (nutrient film technique)
® Aeroponics

® DFT (deep flow technique)
® Ebb and flow

® Drip systen

Substrate monitoring (e.g.,
volumetric water content,
percentage cdrainage

® Indirect relationship to the plant responses
® Limited applicability for the water culture

® Drip system

Phyto-sensing (e.g., leaf water
potential, canopy temperature
sap flow, crop reflectance)

® Specific to each plant
' @ Lack of information for entire plants

® NFT (nutrient film technique)
® Aeroponics

® DFT (deep flow technique)
® Ebb and flow

® Drip systen




OBJECTIVES

The overall objectives of this research were 1) to establivariable fertigation

system that can measure the canopy covers of plants arsd thej fertigation

volumes to be supplied based on the varying canopy cove iaegial

environmental factors, and 2) to develop an automgs$iesm that can measure the

varied ion concentrations in the reused nutrient swiudind replenish the nutrients

for each deficient ion, thereby allowing more efficientiaigement of nutrients

and water in closed hydroponic systems.

The specific objectives were as follows.

1)

2)

3)

4)

To construct an on-the-go crop monitoring system thaldooollect the
images of growing lettuces and compute the canopy cardr
characterize the transpiration rate of the growing lettusing the canopy
cover, air temperature, relative humidity, and radiatiorattaptive
fertigation strategy.

To evaluate two or more types of signal processing mefioodsn-
selective sensors to compensate the signal drifts oneraind
interferences from other ions present in hydroponictieols, and select
the effective method for application in continuous artd@@mous
monitoring of ions in hydroponic solutions.

To develop an ion-specific nutrient dosing algorithnt tiwauld efficiently
maintain the target concentrations of individual iemtis and employ the
closed control scheme by evaluating the nutrient solatitar the
replenishment and carrying out additional injectiasrsmhore accurate
nutrient management.

To testify the precision hydroponic nutrient solution agement with the
lettuce cultivation by adjusting the fertigation volune®e supplied
based on the estimated transpiration rate from the caroygy of the

growing lettuces in conjunction with the prevailing gresuse
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environment and correcting the ion concentrationserréicycled nutrient

solution for deficient ions.

ORGANIZATION OF THE DISSERTATION

The organization of the dissertation is as follows.

Chapter 2 provides literature reviews for relatedaesees.

Chapters 3, 4, and 5 describe the subsystems or the tedbadtoghe
precision nutrient solution supply and management system

In Chapter 3, the overall structure of the experimentaldpahic system was
introduced. Then, an on-the-go canopy cover (CC) monitegetem and
environmental sensors for the estimation of the trarigpireate using the
modified Penman-Monteith equation were described wvidlge acquisition and
processing procedures for assessing the canopy cover gfdwing lettuces.
Finally, the performance of the CC and the transpiratis estimation was
discussed.

In Chapter 4, three signal processing methods inclubdmgao-point
normalization (TPN), artificial neural network (ANN), andhygbrid method that
employed both the TPN and the ANN, were compared to shkeahost applicable
method for using an array of the ion-selective electradbgdroponic solutions.
For the comparison of the three signal processing mefltioel predictability of the
ISE array was tested using 27-artificial samples anéBhygroponic samples,
and the applicability was discussed.

In Chapter 5, a decision tree (DT)-based dosing algorithsndeaigned to
determine the proper amount of fertilizer salts to marihg ion concentrations
close to the preset concentrations. Then, an ion-specifitent management
system was developed using the DT-based dosing algoritttmawlosed-loop
control scheme to achieve the accurate resulting caatients. The DT-based

dosing algorithm was validated by the five replenishémtthe randomly
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determined three level-concentrations of N®*, and C&", and the results were
compared with those obtained by the conventional simpdeed dosing algorithm.
In addition, the CH-focused replenishment scenario was conducted tdycthe
system responses to the Ca concentrations, which wogichéker than the other
measurable ions, i.e.,"and NQ.

Finally, in Chapter 6, the introduced subsystems and téotjies were
integrated and a lettuce cultivation test was conduettidthe nutrient solution
supply and management by the integrated system. Tiadiefigess of the system
was investigated in two aspects. Regarding the nutriamicolsupply, the
efficiency of fertigation control based on the estimatetewneed was compared
with the fertigation based on the timer. For evaluatimgnutrient management
performance, the nutrient ion balance during the atitm was compared with the
EC-based replenishment and the ion-specific replenishme

The general conclusions and further studies are explain@édapter 7.

For simplicity in describing the contents of the dissenta the ions will

hereafter be written without the charges.



CHAPTER 2. LITERATURE REVIEW

VARIABILITY OF NUTRIENT SOLUTIONS IN HYDROPONICS
In hydroponic cultivation systems, plantsuptakes of water and nutrients are

fully dependent on the nutrient solutions. For efficidanpgrowth, there would be
optimal compositions and concentrations. Steiner invastijthe optimal ratios of
cations and anions with fixed levels of EC and pH for eatrsolutions. He tested
1,600 combinations of the main nutrient ions gNEPQs, SQ, K, Ca, and Mg)
and proposed a method to calculate the proper ion fatitse optimized nutrient
composition (Steiner, 1961). In 1966, Steiner verified ffects of the optimized
nutrient compositions by applying the various nutri@ftitions that were more
than 10 combinations for soilless cultivations of tomastmid (Steiner, 1966).

Wiser and Blom (2016) reported that the ion ratios o,NNM., and P
differently influenced on crop growth and height amamayigolds, sunflowers,
and tomatoes, indicating the optimal compositions wouldabbied for crop
species .

Schippers (1979) analyzed the concentrations of N, P, andh€ nutrient
solutions of tomatoes, cucumbers, and lettuce, and confitmeatked for periodic
analysis of nutrient solutions because the degreenadlisorption in the nutrient
solution for each crop changed according to the growtheo€itops .

Terabayashi et al. (2004) confirmed that the maximund ypétomato appeared
when applying the varied nutrient compositions for eactvtratage.

J. Y. Lee et al. (2017) analyzed the changes of individmatoncentrations in
nutrient solutions for tomato, and the uptake patternkldmudivided into 5 stages
of transplanting, adaptation, flowering, fruiting, and hatve

Nutrient solution compositions should be adjusted dmmgig the environmental
factors such as temperature, humidity, and light conditibor example, the

nutrient uptakes of radish were varied according to thsosel change, which
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might be due to the different light, temperature, and hdynadinditions
(Sonneveld & Van den Bos, 1995).

Morimoto et al. (1996) observed daily changes in nutgencentration of the
solution in hydroponic tomato cultivation and reporteel tcomplex interactions in
nutrient concentrations and environments.

Noh et al. (2011) also configured the significant cotiata(p<0.01) between the
light intensity and the nutrient uptake of Kalanchoarrebb and flow based
soilless cultivation system.

The aforementioned researches show the variabilityeoioiih concentrations in
nutrient solutions. Therefore, it is necessary to regketiie nutrients and water for
nutrient solutions for maintaining the concentratiorhefse nutrients in solution at

proper levels for the success of closed hydroponitvatibn.

L IMITATIONS OF CURRENT NUTRIENT SOLUTION M ANAGEMENT

IN CLOSED HYDROPONIC SYSTEM

In general, nutrient management in closed hydroponiamiducted based on
electrical conductivity (EC) and pH measurements. ECeftlirient solutions is
proportional to the total ions present, so it can be angcidindicator of nutrient
concentrations within nutrient solutio@omingues et al., 2012; N. Katsoulas et
al., 2015; Kozai et al., 2018; Son et al., 2020). pH determines the availability of
nutrient ions for plants, and the proper level of pH farient uptake is usually
between pH 5.5 and pH 6(&. De Rijck & Schrevens, 1997; Resh, 2016).

Based on the EC and pH, Zekki et al. (1996) manually repledithe nutrient
solutions every day and compared the productivity of thged cultivation to the
productivity of the open cultivation . He reported thees an accumulation of
several nutrients such as$Q, and MgSQ, thereby reducing the total productivity
in closed hydroponics.

In 1999, Savvas and Manos developed a computer aigattiat could
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perform replenishment and reuse of the drain nutridatiso in close hydroponic
systems while maintaining a target electrical conditgtin the nutrient solution.
From the application tests for growing roses, gerbergsahthemum, and
carnation, they showed the reused nutrient solutiofddmicorrected efficiently in
terms of EC, but a nutrient imbalance occurred aftertaifjht of drain solution
reuse (D Savvas & Manos, 1999).

Sawvvas (2002) improved the capability of maintainingrtimgient balance by
supplying freshwater or adopting the ion uptake ratioftege strategies limited
by the water quality and imposed a partial discharge ofemiitsolution.

Ahn et al. (2010) monitored the reused nutrient solutiariaxfed-hydroponic
paprika using the EC based system and reported the dewatiotrient ratio was
proportional to the recycling rate of the drainage.

Ko et al. (2013) also investigated the nutrient compasitiche recycled
nutrient solution and reported the significant redingiin NQ, K, Ca, and Mg,
and the accumulation of SCCI, and Na.

The nutrient imbalance issue when reusing nutrient solitased on EC is still
ongoing. Therefore, hydroponic growers who want to mgartaeir nutrient
solutions based on individual nutrient species and exttentifespan of the

nutrient solution, depend on relatively infrequent (e.g, teeks) off-line analysis

by manually sampling and mailing the nutrient solutiotabmratories with huge
and expensive analytical instruments such as a coloiinspectrophotometer, an
AAS (Atomic Absorption Spectrophotometer) analyzer, a ([Dductively
Coupled Plasma) spectrometer, or ion chromatographgrey®. Bamsey et al.,
2012; Gieling et al., 2005; W. Voogt & C. Sonneveld, 1997). In addition, the
relatively low adjustment frequency of recycled nutrigslutions based on
standard analysis could reduce the stability and opeedtcost in closed
hydroponics. In this regard, automatic corrections th eieficient nutrient based

on the measurement of individual nutrient concentraticmddvallow both
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improved efficiency of fertilizer use and increased times# of the nutrient

solution.

| ON-SPECIFIC NUTRIENT M ONITORING AND M ANAGEMENT IN

CLOSED HYDROPONICS

The need for individual nutrient monitoring has led toapplication of ion-
selective electrode (ISE) technology to measure hydiopoacronutrients due to
several advantages of ISEs over standard chemical analghiniques, such as
rapid response, direct measurement of the analyte, lowasubsportability.

In 1988, Bailey et al. developed an automated measuringnsysat could
monitor pH, nitrate, potassium, calcium, sodium, and chlaniceitrient film
solutions using ISEs. The accuracies of nitrate, sodinthpatassium
measurements were within 10%, although the deviationaloium and chloride
were more than 20%. Based on the results, they concludeSEkavould be
applicable in horticulture, but frequent and reguldibcations should be
conducted to accommodate the drift and extend the lifleeofSE.

Cloutier et al. (1997) evaluated the potential of tHesl&pplication in closed
hydroponics. They found the sensitivities of the Ca, K4NiHd NQ varied by -
134%, -20.2%, -26.5%, and -12.0% over the 24 hours, respgctiwditating the
significant automation requirements for the ISE calibrat

Gieling et al. (2005) employed an array of ISEs and itectige field-effect
transistor (ISFET) to measure the concentration of ttieiglual ions in the
drainage water and controlled the injection pumping tiofeke liquid single
element nutrients. Although the concentrations of Canl,NG; in the drain were
kept reasonably well at the set values, the feagiliigs only validated for 6-days.

Gutierrez et al. (2007) developed an electronic tongtieam array of solid-
state ISEs that could measure /K, Na, Cl, and N@ and applied a multilayer

artificial neural network (ANN) model to enhance the prtbility of the system
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by compensating the strong interfering effects. Howetereffect of response
drifts of the sensor array was found. After 1 year, althahey supplemented RO
electrodes to the electronic tongue system and vatidatefeasibility of the
system in real greenhouse samples, the problems of theliahility of PO,
electrodes and the drifts in the sensor array were nad@utierrez et al., 2008).

Kim et al. (2013) fabricated NOK, and Ca ISEs and constructed a test stand
with an array of ISEs which automatically conduct rinsimgrmalization, sample
injection, and sample analysis for hydroponic solutidiney reported the two-
point normalization was effective in minimizing potentiaift and bias that might
occur during continuous, thereby improving the applidgtilf the ISEs for
hydroponic nutrients in greenhouses.

In 2014, Rius-Ruiz et al. (2014) developed an analytiediggm with K, NQ;,
Ca, and Cl solid-state electrodes to monitor the nutr@mpositions in
hydroponic solutions and replenish the solutions gisnapconcentrations
manually for 120 days. Specifically, they verified the fpant calibration was
more effective in improving sample measurement acgutamn the one-point
calibration.

Jung et al. (2015) improved the system developed by Kah €013) by
adding the control logic to measure thedNK), and Ca in the closed hydroponic
system and manage the ion concentrations automaticaily te three single
element nutrients. Although the three ions were cdettdb reach target
concentrations of 280, 140, and 70-mgwithin errors of -7.7+28.1, 20.8+28.5,
and -5.6+8.2 md.* for NO;s, K, and Ca ions, respectively, during the lettuce
cultivation, the fertilization was limited by the coaglcompositions of the
nutrients. In 2019, the system was modified to manage thd Rlg
concentrations by injecting the nutrients proportidodhe supply of and NCand
Ca ions, respectively, and the feasibility of the cobalt mldes to measure P

concentrations was evaluated. However, the effectiveri¢ls proportional
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injection of Mg and P was not clear and the dosing algontfas insufficiently
analyzed.

As described above, various hydroponic applications uSigg for individual
ionic concentration measurement and nutrient solutiomagement were achieved.
However, the electrode drift and the absence of thebtelionophore that could
measure the main nutrient ions of P, Mg, and Bi@der the application of ISEs in
the hydroponic application. Specifically, P ion hasaasiforms according to the
pH of the solution and could be easily affected by otherfiering ions (Gutierrez
et al., 2008; H.-J. Kim et al., 2007). Mg and S ionophores degeélantil now
have limitations of very low selectivity and sensitivity,teere is no successful
application case in hydroponics (H. J. Kim et al., 2013; &koret al., 2006).

The table below summarizes the researches on nutoletio® measurement

and control (Table 2.1).
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Table 2.1. Researches on hydroponic systems for nutdkutios» monitoring and

management
Author . Nutrient NUtr.' ent S
Plant species . solution Limitations
(Year) solution sensor
management
Zekki et al. Tomato EC pH Manual Accumulation
(1996) (Capello) P adjustment of SO
Accumulation
Roses. gerbera Stock solution of Na, ClI, Ca,
Sawas & chr sa,ntghemum’ EC pH injection based Mg, and SQ
Manos (1999) 4 : P on the computer  Reduction of P,
and carnation .
algorithm Zn, Mn, K, Fe,
NOs, B
Stock solution .
injection based Accumulation
Sawvas (2002)  Chrysanthemum EC, pH ) of Ca and Mg
on the computer .
. Reduction of K
algorithm
Low accuracy
Bailey et al. Tomato K I(?ESI\E:%I Manual Low lifetime
(1988) T adjustment Bubbles in
pH)
flow cell
Single element Short-
Gieling et al. Plant (Not ISE and m?trients monitoring
(2005) described) ISPET iniection Deviation of
I NHs and Ca
. Rose (Rosa ISEs (NH, Drifts in sensor
Gutierrez et - o array
al. (2007) indica L. cv. K, Na, Cl, and Monitoring Low accurac
: Lovelly Red) NOs) o Y
Gutierrez et Rose (Rosa ISEs (NH, Dnﬂ;rg ;o
indica L. cv. K, Na, Cl, NG, Monitoring y
al. (2008) Lovelly Red) and PQ) Low accuracy
y in POy
Off-line
Kim et al. . ISEs (NQ, . analysis
(2013) Paprika K, and Ca) Analysis Low selectivity
in Ca ISE
Rius-Ruiz et (S-g?;:litr% ISEs (NQ, Mﬁ?;gﬁgr g Low stability
al. (2014) . K, Ca and CI) : in NOgs, ClI
lycopersicum) adjustment
Limited
Jung et al. Lettuce ISEs (NQ, CaNs(;Tt’ ch;Iiggn fertilization
(2015) K, and Ca) S Low K
injection S
estimation
Unclear
performance of
Jung et al. ISEs (NQ, NG, K, Ca, Mg and P
Lettuce Mg, and P salt management
(2019) K, and Ca) L -
solution injection Low stability
of cobalt
electrodes
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REMOTE SENSING TECHNIQUES FOR PLANT M ONITORING

In hydroponics, the supply of water and nutrients is degrnah the fertigation,
so the efficient use of water and nutrient could be achibyeaxptimizing the
fertigation. Precision fertigation, which provides wdiased on the water needs of
the plant, would be an effective approach for saving vwaatdmutrient while
maximizing yield (Abioye et al., 2020; Jones, 2004; Zerg.e2009). To achieve
precision fertigation, there is a need to assess thes sthplants to adjust the
fertigation at an appropriate level (Nikolaos Katsoweteal., 2016). Machine vision
would be an effective, non-invasive, and non-destrucéwsiag technology for
measuring morphological and spectral characteristipgint growth monitoring,

post-harvest grading, transplant detection, and disease diadKegira & Ling,

2001).

He et al. (2003) developed a stereovision system usimgaweras and
constructed three-dimensional (3D) color images ofrdmesplant population from
pairs of two-dimensional (2D) color images to estimatragye height, leaf area,
fresh mass, and dry mass determined from destructive reeaeuts. From the
results, the estimated values were correlated closdhytiagtvalues determined
from destructive measurements;(B.7-0.9).

Yeh et al. (2014) showed a more advanced stereo-visgdarsywhich could
obtain the images of lettuces growing in the vertical bédnaatically. They
reported the system could enable the continuous and stnictéve estimation of
the plant projected leaf area, height, and volume index.

Recently, Hu et al. (2018) reported the newly develapepth camera could
easily give information of the plant projected leaf afezsh weight, and height
that had high determination coefficients of 0.9 versustdreard analysis .

A vision-based assessment of the crop water needsasdduelkn widely
investigated. One of the most important vision-based plaerties is the canopy

cover (CC), which is also called the percentage of groamdreof vegetation
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(PGC) (Allen et al., 1998; Daniel G. Fernandez-Pacheab,2014; Stojanova et
al., 2010). CC is defined as “the vertical projection ofglamt canopy onto an
imaginary horizontal surface” (Stojanova et al., 2010)s Pairameter is a key
component for estimating the crop water requirementgyUshO-56 methodology
due to its strong linear relationship with the leaf anel@x (Allen et al., 1998;
Baret et al., 2000; Corcoles et al., 2013; Escarabajal-Hesaeal., 2015; Garcia-
Mateos et al., 2015; Gitelson et al., 2003; Lati et al., 2013; J.é&/etal., 2017).

Ferndndez-Pacheco et al. applied digital photographhairt growth monitoring
and obtained the CC of the lettuces growing in the fiehén] they estimated the
crop height using the CC and computed the crop coeffisightom the CC and
the crop height. From the validation test, the linear s=gpa analysis between the
estimated Kand the actual Kshowed a slope of the linear regression line very
similar to 1 (0.966) and a squared correlation coefftopd 0.977, indicating the
vision approach could be used to determine the crop weiairements. Similarly,
Gonzalez-Esquiva et al. (2017) reported that the cacopgr (CC) of the growing
lettuces obtained from the digital photography couldtbieed to calculate the
crop coefficient below 1% of error.

Story and Kacira (2015) developed a plant monitorirggesy that could
dynamically collect the canopy images using color, ngaatied (NIR), and
thermal cameras. From these three types of images, tbexedhhe system could
determine the water stress level as well as the planghalmgy (top projected
plant and canopy area).

Nutrient uptakes and requirements of crops are alsoatremisiderations for
the precision fertigation. Elvanidi et al. (2018) trieddetect the nitrogen
deficiency in hydroponically grown tomatoes using a ngpectral machine vision
sensor. Through the background adjusted nitrogen inkdex,confirmed the
possibility of the reflectance-based detection of nérogtress.

Sun et al. (2018) suggested temporal dynamics ofaafen morphology and
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color to identify NPK deficiencies. The results showseté were distinct leaf
responses to NPK deficiencies. However, it would be difftcuindependently
distinguish the influences of NPK deficiencies on leaéergion and senescence.
Nguyen et al. also investigated the hyperspectral resasiging to assess
nutrient status in bok choy and spinach grown under greseleonditions. The
results demonstrated that individual spectral bandgsé@e tspectral regions (700—
709 nm, 780-787 nm, and 817-821 nm) were significanthelated with leaf
contents of N, K, Mg and Ca, thereby allowing more efficiertilizer regimes.
Although the studies showed a potential of the remotersefi the plant
nutrient uptakes and requirements, further studiesesadad to use the remote
sensing in agricultural application due to the variaionthe reflectance according
to the light conditions, ambient conditions, growth stagesutsient compositions
in hydroponic solutions. Therefore, the fertigation colri&sed on the crop water

needs would be only possible as the first step for the pradisitigation.

FERTIGATION CONTROL METHODS BASED ONREMOTE SENSING

In practice, several studies reported the fertigatiotrabusing the vision-based
estimation of the water needs of plants reduced watasuogotion and improved
productivity.

Prenger et al. (2005) estimated the crop evapotranspif@&T) based on the
crop water stress index (CWSI) using infrared thermon{&RT) measurement of

plant canopy temperaturé/hen applying the closed-loop proportional irrigation

control based on the estimated ET, only 52% of the watst for the conventional
system was used while the height, fresh mass, and dry mesaetesignificantly
different (95% confidence interval).

