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We study the inference of the origin and the pattern of
contamination in water distribution networks after the observation
of contaminants in few nodes of the network.

Se estudia el problema de la inferencia del origen y del patrón de
contaminación en una red de distribución a partir de la observación
del contaminante en pocos nodos de la red.

PACS: Water Pollution, *92.40.kc, *92.40.qc; Flows in Ducts, 47.60.Dx; Inference methods, 02.50.Tt; Inverse problems, 02.30.Zz; Linear
Algebra, 02.10.Ud

I. INTRODUCTION

Fluid networks are ubiquitous and fundamental. They come
in a variety of sizes and shapes, from circulatory and
lymphatic systems in vertebrates, to ocean conveyor belts
and sea currents, passing by industrial fluid networks, water
distribution systems in cities and hydrographic basins. In all
of these cases, the spread of contamination, defined as the
presence in the fluid of non desired material, is problematic.
We study how to infer the position in the network at which
a contaminant first appeared after the observation of its
presence in some distant nodes of the network. This is a
relevant question at least in industries and cities, where pipe
networks are not susceptible of being explored or sensed
at every node, and where future or further damage can be
prevented from the knowledge of the contamination source.

The study of contamination origin has received a lot of
attention in the near past. Several approaches have been
developed [1–7] with the goal of infering the patient zero
after observing an epidemic outbreak. In [8] there is a state of
the art of studies made in related topics. However, epidemic
models in networks differ from fluid networks in that they
are essentially stochastic. Pipe systems can have some source
of stochasticity, like turbulence, but to the scope of the present
study the movement of the fluid is considered deterministic.
The simplicity of fluid networks is compensated by the fact
that we will try to infer the origin with very little information,
namely the observation of contamination in one or two nodes
of the system.

There is a variety of questions related to the inference of
contamination in water distribution systems, and a variety of
methods and approaches. Some researchers [9] have focused
on the inference of the pattern at the origin, after observation
of a contamination pattern at an observation node, but under
the assumption that both the origin and the observation
points are known. In such cases, the target is to reproduce the
real-valued time dependent concentration of contaminants.

Instead, we will pay more attention to discovering the
unknown source of contamination.

Within the scope of detecting the source of contamination,
many researchers make use of extensive forward in time
simulations (usually resorting to EPANET) [10–16] to test
different possible origins, and compare their predicted
patterns with the observed one, or to create a rule that allows
them to make inference later on. Some consider that there
is a source of stochasticity coming from the uncertainties in
the demands on the network at any given time [13, 17] or
on the reliability of the sensors [18], and try to infer in such
a context, sometimes resorting to Monte Carlo simulations
[17] or Bayesian methods [13, 17, 18]. Some have attempted
the detection of the origin by directly reversing the flow
dynamics in the network [19].

Our approach has some contact points with some of these.
As in [13,17,18] we formalize our method in Bayesian terms,
although we do not consider stochasticity in the demand
or on the sensors. We assume a simplified version of the
problem, with known deterministic dynamics, where time
is discretized and contamination is reduced to be binary
(contaminated or not) as in [13]. Our inference method
will rely on a neat mathematical approach using linear
programming to find the most effective explanation for a
contamination event. The linear programming optimization
will arise from an Occam’s Razor-like argument by the
assumption that contamination is a rare event.

Section II establishes the simplifications assumed throughout
this work in the modeling of the water distribution networks,
and the treatment of their dynamics. A precise statement of
our mathematical problem appears in Section III, where it is
also transformed into an optimization problem. The results
obtained in random models of cities appear in Section V, and
everything is summarized at the end.
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II. ASSUMPTIONS AND SIMPLIFICATIONS

Fluid networks can be grouped in two big classes, non
cyclic and cyclic regarding on whether any piece of fluid
is allowed to pass by a given position in the network more
than once. Circulatory systems and the ocean conveyor belt
are examples of cyclic networks. On the other hand, many
industrial and city networks are non cyclic. The procedure
presented by us will focus on non cyclic networks. Extensions
to cyclic networks might be simple, but have not been
explored so far.

