5,515 research outputs found

    Structure learning of graphical models for task-oriented robot grasping

    Get PDF
    In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Contamination source inference in water distribution networks

    Get PDF
    We study the inference of the origin and the pattern of contamination in water distribution networks. We assume a simplified model for the dyanmics of the contamination spread inside a water distribution network, and assume that at some random location a sensor detects the presence of contaminants. We transform the source location problem into an optimization problem by considering discrete times and a binary contaminated/not contaminated state for the nodes of the network. The resulting problem is solved by Mixed Integer Linear Programming. We test our results on random networks as well as in the Modena city network

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks

    Full text link
    We present a procedure for effective estimation of entropy and mutual information from small-sample data, and apply it to the problem of inferring high-dimensional gene association networks. Specifically, we develop a James-Stein-type shrinkage estimator, resulting in a procedure that is highly efficient statistically as well as computationally. Despite its simplicity, we show that it outperforms eight other entropy estimation procedures across a diverse range of sampling scenarios and data-generating models, even in cases of severe undersampling. We illustrate the approach by analyzing E. coli gene expression data and computing an entropy-based gene-association network from gene expression data. A computer program is available that implements the proposed shrinkage estimator.Comment: 18 pages, 3 figures, 1 tabl

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat
    • …
    corecore