Seeling et al. (2012) automated the irrigation cdritnogrowing cowpea based
on the dynamics of leaf thickness and reported thatdssh#5 and 45% of

irrigation water could be conserved compared with acafgimed irrigation
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schedule.

Osroosh et al. (2016) variably controlled the iriigratfor apple trees based on
CWSI and weather and confirmed the strategy substamtélliced water applied
(70%) while maintaining the stem water potential withia tlon-stressed range.

By computer processing of digital photographs of vegetatover, Escarabajal-
Henarejos et al. (2015) built a model for estimating the coefficient and
validated the model performance during the subsequezar® yFurthermore, they
applied the model to schedule crop irrigation andntepca 6.93% increase in
production and a 17.80% reduction in water consumptiompared to the grower’s
irrigation control.

Up to now, the fertigation control based on plant stategsured by the remote
sensing methods has been mainly investigated for the figdd cultivations. In
general, fertigation under the soilless culture reguirenuch more frequent control
due to the small volume occupied by the root system anavier-holding
capacities (M. Gallardo et al., 2013). Therefore, a fasbarithe-go monitoring of
plant responses is necessary to accomplish precistoyatéon in hydroponic

cultivation.
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CHAPTER 3. ON-THE-GO CROP MONITORING
SYSTEM FOR ESTIMATION OF THE CROP
WATER NEED

ABSTRACT

Precision fertigation in soilless cultivation is an irrtpat task to secure
sustainable water use. However, the difficulty in assessmwater needs of the
plants due to the varied plant growth and the environmerftahiation hinders the
establishment of the precision fertigation. In this studestmation model for the
transpiration rate of the plants growing in hydropomies characterized using the
modified Penman-Monteith equation. Furthermore, arhengb crop monitoring
system that can compute the canopy cover of the grovémgspvas established
using a two-axis guided moving camera for monitoring thieeegrowing bed and
sensors for measuring ambient conditions in the gresehd-rom the application
test to the lettuces growing in the nutrient film techniquiéivation, the developed
system showed a high accuracy of 98.5 +1.7% for the carmygy measurements
besides the saturated period, indicating the feagilifiestimating the growth
information of the lettuces in hydroponics. In additithe, system showed high
predictability for the transpiration rate with a highlydar relationship of a slope
of 0.91, coefficient of determination §R>0.9, and standard error of the regression
(SER) of <0.51 in comparison to the direct measurementréchgis indicate the
developed model could provide the water needs of theiggdettuces in a simple
and real-time manner, thereby allowing more efficient dfettive fertigation in

hydroponics.

| NTRODUCTION
The scarcity of water poses a limitation on agricultwater utilization, so there

is a growing demand for developing efficient water manageitechniques
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(Garcia et al., 2020; Romero et al., 2012; Sesma et al., 2015). Specifically,
irrigation or fertigation (i.e., irrigation combined witerfilization) is the greatest
water user in agriculture (F. F. Montesano et al., 2018)\d¥er, irrigation or
fertigation practices are generally based on the palsxperience of the grower
without considering the water needs of the growing gBuohachela et al., 2006;
Chauhan et al., 2013). This approach usually causes owarder-irrigation for
crops, thereby leading to higher water consumption andikelssand quality of
crops(Bonachela et al., 2006; Liu & Xu, 2018; Prenger et al., 2005). For these
reasons, precision irrigation, which is a techniquepghatides water based on the
water needs of the plant at the desired location, has besgeshand widely
investigated in the last yeatslafuta et al., 2013; F. F. Montesano et al., 2018;
Smith & Baillie, 2009).

To achieve precision irrigation, an accurate and fasssas®nt of the water
needs of the plants should be conducted. However, traditestimations usually
suffer from an inaccurate estimate of the crop water neealse the crop water
need is often affected by the climatic conditions ang growth(Klaring, 2001;
Prenger et al., 2005; Rodriguez et al., 2015). Moreover, all direct methods of
measuring the crop growth are extremely laborious, uteste, site-specific, and
costly in terms of time and monéliang et al., 2018; Nikolaos Katsoulas et al.,
2016; Kirk et al., 2009; Sigrimis et al., 2001).

In this context, a vision-based approach would be an efeiciol for obtaining
the various parameters related to plant growth and wateissn real-time
(GonzalezEsquiva et al., 2017; Lorente et al., 2012). Specifically, the most
applicable parameter from the vision sensors for estiméhe plant growth is the
leaf area index, which has a linear relationship withctireopy cover (CC)
(Corcoles et al., 2013). It could estimate the water need dfgbecause it is
directly related to evapotranspiration (Escarabdjalarejos et al., 2015; Daniel G

Ferrendez-Pacheco et al., 2014).
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As one of the transpiration rate estimation methods usmgiAl, the Penman-
Monteith (P-M) equation has been widely ug&tln & Son, 2019; Allen et al.,
1998; Baille et al., 1994; J. W. Lee et al., 2013). In this regard, the estimation of the
transpiration rate based on the automated measurefrteet ©C of the growing
plants would allow the precision fertigation apptoéar hydroponic growers,
thereby improving the water use efficiency.

In this study, a P-M equation-based estimation model fatréimspiration rates
of the growing plants in hydroponics was developed. Spattyf, the model used
the CC obtained from an on-the-go image monitoringesystnd the
environmental sensors to respond to the varied wates mddke plants according
to the ambient conditions and the growing days. Cropvetiin test was carried
out with lettucesl{actuca sativawhich is one of the most popular vegetables and
is the most consumed salad crop (Ryder, 1999). The spebjéctives were to (1)
develop an on-the-go crop monitoring system that cdeatdhe environmental
conditions and RGB images of the plants grown in hydrayzadior computing the
CC, (2) characterize the P-M equation-based crop waterasti@ehtion model in
conjunction with the sensor data of the temperatulajve humidity, radiation,
and CC, and (3) evaluate the performance of the mgdebiparing the estimated
transpiration rate with the actual transpiration ratéheflettuces grown in the

recirculating nutrient film technique (NFT) bed.

MATERIALS AND METHODS
HYDROPONIC GROWTH CHAMBER

The experimental growth chamber is an even-span ptstimhouse (Fig. 3.1
a). The bottom area is approximately 7.44 amd the heights of the wall and top
are 1.3 m and 2.2 m, respectively. In the growth chamber, antdtine technique
(NFT)-based growing bed is installed with evenly-distréal 25 fluorescent lamps
as shown in Figs. 3.1(b) and 3.1 (d). A total of 45 growirlgshare prepared for
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the growing bed with a distance of 0.02 m (Fig. 3.1c), whiaonstructed
according to the hydroponic culture guideline for thtutges of the RDA (Rural
Development Administration, South Korea). During theication, growing plants
would be suspended on the holes while the growing b&abisorted by eight
poly(vinyl) chloride (PVC) cylinders. To equally qup hydroponic nutrient
solutions over the growing bed, eight distribution hezzvere applied with a
circulation pump (PP50Y, Hwarang System Co., Ltd., IncheorthS¢area). The
leachate flows into a drainage hole located on the oppsideeof the injection
nozzles.

The experimental growth chamber is located in the raxgatal room of Seoul
National University (Seoul, Republic of Korea, latitude45786°N, longitude
126.94845°E). Although there is no precise environmentataloor the bio-
filtration system in the room, it can provide the circumsgatiat is sufficiently out
of the climatic elements (e.g. wind, rain, and sunlight) Withprevention of pest
intrusion. The detailed structures and dimensionseogtbwth chamber are shown

in Fig 3.1.

24 5 |



Drainage hole

Growing bed
25 x Fluorescent lamp

8 x Injection nozzle % Cylindrical
supporter

4 ®0.031 m
o

o o o o o o o 011m _—
«—}ooms mhk—l 1o etm | = T 0.0825 m
0.14m

0.12m

(C) : T orzm (d) e osrm — |

Fig. 3.1. Structures and dimensions of the experimental growth chamber: (a)
Growth chamber; (b) Growing bed frame; (¢) Growing bed; (d) 25-fluorescent
lamps. There are 8§ cylindrical supporters for the growing bed.

CONSTRUCTION OF AN ON-THE-GO CROP MONITORING SYSTEM

Considering the varied growth status according to the sites due to the different
microclimates, light conditions, or the different growing days, an on-the-go
monitoring system was necessary to observe the growing plants for the entire bed.

In this study, the on-the-go crop image monitoring system was modified for the
CC measurements based on the XY camera-guided system developed in the
previous study (Jiang et al., 2018). Briefly, the XY camera-guided system consisted
of a motion controller (MoonWalker MW DCMO02, NTREX, South Korea), two
motor servo drivers (MoonWalker i-servo SBL24D200U-B, NTREX, South
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Korea), two step motors (BLM57090-1000, Leadshine, Chara] two linear belt-
type actuators (MoonWalker MW-EQB40, NTREX, South Kdrea

The position of the camera and environmental sensorsde¢zemined
considering several practical issues. The XY cameraedusgistem and the camera
were installed at the height of 0.4 m from the growided to avoid any damage to
the growing lettuces during the movement. A pyranometefl($PApogee
Instruments Inc., USA) was placed on the side of the grolulgto prevent the
effect of the shadow made by the leaves. For monitorimgithconditions, air
temperature and humidity sensor (HD9008TRR, Delta Oflaty) Jtand CQ sensor
(GMT220, Vaisala, Finland) were installed in the cenfehe growth chamber.

Fig. 3.2 shows the constructed crop monitoring systeneigiibwth chamber
with the sensor data flow.

For the RGB image acquisition of the growing lettuces, adost web camera
(c270, Logitech, Switzerland) was applied to the moviagne. Specifically, the
movement of the camera was controlled by pulse signalstfrerservo drivers and

the spatial resolution of the system was 0.0127 ‘npmise’. Based on the

resolution, the XY moving pulse signals were calculatedetermine the image
acquisition for the entire growing bed. In addition, thgyk image frame was

0.339 mx 0.226 m (the dimension was 64@80 pixels) and the dimension of the
growing bed was 1.02 m1.86 m, so X 8 images would be necessary to monitor

the entire bed. Finally, a total of 24 positions for thegenacquisitions were
determined, and a reversed N-shaped route was employdw feifective camera
movement (Fig. 3.3). After the one cycle of the imageitodng was ended, the
camera was returned to the initial point and waitedrfemiext monitoring.

The camera control and computation were conducted agimggram based on
Python 3.7.3 programming language with several thirdgpémaries. The source
code of the software is displayed in ALl. The main systenpwagammed using

LabVIEW (v2015, National Instruments, TX, USA).
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The detailed specifications of the crop-monitoring system and the environmental

sensors are shown in Table 3.1.

Environmental data (temperature, relative humidity,
and radiation) + Plant-growth information (LAI)

Temp. & Humidity sensor
Fluorescent lamps e .

RGB camera on the two-
axis moving

NFT growing bed

Fig. 3.2. View of the crop monitoring system in conjunction with the control
system
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Fig. 3.3. Moving route of the image monitoring system. White arrows indicate the
route for image acquisition, and yellow arrow indicates the route for the return.
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Table 3.1. Specifications of components of the on-thmgpitoring system and
the environmental sensors

Component

Specification Manufacturer/Model

Data acquisition
board

A/D converter for atmosphere

sensor signal

Input channel: 16 bit analog input National Instrument (TX,
32 ch. USA), NI-9205

Input range:+ 10V

Sampling rate: 250 }-s?

Air temperature and
humidity sensor

Temperature measurement range: -

40-80 °C Delta Ohm (Caselle di
Relative humidity measurement  Selvazzano, Italy),
range: 5-98 % HD9008TRR

Power: 1-30 VDC

Measurement range: 0-2000 ppm Vaisala (Vantaa, Finland),

CO; probe Output range: 0-10 VDC
Power: 24 VDC GMT220
Spectral range: 360-1120 nm

Pyranometer Measurement range: 0-2000 W?m Apogee Instruments Inc.
Output range: 0-0.4 VDC (Logan, USA), SP-110
Power: Selpowerel
RGB camera
Fixed focus

c Maximum resolution: 1280 x 720 Logitech (Lausanne,
amera : 4

pixels Switzerland), c270

Field of View: 60°
Power: 5 VDC (USE

Servo motor

Rotational speed: 0-3000 rpm
Nominal torque: 0.29 NM
Power: 36 VDC

Leadshine (Shenzhen,
China), BLM57090

Belt-type actuator

Max Load: 8 kg
Max speed: 1 m's
Power: 100 W

NTREX (Incheon, South
Korea), MW-EQB40

Motor driver

PWM modulation: 20 kHz
Encoder: 1,000,000 pulse/rev
Power: 24 VDC

NTREX (Incheon, South
Korea), SBL24D200U-B

Motion controller

PID position controller
USB based data transfer
PWM control range: 18-40 kHz

NTREX (Incheon, South
Korea), MW-DCMO02

IMAGE PROCESSING FORCANOPY COVER ESTIMATION

To compute the CC of the growing lettuces, a series ajérpaocessing was

conducted. The flow of the CC computation is as follows.

First, the obtained RGB image was converted to the Exaesn®dex (ExG)
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for identifying the vegetation fractions of plants ie thbtained image. The ExG,
which was first examined by Woebbecke et al., (1995), caailchitulated using
the following equation 1 (Woebbecke et al., 1995).

ExG=2g—r—b 3.1
where r, g, and b are the chromatic coordinates obtained By2eq.

R*
r=———
(R*+G*+B*)

— G*
&= (R*+G*+B*)

(3.2)

— B*
" (R*+G*+B*)

where R*, G* and B*, are the normalized RGB (Red, Green dne)Balues,
which are computed by dividing the actual pixel valueR,06 and B by the

maximum value of 255 for an 8-bit color channel (eq..3.3)

+_ R
R © 255
»_ G
G T 255 (3-3)
B*=—

The EXG indices enhance the contrast between the pmaad the non-plant
area, so it could be used to segment the plants from ¢kgrioand (D.-W. Kim et
al., 2018; Riehle et al., 2020).

Then, a threshold for the plant segmentation was cécllzased on the Otsu
method, which automatically calculates optimal threskeldes, thereby
minimizing inter-class variance and maximizing intrasslaariance (Otsu, 1979).
The basic principle used in the process was an assuntiptibdense green
vegetation produces a high value, while background haw adlue. Therefore, the
ExG image could be converted to a binary image based ongbe ©threshold,
which would be classified into two groups, i.e., plant or plamt.

After the segmentation, the CC of the image was catuliks the ratio of the
number of pixels segmented as a crop to the number opiréds following
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equation 3.4 (Escarabajal-Henarejos et al., 2015; D.-W. Kim et al., 2018).

cC=

Number of pixels determined as a plant in a frame

Number of total pixels in a frame

(3.4)

The system calculated the CCs for all images, and the average value of the CCs

was assumed as the representative growth status of the lettuces in the growth

chamber. Fig. 3.4 shows the flow of the image processing for CC calculation.

K.

RGB image acquisition

ExG+Otsu threshold

40000
30000 Otsu’s threshold
20000

10000

1
0 S0 100 150 200 250

Threshold generation based
on the Otsu method

Plant segmentation and
CC calculation

ExG conversion

Binarization based on the
Otsu’s threshold

- 3266693
e = 8160.357220921155 cn"2
te LAI = ©.4430735948350694

= 3370235
- 8419.810148321624 ca"2
. 4571173773871528

3561240
= 8896.149882903981 ca"2

3662742
e = 9149.786791569086 cn"2
679117838541664

Leaf Area Index = 0.4968

Average CC calculation for the
growing lettuces

Fig. 3.4. Process of the CC calculation for the crop growth estimation
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EVALUATION OF THE CC CALCULATION PERFORMANCE
Accuracy of the crop segmentation method applied in tidysvas assessed by
comparing with manually segmented crop pixel numbers usengommercial

software (ENVI v5.4, L3Harris Geospatial, CO, USA) (e§) 3.

Accuracy (%) = 100 — % * Z?=1 (100 x |CCExG—Otsu—CCmanual

CCmanual

) e
l
where n is the number of frames from the monitoring 8ys@&Cexg-otsuiS the CC

determined by the ExG-Otsu based segmentation, angh&is the CC

determined by the manual segmentation.

ESTIMATION MODEL FOR TRANSPIRATION RATE

In this study, a simplified Penman-Monteith model modifigdBhille at al.
(1994) was used to estimate the transpiration rate @rtiveing lettuce (eq. 3.6)
(Baille et al., 1994).

E, =ax(1—e ®LA) « RAD;, + b LAl x VPD (3.6)
where Eis the estimated transpiration raten(t), k is the light extinction
coefficient, LAl is the leaf area index fm?), RAD;, is the radiation (\Am),
VPD is the vapor pressure deficit (kPa), and-a%gn?) and b (gh™*-kPa?) are
regression parameters.

In the case of the LA, it could be substituted byGliebecause the CC has a
highly linear relationship with the LAI (Escarabajadidrejos et al., 2015; Garcia-
Mateos et al., 2015). Then, the light extinction coeffic{&ghwas obtained based
on the approximation equation (eq. 3.7) described in thequ®study (Nobel et
al., 1993).

k * CC = In(RAD7p,/RADgottom) (3.7)
where RADG., (W-m?) is the radiation measured at the top of the canopy and
RADgotom (W-m™) is the radiation measured at the bottom of the canopy.

The VPD in the growing chamber was computed from equaBidhand 3.9
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(Abtew & Melesse, 2013).

17.27+T

es = 0.611 * exp(T+237.3) (3.8)

RH
VPD = e, (1-3%) (3.9)
where gis the saturation vapor pressure (kPa), T is the airaehyre (°C), and

RH is the relative humidity (%).

DETERMINATION OF THE PARAMETERS OF THE TRANSPIRATION RATE M ODEL

For the determination of the constant parameters (i.e., Rddy)a45 lettuces
were planted on a bed of 1.02 mx1.86 m with a distance of 0.Rerlighting
period was introduced as a 12h light/12h dark altesna5 L of nutrient solution
was prepared based on the composition of the modified &lodiglhydroponic
nutrient solution (Table 3.2) (Hoagland & Arnon, 1950) anpplied to the
growing bed by a relay-based circulation pump with a cansitaer-based
fertigation cycle of a 3 min on/7 min off cycle (PP50Y, &tang System Co., Ltd.,
Incheon, South Korea).

To manage the recycled nutrient solution, electrical cotndty (EC) and pH of
the recycling nutrient solution were monitored by anme-lEC probe (HI7635,
Sistemes Electronics Progrés S. A., Lleida, Spain) and a plé fiftb001, Hanna
instruments, RI, USA), respectively. In addition, a reflectilteasonic water-level
transmitter (EchoPod UGO01, Flowline, Inc., CA, USA) was emmldgemeasure
the remaining volume of the nutrient solution. Based ersthtus of the nutrient
solution (i.e., EC, pH, and volume), the system replenisheainent solution
every day using the calculation method reported in teeiqus study (D Savvas &

Manos, 1999).
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Table 3.2. Composition of the Hoagland’s nutrient sofufldoagland & Arnon,
1950)

Solutior Substanc Amount (m¢L* of water
Ca(NC3)24H.0 472.:
A KNO3 151.6¢
Fe(EDTA 21.05¢
KNOs 151.6¢
MgSC,-7HO 246.4¢
MnClz-4H,0 0.90¢
B ZnSCy 7HO 0.11
NH4H2PC4 57.5¢
H3BOs3 1.4z
CuSGs-5H0 0.01
Na:Mo0O4-2H,0 0.01

The light extinction coefficient, k was determined by caltinh the averaged k
for the growing lettuces in initial, mid, and end day durirgydhltivation based on
equation 3.7. For the determination of the regressicampeters (i.e., a and b), the
transpiration rates of the lettuces were investigateidgltine growing period for
regression. The regression analysis was conducted 8EBIMA Plot 12.0 (Systat
Software Inc., London, UK).

During the cultivation, three of the growing lettuceseveansferred to beakers
with nutrient solutions individually, then they were grofen1 hour under the
growth chamber. The changed weight of the beaker was agamtiee
evapotranspiration rate (Fig. 3.5a). And a beaker withattitde was also measured
in the same way to measure the evaporation rate (Fig. 3.8b)lyFthe
transpiration rate of the growing lettuce was compuyeslibtracting the estimated
evaporation rate from the estimated evapotranspiradite. It was assumed that
there was no effect from the different evaporation susfageh or without the
lettuce, or the spatial variation in the growing bed. Durivegrtight period, the

transpiration rate would be small, so the variatiomédoefficient was not
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considered. Based on the procedure described above, the transpiration rate in the
daytime was calculated almost every day.

The experiment was carried out until the CC of the lettuces were saturated.

Aweight = Evapotranspiration
%3 53 -

Aweight = Evaporation

Fig. 3.5. Schematic of calculating the evapotranspiration rate of the growing lettuce
(a) and the evaporation rate of the nutrient solution (b). The actual transpiration
rate could be obtained by subtracting the evaporation rate from the
evapotranspiration rate.

RESULTS AND DISCUSSION
PERFORMANCE OF THE CC MEASUREMENT BY THE IMAGE MONITORING
SYSTEM

Fig. 3.6 shows the measured CC by the automated image monitoring system and
the manual segmentation during the experimental period. The CCgxc.osu Showed a
highly linear relationship for the CCuanuat With a slope of 0.834 and a high
coefficient of determination (R?) of 0.94 during the growing period (Fig. 3.6a).
However, there were several underestimations from the ExG+Otsu method, which
would induce a decrease of the linearity of the relationship. Specifically, the values
of the CCgxc.-owsu after the DAT 24 were underestimated when compared to the
CCanual, thereby deteriorating the accuracy of the CC measurements (Fig. 3.6b).
Excluding the values after the DAT 24, the linear relationship between the plant
pixels segmented by the ExG+Otsu method and manual operation was improved by
a slope of 0.99 and an R? of 0.99.