Furthermore, we will focus on water distribution networks
(WDN), this is, the system of pipes, pumps, elevated tanks,
junctures and consuming points that characterize a standard
city clean water network. The behavior of such networks are
described by the Todini-Pilati equations [20], in which two
fundamental constraints, the conservation of mass and the
conservation of energy, are grouped in matricial form in the
following way[

App Apn
Anp 0

] [
Q
H

]
=

[
−Ap0H0

q

]
(1)

On right-hand side, the flow of demand q at the consumption
nodes is given, as well as the head pressure H0 at the
pumps and elevated tanks of the city. On the left-hand
side, the flow in each pipe Q and the pressure in internal
junctures H are to be found in order to satisfy the energy and
continuity equations. Detailed explanations of each term and
a discussion on the meaning and solution of the equations
can be found in [21]. Despite their apparent simplicity, these
equations are non-linear, since the elements of the matrix
App(i, i) = Ri|Qi|

n−1 depend on the flows Q we are looking for.
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Figure 1. Schematic representation of an abstract water distribution
network. Numbers inside nodes are labels. Numbers besides edges are
time delays ∆i j.

Inside the matrices App, Apn, Anp and Ap0 resides the
information about the topology of the network, the radii

of the pipes as well as the drag coefficients inside the
pipes. In principle, all these parameters are known (at least
approximately) and the flows Q and the fluid velocities v
inside the pipes, can be found using free and public modeling
software like EPANET [22]. This software allows also the
study of the diffusion of contaminants in the network.

However, we will concentrate our effort on studying the
direct (forward in time) problem and inverse (inference)
problem in a simplified version of the water dynamics. In
order to do this we will assume the following simplifications:

discrete time: once the fluid velocities v are known,
we obtain the pipe time ∆ = Round( L

v ) from the pipe
lengths L. We will consider this time ∆ an integer, using
a suitable discretization. This discretization is used for
describing the states st

i of each site i, at time t, in the
network.

binary contamination: at each time the state of node i
can be either clean st

i = 0 or contaminated st
i = 1. We

shall make the distinction between the state st
i ∈ {0, 1}

of a node, and the variable vt
i ∈ {0, 1} signaling whether

node ni is being actively contaminated by an external
source in time t. In other words vt

i = 1 marks node ni at
time t as origin of the contamination.

deterministic: we will suppose all real parameters
of the system (head pressures, drag coefficients, pipe
lengths, demand flow, etc) as known in detail and fixed
in time, such that the system operates in stationary
regime. Stationarity was assumed for simplicity, but is
not essential to our method, and can be readily lifted.

WDN is a graph: any water distribution network is
representable as a directed, non cyclic graph with timed
edges G(V,E,∆):

• V = {ni|i ∈ [0, 1, . . .N]} is the set of all nodes
(vertexes) in the graph,

• E = {(ni,n j)} is the set of directed ni → n j edges
with time delay ∆i j

• ∆i j is the time delay of each pipe. When (ni,n j) ∈ E,
∆i j > 0 and ∆ ji = −∆i j. If (n j,ni) < E then ∆i j = ∞.

In practice the graph G(V,E,∆) is constructed using the
topological network data (which nodes are joined by pipes).
But this is not enough. We also need the stationary solutions
of the Todini-Pilati equations, since we need the time ∆i j the
fluid takes to travel through pipe (ni,n j) that depends on the
velocities of the fluid. In this sense, G(V,E,∆i j) summarizes
topological as well as dynamical information of our system.

II.1. Simplified dynamics for direct problem

The forward in time evolution of contaminants in the
network is ruled by the following consistency equation
between the state of node ni and the sates of it’s predecessors
∂+ j = {n j|(n j,ni) ∈ E}:

st
i = m(st−∆

∂+i , v
t
i) ≡ vt

i

∨
j∈∂+i

st−∆ ji

j (2)
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The meaning of this equation is quite obvious. The node ni
at time t can be contaminated (st

i = 1) if either it is the origin
of the contamination (vt

i = 1) or it is receiving contaminants

from nodes connected to it ∃ j∈∂+is
t−∆ ji

j = 1.

II.2. Graph-time expansion

Equation (2) suggests that the dynamics of contamination can
be described in a time-extended graph, where nodes st

i are not
only defined by their spatial location i in the WDN but also
by a (discrete) time index t, where we define directed edges
to be existent between nodes (st−∆ ji

j → st
i) if a pipe connects

node j with node i with a time delay of ∆ ji. In Figure 2 we
show the first three time slices of the network of Figure 1.
To avoid overloading the Figure, we only represented three
edges, two of them connecting physical node 0 to physical
node 5, in a ∆ = 1 time delay, and one connecting node 0 to
node 2 in ∆ = 2 time steps.