The underestimation would be related to the vulnerability of the ExG+Otsu
35
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method to the saturated color index or reflections in tgetegion, which was
reported by other authors (Gar®Bteos et al., 2015; Riehle et al., 2020). As an
example, a growing lettuce image obtained from the DAT 25nvastigated (Fig.
3.7). The raw RGB image shows the lettuces were almostigll §.7a), so the
lettuce image segmented based on the ExG+Otsu shouldblfalblslowever, the
ExG+Otsu method counted the part of lettuces as the tmaokd) thereby making
holes in the lettuces (Fig. 3.7b).

The ExG calculation uses the color values. The veins outfecss reflecting
the light for the lettuce had color values close tai@vbolor, so they were regarded
as the background, not lettuces. As the result, the agcofdice EXG+Otsu
method was decreased after the DAT 24, as shown in Fig. 3.8 veiQule
saturation effect of the CC measurement appeared iatthgrowth stage, just
before harvest, so the application would be feasible derisg the fertigation
control would be necessary for the growing stage, not thes$iing stage. The

accuracy of the CC estimation was 98157 % until the saturation.
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Fig. 3.6. Relationships between the CCs of the lettuces determined by ExG+Otsu
method and the manual segmentation method during (a) the 27-day lettuce growing

period and (b) the 23-day lettuce growing period
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Fig. 3.7. An example of the saturated lettuce image obtained from the DAT 25: (a)
raw image; (b) ExG+Otsu based segmented image
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Fig. 3.8. Accuracy of the Cé€stimation during the cultivation. Error bars denote
the standard deviation of the analyzed images.

PLANT GROWTH MONITORING IN CLOSED HYDROPONICS

Fig. 3.9 shows the automated vision-based plant growtlitonimg system
could monitor the growth information of the growing legs during the cultivation
period. Although the holes induced by the saturateddestwere displayed in Figs.
3.9e and 3.9f, the increase of the lettuces according groiméng period could be
configured through the segmented images. In additiencalected images could
provide information on the spatial-temporal variationkettuce’s growth. Fig.
3.10 shows the spatial map of the CC on the growing bedAdrld, 16, 22, and
25. In DAT 11, the CCs of the lettuces at the left and riglgssof the bed were
slightly higher than the CCs of the top and bottom sideke bed (Fig. 3.10a).
The trend was consistent with the DAT 16 (Fig. 3.10b). Hawdte distributions
of the CCs in DAT 22 and 25 became different for the DA 16, indicating
the growth of the lettuces would be varied accordinggeagrowing positions
though the cultivation was conducted at the same be:dtzamber (Figs. 3.10c and
3.10d).

The spatial variation would be caused by the differaataulimates or light
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distribution in the growth chamber. In particular, the spatial variation might be
generated consistently in greenhouses or plant factories where the year-round
production is conducted. The results showed the on-the-go monitoring scheme
could detect the spatial variation during cultivation, thereby enabling the adaptive

crop management for the spatial variation.

Fig. 3.9. Panoramic images of the growing lettuces segmented from the
background: (a) DAT 1; (b) DAT 5; (c) DAT 11; (d) DAT 16; (e) DAT 22; (f) DAT
25
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Fig. 3.10. Spatial map of the CC on the growing bed: (a) DAT 11; (b) DAT 16; (c)

DAT 22; (d) DAT 25

In this study, an average CC of the growing bed was used as a representative
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growth parameter for the growing lettuces. The average CC obtained by the on-the-
go crop monitoring system shows the growth curve of the lettuces during the
cultivation period (Fig. 3.11). Although there were underestimations in the late
period, it happened in the harvesting time for the lettuces, so the CC measurement
by the monitoring system would be applicable in estimating the growth of the
lettuces as mentioned above. In addition, the similarity in error bars of the
measured CCs and the actual CCs indicated the spatial variation of the lettuces
could be observed by the system with the accuracy comparable to the manual

detection.

1.2
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1.0 1| —— CChanual
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Fig. 3.11. Changes in the average CC of the lettuces according to the growing days.

Error bars denote the standard deviation of the analyzed images.

EVALUATION OF THE CROP WATER NEED ESTIMATION
Fig. 4.11 shows the measured sensor data and the actual transpiration rate of the
growing lettuce during the cultivation. The temperature, relative humidity, and
radiation measured in the growth chamber were almost maintained at the constant
levels during the experimental period (Figs. 4.11a, 4.11b, and 4.11d). Resultingly,
the VPD, which was calculated from the temperature and relative humidity by
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equations 3.8 and 3.9, also showed almost constarg galing the period. On the
other hand, the transpiration rate measured by the dir¢bbthevas increased with
the growing day, which was similar to the trend of the C@qH.11e and 4.11f).
The results indicate the transpiration rate of thedet would be strongly affected
by the CC because they would uptake more water when theygre@vn. The
result was corresponding to the result in the previagyqt). W. Lee et al., 2013).
From the experiment, the light extinction coefficientpkthe growing lettuces
was determined as 3.318. Then, the regression paramedera énd b) were
calculated as 0.056 and 1.466, respectively, from the regmessalysis for the
actual transpiration rate based on the estimated CCharehvironmental
conditions (i.e., temperature, relative humidity, and tazhain the growth
chamber (Fig. 4.12a). Specifically, the regression cureeighed a highly linear
relationship with a slope of 0.91, coefficient of detemtiion (R) >0.9, and
standard error of the regression (SER) of <0.51 (Fi@b}.'herefore, the fitted
transpiration estimation model based on the plant-gravithmation was expected

to provide promising predictability for the water need ef ghowing lettuce.
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Fig. 3.12. Changes in the measured parameters during the cultivation: (a) air
temperature; (b) relative humidity; (c) VPD; (d) radiation; (e) CC; (f) actual
transpiration rates of three lettuces. Error bars denote the standard deviation of the
three lettuces for the measured transpiration.
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CONCLUSIONS

In this study, an on-the-go crop monitoring system foritodng the plant CC
and the ambient conditions was constructed.

From the real lettuce cultivation experiment, the ongbenonitoring system
showed a highly linear relationship between the measuaet grea pixels and the
actual plant area pixels with a slope of 0.99 and a coeftiofedetermination (B
of 0.99. In addition, the system proved the detectalfdit spatial-temporal
variations of the growing lettuces. The accuracy of 28.3% besides the
saturated period in estimating the CC showed the sysiald easily obtain the
CC of the growing lettuces, thereby estimating the croprwateds of the growing
plants for the entire bed based on the modified Pennmameith equation using
the ambient conditions consisting of the air temperatetative humidity, and
radiation.

The crop water need estimation model calibrated usimg@xperimental results
showed a highly linear relationship with a slope of 0.9dgefficient of
determination (B >0.9, and a standard error of the regression (SER).b6L<6r
the actual transpiration rate. Considering the highiraoy of the estimation
model, it would be feasible for precision fertigatioatthonducts the fertigation
based on the crop water need varying according to the lyaovd the
environments of the plants grown in hydroponics.

However, no consideration for the crop water need vgrgatording to the
growth stage would limit the system availability to onlg tlegetative growth of
the leafy vegetables. Specifically, the vulnerabilityref ExG-Otsu method to the
light conditions might make it difficult to segment thamtl area from the growing
bed under the greenhouses which have more dynamic ligitioms. Further
researches on the remote sensors and image processidgo@aaquired to assess

the crop water needs for more various plants and greemlappdications.
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* Note: Ji-Song Jiang provided technical assistancéh®rconstruction of the
XY camera-guided system. Dong-Wook Kim and Gyujin Jargeshtheir
knowledge for programming of the plant segmentation. ¥dong Yi helped the
manual plant segmentation. The system constructioninascfally supported by
the R&D center for Green Patrol Technologies, for KERbrea Environmental
Industry & Technology Institute), Republic of Korea. (E€I3184-0401-1). |

would like to express my sincere gratitude to their suppor
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CHAPTER 4. HYBRID SIGNAL-PROCESSING
METHOD BASED ON NEURAL NETWORK FOR
PREDICTION OF NO 3, K, CA, AND MG IONS IN
HYDROPONIC SOLUTIONS USING AN ARRAY

OF ION-SELECTIVE ELECTRODES

ABSTRACT

In closed hydroponics, fast and continuous measuremémdigidual nutrient
concentrations is necessary to improve water- and ntitrggnefficiencies and
crop production. lon-selective electrodes (ISEs) coaldie of the most attractive
tools for hydroponic applications. However, signal drifteratime and
interferences from other ions present in hydroponictisols make it difficult to
use the ISEs in hydroponic solutions. In this study, hydigdal processing
combining a two-point normalization (TPN) method for éflective compensation
of the drifts and a back propagation artificial neuravoek (ANN) algorithm for
the interpretation of the interferences was develoledddition, the ANN-based
approach for the prediction of Mg concentration wiheld no feasible ISE was
conducted by interpreting the signals from a sensor aomsisting of electrical
conductivity (EC) and ion-selective electrodes ¢€NK) and Ca). From the
application test using 8 samples from real greenhousehytitid method based on
a combination of the TPN and ANN methods showed relgtiog root mean
square errors of 47.2, 13.2, and 18.9ungwith coefficients of variation (CVs)
below 10% for N@, K, and Ca, respectively, compared to those obtained by
separate use of the two methods. Furthermore, the Mg poadiesults with a root
mean square error (RMSE) of 14.6-ng over the range of 10-60 rhg* showed
potential as an approximate diagnostic tool to measgr@Nydroponic solutions.
These results demonstrate that the hybrid method caowethe accuracy and

feasibility of ISEs in hydroponic applications.
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INTRODUCTION

Hydroponics is a cultivation method that grows planisgiautrient solutions
composed of water and nutrient salts without soil. Recentiroponics has been
widely and rapidly utilized in agricultural industribecause it is the most intensive
and effective production method that can be designedomosuyear-round
production with high yields and good qual{Barbosa et al., 2015b; P. Agung
Putra & Henry Yuliando, 2015).

Hydroponics is usually classified into open and cldyeds. In open
hydroponics, the nutrient solution flows through the grgaied and is discarded,
which can result in the pollution of ground- and surfaceen@&an Os, 1994; W
Voogt & C Sonneveld, 1997). In closed hydroponics, whickectd drainage
solutions and reuses these by replenishing water aridmatrthe use and
discharge of water and nutrients are less than for opgnognics (M. T. Ko et al.,
2013; Meric et al., 2011; Zekki et al., 1996). Therefore, a transition from open
hydroponics to closed hydroponics is seen increasingiy afue to the more
environmentally-friendly aspect of closed hydroportMsric et al., 2011).
However, current practices for closed hydroponics sdiiehseveral limitations, as
described below.

In closed hydroponics, the management of the resmletions is mostly
conducted by the conductivity and pH probes. Howetie probes can only provide
a total ion activity and pH, so the imbalance dfieat ratios may occur in reused
nutrient solutions due to the lack of informatidooat the individual ion
concentrationgDomingues et al., 2012; Gutierrez et al., 2007; D.-H. Jung et al.,
2019; N. Katsoulas et al., 2015; Dimitrios Savvas & Gizas, 2002). This makes the
crop quality and productivity decrease. Therefgrewers usually flush the nutrient
solutions and replace all solutions periodicalbspite the environmental pollution
and loss of fertilizers (Gieling et al., 2005).idugh growers can analyze the

individual ion concentrations of the nutrient smos by periodic laboratory analysis,
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a time delay between the sampling and the andigsts the instantaneous feedback
control of the nutrient solution compositivatthew Bamsey et al., 2012; Gutierrez
et al., 2008). In this regard, fast and continuoeasurement of individual nutrient
concentrations is necessary for the precise cavreof the reused nutrient solutions,
thereby allowing both improved efficiency of feg#ér use and reduced
environmental pollutioiW. J. Cho et al., 2017; Gutierrez et al., 2007; Vardar et al.,
2015).

lon-selective electrodes (ISEs) could be one of the ntinattve tools to
measure the individual ion concentrations of hydropeaiations due to their
advantages such as simplicity of use, fast response fireet theasurement of
analyte, sensitivity over a wide concentration range pamthbility (Heinen &
Harmanny, 1991; H. J. Kim et al., 2013; F Xavier Rius-Ruiz et al., 2014).
Specifically, the concept of a sensor array makes itfjles® simultaneously
determine individual ion concentrations in complex das\fJ. Gallardo et al.,
2005; Gutierrez et al., 2007; Mimendia et al., 2010). However, several
disadvantages of ISEs such as signal drift and distortioedo interfering ions
make the application for hydroponics diffic@W. J. Cho et al., 2017; Gieling et
al., 2005; Gutierrez et al., 2007; D. H. Jung et al., 2015). Therefore, it is essential to
develop an effective data-processing method to compefwahe signal drift and
interferenceBratov et al., 2010; Amy V Mueller & Hemond, 2016).

One such method is a two-point normalization (TPN) nektha@onjunction
with the use of the Nernst equation that consists ofisitbgty adjustment
followed by an offset adjustment applied to all of the sigtata measured with the
ISEs(D. H. Jung et al., 2015; H. J. Kim et al., 2017; H. J. Kim et al., 2013). In
previous studies, the TPN method was employed and stwbeméffective in
compensating for the signal drifts of a sensor arrayistimg of NG, K, and Ca
ISEs which were used for measuring hydroponic solutiong (@ho et al., 2018;

W.J. Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; H. J. Kim et
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al., 2017). However, the TPN method is relatively weak forrntexference
because the standard curve for the TPN is construcsed fwen the simplified
Nernst equation. The simplified Nernst equation assuhs®n-selective
membrane would be specific to the ion of interest, but¢heahmembrane
responds to other interfering ions. As a result, electtiveforces (EMFS)
generated from the ISEs are affected by the complex iomxnratrydroponic
solutions, thereby inducing errors in the ion conediuns predicted by the TPN
method. In addition, use of the TPN method is still limitecheasuring other ions,
such as P and Mg, present in hydroponic solutions, becausghiores for
selective recognition of the P and Mg with an acceptaitd e not yet
commercially available.

Considering the complexity of ions present in hydropooiat®ns, an artificial
neural network (ANN) would be a proper method for compémng&br the
interferences on ISEs because ANN conducts the progesfsion-linear
multivariate interactions based on knowledge storageéeamding and its property
of controlling the number of hidden neurons and hidden saymkes it more
flexible than other machine-learning technig(@sret et al., 2000; Gutierrez et al.,
2008; Amy V. Mueller & Hemond, 2013; Amy V Mueller & Hemond, 2016; Ni et
al., 2014). In addition, ANN could be utilized as a predictiw# tiorough the
reflection of inherent chemical relationships (AmyMueller & Hemond, 2013).
However, ANN is vulnerable to signal drifts. For example tslgan make the
signals different from the signals obtained during thiaitrg, then the predicted
ion concentrations by the ANN model would deviate fromdhbtual values. This
indicates that the ANN model would be difficult to uséS&E measurements
without the drift compensation (W. J. Cho et al., 2017).

Based on the complementary properties of the TPN and Althods, in this
study, we proposed a hybrid signal processing approacfettiedély compensate

for the signal drifts and interferences from other jahsreby improving the
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accuracy of ISEs in hydroponic applications. The speclfjectives of this study
were (1) to evaluate the hybrid processing method whempaced to the TPN or
ANN methods using a sensor array consisting of ion-se&etectrodes for
macronutrients (N€) K, and Ca) and an electrical conductivity electrode,(@hd
to investigate the possibility of an ANN-based predictioydel for Mg

concentration in hydroponic solutions, of which therefaw robust ISEs.

MATERIALS AND METHODS
PREPARATION OF THE SENSORARRAY

For the measurement of N@nd K ions, two different polyvinyl chloride
(PVC)-based ion-selective membranes were formulatesbbas the chemical
compositions previously reported (Table 41) H. Jung et al., 2015; H. J. Kim et
al., 2017; H. J. Kim et al., 2013). The ion-selective membrane solutions were
prepared by dissolving the chemicals with 2 mL of tetrabfynlan (THF) solvent.
The solutions were then poured into a 24-mm diameter gras48953, Sigma-
Aldrich, St. Louis, MO, USA) with a flat glass plate (48952 nsagAldrich, St.
Louis, MO, USA) and evaporated for 24 h at room temperatunervthe
solutions were evaporated, ion-selective membrane fileme wunched with a
diameter of 2.5 mm. The punched films were attached tonithe @& laboratory-
made plastic bodies of 44 mm length using THF solvena #sal step, the
internal solutions, consisting of 0.01 M NaiN®0.01 M NaCl for NQISEs, and
0.01 M KCl for K ISEs, were filled.

For sensing Ca ions, a commercially available Ca ISE (3@9BNWP,
Thermo Fisher Scientific, Beverly, MA, USA) was used. A dojjinhetion glass
electrode (Orion 900200, Thermo Fisher Scientific, Bgy®A, USA) was used
as the reference electrode for ISEs. In addition, a comaheamductivity probe
(Orion 013610MD, Thermo Fisher Scientific, Beverly, MA, USAgsremployed

to measure the conductivity of the test samples.
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Finally, the sensor array was composed of three ISEs fertN@e ISEs for K,
two ISEs for Ca, one reference electrode, and one condugtiaibe. It has been
reported that the ISEs prepared in the study are apldit@bhydroponic solutions
(W.-J. Cho et al., 2018; W. J. Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung
etal., 2015; H. J. Kim et al., 2017; H. J. Kim et al., 2013). The performance
characteristics of the ISEs reported in the previousestuade summarized in Table

4.2.

Table 4.1. Chemical compositions of fi@hd K ion-selective electrode (ISE)
membranes used in this stldy

Component NOs K —
Reager Compositiol Reager Compositiol
lonophore TDDA ég:g Valinomycin (4212:3
Plasticizer NPOE (1%7,:_;.755:29 Dos (123:10{;9
varx e 282 v 2
a:dc()jri]tii(i/e KTCIPhB (2?:3

" TDDA = tetradodecylammonium nitrate, DOS = bis(2-ethyhesgbacate,
NPOE = 2-nitrophenyl octylether, PVC = high-molecular-viaéigolyvinyl
chloride, and KTCIPhB = potassium tetrakis(4-chlorophgroyhte.

Table 4.2. Performance characteristics of the,MOand Ca ISEs reported in the
previous studies

Linear Range Det_ec_tlon Response Lifetime
Sensor (mgL-Y) Limit Time (s) (days) References
(mgL™)
NO; 3-1600 3 ~50 ~60 %I&Js' \?vhcz eé «';]1!.,
; W. J. Cho
K 3-700 3 =50 ~60  etal, 2017; D. H.
Ca 3-700 3 ~50 ~40 Jung et a|_' 201

CONSTRUCTION AND EVALUATION OF DATA-PROCESSING METHODS
Two conventional processing methods (TPN and ANN) weesl and compared
to validate the feasibility of the hybrid processing metfideiN-ANN). The

working principle of the TPN method is that individual stvity slopes of each of
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the ISE electrodes are normalized by multiplying the EMB& Oy the ratio of a
reference EMF difference to a measured EMF difference waia different
solutions with known concentrations of the primary iorregponding to the
electrodes. Offsets are then adjusted by subtractiore afiterence between the
highest reference point and the modified highest atration point (Fig. 4.1a).
The EMF data modified by use of the TPN method are apfai#te simplified
Nernst equation (eqg. 4.1).

EMF =E, + E; + S *loga; (4.1)
where b, E;, S, and aare the standard potential (mV), the liquid-junctioteptial
(mV), Nernstian slope (59.16/nV/decade change in concentration feOHat
25 °C and s the charge number of the response ion i), and the gaifvihe
response ion.

The parameters of calibration equations determineckiptivious study (D. H.
Jung et al., 2015), i.e., SpFand g, could be utilized because the compositions of
ISE membranes were the same (Table 4.3). The activityeabthwas assumed to
be equal to the concentration. According to the proesdiarprevious studies (W.-
J. Cho et al., 2018; W. J. Cho et al., 2017; D. H. Jung et al., 2015; H. J. Kim et al.,
2017; H. J. Kim et al., 2013), the TPN was carried out prior to each sample
measurement.

The structure of the ANN used in this study was a feeddawackpropagation
neural network, which consisted of an input layer, hiddeertayand an output
layer (Fig. 4.1b). The numbers of neurons in the input laygttlze output layer
were 9 (signals from eight ISEs and one conductivity prabd 4 (NG, K, Ca,
and Mg), respectively. Although ANNs with multiple hiddegyers and neurons
have a stronger generalization ability, the training tisnesually increased and
more samples are required to avoid an over-fitting isShai(et al., 2019).
Therefore, for the application of the ANN, the parameteANIN such as the

number of hidden layers or hidden neurons should bendieted carefully.
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The optimal numbers of hidden layers and neurons were deéstwia trial and
error method. Briefly, the number of input neurons was fixetDasnd the number
of hidden layers was set to 1, 2, 3, 5, and 10. Three replesaitts were then
obtained for each layer number and their root mean square ERMSES) were
calculated and compared to select the optimal numbeadadéh layers. Similarly,
the number of hidden neurons was tested using range® dit3with an interval of
2 because the neuron number is highly related to thecpabdity of the ANN
model [31]. The model performance was evaluated based GERMf three
replicate training results.

During the learning process, the learning rate of 0.01tenddvenberg

Marquardt algorithm, which is one of the optimizer algorghor avoiding local
minima and overfitting, were used (H. Yu & Wilamowski, 2pThe input data
(Xs) for ANN was rescaled (Xusing min-max scaling (eq. 4.2) to make each input

have equal meanings and dimensions for the neural network.