Figure 2. Representation of the time-extended graph derived from the graph
in figure 1.

The time-extended graph will be the starting point of our
construction, allowing us to simulate simplified dynamics
through eq. (2). To test our inference procedure, we generate
random graphs with the desired properties (directed, non
cyclic and timed edges) pick up a random source node and
a random pattern vt

i = (0, 0, 0, 1, 1, 0, 1, 1, 0, 0, . . .), and use
equation (2) to track the evolution throughout the network.
We will also pick, among the contaminated nodes, one or
two that will be used as sensor, and whose evolution in
time st

o = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, . . .) will be accessible to the
inference procedure that we explain next.

III. INFERENCE AS OPTIMIZATION PROBLEM

The inverse problem we want to solve can be stated as
follows. Given a water distribution network, characterized
by a graph G(V,E,∆), and a set O = {o1, o2, . . .} of observed
nodes with their patterns st

oi
= (0, 0, 0, 1, 1, . . .), find the most

probable set P = {p1, p2, . . .} of nodes and their patterns
vt

p = (0, 0, 1, 1, . . .) for the origin of the contaminants in the
network. When convenient we will denote both, the observed
nodes and the contamination patterns by O and P in each
case.

In the estimation theory language, and using the Bayes
formula, we want to maximize, over the set of origins P,
the probability

Prob(P|O) =
Prob(O|P)Prob(P)

Prob(O)
.

To the scope of maximization, the denominator P(O) is
unknown but irrelevant. On the other hand, the probability
of observing contamination O given a set of sources P

Prob(O|P) =
∑
st

i<O

∏
i

∏
t

δst
i ,m(st−∆

∂+ i
,vt

i )

is either one or zero, depending on whether the deterministic
evolution of contamination in time following equation (2)
reproduces or not the observed pattern. This is a consequence
of the deterministic assumption made for the dynamics of the
network.

Therefore, the maximum of Prob(P|O) ∝ Prob(O|P)Prob(P)
is found among the origins that are consistent with the
observation, that we will symbolize as P→ O. In other words,
we will estimate the origin of the contamination as the set of
nodes and patterns satisfying

P̂ = argmax
P:P→O

Prob(P).

Now we need to fix a prior for the patterns. Assuming that
the contamination is a rare event, we will consider as more
probable the explanations requiring the smallest amount of
nodes and time laps involved in the original contamination,
therefore, the smallest set P.

Using equation (2) recursively, we can write the consistency
equations between the observation at any node, and the
original contamination variables vt

i at nodes above it in the
graph,

st
i = M(vt−∆c

∂++i , v
t
i) ≡ vt

i

∨
j∈∂++i

∨
c∈Ci j

vt−∆+
c

j . (3)

The reason why this recursive substitution of eq. (2) in
itself has an end point is that we are considering non cyclic
networks, so the observation at node st

o can only come from a
finite number of nodes and times in the graph. In expression
(3), ∆+

c stands for the time delay of path c from node n j to node
ni, while ∂++i stands for all nodes n j that can access node ni by
some path c in graph G(V,E,∆). The expression vt−∆c

∂++i inside

the definition of function M(·, ·) represents all element vt−∆+
c

j
on the right-hand side of the equation.

The condition P → O, read as “origins P = {p1, p2, . . .} causes
observation O” is equivalent to the condition

∀o∈O ∀t st
o = M(vt−∆c

∂++o , v
t
o).
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III.1. Graph reduction

As we want the smallest set P, any node that is not present
on the right-hand side of this equation, will be assumed not
to be an origin vt

i = 0, since it is irrelevant to explain the
observation. Furthermore, the nodes that do appear on the
right hand side of one of these equations, but whose left-hand
side is a clean observation st

o = 0, are forced by this equation
to also be clean, vt−∆+

c
j = 0. Therefore, in order to explain the

observation we remain with the observed nodes variables
vt

o that are seen as contaminated st
o = 1 and those vt−∆+

c
j

connected to them by equation (3) that are not connected
to non contaminated observations. All this reduction of the
valid nodes is equivalent to what is done in the contamination
source pruning of [18].

Figure 3. Each node is labeled by two numbers, the upper one is the original
node number in the graph (Fig. 1) while the lower one stands for the time bin
of the variable vt

i it represents. Square nodes correspond to observed state
variables vt

o, while circular nodes correspond to the remaining variables (see
text).

We can represent the relation between the remaining
variables as a graph, in which each contaminated observed
node variable vt

o is connected to the non observed nodes
that remained as possible explanations of the observed state,
as in Figure 3. Furthermore, re-labeling the variables in this
representation as yk for the observed (square) nodes vt

o and
xi for the non-observed (circular) nodes vt−∆+

c
j , the constraints

imposed by eq. (3) can be stated as

∀yi∈Y yi +
∑

xk∈∂yi

xk ≥ 1 (4)

forcing each observed node itself, or one of its neighbors
to be the origin of the contamination. The condition P̂ =
argmax

P:P→O
Prob(P) now can be rewrite as

(x̂, ŷ) = argmin
x,y

∑
i

xi +
∑

j

y j

 (5)

under the constraints given by eq. (4).

Both, the objective function and the constraints are linear,
and therefore susceptible of being solved by integer/linear
programming methods (LP). Furthermore, since coefficients
are integers, more than one optimal solution might exist.
The set of all solutions can be found by recursively slightly
altering the coefficients of the variables in the objective
function (see [23]). Once a solution is known, we get a set of
variables y and x with value 1, while the rest is zero. Mapping
back yk and xi to the original variables vt

o and vt
i , we claim

this solution to be an optimal pattern of contamination.

At this point it is important to clarify that the optimization
made by LP is only in time, meaning that any two solution
with the same number of active times for the contamination
are equivalent. In other words, the optimization does not
distinguish whether the source nodes of the time-extended
graph correspond to the same node in the water network, or
to different nodes. This is relevant, since the basic assumption
made, namely that contamination is a rare event, would also
imply that solutions with one real node of the water network
might be preferable to those involving more nodes, even in
the cases where the latter involves less time-expanded nodes.
The current procedure can not solve this issue neatly. We
partially circumvent it by choosing among the solutions those
involving less real nodes of the water distribution network.

We have shown how to transform the inference of
contamination into a treatable optimization problem. Let us
outline the whole procedure here:

1. Input: Start from the given WDN and the set
of pipe times obtained from the solution of the
Todini-Pilati equations for your system, and some
observed contamination pattern. (For this step one
probably will use EPANET or other similar software,
as we did for the network of Modena city. In the
case of random networks, this step was not required,
since the time intervals were directly generated from a
probability distributions.)

2. Graph-time expansion: Using the speeds along the
pipes, and the distances of the pipes, compute the time
delays ∆ ji. Use a suitable discretization of the times
to create a time-extended graph as explained in the
previous section. (We programmed this step in Python.)

3. Graph reduction: Starting from the time-extended
graph, create a new graph by connecting every node
st

i to all other nodes stk
k such that a path

(stk
k → stk1

k1 ), (stk1
k1 → stk2

k2 ), . . . , (stkn
kn → st

i)

exists. Reduce this graph (as in Figure 3) by retaining
only the observed contaminated nodes and those
connected to them that could possibly explain the
contamination. (We programmed this step in Python)

4. Optimization: Use linear programming to find the
most efficient explanation for the contamination
observed. (We used lpsolve solver in Linux)
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Next we discuss two typical situations where our method
fails and succeeds. In the section after, we test the efficiency
in three different situations: many unrealistic random
topologies water distribution networks, a real city (Modena
in Italy) and finally many realistic random cities statistically
similar to Modena.

IV. SIMPLE SMALL EXAMPLES

Let us consider two separate examples, usign the toy network
of Figure 1. The first example is the observation of a
contamination at sensed node 7 (bottom left, painted in blue
color), with pattern s7 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0). Given that
there is only one path in the network arriving at node 7,
it is obvious that contamination should have happen along
that path, this is, either at 7 itself, at node 2, at node 0, or
at a combination of them. Our algorithm (and logic) will
produce the following solutions (only representing the non
zero nodes):

S = {(v5
7, v

8
7), (v2

2, v
5
2), (v0

0, v
3
0)

(v5
7, v

5
2), (v5

7, v
3
1)

(v2
2, v

8
7), (v2

2, v
3
1)

(v0
1, v

5
2), (v0

1, v
8
7)}

While all those solutions involve two nodes of the
time-extended graph and are equivalent to our optimization
code, only the first three involve one real node of the
WDN. We call this solutions 1-node-solutions. Assuming
that contamination is a rare event, we will select the subset
of 1-node-solutions, whenever it is not empty, as the most
probable contamination source. In this case, however, neither
the algorithm nor logic can reduce our uncertainty among
which of the three nodes (7, 2, 0) was the most probable origin.
This is a difficulty that arise also in many other contamination
inference algorithms [10, 13, 16, 19].