X, = X5~ Xmin_ (4.2)

Xmax—Xmin
where Xnin and Xnax are the minimum value and the maximum value of the input
dataset, respectively.

As a next step, a conversion of input values to output salas carried out to
calculate the interconnections between input valudatput values, which is
called an activation function. Due to the non-linearradBons among the ISEs,
non-linear activation functions such as the tanh (tar{Bigeman & Skapura,
1991) and rectified linear unit (ReL\()lara et al., 2015; Nair & Hinton, 2010)
were considered for the hidden layer. Specifically, théiejon of the tansig
showed the high accuracy in ISE signal processing in thopsestudy (Gutierrez

et al., 2007). However, the tansig function limits the outpnge as1to 1. As a

result, the output would be diminished when the hiddeerlaymber is increased,
thereby reducing the predictability of the ANN model.sTproblem is called the
“vanishing information problein (Kamimura, 2016). ReLU makes the output
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sparser so it can be effective in multi-layer neural networks (Freeman & Skapura,
1991; H. Yu & Wilamowski, 2011). Therefore, ReLU was used for the neural
networks of the hidden layers of 5 and 10.

After the determination of the parameters for the ANN, the original ANN was
trained using the raw EMFs from the sensor array. In the case of the hybrid
method, the ANN was applied using the EMFs after the TPN to achieve the drift
compensation for the enhancement of the signal processing (Fig. 4.1¢).

For the data processing, Python 3.7.3 programming language and several third-
party libraries were used. The performances of the constructed processing methods
were evaluated by the determination coefficients (R?) and RMSEs of the

correlation between the predicted concentrations and the actual concentrations.
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(b) ANN; (¢) hybrid method

Table 4.3. Calibration equations for jJ&, and Ca ISEs from the study of Jung et
al. (2015)

lon Calibration equation Coefficie.nt of Stz.inda.rd error of
determination (®)  calibration (SEC
NOs EMFyo; = —44.4 Xlog Cyps + 257.3 0.9t 10.€
K EMFy = 60.5 X log Cx —49.6 0.9¢ 6.1
Ca EMF., = 27.3 xlogCr, —50.3 0.9¢ 2.8

" C represents the concentration of the solution.

PREPARATION OF SAMPLES

Two-point normalization solutions and training sa@gplvere necessary to
generate the primary information for the model trainingji®f and ANN,
respectively. Referring to the procedure described by thaqurs study (Gutierrez
et al., 2007), 27 solutions were designed by a fractionalrfakctiesign with three
levels of concentration and four factors (N®, Ca, and Mg) using a commercial
statistical software (JMP, SAS Institute, Inc., Cary, NC, USAiefB, various
mixtures of the primary ions (NQK, Ca, and Mg) were prepared to have
concentrations of 100-1000, 30—300, 24—-240, and 10-100igr NGs, K, Ca,
and Mg, respectively, by adding the calculated stock sokitibammonium
nitrate, magnesium sulfate, potassium sulfate, and caldiloride to a base
solution. In order to generate training samples with a airhihckground of real
hydroponic solutions, a mixture of the modified Hoaglarydroponic nutrient
solution (Hoagland & Arnon, 1950) and tap water (/)] was used as the base
solution for the training samples. The samples of the lbleesls and the highest
levels of NQ, K, Ca, and Mg ions (i.e., 100 and 1000-mg, 30 and 300 md, %,
24 and 240 mg. 2, 10 and 100 md. ™%, respectively) were additionally prepared
for two-point normalization solutions.

For evaluating the feasibility of the processing methodsal hydroponic

application, a total of 8 samples were manually collefitet nutrient solution
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mixing tanks of various hydroponic systems (Table 4.4¢cBipally, the samples
had different compositions for six kinds of plants (k&lgactylodes japonica,
Glehnia littoralis beet, basil, and paprika), which spanned a wide range of ion
concentrations.

The actual concentrations of the samples were determjnedtandard soil-
water testing laboratory (National InstrumentationEarvironmental Management
(NICEM), Seoul, South Korea) using an ion chromatograp8-8G00, Thermo
Fisher Scientific, Waltham, MA, USA) with a low detectiomili of 0.05 mgL*
for NOs, and an inductively coupled plasma-optical emissioctspemeter (iICAP
7400, Thermo Fisher Scientific, Waltham, MA, USA) with @edé&on limit of 0.6
ug-L ™t for K, Ca, and Mg, respectively. The measured ion concentsatibthe

samples are shown in A2.
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Table 4.4. Hydroponic samples used in this study

Growing Hydroponic Nutrlgnt . .
Sample Period System Solution Sampling Sites
Recipe
Deep Flow Yamazaki's Experimental farm o
Basil 1 5 weeks Technique (DFT) hydroponic Seoul National
(closed nutrientsolutior  University (SNU
Nutrient Film  Otsuka House’s Slrrg%ﬁj{grg; ngiKe%rCeea
Kale 3 weeks Technique (NFT) hydroponiq and Technology
(closed) nutrient solution (KIST)
Yamazaki's Experimental farm o
Basil 2 5 weeks DFT (closed) hydroponic

nutrient solutio SNU

Otsuka House’s
Beet 5 weeks NFT (closed) hydroponic Smart farm of KIST
nutrient solutio
Hoagland’s  Plant factory of Jeju

Atractylodes

japonica 6 weeks NFT (closed) hydroponic National University
nutrient solutio (INU)
Glehnia Hoagland.’s
littoralis 1 8 weeks NFT (closed) hydroponic  Plant factory of JNU

nutrient solutio

Grodan’s
hydroponic Smart farm of KIST

Paprika 14 weeks Drip Irrigation

(open) nutrient solutio
Glehnia Hoagland’s Plant factory of
. . 6 weeks NFT (closed) hydroponic Chungbuk National
littoralis 2 d . ; .
nutrient solutio University

PROCEDURE OF SAMPLE M EASUREMENTS

In order to accurately and simultaneously obtainsiignals from the sensor array
and effectively apply the TPN prior to each samnmpé&asurement, a laboratory-made
automated test stand used in the previous studyses(W.-J. Cho et al., 2016).
The schematic diagram of the automated test ssasttbiwn in Fig. 4.2a. The test
stand includes a Teflon-based sensor array chamojogoped with a servomotor,
sample containers, a main computer system withrals@pnditioning data
acquisition board, a motor controller, discretespuee pumps for samples, and a
control box for pump and motor operation (Fig. 4.2b)

For each sample measurement, about 50 mL of sample solutson wa

automatically injected into the sample holder by theguee pumps and stirred by

59 11 © 11 =1



rotating the holder at approximately 30 rpm during dataecttin. Each test
sequence began with a rinsing of the electrodes by irtirnglthe distilled water
(DW). Sixty seconds after the sample injection, the sigofalse electrodes were
logged with the mean of a 1 s burst of 1 kHz data. After eachureraent, the
holder was rinsed with distilled water and the rotatiopaks was increased to
approximately 400 rpm to expel solutions centrifugdllye test sequence was
controlled by software developed based on LabVIEW (AB). &3 represents the
overall process of the sample measurements in this §those iterations were
conducted for the prepared samples and Excel 2016stist tools (Microsoft,
Redmond, WA, USA) were used to analyze the data. The spicifis of

components in the test stand are listed in Table 4.5
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Table 4.5. Specifications of components of the autontastdtand

Component

Specification

Manufacturer/Model

Data acquisition
board

A/D converter

Input channel: 16 bit analog input

Sampling rate: 250 k§'

National Instrument (TX,
USA), PCI-6221

Signal conditioner

Isolated analog input board for

ISEs
Input range: + 10 V
Gain: ]

National Instrument (TX,
USA), SCC-AI13

Pump

Diaphragm pump
Flow rate: 2-2.51 Imin™

Maximum pressure height: 8.2

kgficn?
Power: 24 VD(

KOTEC (Incheon, South
Korea), R-1305

Servo motor

Rotational speed: 0—3000 rpm

Power: 100 W

Mitsubishi (Tokyo, Japan),
HG-MR

Motor controller

Speed frequency response: 2.5

kHz
Encoder: 4,194,304 pulsev?!
Power: 200 VA(

Mitsubishi (Tokyo, Japan),
MELSERVO-J4

Digital output
controller

Pump relay control

Digital 1/0 channel: Bidirectional

5 VITTL 32 ch

National Instrument (TX,
USA), NI-9403

Solid state relay

Pump control

Input voltage range: 4~32 VDC
Output voltage range: 10~200

VDC

Woonyoung (Cheonan,
South Korea),
WYNSG1C205D4

RESULTS AND DISCUSSION

DETERMINATION OF THE ARTIFICIAL NEURAL NETWORK (ANN) STRUCTURE

The RMSEs according to the hidden layers and the hide@rons are shown in

Fig. 4.4. When the layer number was increased, the RMSEs pfediction was

increased (Fig. 4.4a). Specifically, the ANN with singledleid layer shows

significantly low average RMSEs when compared to the AdNtN multi-hidden

layer. Therefore, the optimization of neuron numbers wasucted using a single

hidden layer. In the same way, the number of neurons in therhidyer was

determined to be 14. The final structure of ANN used inghidy is shown in Fig.

4.5.
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Fig. 4.4. Trends of the root mean square errors (RMSEs) according to the number
of hidden layers (a) and hidden neurons (b). Error bars indicate the standard

deviations of three replicates (n = 3, Duncan’s multiple range test, a~c: p < 0.05,
A~D: p<0.01).
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Fig. 4.5. Diagram of the determined neural network structure for the ANN and the
hybrid method (w: weight value, b: bias)

EVALUATION OF THE PROCESSING METHODS IN TRAINING SAMPLES

In the training step, the performances of the ANN-based processing methods
(ANN and TPN-ANN) training and the TPN method were evaluated. The
prediction results according to the processing methods are shown in Fig. 4.6. In
NO:s; prediction (Fig. 4.6a), the TPN showed a linear and accurate prediction result
with R? 0f 0.99, a slope of 0.87, and a RMSE of 89.1 mg-L™". In the case of the

ANN and the hybrid method, there was no significant difference in the prediction
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results despite the lower RMSE of the hybrid methodNARR.3 mgL ™%, TPN-
ANN: 19.2 mgL ™). Specifically, the highly linear relationships with & 0.99
and slopes of 1.00 supported the proposition that therigamf the ANN
components would be well achieved.

The K prediction results showed similar trends fndfopes, and RMSEs (Fig.
4.6b). The TPN method showed a good prediction result witk? @f 0.99, a slope
of 1.01, and an RMSE of 9.3 mig™. In the ANN training, the RMSE was 26.3
mg- L%, which was slightly higher than the RMSE of the TPN. Howether R of
0.97 and the slope of 0.94 showed the training was corttlattn acceptable level
[29]. The TPN-ANN method showed improved training perfance with a Rof
0.99, a slope of 1.00, and an RMSE of 3.7l

In the Ca prediction results, it was remarkable that tilAased approaches
had more stable and linear responses when comparedTtBfhbased approach
(Fig. 4.6¢). Specifically, the TPN showed a linear relatigm with R of 0.82 and a
slope of 1.57, a RMSE of 93.0 rhg', which was relatively high considering the
Ca concentration of training samples ranging from 30 @rBgL . The ANN-
based methods showed better performances Wit @97 and slopes of 0.97 and

0.96, and low RMSEs of 18.0 and 18.9-mg for the ANN and the TPN-ANN

methods, respectively.

The Mg prediction result (Fig. 4.6d) was only achieved leyANN-based
methods because the TPN has no predictability in iotiewt a directly related
measurable sensor. The training results show that tiNeBaéed Mg prediction
had a slope of 0.29, &Rf 0.51, and a RMSE of 29.3 mig*. The result of the
hybrid processing method showed an improved slopearRl RMSE, which were
0.4, 0.69, and 24.9 myg ™2, respectively. Although the values are somewhat
subjective factors for evaluating the model performaitaeould be possible to
use the prediction model based on the hybrid method éaagproximate
quantitative prediction of Mg concentration accordingh criteria of the previous
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study (Baret et al., 2000). The correlation values between the predicted

concentrations with the actual concentrations are presented in Table 4.6.
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Fig. 4.6. Relationships between ion concentrations determined by the sensor array
with three data processing methods and standard analyzers: (a) NOs, (b) K, (c) Ca,
and (d) Mg. Error bars indicate standard deviations of three replicates.
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Table 4.6. Correlation between the predicted concentsatidth the actual

concentrations for N K, Ca, and Mg
Confidence Intervals for

lon P'r\ﬁgﬁ]sos(ijng - L|r.1ear . Regression Sloj Coefﬂcnem on RMSEEb]
elationship Lower 95% Upper 959 Determination (R (mglL )
TPN Y =0.87X +6.07 0.84¢ 0.88¢ 0.9¢ 89.1
NO, ANN Y =1.00X + 0.5 0.98¢ 1.01¢ 0.9¢ 22.¢
TPN-ANN Y =1.00X+2. 0.981 1.00¢ 0.9¢ 19.2
TPN Y =1.01X+0.2 0.98¢ 1.02% 0.9¢ 9.2
K ANN Y =0.94X + 7.1 0.88¢ 1.00¢ 0.97 26.2
TPN-ANN Y =1.00X-0.1. 0.99: 1.00i 0.9¢ 3.7
TPN Y =157X-624 1.36¢ 1.76¢ 0.82 93.C
Ca ANN Y =0.97X+6. 0.91¢ 1.0Z 0.97 18.C
TPN-ANN Y =0.96X +4.4 0.90¢ 1.01¢ 0.97 18.¢
Mg ANN Y =0.29X + 37.4 0.18¢ 0.39: 0.51 29.2
TPN-ANN Y =0.4X + 34.7' 0.30¢ 0.48¢ 0.6¢ 24.¢

" X represents the concentrations predicted by the pingasethods and Y

represents the concentrations determined by the staadalybis® RMSE =

N(#,—x)? . . .
le(xlTx‘); where X,: concentration estimated by ISE,;: actual concentration

determined by standard instruments, N: number of samplauneeasnts. TPN:

two-point normalization

APPLICATION OF THE PROCESSING METHODS IN REAL HYDROPONIC SAMPLES

After the training and evaluation of the processing netho laboratory-made
samples, the applicability of the processing methods&osénsor array was
validated by the prediction of the ion concentrations aff higdroponic samples.
Fig. 4.7 shows the ion concentrations of the real hydricpgamples determined by
the standard analyzers and the sensor array with & phocessing methods. For
NOs and K concentrations, the ANN-based prediction was Ezgate than the
TPN-based prediction. Specifically, the ANN-based pramtianade significant
deviations jp < 0.01) in most sample measurements comparing the actual
concentrations (Fig. 4.7a and 4.7b). The hybrid method (ARN) predicted the
concentration to be closer to the actual concentratioN©s; and K than other
methods, which indicated that the hybrid method improkedatcuracy of the
sensor array by effectively processing the signals.

When comparing the RMSESs obtained with the three mettiadde 4.7), even
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though the TPN showed lower RMSEs than those of the ANN (TPN: 75.4 and 19.8
mg-L!, ANN: 133.5 and 144.7 mg-L! for NO; and K, respectively), the hybrid
method (TPN-ANN) showed the best predictability with RMSEs of 47.2 and 13.2
mg-L™! and coefficients of variation (CVs) below 10% for NOs and K, respectively.
Moreover, in the Ca prediction (Fig. 4.7 and Table 4.7), the RMSE of 18.9 mg-L™!
obtained with the TPN-ANN was the lowest. In the Mg prediction, although the
error bars showed relatively high CVs (26.6% and 28.6% for ANN and TPN-ANN
methods), the Mg prediction results were almost comparable to the actual values,
implying that the TPN-ANN method would offer the potential for use in

hydroponic magnesium sensing.

1200

Y
<3
3

mm— Standard analysis mmm Standard analysis
mm TPN e TPN

1000 ANN 500 ANN
= TPN-ANN E = TPN-ANN

800

IS
S
3

600

©
S
3

400

N
o
3

NO, concentration (mg L")
K concentration (mg L")

200

=
3

o

AN \e A2 et 2 e N K v 2 WA e 22 et jc? A ¥ e 2
Basx\, ¥\ 335\\, B¢ 5.\3‘)0“:‘; \-\\\o@\‘s/ ?apr_\a“\\ma\\s/ 335\\/ a\ eas\\, 88 i a@“}a\\\\o‘a\‘s’ ?"‘9‘.:3\\%0‘3\‘5’
00e o o

[ o o

—
(Y

~
—
(=3
-~

pared o™

w
a
S

=]

3

e Standard analysis
s TPN

ANN

= TPN-ANN

Standard analysis

u

8
g
N
N

il

TPN-ANN

@
3

N
a
S

N

=1

5}
3
3

a

S
»
S

Ca concentration (mg L‘1)
5
8

Mg concentration (mg L)

@

S
N
S

ny

Y S

o

Ma‘*"\odesé
(c) (d)

i@ e e e 2
a?"“\a g \“o‘a\\s Pap‘\a \-“\ora\‘s
e o

Fig. 4.7. Comparisons of the actual concentrations with the predicted
concentrations by three signal-processing methods using 8 different hydroponic

samples: (a) NOs, (b) K, (c) Ca, and (d) Mg. Error bars indicate standard deviations
of three replicates.

Fig. 4.8 shows changes in EMFs obtained with two-point normalization

solutions (the high and low concentrations for NOs (Fig. 4.8a), K (Fig. 4.8b), and
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Ca (Fig. 4.8c), respectively) during the ANN training. Asvehan the figures, the
EMFs were varied over time, indicating the need for corsaiamy for sensitivity
and offset changes over time. In addition, the EMF differeab&sned with the
low and high concentration solutions, i.e., sensitivitie,e nearly constant,
implying that the use of the two-point normalization mdtivmuld be effective in
minimizing the signal drifts of all of the tested ISEs dgrine measurement. This
confirmed a reason of worse predictabilities of the ANMpared to those
obtained with the TPN and TPN-ANN methods might betedl#o no use of the
TPN.

Table 4.7. Comparison of processing methods to prediet KiGCa, and Mg
concentrations in hydroponic samples

. Conc. Range . Accurac Precision
Predicted lon (mgL) 9 Processing Method (RMSE, mg{‘l) (CV 1, o)
TPN 75.4 1.1
NOs 120-1025 ANN 133.F 17.¢
TPN-ANN 47.2 2.€
TPN 19.¢ 2.4
K 13-430 ANN 144 30.1
TPN-ANN 13.2 4.€
TPN 48.¢ 3.2
Ca 0-210 ANN 26.1 13.¢
TPN-ANN 18.¢ 6.€
TPN Not measurab
Mg 10-60 ANN 29.4 26.€
TPN-ANN 14.¢ 28.€

Ny _ 2
&l cv = % x 100; SD = /E‘m;+l’"’”e);where %,: concentration estimated by

ISE, Xsampie: @verage concentration estimated by ISE for each sampleinten

of sample measurements, average concentration of N measurements
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Fig. 4.8. Representative electromotive force (EMF) values showing drifts of (a)
NOs, (b) K, and (c) Ca ISEs from two-point normalization during the measurement
(‘Low’ and ‘High’ in legends indicate the EMF values from the low and high
concentrations of two-point normalization solutions, respectively).

In this study, we suggested a hybrid signal-processing method to improve the
accuracy and feasibility of ISEs in hydroponic application by effectively
compensating for the signal drifts and interferences from other ions.

The optimization results of the number of hidden layers showed a single hidden
layer ANN had the lowest RMSE for NO;, K, Ca, and Mg prediction (Fig. 4.4a). In
actual fact, the ANN models with more hidden layers do not guarantee better
performance than those with fewer layers if the number of hidden layers is
sufficient for the given non-linear problem (J. Yu et al., 2019). Similarly, the
performance of the ANN model was not increased according to the number of
hidden neurons (Fig. 4.4b), as reported in the previous study (Baret et al., 2000).

In the training sample measurements (Fig. 4.6, Table 4.6), the application of the
TPN showed a strongly linear relationship with R? of 0.99 despite a slight

underestimation of NO; concentrations between the actual and predicted
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concentrations similar to that reported in previousistu@W.d. Cho et al., 2018;

D. H. Jung et al., 2015; H. J. Kim et al., 2017). This might be caused by signal
interferences from other ions, such as Cl andiS8@aining samples. Moreover,
TPN-based Ca prediction has a deviated slope of 1.57, whigit be due to the
presence of Mg ions, which have a similar chemical beh&viGa ions (Saurina et
al., 2002). The cross-interference would affect the Nemst@pe, thereby
inducing inaccuracy in prediction (Wang et al., 2017).

To solve the interference issue, the ANN, which would ptssitimpensate for
the interfering responses by training the various backgte, was employed and
improved the performance of the actual test (Fig 4.6a&1). It supports the
theory that ANN would be effective for the non-lineaterference by adjusting the
relationship as reported in the previous studi#mi et al., 2019; Gutierrez et al.,
2007, 2008; Amy V. Mueller & Hemond, 2013; Wang et al., 2017). In addition, we
applied the ANN to predict the Mg concentration becausexpected the ANN
would extract the signals from the Mg ions through thaingiwith defined
background samples. Although the results were not aetisl (Fig. 4.6d, Table
4.6), the ANN-based models could be used to discrimimetigeen high and low
concentrations of Mg according to the criterion of thevjmus study (Saeys et al.,
2005).