Figure 4. Part of Graph from figure 1. Blue (node 7, bottom left) and green
(node 3, bottom right) nodes are those where two different contamination
events are sensed.

The second example is the observation of a contamination at
sensed node 3 (bottom right, painted in green color), with
pattern s3 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0). Now there are two
paths in the network arriving at node 3. As before, we can

explain the contamination with single node solutions as

S = {(v3
0), (v1

2, v
5
2), (v5

3, v
9
3)}

The outcome of our algorithm, however, will be only (v3
0),

since it minimizes the number of nodes in the time extended
graph required to explain the contamination effect. This
illustrates both, the power and the risk of our algorithm.
We expect our optimization procedure to return non-trivial
inference whenever there is more than one path connecting
the real contamination source with the observation nodes. At
the same time, complex in time patterns (with contamination
lasting for more than one time interval) are susceptible of
being over-simplified. That would be the case of the previous
example, if the real contamination origin had been node 2, a
situation that our algorithm would disregard as sub-optimal.

We could study mathematically the probability of such
situations appearing in water distribution networks, but
we leave this for a future study on the optimal sensor
distribution. For the optimality of sensor placement,
exploiting multi-path will be crucial. We next characterize
“experimentally” our method by trying it on many artificial
networks.

V. RANDOM DISTRIBUTION NETWORKS

In the following we will only treat contaminations events
that take place in a single node of the network. Therefor if the
true contamination patterns is a solution of our optimization
problem, then it is in the 1-node-solutions. Despite already
being a reduction, the 1-node-solutions can contain many
different explanations for our contamination. For instance
if we have a WDN that is simply a single chain of nodes
with water moving along, and a sensor at the end of it, the
method will find all nodes in this line are equally good 1-node
explanations of the observed pattern.

We define the efficiency of our method in two different ways.
First, by the probability of finding the real contamination
pattern in the 1-node-solutions. Second, by the probability
that the real contamination pattern is one randomly selected
1-node solution. This second measure is more demanding,
since in order to be efficient, the method should find few
optimal solutions, while the first measure is insensitive to
the multiplicity of solutions.

To explore the efficiency of the method we first test it on
random graphs with WDN characteristics. These random
graphs (as the one in figure. 1) are Erdos-Renyi graphs [24]
in which a directionality and a time delay are enforced
in each pipe. Figure 5 shows the efficiency of the method
versus the number of nodes in the system. The origin of
the contamination is taken to be a single randomly selected
node i, and we spread from it a compact contamination
pattern (contamination in consecutive times steps, lasting
a randomly selected time between 2 and 10) at t = 0
vi = (1, 1, 1, 0, . . .). The selection of sensors is made in the
following way: the sensed node is picked randomly from the
set of nodes touched by the contamination but guaranteeing
that is not connected with previously chosen sensors (because
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in this case the contamination in one of them can explain
the contamination in the other). If this condition can not be
satisfied, then the second sensor is picked randomly from
the nodes through which contamination does not passes
(the information of a node not being contaminated is also
informative, since it allows the removal of all its neighbors
from the set of possible explanations).
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Figure 5. Efficiency of the inference method with one and two sensors in
a system with a compact contamination pattern. Squares correspond to
one sensor cases, while circles correspond to two sensors. Open points
correspond to the first efficiency measure, while the full points correspond
to the second (see first paragraph in this section). Each data point is an
average of 1000 different contamination events in different systems.

We could have done simulations for bigger graphs, but the
trend seems already to be stable in the range 20− 200. Let us
underline that 200 nodes is already a size comparable to that
of small cities, or at least of some industries. However, we
did not push forward in this direction, since an Erdos-Renyi
random graph is hardly a credible topology for real water
distribution networks (see Modena and Modena-like random
cities in the next sections).
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Figure 6. Comparison between the number of solutions which involved only
one node of the Graph G with one or two sensors in the system. Each
data point is an average of 1000 different contamination events on different
systems.