In real sample application, the TPN-ANN was the best psirogsnethod,
followed by TPN and ANN (Fig. 4.7, Table 4.7). As mentioabdve, the Ca
prediction by the TPN was vulnerable to interferendéihough the TPN made Ca
predictions more precise than the ANN in several samplgs,Basil 1,
Atractylodes japonica, Glehnia littoralis, andGlehnia littoralis 2, relatively high
variations in Ca predictions depending on the sampleseshtvat the TPN could
be affected by the changes of background ions. In contragtNiNebased
methods were effective in managing the interferentestual tests, showing they

were less affected by the samples in most cases (Fig. 40tegvdr, the ANN
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method showed high RMSEs in the predictions og§NQ and Mg. The main
reason for the errors in the ANN-based prediction wbeldiue to the signal drifts.
This limitation of the ANN was similar to the results ef/eral studies (Baret et al.,
2000; Gutierrez et al., 2007, 2008).

The TPN method proved its effectiveness in drift comaeois with improved
accuracy. However, there were deviations in Ca predictiifas to those in the
training sample measurement, which could be due to théeireece by the
various background ions.

The hybrid method showed the best predictability in redidyyonic sample
application by successfully combining the strengths ®ftAN and the ANN, as
expected. It meant the hybrid method could compensatedaidhal drifts and
then calculate the concentrations considering the ineas influences from the
interference through the neural network. As a resulthyteid method improved
the accuracy and the precision of the prediction ofdheodncentrations with the
lowest RMSEs of 47.2, 13.2, and 18.9-mgand CVs below 10% for NQK, and
Ca, respectively.

In Mg prediction, the RMSE of 29.4 mig* in the ANN-based prediction is high
considering the range of 10-60 g in real samples. However, by applying the
hybrid method, the RMSE of the prediction was reduced to 1¢-16
Considering the lack of the ISEs for the direct measenemmf Mg, it would be
possible to improve the predictability by adding more 18fi&h are more closely

related to the Mg ion.

CONCLUSIONS

In this study, a hybrid signal-processing approach contpithie TPN and the
ANN was proposed to improve the applicability of the I8ERydroponics by
effectively managing the signal drift and the intenfee The parameters of the

method were optimized by the 27 training samples, whictaied the hydroponic
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background. The feasibility and the performance of the odetvas validated
through eight of the real hydroponic sample application

From the results, the conventional processing methardsas the TPN and the
ANN were sometimes unsatisfactory for prediction ofithieconcentrations in
hydroponic samples due to their vulnerability to therfatence or the drift. The
hybrid method improved the RMSEs to 47.2, 13.2, 18.9, and 1gil6 ywhich
were approximately half the values of the conventionghaus, with CVs below
10% for NQ, K, Ca, and Mg, respectively. Furthermore, the hybrid method
showed potential as an approximate diagnostic tool fppkédiction despite the
lack of direct Mg ISEs in the sensor array.

The structure of the hybrid method can be utilized fundaatigrior other ISEs.
Therefore, the TPN-ANN method was proved to be pogsiloil use in the ISEs to
measure the individual ions in hydroponic solutions &hiinimizing the effects of
signal drifts and the interference. However, the inpreriaf nine sensor nodes
could impose the use of the sensor array that were pgrégettated. On the
contrary, the TPN can be used for each ISE and showed theréeston.
Considering the long-term monitoring of the ISEs in hpdrdc solutions, the
stability and the reliability would be more importanhefefore, the TPN was

chosen to be more feasible approach for the ISE arrapétigf the practical use.

* Note: Young-Yeol Cho, Jeju National University, MyungsivMDh and Moon-
Sun Yeom, Chungbuk National University, and Soo Hyun ParklanBok Park,
Korea Institute of Science and Technology (KIST) don#techydroponic samples
used in this study. The development of the automattdtand was financially
supported by the R&D center for Green Patrol Technatodoe KEITI (Korea
Environmental Industry & Technology Institute), Repalf Korea. (E614-00184-
0401-1) and the Rural Development Administration, Répuif Korea
(PJ01385203201901). I would like to express my sincextggle to their support.
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CHAPTER 5. DECISION TREE-BASED ION-
SPECIFIC NUTRIENT MANAGEMENT
ALGORITHM FOR CLOSED HYDROPONICS

ABSTRACT

The maintenance of ion balance in closed hydroponutisalis essential to
improve the crop quality and the recycling efficiency @ tlutrient solution. In the
last decade, the ion-specific nutrient monitoring basethe ion-selective sensors
has been implemented and shown potential in hydropppiccations. However,
the absence of the robust ion sensors for several noaj@siuch as P, Mg, and §0
and the coupling ions of the fertilizer salts make it diftito efficiently manage
the nutrient ions based on the measured ion condensat herefore, it is
necessary to develop an effective calculation procederimulating optimal
compositions of fertilizer salts to replenish the reay¢igdroponic solutions while
minimizing the accumulation or deficiency of the ionsethare not measurable.
In this study, a decision tree-based closed control metiasdleveloped to
calculate the optimal volumes of individual nutrietatck solutions to be supplied
based on the measurement of present concentrationsixing tank. In a five
stepwise test with the varying target concentrationshamdent solution volumes,
the system formulated the nutrient solutions accordirtbe given target with the
average relative errors of 10.6 £8.0%, 7.9 +2.1%, 8.0 +11ad%h4.2 +3.7%,
respectively, for the Ca, K, and M&ncentrations and volume of the nutrient
solution. The closed control logic conducted in the Caged management
scenario showed more accurate ion-specific managenmerd Wwe possible,
reducing the relative errors of Ca concentration atgihve from -10.2% and -

1.5% to -1.5% and -0.6%, respectively.
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INTRODUCTION

When dealing with closed hydroponic solutions, the reaiance of ion balances
in nutrient solutions is fundamental not only to ensheggroductivity and quality
of crops, but to elongate the recycling period of the nutselution for reducing
the water and nutrient discharge, thereby allowing mavaauic and
environmental benefit®atthew Bamsey et al., 2012; Sambo et al., 2019).

Most soilless cultivation systems replenish the nutigefution based on the pH
and electrical conductivity (EC) of the solutions, whichrezrcope with the
varying concentrations of individual iofGloutier et al., 1997; Domingues et al.,
2012; N. Katsoulas et al., 2015; Kozai et al., 2018; Son et al., 2020). However, the
ion-specific nutrient management based on the ion{dedesensors has been
investigated and showed potential in hydroponic apjidica (Matthew Bamsey et
al., 2012; Gieling et al., 2005; Gutierrez et al., 2007, 2008; D.-H. Junget al., 2019;
D. H. Jung et al., 2015; H. J. Kim et al., 2013; F Xavier Rius-Ruiz et al., 2014;
Vardar et al., 2015). Furthermore, several studies repdntedetvelopment of the
automated nutrient management system using ion-selet¢éiggodes (ISEs) that
could measure the concentrations of individual iorsyifroponic solutions and
dose the nutrients according to each deficient (#d. Cho et al., 2017; Gieling
et al., 2005; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; Xu et al., 2020). These
are important developments that could allow both impr@fédiency of fertilizer
use and increased time of use of the nutrient solutiologed hydroponics.

However, it is difficult to conduct the ion-specific na@ment exactly because
there are few robust ISEs for several major ions suchMg,RAnd SQ In
addition, the commercially available nutrients consistafpled ions, thereby
limiting the fully independent ion replenishment for hymaic solutions (W. J.
Cho et al., 2017; D.-H. Jung et al., 2019; D. H. Jung et al., 2015; H. J. Kim et al.,
2013).

In the previous studies, two types of dosing algorithms vwegreesentatively
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applied to automatically calculate the amounts afkstautrient solutions to be
supplied based on the measured ion concentrations. Geesysed a simplex
algorithm with a set of given constraints to determindrifeetion volumes of
stock solutions simultaneouglg De Rijck & Schrevens, 1994; Gieling et al.,
2005; D. H. Jung et al., 2015). However, this approach was often impossible to find
a final solution of the calculation due to the presendbetoupled ions in the
fertilizers, thereby leading to the deviated concentnatfioom the target values and
there was no consideration of the important nutriemt guch as P and Mg.
Another dosing algorithm was based on the sequentiallatitm based on the
pre-determined priority of the ioff®. J. Cho et al., 2017; D.-H. Jung et al., 2019).
It employed six fertilizers to mitigate the problem otdepled replenishment
among nutrients and manage the P and Mg ions by applyirag koacentration
ratios related to Noand Ca ions, respectively. However, the system could not
flexibly respond to the low changes of Néhd Ca, so the P and Mg ions were
gradually diminished. Also, micronutrients including Fa, Zu, etc., were not
considered. It is thus important to develop an imprdeetilizer dosing algorithm
that can maintain the individual ion concentrations at¢leired levels while
minimizing the accumulation or deficiency of the ionsethare not measurable.
The main purpose of this study was to develop an ion-speldfiing algorithm
that can conduct efficient dosing operations by deteng the proper amount of
fertilizers while minimizing the coupled injection thfe nutrient ions. The specific
objectives were (1) to build a decision tree model baksgd control method with
the NQ, K, and Ca ISEs for the sequential decision of the operéitne for each
individual fertilizer and (2) to evaluate the effectiess of the developed algorithm
by applying the algorithm to an automated nutrient managesystem and

conducting validation tests.
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MATERIALS AND METHODS
DECISION TREE-BASED DOSING ALGORITHM

In hydroponics, all essential nutrients are supplied agenusolutions made by
dissolving fertilizers in water. Fertilizer salts candigsolved as more than two
ions, the relative proportion of fertilizers should besidared. The use of various
fertilizers would be helpful to flexibly control thedividual ion concentrations, but
there are several practical issues. For example, the soipply ions cannot be
decoupled from the NfDbecause there is no other available fertilizer salt{Res
2016). In addition, add-up of the fertilizers would requirgergpace of tanks and
increase the complexity of the calculation and systeanadipn. Therefore, a total
of seven fertilizers consisting of Ca(N@4H.0, KH.PQs, NHsH2POQs, KNOs,
NH4NOs, MgSQr- 7H,0, and kSQ, were selected as the stock solutions to have at
least two salts for each ion besides the Ca and Mg. Tinreipyiority of the ions
was determined based on the universal nutrient solaatculation method, i.e.,
Ca>P =K >N@> NH, (Sonneveld et al., 1997).

In order to calculate the proper mass of the fertilizes $&lsed on the given ion
concentrations and the priority, a decision tree was useddécision tree method
is a machindearning method for constructing a series of dichotomous
classifications (Namazkhan et al., 2020). The decisioraigggithm makes tree-
shaped diagrams with a number of branches with decisioleahdodes. Each
decision node has a predictor variable to obtain a pranger answer for the given
variable, and the leaf node shows the final optimizedtresder the framework of
the decision tree model. The decision tree-based dogjogtam consists of three
parts. The first part is the calculation of the amsurfitmajor ions considering the
current nutrient solution volume, the target nutrieftsan volume, and the ion
compositions in water (eq. 5.1). The 8®not considered because it is hot harmful

to crops (Sonneveld et al., 1997).
NCa = TCa X Vtarget - DCa X chrrent - WCa X (Vtarget - chrrent)
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Ng = Tg X Viarget = Dk X Vewrrent — Wi X (Vtarget - chrrent)

Nyo3 = Tnoz X Viarget — Dnoz X Vewrrent — Wioz X (Vtarget - chrrent)

Nypsa = Ry-n X Nyo3 — Wypa X (Vtarget - chrrent)

Nug = Tug X Viarget = Cmg X Vewrrent = Wug % (Vtarget -
chrrent) ,Or Reg-mg X Neg — Wiyg X (Vtarget - chrrent)

Np = Tp X Viarget = Cp X Vewrrent — Wp X (Vtarget — Veurrent ), OF Ry_p X
Nyoz = Wp X (Vearget = Veurrent) (5.1)
where

Nx = amounts of ions (x = Ca, K, NCNH., Mg, or P) to be replenished (mg)

Tx = target concentrations of ions (x = Ca, K, {NNH., Mg, or P)

Dy = concentrations of ions (y = Ca, K, or Bj@etermined by ISEs (mig?)

Wy = concentrations of ions (x = Ca, K, BJ®IH4, Mg, or P) in water
determined by standard analyzers (mb

Viarget= target volume of the nutrient solution in the mixing<tén)

V curent= current volume of the nutrient solution in the mixingktén)

C; = concentrations of ions (z = Mg or P) determined by thelsral
instruments

Rn-n, Rea-mg, Rn-p = absorption ratios of N30 NH,, Ca to Mg, and Neto P

In this study, the absorption ratio of 0.029 was used fo-NI, based on the
previous study (D Savvas et @006; Sonneveld et al., 1997). The relationships
between P and Ndons and between Mg and Ca ions could be set as 0.0108:1 and
0.5882:1, respectively.

The next part is the decision tree-based calculatidheofequired amounts of
fertilizer salts while minimizing the over injection. Fi§1 shows the calculation
steps of the decision tree-based approach. There attee®s in the algorithm.

One is to calculate the proper mass of the MgJS@H.0O. There is only one salt

for replenishing the Mg, and the injection of the Mggs@H-O does not affect
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the other nodes, so the tree is operated independerglys(Ea).

Another tree is for calculating the amounts of the othiés,gae.,
Ca(NG)2'4H,0, KHoPQu, NHsHPQw, KNOs, NHsNO3, and KSQO,. The salts in
the second tree are interconnected with each other, s@éheategorizes the salts
according to the determined priority. Then, the calcutabiothe amounts of the
salts is achieved sequentially. For example, if the Wék required to be
replenished, the amount of the MHPO, would be calculated based on the needed
mass of the NiH The next node then assesses the effect of the cattalateunt of
the NHiH2PQyin H2PQ. If there was no over-dose oDy, the NHH2POy would
be injected as the calculation. If not, the amount oNHeHPOu to be supplied
would be re-calculated based on the required amount &f:#@,, because the
priority of the P is higher than the MHn this case, the second final amount of the
NHsH-PQ: would be supplied rather than the first final amount efiiisH2P Q..
In the same manner, the amounts of the other salts coctdddated by the
decision tree-based approach (Fig. 5.1b).

After the amounts of the salts to be supplied were detedmine running time

of the pump corresponding to each fertilizer salt was onéthby eq. 5.2.

_ My
X T CuxDy

(5.2)

where
x = Ca(NQ)2-4H,0, KH,PQi, NHsH-PQ,, KNOs, NHsNOs, MgSQ;- 7H.0, or
KoSOQ

« = running time of metering pump for stock solution ofiliegr salt, x (s)
My = mass amount of stock solution of fertilizer salt, x (mg)
Cx = concentration of stock solution of fertilizer sal{nxgL™)
Dy = discharge volume of metering pump for seven stock sakitbfertilizer salts
(L-sY

The final part of the dosing algorithm is for the microrarits and water

replenishment. Currently, there are few commercially alséelionophores for
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micronutrient ions, so the replenishment of the miatoents is carried out by
injecting the micronutrients proportional to the diffece between the target

volume and the current volume of the nutrient solution (6. 5

P, = CnX(Vearget=Veurrent) (5.3)
D
where

Pm = running time of metering pump for concentrated soludfomicronutrients (s)
Cm = multiple of concentrated solution of micronutriemtglte final working
concentration (dimensionless)
Dm = discharge volume of metering pump for concentratedisolof
micronutrients (Ls?)

Then, the volume of water to add could be obtained by subgabt total
volumes of the stock solutions and the concentrated mittient solution from
the difference between the target volume and themwvotume of the nutrient

solution (eq. 5.4).

PW — Vtarget_chrrent_Z Vstock solution for x~Vm (54)
Dy
where

x = Ca(NQ)2-4H,0, KH,PQi, NHsH-PQs, KNOs, NHsNOs, MgSQ:- 7H.0, or
KoSOQ

Pw = running time of metering pump for water (s)

V stock solution for x= VOlume of stock solution of fertilizer salt, x to add (L

Vw = volume of concentrated solution of micronutrients to add

Dw = discharge volume of metering pump for wates{)
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NH,H,PO, injection:
NHy requirea X NHsH,PO, INH,

NH/H,PO, injection (final2):
> 4H,PO,
HaPOy injected > HoP Oy required? NHy requires X NH;H,PO, INH,

HoPO4 required, 2 = H2POs requirea - H2PO4 injectea

NHy over =NHy injected - NHa requirea
NH H,PO, reduction:
NH, over X NHsH,PO, /NH,4

NH,H,PO, injection (final2):
NH{ requirea X NH4H,PO, /NH,
- NHj over X NH;H,PO, INH,

KH,PO, injection:
H,POy required, 2 X KH,PO, /H,PO,

K injectea > K requirea?

K over = K injected - K required

KH,PO, reduction:
K over X KH,PO, /K

K required, 2 = K required = K injectea

KH,PO, injection (final1): L o . .
- 7 i KH,PO, injection (final1): KNO,; injection (final1):
ROt o " | [ H;Po.mgx.wo‘m;ro;J [ vt 2 X KNO3 K }

€A target > Cameasured?

Ca(NO;),-4H,0 injection
(final1):
Calyequired X Ca(NO;),"4H,0/Ca

Ca(NO,) -4H,0, injection
(final1):
0

NO; required, 2 =NO3 required = NO3 injectea

l NOs raqurea, > =NOs raqure, 2~ NOs e

Yes No
NOj injectea = NO3 required, 27

KNO injection (final2): NH,NO injection (final1): NH,NO; injection (final1): K,SO, injection (final1):
NO; required, 2 X KNO3 NO3 0 NH requred, s X NHNO3 INO; | [

K required, 3 =K required = K injecte

K;SO0; injection (final1):

K required, 3 X KoSO4 /K

Fig. 5.1. Decision tree model for calculating the amounts of the fertilizer salts to be
replenished, for Mg(SO4),-7H,0 (a) and other salts (b). The Xinjectea (X: NHa,
H,PO., K, or NO;) represents the injected amount of the ion by the previously
injected salt. The node including ‘final’ indicates the leaf node, and the higher

number behind the ‘final’ means the result would be a more appropriate amount of
the salt.
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DEVELOPMENT OF AN |ON-SPECIFIC NUTRIENT MANAGEMENT SYSTEM

The ion-specific nutrient management system should Heveapability of
automatically measuring the ion concentrations of thigemi solution,
replenishing the nutrient solution considering the ioaed, and supplying the
managed nutrient solution to the growing bed. In this sthdyian-specific
nutrient management system was constructed for the NdwWirgy bed described
in Chapter 3.

Fig. 5.2 shows an overview of the developed ion-specificemi
management system and the specifications of the systelistad in Table 5.1.
Relating to solutions used by the system, a nutrient migink and twelve
reservoirs for the seven stock solutions, one micronusternk solution, one pH
control solution, water, and the two-point normalizasofutions were imposed
(Fig. 5.2a). For the two-point normalization, two mixed 8ohs containing N@
K, and Ca ions at two different concentrations, i.e., 100 arad higyL 2, 30 and
300 mgL™, and 26 and 260 g™, respectively, were prepared based on the
composition of the modified Hoagland’s hydroponic nutrgsiution to minimize
the background effects from the real hydroponic solutf@ghg. Cho et al., 2019;
Hoagland & Arnon, 1950). The ion concentrations of th@gmed stock solutions,
pH control solution, and the two-point normalization Sohd are displayed in A4.

To check the volume of the nutrient solution tank, a refleatltrasonic water-
level transmitter (EchoPod UGO01, Flowline, Inc., CA, USA) wasaitled on the
mixing tank (Fig. 5.2a).

For the two-point normalization, sampling, drainage, andtibek solutions,
peristaltic pumps were employed due to the advantaghsasuganitized transport
of the fluid, self-priming operation, absence of backflovd high repeatability
(Klespitz & Kovéacs, 2014). The flow rate of the peristattump determines the
minimum injection volume, which is important because directly related to the

accuracy of the replenishment. Therefore, the flow ratéise pumps for stock
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solutions and water were determined to have the relatree from the minimum
injection volume less than 0.1%, considering the conggomns of the stock
solutions were prepared as 20,000 Img and the multiple of the concentrated
minor elements solution was 200. Furthermore, novoprdriag, which is
resistant to chemicals, was employed for the injectiongsu(SR10/50, ASF
THOMAS, Puchheim, Germany) for fertilizer salts (i.e., CagN@H.O, KH.PQ;,
NH4H2PQi, KNOs, NH4NO3, MgSQy 7H0, and KkSQy), micronutrients, and acid,
considering their high concentrations. Similarly, PhatN8®T tubing was applied
to the pumps for the two-point normalization solutionsaibage, sampling, and
water pumps used silicone tubing because there wetwebldow concentrations
of ions.

For the gquantification of NGnd K ions, ISEs using two different polyvinyl
chloride (PVC)-based ion-selective membranes werectied according to the
chemical compositions and procedures reported ipriangous studies (W. J. Cho
etal., 2017; D. H. Jung et al., 2015; H. J. Kim et al., 2013) (Chapter 4). For the Ca
ions, a commercially available Ca ISE (Orion 9320BN, TleFisher, MA, USA)
was used. Finally, an array of ISEs composed of three ISBigrthree ISEs for
K, two ISEs for Ca, and one reference electrode was instaledample chamber
to measure the ion concentrations of nutrient solutddeuble-junction electrode
(Orion 900200, Thermo Fisher, MA, USA) was used as the referelectrode. To
minimize the residual solutions after the drainage, whachidcinduce errors in
measurements, the bottom of the sensor array chamber vigrisedie® have a
slope of 15° for more clear drainage (Fig. 5.2c).

An isolation circuit board (NI SCC-AI13, National Instrants, TX, USA) was
used to buffer the impedance of each electrode, and ffeedulisignals were
collected by a data acquisition board (NI PCI-6221, Natimséruments, TX,
USA). Also, an in-line EC probe (HI7635, Sistemes Elett® Progrés S. A.,
Lleida, Spain), a pH probe (HI1001, Hanna instruments, RI,)U&#d a
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transmitter (TK4S, Autonics, Busan, South Korea) with a PT100 were employed
for the EC, pH, and solution temperature measurements, respectively (Figs. 5.2a

and 5.2d).

(a) : - g .E
\ : i Nutrient solution mixing tank
' 3 i with an water level sensor i

R ——) =

<,

Supplyi 'ur'ﬁp and
EC/pH probes

Stock solutions, pH control
solution, and two-point
normalization solutions

Nutrient solution
temperature dlsplay s—

Water tank and pump

Control box Il

Supplylng pump

Twé-pint normaliz2
sampling/drainage p
N

Stock solution injection

U I

Fig. 5.2. Views of the ion-specific nutrient management system: (a) overview of the
constructed ion-specific nutrient management system; (b) internal view of the
control box [; (¢) Sample chamber and sensor array of the system; (d) Supplying
pump and pipe with an in-line EC probe and a pH probe
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Table 5.1. Specifications of components of the lon-sgecifinagement system

Component Specification Manufacturer/Model
Samole chamber A chamber of Poly(methyl Megascience (Seoul, South
P methacrylate): 100 n Korea), Sensor chamt

K ISE

Measuring range: 3-700 mg*L
Detection limit: 3
Response time: ~50s
NO; ISE
Measuring range: 3-1600 mg*L
Sensor array  Detection limit: 3
Response time: ~50s
CalSE
Measuring range: 3-700 mg*L
Detection limit: 3
Response time: ~50s
Reference electro: Double-junctior

K, NOs: Laboratory-made
Ca: Thermo Fisher Scientific
(MA, USA), 9320BN
Reference: Thermo Fisher
Scientific (MA, USA),
900200

Flow-thru EC monitoring
Automatic temperature

EC probe compensation: 0-50 °C
EC reading range: 0-20.0 dS*m
Max. pressure: 5.1 k-cm?

Sistemes Electronics Progrés
S. A. (Lleida, Spain),
HI7635

Flow-thru pH monitoring
pH probe pH reading range: 0-14.0 pH
Max. pressure: 6.1 k-cm?

Hanna instruments (R,
USA), HI1001

EC/pH pH/EC output range: 4-20 mA
transmitter Power: 12 VDC

Sistemes Electronics Progrés
S. A. (Lleida, Spain), pH/CE
transmitte

Transmitter with a PT100 probe
Temperature Temperature range: -50-150 °C
sensor Output range: 4-20 mA
Power: 220 VA(

Autonics (Busan, South
Korea), TK4S

Peristaltic pump
Two-point Flow rate: 0.037 L-mih
normalization Tubing material: PharMed BPT
pumps Inner tubing diameter: 1.5 mm
Power: 24 VD(

ASF THOMAS (Puchheim,
Germany), SR10/30

Peristaltic pump

Flow rate: 0.22 L-mih

Tubing material: Silicon

Inner tubing diameter: 1.6 mm
Power: 24 VD(

Sampling &
drainage pumps

ASF THOMAS (Puchheim,
Germany), SR10/50

Peristaltic pump

Flow rate: 0.1 L-mird

Tubing material: Novoprene
Inner tubing diameter: 1.6 mm
Power: 24 VD(

Stock solution
pumps

ASF THOMAS (Puchheim,
Germany), SR10/50
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Table 5.1. (Continued)

Component Specification Manufacturer/Model
Peristaltic pump
Wa_\ter F'OV.V rate: 0'5.25. L:F“““ BOXER (Ottobeuren,
replenishment Tubing material: Silicon Germany), QQ15
pump Inner tubing diameter: 4.8 mm '
Power: 24 VVD(
Centrifugal pump
Nutrient Flow rate: 33.3 tmin? Hwarang System Co., Ltd.
solution Maximum pressure height: 10.19  (Incheon, South Korea),
supplying pump kgf-cnr? PP50Y

Power: 3PH 380 VA

Main control
system

CPU: 3.4 GHz (i7 4770, Intel)

Memory: DDR3 8gb Hewlett-Packard (CA,
OS: Window 7 USA), EliteDesk 800 G1
Main program: LabVIEW (v2015, TWR

National Instruments, TX, US,

Solution tanks

Korea First Safety (Incheon,
South Korea), 5L HDPE (hig
density polyethylene) tai

Two-point normalization solutions (5
L for each)

Korea First Safety (Incheon,
South Korea), 2L HDPE (hig
density polyethylene) water
tank

Stock solutions (2 L for each)

Bestplastic (Gyeonggi-do,
South Korea), 100L PE
(polyethylene) water tal

Nutrient solution mixing tank (Max.
100L)

Water-level
sensor

Reflective Ultrasonic Level
Transmitters

Measurement range: 0.038-1.5m
Automatic temperature
compensation: -40-80 °C

Signal output range: 4-20 mA
Power: 24 VD(

Flowline, Inc. (CA, USA),
EchoPod UG01

Data acquisition
board

A/D converter for EC, pH, water

temperature, and water level sensors

Input channel: 16 bit analog input 8 National Instrument (TX,
ch. USA), NI-9203

Input range:+ 20 mA

Sampling rate: 200 |-s?

Data acquisition

A/D converter for ISE signals

Input channel: 16 bit analog input National Instrument (TX,

board Sampling rate: 250 kS' USA), PCI-6221
Signal :zoluatt(ragnar;glfglgneut board for ISEs National Instrument (TX,
conditioner putrange. USA), SCC-AI13
Gain: 1
Solid state relay
Relay Input voltage range: 0~60 VDC National Instrument (TX,

Output voltage range: 0~60 VDC USA), NI-9485
Channel: 8 ch.
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IMPLEMENTATION OF |ON-SPECIFIC NUTRIENT MANAGEMENT WITH CLOSED-
Loopr CONTROL

Fig. 5.3 shows the sequence of ion-specific nutrientagament. When the
preset time was reached, the system conducted theagifispneasurement using
the sensor array with the two-point normalization. Fertito-point normalization,
two known standard solutions of low and high conceioinatwere injected into the
sample chamber and measured by the ISE array sequeiitity, each ISE was
standardized based on the calibration equations far Kidr Ca reported in the
previous study (D. H. Jung et al., 2015). After the measurenad the two-point
normalization solutions, the nutrient solution was auttically sampled and
transported to the chamber. The first nutrient soluttane was used to rinse the
chamber to remove any residue of the previously injectiedien. The second
nutrient solution was measured by the ISE array and the lN@nd Ca
concentrations were estimated based on the two-paimtatiaation method. Once
the nutrient solution measurement sequence was finidretyo-point
normalization solution of low concentration was pumped the chamber for
conditioning of the ISEs.

In order to avoid the unnecessary replenishment, the estihi®, K, and Ca
concentrations and the volume of the nutrient solutiome\eelged based on the
low limits that could be determined by the user. The adlieist of the excess
nutrient ions in nutrient solutions is only possible if tharient solution is
discarded or diluted by water, but it inevitably inducestevag water and nutrient.
In addition, overflow of the nutrient solution could beweed by an excessive
replenishment. Therefore, the judgement on the regflem@nt was constructed to
be triggered only by the deficiency of the measurable ioms Ca, K, and N¢)
and the current volume of the nutrient solution.

If the replenishment was triggered, the amounts of stockiens and water to

be replenished and the running times of the pumps werdataldaccording to the
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decision tree-based dosing algorithm. Finally, the nutaed water replenishment
were conducted by operating the pumps based on the deténmiméng times.

The proposed decision tree-based dosing algorithm igpogional model,
assuming the responses of the pumps and the mixing pindessnutrient
solution would be linear. However, there would be some £inathe pump
operations or concentrations of the stock solutiond,\sas necessary to apply a
closed-loop control scheme to the ion-specific nutrieamiagement for more
accurate replenishment. In general, the ion sensingeblstes takes more than 10
minutes due to the rinsing, sampling, drainage, two-poimrhalization, and
stabilizing times for the measurements (D.-W. Kim et &l1,72. Therefore, it is
difficult to apply the instantaneous feedback corttvahe pump operations
corresponding to the ion concentrations. Alternativatyevaluation of the
management was conducted after the replenishmentitvadhe closed-loop
control.

The overall operation of the system was controlled by sopaf computer with

a program based on LabVIEW (v2015, National InstrumentsUS@A) (A5).
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Fig. 5.3. Flow of the ion-specific nutrient management operation with the closed-
loop control

SYSTEM VALIDATION TESTS

The performance of the system was validated through a stepwise management
test. Specifically, the test began with a mixture of the modified Hoagland™ s
hydroponic nutrient solution (Hoagland & Arnon, 1950). Then, the system
conducted a serial of nutrient managements according to the given target
concentrations of NOs, K, and Ca, with the increasing levels of the target nutrient
solution volume. The target concentrations were randomly determined with three
levels of 80, 100, and 120% for the standard concentrations. The desired values for
the stepwise management test are summarized in Table 5.2. After each

replenishment, the nutrient solution was sampled and analyzed by a commercial
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soil and water quality analysis center (NICEM, Seoul, B#idrea) to determine
actual concentrations using standard analyzers, i.e.hiomatography for N©
and ICP spectrophotometry for K and Ca measurements, fteeperformance of
the replenishment sequence was evaluated by compaeingrget and actual
concentrations determined by standard methods.

The automated ion-specific nutrient management was pegtbwith the lower
limits of 20% and 10% to the ion concentrations and théematsolution volume,
respectively, for the closed-loop control. The two-poornmalization solutions
were prepared to have N, and Ca ions at two different concentrations (100
and 1,000 mgd."%, 30 and 300 md 1, 24 and 240 md. ", respectively) with the
same background components as the nutrient solution.

To evaluate the performance of the proposed dosingithlggrsimulated
calculations for the ion concentrations during thesigp test were conducted
based on the conventional simplex matrix metft@dling et al., 2005; D. H. Jung

et al., 2015)

Table 5.2. Target values of hydroponic solutions to belgin the stepwise test
Target ion concentration (mg*L

Step Ca NG " Target water volume (L)
Initial 80 434 117 1C

1t 80 347.2 93.€ 1t

2nd 96 347.2 117 2C

3 64 434 140.¢ 25

4 80 434 93.€ 3C

5 96 520.¢ 140.¢ 4C

The variation of the Ca concentration in the stepwisentastiower than that of
NO;s or K concentration so the response of the system tGaheas investigated
with more detail as follows.

1) A new nutrient solution was prepared using the usaéentsolution of
Hoagland’s composition.

2) 6L of water was supplied to the mixing tank to verify thetesy could detect
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the decrease of the ion concentrations.

3) 5L of water was supplied again.

4) After the water replenishment, the target levels oénand Ca were set as the
65 L and 110 md., respectively, then the system conducted the replenishment

5) The system evaluated the status of the replenisiaibso

6) The target volume and Ca concentration were revised lagueé 130 mg_~,
respectively, then the system conducted the replenighme

7) After the replenishment, the system evaluated thdtheg solution.

During the validation, the allowable error percentagere set as 5% and 2.5%

for the Ca concentration and the solution volume, resdgti

RESULTS AND DISCUSSION
FIVE -STEPWISE REPLENISHMENT TEST

For the given target concentrations of the five-steps y$ters conducted the
replenishment based on the developed dosing algorithdrtharNQ, K, and Ca
ions in the resulting solutions were measured by thesyand the standard
analyzers (Fig. 5.4).

From the Ca concentration, there was an over-injectidmeiit step, thereby
inducing the 13.6% higher resulting concentratioha4" step (Fig. 5.4a). It
would be due to the underestimation in tHes8p. However, the Ca concentration
measured by the system in tHestep was comparable to the actual concentration,
so the Ca concentration accurately followed the targetecdration in the Bstep.

Although the K concentration was higher than the targktevin the # step, it
was due to the effect of the high K concentration in tiegipus step (Fig. 5.4b).
The K concentration and the volume measured by thensystthe 3 step were
155.7 mgLt and 22.52 L, which could make the K concentration of theisalas
116.88 mgL* at the target volume of thé 4tep without the K injection. In actual,
the K concentration measured by the system was 11318*mghich was almost
same as the expected concentration. The underestimatetc&nt@tion by 11%

was appeared in thé'Step, but the closed-loop control was not conducted becaus
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it was within the constraint of 20%.

Besides the above cases, the resulting NOs concentrations and the nutrient
solution volumes were well followed the target values (Figs. 5.4c and 5.4d).
Overall, the Ca, K, and NOs concentrations and volume of the nutrient solution
were controlled with the average relative errors of 10.6 £8.0%, 7.9 £2.1%, 8.0

+11.0%, and 4.2 £3.7%, respectively, for the stepwise test.
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Fig. 5.4. Changes in ion concentrations and nutrient solution volume for the
stepwise test: (a) Ca; (b) K; (c) NOs; (d) Nutrient solution volume. Error bars
denote the standard deviation of the multiple ISEs for NOs, K, and Ca.

Based on the time log of the fertilizer pumps and the measured ion
concentrations, the amounts of the fertilizer salts to add determined by the
decision-tree method and the simplex method were obtained and compared (Table
5.3). The required volumes of the concentrated solution for minor elements were
same because it was determined according to the water volume to add. The
determined amounts of Ca(NO3),-4H>0 and MgSO,-7H>O were also same for the

simplex method and the decision-tree method. However, the required amounts of
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KHPQi, NHsHPOy, KNOs, NHiNOs, and kSO, were differently calculated
according to the dosing algorithms. Specifically, althotige use of KN®in the
simplex method was less than the decision-tree methodintipéex method
determined to use the KPQ,, NHsH.PO4s, NHsNOs, and kSO, salts more than
the decision-tree method. As the result, the total aimsafrthe fertilizer salts to
add were higher in the simplex method than the dectsgenmethod.

In actual, the dosing amounts calculated from the simplethod could have
negative values to make an exact solution for the givgettaoncentrations.
However, it is impossible to conduct the negative do&inghe specific ion
because the pump cannot remove the nutrient salt éudilly. Therefore, the
operation times for the pumps were just displayed as Weker, the other salts
including the same ions with the nutrient salts had duative dosing amounts
should have large amounts for the replenishment tgpeasate for the negative
amounts of ions. Although the simplex method could beifieddo calculate the
approximated solution consisting of the positive numbergould require more
complex calculation and processing times. On the othet, ltla@ decision-tree
method was operated to minimize the over-injection byctimpromise of the
injection mass based on the preset nutrient priority.

Fig. 5.5 shows the resulting amounts of NK, and Ca ions to add determined
by the simplex method and the decision-tree methodmpadson with the actual
required ion mass. The calculated amounts of the Ca i saene with the
required amounts, showing both methods could make thé sdfaton (Fig. 5.5a).
Although the over-injections of the N@ns were observed in both methods due to
the coupling of the N©with the Ca, the amounts were slightly higher in the
simplex method (Fig. 5.5b). It might be due to the effect ®@hbgative numbers
from the exact solutions by the simplex method as mentidma¢ebalt was more
obviously shown in K, showing the decision-tree methodlevba more feasible
than the original simplex method (Fig. 5.5¢)

The ion concentration measurements by the system usn§is showed the
feasibility by the comparison of the ion concentratideermined by the system
and the standard analyzers (Fig. 5.6). In terms of RMSE, theaaies of the ISE
array measurements were 29.5, 10.1, and 6:L#fgr NO;, K, and Ca,
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respectively.

The results proved the system based on the developed digginthen could
effectively control the individual ion concentrationsdalculating the optimal
injection volumes of the seven kinds of fertilizer sidtsthe given target ion

concentrations.
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Table 5.3. Amounts of the fertilizer salts to add determined by the simgthod and the decision-tree method for the five-stepwise test

Simplex method Decision-tree method

Step Injected salts (mg) Minor Injected salts (mg) Minor

Ca(NQ)-4H0 KHPO, NHMHPO, KNO; NH/NO; MgSQ, 7HO K80, (M) Ca(NQ),-4HO KHPO, NHHPO, KNO; NH/NO; MgSQOp7HO K,SQ, (ml)
1st 1983 0 223.8 0 0 1618.4 853.24.4 1983 81.8 152.5 0 0 1618.4 541.524.4
2nd 3946.7 0 337.5 0 0 557.1 29283D.15 3946.7 99.9 207.9 0 0 557.1 2428.80.15
3 0 1626.5 0 4565.6 1611.6 842.8 0 29.7 0 0 21.3 4778.81142.8 842.8 0 29.7
4th 5443.2 0 699.1 0 0 1971.8 135337.4 5443.2 89.2 339.7 0 0 1971.8 0 374
5th 3412.9 901.2 0 2482.5 870.7 1066.7 4742 21.9 3412.9 0 252 3582.3 0 1066.7 103.1 21.9

Total 14785.8 2527.7 1260.4 7048.1 2482.3 6056.4  5608.9143.55 14785.8 270.9 9734 8361.11142.8 6056.4  3073.4143.55

Total” 39769.6 143.55 34663.8 143.55

* Total amounts for each fertilizer salts

* Total amounts for all fertilizer salts
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REPLENISHMENT TEST FOCUSED ON THE CA

Fig. 5.8 shows the NOs, K, and Ca concentrations and the volume of the nutrient
solution were changed according to the sequences. Obviously, the volume of the
nutrient solution was increased corresponding to the water supplement and the
replenishment sequences (Fig. 5.7a). Specifically, the volume levels of the nutrient
solution were within the allowable error ranges, but the replenishments were
conducted to follow the given target levels of Ca in sequences of 4 and 6.

The system noticed the changes in the ion concentrations induced by the water
supplement (Figs. 5.7b, 5.7c, and 5.7d). Although the K measurement made an
overestimation in sequence 3, the trends of the NOs, K, and Ca concentrations were
almost similar to the actual concentrations determined by the standard analyzers.

One of the noticeable points was the effect of the closed-loop control in
sequence 4. The system conducted a replenishment for the target Ca level of 110
mg-L, but the first resulting solution showed 98.8 mg-L™! of Ca concentration.

The error was 10.2%, which was higher than the constraint level of 2.5%. As the
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result, a closed-loop control was triggered and an addltreplenishment was
conducted in sequence 4 and fulfilled more accurate Cagearent by reducing
the relative error as 1.5%. The relative error of the velwas also reduced from -
1.5% to -0.6%, though both were within the constraint of Afier the
replenishment, the target volume and Ca concentrationnedised as 66 L and
130 mgL™, respectively (Sequence 5).

In sequence 6, the system just checked the status of teatauumtrient solution,
so the measured concentrations and the nutrient sokdiome must have been
the same conditions in sequence 5.

Finally, the system conducted the replenishment for thengiargets of 66 L and
130 mgL*Ca, and the volume and Ca concentration of the resultinicsoluere
measured as 65.8 L and 135.5-mtof Ca. The errors of the measured volume and
Ca concentrations were -0.3% and 4.2% for the targeslenespectively, so the

closed-loop control was not triggered.
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CONCLUSIONS

In this study, a decision tree-based dosing algorithm for closed-loop control of
the hydroponic solution was developed and applied to an automated ion-specific
nutrient management system with an array of NO;, K, and Ca ISEs. The
performance of the dosing algorithm was evaluated based on the five stepwise test
and the Ca focused replenishment test.

In the five-stepwise test, the varied concentrations of NOs, K, and Ca which
were corresponding to the 80, 100, and 120% of the standard Hoagland’s solution
were randomly selected as the target concentrations while the target volume of the
nutrient solution was increased. The results proved the system was able to
formulate the nutrient solution within a set of given constraints that concern the
individual ions using the decision-tree method. Specifically, The system controlled

the ion concentrations in the nutrient solution with the average relative errors of
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10.6 £8.0%, 7.9 £2.1%, 8.0 +11.0%, and 4.2 +3.7%, respectivelihédCa, K,
and NQ concentrations and volume of the nutrient solution. Mogealuring the
test, the ISE array measurements showed the RMSEs of Q9.5athd 6.1 for
NO;s, K, and Ca, respectively, indicating the measurements by stensyvould be
feasible.

The replenishment test focusing on the Ca concentratmmeshthe system was
able to catch the variations in ion concentrations a@ahtitrient solution volume
and actively cope with the changes to achieve the giveatteafues. From the
results, the system observed the decrease and increasdaf toncentrations
according to the water supplement or nutrient saleréglhment. Specifically,
when the managed Ca concentration was not reached to ¢jes @frthe allowable
level of the given target concentration 110-Iny i.e., 104.5-115.5 myg* the
closed-loop control was conducted and the satisfactsgltrwas achieved (108.3
mg-L?). It showed the effectiveness of closed-loop control inient solution

replenishment.

* Note: Dae-Hyun Jung and Chan-Woo Jeon shared theivlkdge to design
the decision tree-based dosing algorithm. The reseasHinancially supported
by the Rural Development Administration, Republic of Kore

(PJ01385203201901). I would like to express my sincexttggle to their support.
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CHAPTER 6. ION-SPECIFIC AND CROP

GROWTH SENSING BASED NUTRIENT

SOLUTION MANAGEMENT SYSTEM FOR
CLOSED HYDROPONICS

ABSTRACT

Precision nutrient solution management in closeddpainics is an important
task to secure sustainable water and nutrient uses.udgwie difficulty in
assessing the water needs of the plants due to the viamedypwth and the ion
balance in recycled nutrient solution hinder the estaist of the precision
hydroponic nutrient solution management. In this studydadponic nutrient
solution management system that could variably supplythrient solution based
on the plant-growth information while managing the iatahce of the nutrient
solution was developed. In application test with theiéets growing in the nutrient
film technique, the developed system reduced the nus@uation supply by
57.4% in comparison with the timer-based fertigation estgatwhile meeting the
actual daily water consumption of the plants with aaresf 7.3%, when the
lettuces were saturated. In addition, the promoted isitrgaate of the leaf area
showed the plant-based fertigation could provide higiheductivity than the
timer-based fertigation. During the cultivation peritite system maintained the
target concentrations of 436, 117, and 80Lrigvith the RMSEs of 50.6, 12.5, and
33.3 mgL™ for NGs, K, and Ca ions, respectively. Although the Ca concentration
higher than the target value could not be recoveredebgytstem, the overdose of
the Ca in the nutrient solution was prevented. In additive system showed the
feasibility of the closed-loop control to accuratadplenish the deficient ions,
showing the daily example that the relative errors 8f-2.9, 40.6, and -3.6%
were reduced as the 4.2, 9.4, 10.1, and -0.02% for theKN@nd Ca
concentrations and the nutrient solution volume, respygtiThe low CVs of

7.0%, 9.9%, 4.7%, 4.6%, and 17.5% for the actuad, KQCa, Mg, and P
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concentrations in the nutrient solution supportedehsibility of the system in

maintaining the ion balance.