The efficiency practically remains constant for 50 or more
nodes. With two sensors in the system the method is nearly
perfect since practically in every case of study the real
contamination pattern was obtained among the optimal
solutions found. However, in both cases, the inference
method finds many 1-node solutions for the optimization
problem, reducing the second efficiency measure.

In any case the number of solutions found by the method

is also a relevant parameter to characterize its efficiency. As
we mentioned at the end of Section III the method can not
determine the solutions which involve less number of nodes
the real water distribution network (graph G) directly from
optimization (5), but rather those involving less nodes of the
time-extended graph. Given a set of optimal solutions we
can further reduce this set by selecting among them those
involving fewer real nodes in the network. In Figure 6 we
show the number of optimal solutions which involve only
one real node of Graph G.

Observe that the number of 1-node-solutions is never higher
than ten, this means that with one sensor in a network of 200
nodes the number of nodes which are possible source of the
contamination are around 10, which is significantly smaller
than the network size, but still not a reliable estimation
method. However, with two sensors the average number
of optimal solutions is between 1 and 2, which is quite a
reduction of the uncertainty.

VI. MODENA CITY

To get more realistic, we studied a real city network: the one
of Modena, Italy. As can be seen in the top-left panel of Figure
3, real cities are far from being random E-R graphs, since they
are mostly planar graphs. We took Modena topology as well
as pressure and demand data from the Internet [25], and
used EPANET to solve the stationary state of the network.
With the resulting fluid velocities in pipes, we computed
the delay times in each network pipe using a discretization
of 30 seconds, which is smaller than the fastest pipe (41
seconds), and much smaller than the average pipe delay
(∼ 1100 seconds, more than 30 times the discretization). Then
we constructed our abstract graph representing the city and
studied many contamination events on random locations.
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Figure 7. Efficiency of the method as a function of the duration of the
contamination event. The time units is 30 seconds, so the largest spill time
considered is 37.5 minutes.

We cannot make an efficiency vs size study, since the
size of the network is fixed to 268 nodes, but we can
study the efficiency with respect to the duration of the
source contamination. Notice in Figure 7 that for the range
from 1 to 75 discrete time intervals, the efficiency remains
above 75 % . It seems to be a decreasing function of the
contamination time. This is consistent with the fact that the
proposed optimization method relies on the assumption that
contamination is a rare event. This also suggest that a rule
of thumb for assuming a good discretization of time is one
that is smaller, but not many times smaller than the typical
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duration of a contamination event. Of course, the meaning
of “typical” here will be case specific.

VII. RANDOM MODENA-LIKE CITIES

We would also like to have statistic results over many
different city networks. However, information about the
water distribution network of real cities is normally restricted
for security reasons. Specially since September 11th terrorists
attacks, there has been a growing concern on concealing
information that could be used to plan terrorist acts with
the highest impact. Unfortunately, such comprehensible
precaution affects the testability of studies like this, intended
to protect citizens from intentional and non intentional
contamination diffusion.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  
  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

    

  

  

  

  

  

  

    

  
  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

      

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  
  

  

  

  

  

  

  

  

  

  

    

  
  

  

  

  

  
  

  

    

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

      

  
  

  

  

  

  

  

  

  

  
  

  

  

    

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

    

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

    

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

    

  

  

  
  

  

  

  

  

  

  
  

  

  

  

  

  

  

  
      

          

  

  

  

  

  

  

  

  

  
  

  

  
  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

    

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  
  

  

  
  

    

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  
  

    

  
  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  
  

  

  

  
  

  

  

  

  

  
  

  

  

  

  
  

  

  

  

  

  
  

  

  

    

  

  

  

  

  
  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  
  

  

  

  
    

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  
  

  

  
  

  

  

  

  

    

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
    

  

  

  

  

  

  

  

      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 8. Modena and Modena-Like graphs in different views. 1. Graph of
Modena city created with EPANET. 2. Graph of Modena city in a different
view. 3,4 Graphs of Modena-Like cities.

To tackle this we devised a plausible algorithm to create
random planar graphs similar to Modena. We start by a
square 2D lattice graph of smaller size than Modena. Then
we randomize the graph by the following two steps:

1. (add nodes) take randomly some edge (si, s j) and
replace it by a new node sk and two new edges (si, sk)
and (sk, s j). Do this until you end up with a number of
nodes similar to that in Modena.

2. (remove edges) take randomly some edges of the graph
and remove them.