INTRODUCTION

In hydroponics, fertigation (i.e., irrigation combinedtwiértilization) is one of
the most important factors that are closely relatebeatop yield and quality
(Incrocci et al., 2017; P Agung Putra & Henry Yuliando, 2015). Fundamentally,
fertigation is the only way for supplying the water anttieats to plants in soilless
cultivation, so it is the key factor directly related towader and nutrient use
efficiencies. Furthermore, the efficient fertigation basome more important in
closed soilless cultivation because the inefficientdation could lead to the
discharge of the reused nutrient solution, thereby indutie environmental
pollution and waste of the resources such as nutrientwaieil( Ahn & Son, 2019;
Matthew Bamsey et al., 2012; D. H. Jung et al., 2015).

For these reasons, precision nutrient solution managewmikich is a technique
that provides water and nutrients based on the needs pfaht, has been emerged
and widely investigated in the last years (&t Bamsey et al., 2012; Garcia et
al., 2020; Mafuta et al., 2013; F. F. Montesano et al., 2018; Sambo et al., 2019;

Smith & Baillie, 2009). Currently, there are two challempissues for precision
hydroponics: ion imbalance of the recycled nutrienittah and fertigation control
based on the response of plants.

Imbalance of nutrient ions in the recycled nutrientiiohs is usually occurred
by the replenishment based on the electrical conduyc(i(€T) of the solutions,
which could not provide information on the concentraiof individual ions
despite the varied uptakes of the growing plants fomitieidual ions (Matthew
Bamsey et al., 2012; Gieling et al., 2005; Zheng, 2017). Similarly, the inefficient
fertigation scheduling comes from the limitations of ¢herent sensor technology.

In actual, a lack of the non-destructive, accurate, and rapidtoring techniques
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for the crop growth makes it difficult to estimate theevaneeds of the plants
(Jiang et al., 2018; Nikolaos Katsoulas et al., 2016; Kirk et al., 2009; Sigrimis et
al., 2001).

The overall goal of this research was to develop a poecigitrient solution
management system that can effectively replenishetttidiZer solutions to
maintain target concentrations of macronutrients basgtie measurement and
control of individual macronutrients while variablyntoolling the fertigation
interval based on the plant growth by measuring thepgacover (CC) of growing
plants. Specific objectives were to (1) integrate tih@-go crop monitoring
system for the canopy cover assessment with the ianfispgutrient measurement
and replenishment system to develop a precision hydioggstem and (2)
investigate the performance of the integrated systeheiion balance

management and water use efficiency for the closed pgdro lettuce cultivation.

MATERIALS AND METHODS
SYSTEM INTEGRATION

The precision nutrient solution management could bdwtted by a
combination of two main subsystems. One is the on-theagrmpnitoring system
with the environmental sensors developed in Chapterd3aaother is the ion-
specific nutrient management system developed in Chapidre schematic
diagram of the integrated system is shown in Fig. 6.1.

The overall process for the observations or controtketystem was
programmed using LabVIEW (v2015, National Instruments, XA) besides the
image monitoring and processing for the CC. The imageitoring and processing
were conducted based on Python 3.7.3 program with sevedaptrty libraries
(A1). After the CC measurement, the obtained CC was traedfty the LabVIEW
program through a TCP/IP network. The process flow ofrttegyrated precision

nutrient solution management system is shown in Fig. 62 L&bVIEW program
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A user interface (Ul) of the program was designed witbetlparts. At the main
display, the starting time of the ion-specific managensstem operation status,
the standard concentrations of the two-point normadinagolutions, the types of
the ISEs connected to the data acquisition board hencktently measured
nutrient solution status including the concentrationd©f, K, and Ca,
temperature, EC, and pH (Fig. 6.3a).

The second display tab shows the measured volume of themswolution,
constraints of the solution volume and ion concentrationthe closed-loop
control, the types of fertilizer salts (i.e., Ca(®AH.0, KH.PQu, NH/HP O,

KNO3s, NHiNOs, MgSQy- 7H,0, KoSQy, and minor stock solutions) for the pumps,
the volume rates of the pumps for fertilizer stock solutiarager, and pH control
solution, concentrations of the stock solutions, theetdan concentrations of

NO;s, K, Ca, Mg, and P, the target nutrient solution volume, ratiogm®ftdl P and
Mg to Ca for the proportional injections, the operation simkethe pumps
calculated from the dosing algorithm, and the diagnostiexrbased on the sensor
sensitivity for the ISEs (Fig. 6.3Db).

The final tap provides the setting of the number of gngwglants, the fraction
of drain, and the fertigation duration for the growing battulated based on the

plant-growth information (Fig. 6.3c).
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IMPLEMENTATION OF THE PRECISION NUTRIENT SOLUTION MANAGEMENT
SYSTEM

Fig. 6.4 shows the overall flow of the precision nutrient solution management
system. The flow consisted of five separate operations, i.e., crop monitoring, aerial
environment monitoring, nutrient solution circulation, nutrient solution
measurement, and nutrient replenishment.

In the crop monitoring sequence, the RGB camera position was initialized to
precisely move to the determined positions for the image acquisition when a preset
time was reached. Then, the RGB images of the growing plants were obtained by
the moving camera, and the pixels of the images were converted to the excess

green (ExG). Then, the plant area was segmented based on the Otsu threshold and
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the ratio of the plant pixels to the whole pixels wasudated as the CC. After the
images acquisition was over, the aggregated CC valube ahages were divided
by the number of the images to calculate the average @@ gfowing plants.
The aerial environment (i.e., temperature, relative huynidind radiation) of the
growing bed was monitored to predict the transpiratiwe of the growing plants.
Every 10 minutes, the average air temperature andvestatimidity monitored
during the time were updated and used to calculate the pegasure deficit
(VPD). Then, the VPD and the average CC obtained frencithp monitoring
sequence were applied to the transpiration rate egtimadel based on the
modified Penman-Monteith equati@Baille et al., 1994; J. W. Lee et al., 2013). In

this study, the parameters for the lettuces determinedapt€h3 were used.

Although the estimated; Bom the model could be assumed as the water need of

the plant, several steps for the conversion of thimastd crop water need to the
fertigation volume were required because the root zorteeajrowing plants was
relatively small in comparison with the entire bed and thtemuptake could be
affected by the environmental conditions or the contipos of the nutrient
solutions(M. Gallardo et al., 2013; Schwarz & Kuchenbuch, 1993). In this study,
the complicated interactions in the plant water uptageeevgimplified as follows.

1) The root zone area of the growing lettuce was assumeglasthe hole area
and consistent during the cultivation.

2) The supplied nutrient solution was assumed to be uniforistitzited for
the growing bed.

3) The root zone water potential was assumed as constamg te
cultivation, so the ratio of the water uptake for the fetitbgawould be
parameterized by a simple linear model as the previoug Guddes, 1982;
Herkelrath et al., 1977). The effects of the nutrient ion asitiens or the
ion concentrations were not considered.

In addition, the final fertigation volume should be higtiean the volume



estimated based on the crop water need to clear outriteEn@oation and to
maintain favorable conditions in the root environm@nhMontesano et al., 2016;
Rodriguez et al., 2015; Sigrimis et al., 2001). Finally, the fertigation volume to be
supplied according to the estimated crop water need Viiaedas the following
equation (eg. 6.1). The density of the nutrient sofutvas almost 1-ql%, so the
unit of the Ecould be assumed as 1-t.

10 1
EiX—X——
Fertigation volume rate (L - 10 min™1) = 7 " 60 1000 (6.1)
ax( T " +total bed area)x(l—f)

wherea is the root water uptake coefficient for the supplietfient solution, d is
the diameter of the growing hole, ahid the leaching fraction for the fertigation.
In this studyo was calculated as 0.00034 by measuring the nutrientaolut
consumption for the fertigation during the cultivatimonducted in Chapter 3. The
leaching fractionfj was determined as 0.25, which is suggested by Rodriguez et al.
(2015).

Then, the fertigation duration was determined by dividivegpump flow rate
(ml-s?) into the estimated fertigation volume (eq. 6.2). The puate indicates the
volume increasing rate under the holes of the growingatesh the pump is

operated.

Fertigation volume rate (L-10 min™1)

Fertigation duration (s - 10 min™1) = (6.2)

Pump flow rate (Ls~1)
Based on the resulting time, the fertigation system ¢gebthe fertigation pump
for the determined fertigation duration. After the fgaition time had been elapsed,
the system stopped the pump and waited until the updéte ehvironmental

parameters (eq. 6.3).

Waiting time (s - 10 min™1) = 600 — fertigation duration (6.3)

The nutrient solution measurement and replenishmerg eanducted in serial.
Specifically, the nutrient solution measurement inatLidhe two-point
normalization. As reported in previous studiBsH. Jung et al., 2015; H. J. Kim et
al., 2013), the two-point normalization method, consisting sensitivity
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adjustment followed by an offset adjustment, was usedtamlatdize the responses
of multiple electrodes for each ion so that the calibregiquations for each ISE
developed in a previous study (D. H. Jung et al., 2015) coudgbleed across all
electrodes of a given type. Details of the procedures @edcaiption of the two-
point normalization were provided in previous studi2sH. Jung et al., 2015; H.

J. Kim et al., 2013).

Two mixed solutions containing NCK, and Ca ions at two different
concentrations (100 and 1,000 +ng, 30 and 300 md. %, 24 and 240 md. 2,
respectively) were used as known standard solutions cataahigh
concentrations to determine the slope and offset valiresconcentration ranges
for the NQ, K, and Ca ions were chosen to encompass the typical ¢oatazn
ranges used in hydroponic solutions in South Korea. Usia@fproach, any drift
in the ISE signal was intermittently determined usingtleenormalization
solutions, and the drift effect was compensated wherSaerieasurement was
made. After the measurement, the two-point normalizatubution of the low
concentrations was injected into the chamber to prttedeaching of the ions
from the membranes after the sample measurement sequasicempleted.

The replenishment sequence was started when the ioartaatons and the
volume of the nutrient solution were lower than the presestraints. If the status
of the nutrient solution was not reached to the allowalbkddeof ion
concentrations and volume, the decision tree-baseerifE dosing algorithm
was computed to calculate the required volumes of ttiéder salts and determine
the operating times of the fertilizer pumps and water pionpeplenishment. After
the replenishment, the nutrient solution measurementgeguwvas conducted
again to evaluate the resulting solution for theeaxdisloop control, as described in
Chapter 5.

While the nutrient solution measurement and replemistt sequences were

operated, the circulation of the nutrient solution forghmving bed was stopped to



remove any effects on the measurements.
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APPLICATION OF THE PRECISION NUTRIENT SOLUTION MANAGEMENT SYSTEM
TO CLOSED LETTUCE SOILLESS CULTIVATION

To evaluate the performance of the system, 45 lettuess transplanted to the
experimental growth chamber where the system was appliedighting period
was introduced as a 12h light/12h dark alternation am@nbp-growth monitoring
was conducted once a day, at the beginning time of lightieg {2:10 AM). The
measurement and the replenishment of the recyclei@miusolution were
conducted once a day, at 10:00 AM. The experiment waiedaut until the CC of
the lettuces were saturated. For the closed-loop cotiteolpwer limits of 15%
and 64.5L to the ion concentrations and the nutrient salwttume were applied,
respectively.

For the comparison, additional cultivation was conductesth on the EC-based
replenishment according to the conventional nutrierlenéghment equation (eq.
6.4) (D Savvas & Manos, 1999).

ViCr = VeCo + ViyCyp + VsCs, Vg = Ve — Vyy — Vs (6.4)
where \ (L) is the target volume for the nutrient solutios,(@EqL™?) is the
target total equivalent concentratior; i¢ the current volume,ddmEqL™) is the
total equivalent concentration in the current nutretition, My (L) is the amount
of tap water input to the mixing tank, @nEgL™?) is the total equivalent
concentration in tap waterg\{L) is the amount of stock solution input to the
mixing tank, and €(mEqL™?) is the total equivalent concentration of the stock
solution. In this study, the total equivalent concentrasvas converted to EC
based on the third-order relationship between EC antbthleequivalent
concentration of nutrient solution presented by Barratiak €018).

For the two cultivation periods, subsamples of the hyoina: solutions were
manually taken and sent to a standard chemical teshogatmry (NICEM, Seoul,
South Korea) to determine their actual concentratisirgyustandard methods, i.e.,

ion chromatography (ICS-5000, Thermo Scientific, MA, US#)XIO; and
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inductively coupled plasma (ICP) spectrophotometry (iGABO, Thermo
Scientific, MA, USA) for K, Ca, Mg, and P. The actual concditrs were used to
validate the performance of the ion balance maintenanteebsystem.

The performance of the ion balance maintenance wéasagdgd based on the
coefficient of variation (CV) of the concentrations of & NO;, Mg, and P during

the experimental period (eq. 6.5).

N¢, . =
cv =2%100,5D = /M (6.5)
X N-1

where x is the average concentration for each ion, SD is tinelatd deviation of
the sample measurements, N is the number of sample meastinthe standard

methods, andixs the actual concentration for each ion.

RESULTS AND DISCUSSION
EVALUATION OF THE PLANT GROWTH -BASED FERTIGATION IN THE CLOSED
LETTUCE CULTIVATION

Fig. 6.5 shows the monitored environmental conditions éam-growth
information during the lettuce cultivation. The behawibthe air temperature was
almost similar to the radiation, indicating the fluoregdamps would generate
heat (Figs. 6.5a and 6.5e). Also, it can be observed thastingated transpiration
rate and fertigation volume were small when the CC of towigg lettuces was
small (Figs. 6.5f, 6.5g, and 6.5h). From the CC data, thetgrof the lettuces
could be observed until DAT 17 (Fig. 7.5f). However, aftef1X, the CC value
was almost steady, indicating the lettuces would be satueaaid waited for the
harvest.

The fertigation volumes from DAT 17 to DAT 20 were variediniy the day-
time despite the almost same CC, which would be affecteldenatiation and the
VPD (Figs. 6.5d, 6.5e, and 6.5h). It means the proposed fastigatstem could
cope with the varying lighting conditions by distinduigy the day and night and
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considering the ambient conditions.

To validate the effectiveness of the plant growth-béseiation, the daily
fertigation volume for the last day of the experimengalqul (DAT 21) was
compared with the volume simulated from the timer-bdseijation of 3 min
on/7 min off cycle (Fig. 6.6). In the case of the timesduhfertigation, the
fertigation volume would be consistent and the overgatitbn occurred during the
period (Fig. 6.6a). On the contrary, the plant-based &itig variably supplied the
nutrient solution during the day, significantly reducihg tumulative water use
(Fig. 6.7b). The results indicate the timer-based fditigaannot respond to the
changes in the weather conditions, which would causewte or under-
fertigation. In addition, the daily cumulative fertigatisolume, which is directly
related to the water use efficiency of the fertigation, shtine plant-based
fertigation would use much lower nutrient solution tiiae timer-based fertigation
(Fig. 6.6b).

In actual, the effective fertigation volume of the depeld system, which was
obtained by multiplying the root water uptake coeffititem the supplied nutrient
solution, was 2.06 L, but the simulated fertigation volurfine timer-based
fertigation method was 4.84 L for DAT 21. It means the develeystem could
reduce the 57.4% of the nutrient solution in comparison tivéhimer-based
fertigation. Although the timer-based control could @=lthe supplied nutrient
solution by adjusting the fertigation on/off cycle, itngvitable the under-
fertigation or over-fertigation would be inevitable digithe overall growing
period due to the varying crop water requirements. Intiatdithe reduction of the
nutrient solution in the tank during the DAT 21 was 1.92 hiclv would be
regarded as the actual water consumption for growingltves. Compared to the
value, there was only 7.3% of error in the estimated veatesumption from the
plant-based fertigation, showing the proposed methadwedi followed the actual

water need of the plants. Table 6.1 summarizes the edpsater consumptions
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by the growing lettuces determined from the plant-basegyétion, the timer-
based fertigation, and the water-level sensor for the AT 2

The average CCs during the experimental period are displaijle the average
CCs of the lettuces cultivated by the timer-based feitigah Chapter 3 to
compare the performance of the system on the growth (Fig.Te& CC of the
plant-based fertigation was saturated in DAT 17. HowakerCC of the timer-
based fertigation was saturated in DAT 23, indicatinggtiosvth rate of the timer-
based fertigation was lower than the plant-basedyéitin despite the over
fertigation. It might indicate that the fertigation volemmeeting the plant demand
would be more effective in crop productivity, as reportethe previous study (Liu

& Xu, 2018).
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Method N . .
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EVALUATION OF THE |ON-SPECIFIC M ANAGEMENT IN THE CLOSED LETTUCE
CULTIVATION

Fig. 6.8 shows changes in the ion concentrations measittethe ISE array of
the system for Ng) K, and Ca (Fig. 6.8a), the amounts of six nutrient ions
replenished (Fig. 6.8b), and the volume of hydroponic smluwtontained in the
mixing tank (Fig. 6.8c) during the growing period.

On the first day, about 60 L of the hydroponic solution prapared manually,
and the remaining volume for the target volume of 65 L wasmeghed
automatically by the system. After the replenishment, theeamtrations of Ca and
NOs were slightly over the target concentrations. In additioeCa concentration
in the nutrient solution was higher than the target vislueost cases (Fig. 6.8a).
Possible causes for the high Ca concentration of thieznusolution might be the
over-injection of the Ca(Ngxy-4H,0O salt and the Ca in water used for
replenishment. In actual, the concentration of the Cag{NMH,O stock solution
was higher than the expected (A4). As the result, the RMBEQ;, K, and Ca
were 50.6, 12.5, and 33.3 rhdt, respectively, for the target concentrations,
showing the RMSE of Ca was relatively high considerirgtéinget concentration
of 80 mgL ™. The result showed the limitation of the dosing algorithat tould
not conduct the dilution.

However, the system could reduce the unnecessary injexdtibe fertilizer
salts. In actual, the fertilizer salts were almost not tepefor DAT of 2~5, 10, 16,
18, and 19 because the system calculated the contents afishia the solution
would be sufficient to achieve the target values aftemtiter replenishment.
Besides, the system showed it could effectively reghethis nutrient solution for
each deficient nutrient based on the measurement of individitrient
concentrations. Specifically, four days of the study pkfi®., DAT 3, 5, 15, and
17) when the closed-loop control was operated showedhthalystem could
manage the nutrient solution more accurately.



As an example, Fig. 6.9 shows the daily result of the ionHspautrient
management for DAT 15. In control step 1, the system medhthedon
concentrations in the nutrient solution and the inedatrrors of N@, K, and Ca
concentrations and volume were -15.9, -6.5, 45.9, and -3.6pectesely, which
were less than the lower limits of the N&hd nutrient solution volume. Therefore,
the system calculated the mass of each ion and watdrabilitate the nutrient
solution as the target condition (Fig. 6.9a). Then, tjeefion pumps were
operated to supply the calculated amounts of nutriestaon water to the mixing
tank (Figs. 6.9b and 6.9c).

After the replenishment, the system rechecked the ion otatiens of the
resulting solution (step 2). In step 2, the ion concentratieere well managed
within the lower limits, but the relative error of thetment solution volume was
still larger than the limit of 64.5L (-0.77%) for the clodedp control (Fig. 6.9c).
Therefore, an additional replenishment was triggeretllyj the measured
relative errors of N@ K, and Ca concentrations and volume in step 3 were 4.2,
9.4, 10.1, and -0.02%, respectively, so the replenishment egsest The changes
of the NQ, K, and Ca concentrations and nutrient solution voluraerding to the
closed-loop controls are summarized in Table 6.2.

As a result of the ion-specific management by the systenguérage
concentrations of NQK, and Ca were 445.6, 116.6, and 108.9Lig
respectively, which were comparable to the target coratemts.

Fig. 6.10 shows changes in EMFs obtained with two-pannalization
solutions (the high and low concentrations forsNElg. 6.10a), K (Fig. 6.10b),
and Ca (Fig. 6.10c), respectively) during the experimentageAs shown in the
figures, the EMFs were varied over time, but the differef&tween the low and
high concentration solutions, i.e., sensitivities, werelpeanstant. The results
mean the two-point normalization would be effective to mmprthe accuracy of

the measurements by compensating for the drifting belsawi@r time.
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Table 6.2. Changes in the ion concentrations and the miLgoition volume
measured by the system for the closed-loop control

DAT Control step

Concentrations of the ions (rhgt)" Nutrient
solution
NOs K Ca volume (L}

489.3 (12.2%) 124.1 (6.1%) 109.6 (37.0%) 62.3 (-4.2%)

461.4 (5.8%) 121.2 (3.6%) 93.6 (17.0%) 64.4 (-0.9%)

452.4 (3.8%) 118.1 (1.0%)100.53 (25.7%) 65.7 (1.0%)

481.8 (10.5%) 124.0 (5.9%) 117.6 (47.0%) 63.6 (-2.1%)

471.1 (8.1%) 116.7 (-0.3%) 109.4 (36.8%) 63.3 (-2.6%)

438.9 (0.7%) 128.4 (9.8%) 100.1 (25.2%) 64.6 (-0.7%)

366.7 (-15.9%) 109.4 (-6.5%) 116.7 (45.9%) 62.67 (-3.6%)

15 2

482.7 (10.7%) 111.5 (-4.7%) 91.5 (14.4%) 63.83 (-1.8%)

454.4 (4.2%) 128.0 (9.4%) 88.1 (10.1%) 64.99 (-0.02%)

442.7 (1.5%) 103.9 (-11.2%)106.6 (33.2%) 60.5 (-7.0%)

17 2

414.1 (-5.0%) 105.8 (-9.6%) 91.6 (14.5%) 64.4 (-0.9%)

3

472.0 (8.3%) 124.6 (6.5%) 93.1(16.4%) 65.2 (0.2%)

Target value

436 117 80 65

Lower limit

370.6 (-15%) 99.5 (-15%) 68 (-15%) 64.5 (-0.77%)

* The percentage in parenthesis indicate the relatiog & the target value.
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Fig. 6.11 shows the trend of the ion balance based on tred Extu
concentrations of NQK, Ca, Mg, and P present in the hydroponic solutions
managed by the EC-based replenishment and the iorfispeplenishment.
During the cultivation, the EC-based replenishment ghbtlve CVs of 6.9%,
4.9%, 23.7%, 8.6%, and 8.3% for By&, Ca, Mg, and P concentrations,
respectively. In the case of the ion-specific replemisnt, the CVs of N§ K, Ca,
Mg, and P concentrations were 4.9%, 1.4%, 3.2%, 5.2%, and 14.9% firedpec
Although the CV of the P from the ion-specific replenishiweas slightly higher
than the EC-based replenishment, the P ratio was tHeestr@anong the five
nutrient ions so the CV could be increased by the smatigesa On the other hand,
the CV of the K ratio, which was the second-largest @tiong the five nutrient
ions, showed a higher value in the EC-based replenishifentomparative
results of the EC-based replenishment and the ionfgpeplenishment for the
CVs of the five macronutrient ions in the nutrient sologi are summarized in
Table 6.3.

Specifically, the Mg and P concentrations, which were odlatt based on the
linear relationships in the ion-specific replenishmemre managed as 29.9 1.4
mg-Ltand 10.2 1.8 mg-L?, respectively, showing they were maintained at
constant levels comparable to the conventional EC-bapbehishment (Mg: 31.6
+2.2 mg-L'tand P: 13.1 £0.7 mg-LY) (Fig. 6.12).

The EC and pH of the nutrient solution were more varigderion-specific
management, showing the CVs of 5.9% and 5.4% with the avgediges of 1.32
dSm? and pH 5.7, respectively, while the CVs of the EC and pH maragthe
EC-based replenishment were 1.1% and 2.7% with thegareedues of 1.393
dSmtand pH 6.9, respectively (Figs. 6.13a and 6.13b). The suilited the
conventional EC-based replenishment could maintaik@ef the nutrient
solution successfully. However, the accumulation of the @®iously was not

considered in the EC-based replenishment (Fig. 6.13cglthénducing the ion



imbalance as reported in the previous studies (M. T. Ko et al., 2013; Sambo et al.,

2019; Zekki et al., 1996).
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Table 6.3. Comparison of the nutrient ion balances in the nutrient solutions
managed by the EC-based replenishment and the ion-specific replenishment”

Nutrient ion S = 2 = -
EC lon EC lon EC lon EC lon EC lon
'”'“gz)a“o 150 152 621 616 167 176 42 42 20 15
Average 1,4 162 60.8 60.1 186 175 43 46 18 16
ratio (%
Maintenanct +
(Cv.%) 69 49 66 1 237 32 86 52 83 149

* Statistical differences were calculated by using Student's paired t-test ("P<0.05:

+P<0.01)
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CONCLUSIONS

In this study, a precision nutrient solution managemesteaythat could both
variably control the fertigation volume based on theiantlzondition and the
plant-growth information and correct each deficientieatrion based on the
measurement of individual nutrient concentrations desloped and the
performance of the system was evaluated by the applidasbm closed lettuce
soilless cultivation.

Regarding the fertigation duration, the developed systeuneeded in
controlling the fertigation time according to the var@abient conditions of the
VPD and the radiation as well as the growth of thedetuln the intensive
investigation of the DAT 21, the system proved the sagplutrient solution
volume could be reduced by 57.4% in comparison with thertbased fertigation
strategy, showing an error of 7.3% in estimating the dailgm@insumption of the
plants. In addition, the reduced growing period for thes@t@ration implied the
plant-based fertigation could provide more yields thertimer-based fertigation
by shortening the growing period.

The individual ion concentrations in nutrient solutioareswell maintained
based on the measured ion concentrations using ancdi®lZs in conjunction
with a newly developed decision tree-based nutrieringadgorithm for growing
lettuces in closed hydroponic systems. Although the @aertration higher than
the target value showed the limitation of the systedilution of the solution, the
system minimized the overdose of the Ca in the nutrieatisnland proved it was
able to accurately replenish the deficient ions througlchkbsed-loop control loop.
In particular, the trend and the CVs of the ion balantésined from the nutrient
solutions showed that the developed system was ableittamehe five ion
balances more constantly than the conventional EC-baglkethishment while
recycling the nutrient solution over the growing periedplte the absence of the

Mg and P sensors.



* Note: Yoon-Hong Yi provided technical assistanoeléttuce cultivation. The
research was financially supported by the Rural Devetop@dministration,
Republic of Korea (PJ01385203201901). | would like taresp my sincere

gratitude to their support.
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CHAPTER 7. CONCLUSIONS

CONCLUSIONS OF THE STUDY

In this study, a precision nutrient solution managemenésythat can variably

control the fertigation duration according to the ongier needs based on the

canopy cover and replenish the deficient ions and watéhéarecycled nutrient

solution based on a sensor array ofsNQ and Ca ion-selective electrodes (ISES)

was developed. Conclusions based on the results are:

1)

2)

An on-the-go crop monitoring system was constructed ameed that it
could collect the images of the growing lettuces olerantire growing bed
and compute the canopy cover (CC) with the accuracy of#487846 during
the vegetative growth period. Furthermore, the trangpiraates of the
growing lettuces were successfully characterized bas#tkeamodified
Penman-Monteith equation. Specifically, the modifiedrRan-Monteith
equation was calibrated using the automatically updat@gadradiation, air
temperature, and relative humidity and showed stronggtadity for the
transpiration rate, which had a highly linear relationgbighe directly
measured transpiration rates, showing a slope of 0.91, ceaftfof
determination (B >0.9, and standard error of the regression (SER) of <0.51.
The results proved the on-the-go crop monitoring systeaidienable the
simple and fast assessment of the water needs of thengrtettuces.

Three types of signal processing methods, i.e., two-poimtaization
(TPN), artificial neural network (ANN), and a hybrid methaambining the
TPN and the ANN, were evaluated for the predictabilitthefNQ, K, and
Ca ISEs in hydroponic solution. The hybrid method showedést
accuracy in measuring ion concentrations in hydroponigisos, but the
vulnerability to the sensor malfunction may induce ariomutrient solution

monitoring and replenishment that require the lomgytese of the ISEs.



3)

4)

Therefore, the two-point normalization-based compensates selected as
the applicable method for ion-specific monitoring agplenishment.

A decision tree-based approach for calculating the red diertilizer salts to
replenish the recycled hydroponic solutions while mining the
accumulation or deficiency of the ions was developed alidiatad. The
successful formulation of the nutrient solution floe given target ion
concentrations and the nutrient solution volume in tleevalidation tests
supported the proposed dosing algorithm could effigiedgtermine the
fertilizer salts to be replenished. Furthermore, the chisea control
showed it could allow more accurate ion-specific managéme

A precision nutrient solution management that variabhtrods the
fertigation volume based on the crop water needs anehnispks the
deficient nutrients based on the individual ion cotregions was applied for
the NFT-based lettuce cultivation using the on-thefgp anage monitoring
system and the ion-specific nutrient management sySteenapplication
test showed the capability of variably controlling tedifation volumes
based on the varied canopy cover and the environmemiditicms.
Specifically, the estimated fertigation volume calcediafrom the estimated
crop water need was comparable to the actual water cotisarripdicating
the appropriate volume of the nutrient solution wouldygpBed to the
growing lettuces. Furthermore, the nutrient ion balandbe nutrient
solution was maintained by the system over the lettucgiggaperiod,
showing the less CVs in ion concentrations ofsNQ Ca, and Mg than the
EC-based replenishment. The system could variably stipplgutrient
solution according to the crop water need and prolongféspan of the
recycled nutrient solution, thereby allowing more effitiwater and nutrient

use in closed hydroponics.



Although the general objectives of the study were acashed, the proposed
plant-based fertigation strategy was established bas#tte®D canopy cover-
based crop water need estimation. Therefore, it woutthhyefeasible for shoots or
leafy vegetables in the vegetative growth stage, which haatively low heights
and complexity in water and nutrient uptakes. On the dthied, the ion-specific
monitoring and replenishment can be used for any mixirlg &mit would be
feasible for most closed hydroponic methods such as DFT, ditip system, or
aeroponics. The comparison of the conventional systehthendeveloped system

is summarized in Table 8.1.
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Table 7.1. Comparison of the conventional system and the developed system

Limitations of the

Strength of the developed

Category conventionasystens system in this stud Applicable system On-going issues
® Lack of information
about the |_nd|V|duaI ion o NOs, K, Ca monitoring e NFT (nutrient film Need of the mixing tank (Batch
concentration and . . tank)
® Correction of each technique) . .
. balance - . ® Complicated system (increased
Nutrient ; deficiency of NQ, K, Ca @ Aeroponics )
) ® Impossible to correct . . number of stock solution tanks and
solution - while managing Mg, P, and @ DFT (deep flow
the deficiency of each . : sensors)
management . Minor elements technique) o .
ion ; . ® Limited ion sensing (Mg, P)
. . ® Increased nutrient solution @ Ebb and flow .
® Short nutrient solution . . ® No active control for the over-
; . lifespan ® Drip system .
lifespan due to ion concentrated ions
imbalanci
® No consideration for the complex
® No considerations for interactions of the growing stage,
the varied plant water ® Variable fertigation ® Transplant production root growth, ion compositions in
uptake according to the canopy system nutrient and water uptakes by crops
Fertigation ® Indirect relationship to cover and the ® Plant factories or ® Spatial limitation (Increase of
scheduling the plant responses environmental conditions greenhouses growing processing time and hardware for

® Lack of consideration
for the spatial variability
in plant growth

® On-the-go monitoring for
entire growing crops

the leafy vegetables
with short heights

the spacious bed, need of
installation space)

® |Lack of information about the
varied crop nutrient ne
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SUGGESTIONS FOR FUTURE STUDY

Based on the results obtained from this study, futureeswade recommended as

follows:

1)

2)

3)

4)

The water needs of plants are varied according to thetlysiages or the
plant species. However, the CC is insufficient to proWdecrop water
needs varied with the growth stages or the specific ptertiess. Further
researches on remote sensing and image processing texhfug other
effective parameters that can allow more accurate amtsprerop water
need estimation for the varying growth stages and epece necessary for
more efficient water uses in hydroponics.

The simplifications in the conversion of the estimatadgpiration rate to
the fertigation volume would induce errors in fertigatiln addition, the
experimental hydroponic system used in this study waduwszied without
water-holding substrates. Therefore, further investigatare needed for the
application of the system to the other cultivation methqubsgiically in the
substrate culture method, which is mainly used for thevagetables or the
transplant production systems because the varied walging capacity of
the substrates or the water transfer efficiency shoutsbbsidered in the
conversion of the crop water needs to the fertigation durati

To develop robust, and highly selective ion sensors foaMygP is needed
to cope with the varying plant uptakes according to the@mwental
conditions, plant species, or plant growth stages, thexiédoying more
efficient and accurate replenishment for the closeddpahic solutions.

In this study, only crop water need was considered irgéditin due to the
difficulty in assessing the nutrient uptakes of plantstHeurstudies on the
adaptive management of ion concentrations in nutrieatienlaccording to
the growth stages are needed to achieve more improvednutsie

efficiency and crop yields. A possible approach mighohese the



relationship between the transpiration and the nuttiptake, thereby
controlling the target ion concentrations in hydropanitrient solutions

(Houshmandfar et al., 2018).
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APPENDIX

Al. PYTHON CODE FOR CONTROLLING THE |MAGE MONITORING AND CC

CALCULATION

import serial

import time

import cv2

import numpy as np
import os

import openpyxl
import datetime
import socket

sock = socket.socket(socket.AF_INET, socket. SOCKEAM)
sock.connect(('localhost’, 6340))

baud = 115200
port ='com11’
ser = serial.Serial(port,baud,timeout=0)

while True:
now = time.localtime()
h = now.tm_hour
m = now.tm_min

if h == 13 and m == 50: #CC update time
wb = openpyxl.Workbook()
sheet = wh.get_active_sheet()
sheet.title="Surface of Crop'

sheet.cell(row=1, column=1).value="cropalix
sheet.cell(row=1, column=3).value='cropface’
sheet.cell(row=1, column=5).value="'Leaf Atrdex’

crop=0
surface =0
CC=0
MODE =0

#lnitial position

position_x =0

position_y =0

#num_x = int(100 / (600/15)) + 1
#num_y = int(200 / (480/15)) + 1
num_x = int(100/35.2) + 1
num_y = int(200/26.4) + 1
num_total = num_x * num_y
temp_x_go=0

position_x = 6210

position_y = -10810

Temp2Con_x = 'go_positionl ="' + str(pasitix) + \n\n' # x-axis
Temp2Con_y = 'go_position3 ="' + str(pasitiy) + \n\n' # y-axis
ser.write(Temp2Con_x.encode())

time.sleep(1.5)

ser.write(Temp2Con_y.encode())

time.sleep(1.5)

cap_initial = cv2.VideoCapture(0)
_, Check = cap_linitial.read(0)
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Check_image = Check[0:480, 0:640]

count_=0
for y in range(0,Threshold_array_check[1)-
for x in range(0, Threshold_array_chegk[1):
pixel_ = thres_check[x, y]
if pixel_ == 255:
count_+=1

position_x =0
position_y =0

Temp2Con_x = 'go_positionl =" + str(pasitix) + \r\n’
Temp2Con_y = 'go_position3 = ' + str(pasitiy) + "\r\n'

ser.write(Temp2Con_x.encode())
time.sleep(1.5)
ser.write(Temp2Con_y.encode())
time.sleep(1.5)

position_x = 6610
position_y = -39210
num =20

cap = cv2.VideoCapture(0)
for i in range(0,num_total + 1):

print(i =" ,i)

ifi==0:
x=0
y=0

elif (i % num_y) == 0:
x=1
y=0

elif (i % num_y) = 0:
x=0

y =1 * (-1)**(int(i/num_y))
elif i == num_total:

x=0

y=0

position_x = position_x + 17826 * x
position_y = position_y - 26739 *y

Temp2Con_x = 'go_position1 ="' + stgjion_x) + "\n\n' #
Temp2Con_y = 'go_position3 ="' + stejion_y) + \n\n' #

ser.write(Temp2Con_x.encode())
time.sleep(1.5)
ser.write(Temp2Con_y.encode())
time.sleep(1.5)

_, org = cap.read(0)
img = org[0:480, 0:640]
rgb = cv2.cvtColor(img, cv2.COLOR_BGRZ2B)
"ExG conversion™

R, G, B = cv2.split(rgb)
R=R/255

G=G/255

B=B/255

r = R/(R+G+B)

g = G/(R+G+B)

b = B/(R+G+B)

ExG=2*g-r-b
ExG=255*ExG
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otsu_thr, otsu_mask = cv2.threshold(ExG, 0, 298, THRESH_BINARY_INV | cv2.THRESH_OTSU)

thres = cv2.inRange(ExG,,otsu_thr, 255)
crop_only = cv2.bitwise_and(img,img,gka thres)
"realtime image"
ifil=0:
cv2.imshow("Org",img)
cv2.imshow("crop”,crop_only)
cv2.imshow("threshold" thres)

Threshold_array = thres.shape
count=0
for y in range(0, Threshold_array{1]
for x in range(0, Threshold_ar@y[
pixel = thres[x, y]
if pixel == 255:
count += 1
crop = crop + count
surface = (crop * (16/6405))
CC = surface/(640*480*24)
"cmd™
print(count,"pixels are crop.")
print("accumulate crop pixel = fpp)
print("accumulate crop surface sutface, "cm”2")
print("accumulate CC =", CC)

key = cv2.waitKey(1500)
num+=1
if key == 27:

break

cap_initial.release()
cap.release()
cv2.destroyAllWindows()

"(0,0) return_end™

Temp2Con_x = 'go_positionl =" + str(O)rwn" #
Temp2Con_y = 'go_position3 = ' + str(0)rwn" #
ser.write(Temp2Con_x.encode())
time.sleep(1.5)
ser.write(Temp2Con_y.encode())
time.sleep(1.5)

print("\n")
CC =round(CC,4)
print("Canopy cover =", CC)

cc = str(CC)
sock.send(cc.encode('utf-8") #

time.sleep(5)
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A2. 10N CONCENTRATIONS OF THE SOLUTIONS USED IN CHAPTER 4 (UNIT:

MG-L™)

Solutior NO3 K Ce Mg

1 101.¢ 39.¢ 143.0: 101.1¢

2 539.t 167.7: 156.3¢ 104.¢

3 102.¢ 37.€ 150.7¢ 13.6:

4 554.¢ 294 41.0¢ 12.5¢

5 101.7 296.2! 40.3: 52.5¢

6 1001.- 165.3: 40.3: 103.0:

7 1002.¢ 302.5' 259.2: 12.97

8 547.1 162.1- 41.7: 50.2¢

9 102.1 161.5: 144.7: 13.3¢

1C 903.t 30z 163.4: 55.4:%

11 547.¢ 165.6¢ 275.9¢ 12.6:

12 1001.¢ 161.7¢ 162 12.5¢

13 918.% 39.6¢ 284.8¢ 58.2:

14 53¢ 308.1¢ 165.5¢ 101.5:

15 104.¢ 168.¢ 277.6% 61.6¢

1€ 531.2 37.01 163.9: 58.9¢

17 100z 303.¢ 160.4: 58.5¢

18 1000.: 36.0: 41.¢€ 100.1-

19 101.¢ 298.8. 39.4t 60.72

2C 101.¢ 304.6¢ 265.1¢ 12.6¢

21 555.% 39.2¢ 286.7: 58.7:

22 1015t 168.1: 281.7¢ 101.7:

23 512.% 312.9¢ 280.8¢ 103.6¢

24 10z 40.01 283.4° 106.2¢

25 99.1 303.2} 40.61 96.41

2€ 553.¢ 32.7: 40.2¢ 13.¢

27 1052.° 31.¢ 41.0: 12.8¢

Two-point normalization 109 1 327 378 135
(Low)
TWO'po'r(‘L?gor:)ma"za“O” 1007.8 303.9 256.7 113.1

Basil 1 425.¢ 143.2 75.€ 9.€

Kale 385.% 196.¢ 61.¢ 30.2

Basil 2 432.2 260.¢ 69.¢ 38.2

Bee 405.2 13.¢ 190.7 25.¢
Atractylode: japonica 513.¢ 310.t 0.€ 31.1
Glehnia littoralis : 121.¢ 77.t 0.3 20.2
Paprike 1025 427.2 210.¢ 56.€
Glehnia littoralis . 450.¢ 111 84.: 25.2
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A3. BLOCK DIAGRAMS OF THE LABVIEW PROGRAM USED IN CHAPTER 4

a) LabVIEW block diagram for the initialization of the srst
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c) LabVIEW block diagram for the rinse sequence
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d) LabVIEW block diagram for the ISE sensitivity test seqeen
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e) LabVIEW block diagram for the sample measurement ¢gstesice
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g) LabVIEW block diagram for the solution drainage sequence
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A4. 10N CONCENTRATIONS OF THE SOLUTIONS USED IN CHAPTERS 5AND 6

(UNIT: MG-L™)

Solutior Concernedon Concentration (md.™?)
Ce 248.0:
Two-point normalization solution
(high) K 308.91
NOs 981.7
Ce 28.31
Two-point normalization solution
(low) K 35.39
NOs 100.¢
Stock solution 1 Ca 3489.11
(Ca(NQy)24H:0) NO; 11243t
. K 6450.5
Stock solution 2 (KHPQy)
P 4149.582
) NH4 3340.28
Stock solution 3 (NEH2PQy)
P 4732.319
) K 7627.55
Stock solution 4 (KNG)
NOs 13564.3
) NH4 4430.25
Stock solution 5 (NENOs)
NOs 16608
Stock solution 6MgSC,-7H20) Mg 2071.
Stock solution 7K2SCy) K 8857.8.
pH control solution (LSCa) H pH 2.(
Cs 16.1%-23.4
K 2.6€-3.51
NOs 5.6-9.2
Tap water P 0.115-0.13¢
Mg 3.24-4.77
NH4 Not detecte
SO4 3.24-15.¢
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AS. BLOCK DIAGRAMS OF THE LABVIEW PROGRAM USED IN THE CHAPTERS 5
AND 6

a) LabVIEW block diagram for the environmental monitoring

@

b) LabVIEW block diagram for the TCP/IP communication

D C (standard)
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