The process is fine-tuned to achieve a similar number of
nodes as well as degree distribution as that observed in
Modena. The fraction of new nodes introduced to achieve
a degree distribution as in Modena is then kept fixed when
producing bigger or smaller sizes of networks. Both steps
proposed will preserve the planarity of the original 2D lattice.

In Figure 8 you can see the similarity between Modena and
our random versions of it. The top-left panel represents the
real topology of the Modena network, while the top-right one
is also Modena, but plotted with a standard graph plotting
software. The lower panels are random Modena-like cities
produced as explained before.

After creating the artificial Modena-like topology, we
randomly assign a rank of pressures to the nodes, and
give orientation to the fluid in each pipe accordingly. In
the resulting model, we apply a contamination of typical
time duration 10 time units to a random node and evolve it
forward in time. Then we try to infer its origin with our
optimization method taking the observation at one other
random point of the system among those that are touched
by the contamination.

With only one sensor, in sizes from 50 to 500 nodes we found
that the correct contamination origin was found among the
optimal solutions nearly every time (¿99 %). However, the
true solution is not the only one given by the algorithm.
In the case with one sensor due to the low connectivity of
real networks, and specifically in Modena and Modena-like
networks, our method finds many optimal solutions, since
almost each time the source and the sensed node are
connected by a single path.
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Figure 9. Number of solutions which involve only one node from Graph G
in Modena-like networks with 2 sensors. Each data point is an average of
1000 different contamination events in different systems.

With two sensors, again, the method finds the true
contamination pattern almost every time. In Figure 9 we
show the number of optimal 1-node solutions found, but
“normalizing” it. As we mentioned, when we have a single
line of nodes the method can not distinguish which among
them is the most probable source of contamination. For this
reason, we decided to remove from the networks those nodes
that have only two neighbors, and replace both pipes by an
equivalent larger pipe. The number of 1-node solutions of
this reduced version of the network are shown in Figure 9.

From the analysis of Modena and Modena like cities, we
should emphasize that the method is good at finding the true
origin among the solutions, but bad at reducing the number
of equivalently good solutions. The multiplicity of optimal
solutions is inevitable when the sensor node and the true
origin of the contamination are connected by a single path.
Let us underline, however, that we are testing our method in
random settings, while in real life we expect the positioning
of the sensors to have been carefully optimized to reduce the
chances of multiple solutions.
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VIII. CONCLUSIONS

In this paper we have presented a method to infer the
contamination sources in fluid networks. The method relies
in the plausible assumption that contamination events are
rare. The inference was formulated in a Bayesian approach
and it was transformed into a linear optimization problem
with linear restrictions which can be solved using linear
programming methods. We emphasize that the Bayesian
step is used to formally derive an optimization problem,
and not for the treatment of uncertainty in the network
parameters (like flow, pipe diameters, etc) as has been
done before. Through the simulation of many random
events of contamination in random cities, Modena city and
Modena-like cities, it was possible to determine the efficiency
of the method (above 70 %), proving the method useful.

The method proposed could be readily extended to the case
of non stationary states in the network. If the velocities in
the pipes are changing with the demand during the day,
for instance, it is not a problem to apply the procedure
described to this case. It suffices to create the extended graphs
connecting time-space nodes according to the time of the day
each node represents.

However, the method is too simplistic in many aspects,
some of which could be improved. Time discretization is
one simplification, but is among those we would rather keep
in future treatments. Binary contamination, however, seems
a stronger simplification, since a lot of information could
be present in the intensity pattern. To keep in the realm of
discrete optimization problems, an improvement could be
achieved by having more than two discrete contamination
levels.

Furthermore, we consider that the main drawback of the
method for its applicability, is its rigidity. Contamination
could pass undetected by observation nodes, specially
if highly diluted. In the current setting, any observed
non-contaminated time-space node, implies the definite
elimination of all the upstream nodes as possible origins. We
have seen that when using our method with EPANET realistic
diffusion, this implies losing the real sources many times.
We think that the best improvement over the current method
will come from applying stochastic methods of inference, like
Bayesian networks, to the problem. We are currently moving
in this direction.
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[24] P. Erdos and A. Rényi, Publ. Math. Debrecen. 6, 290
(1959).

[25] University of Exeter, Free Modena EPANET model.
http://emps.exeter.ac.uk/media/universityofexeter/em-
ps/research/cws/downloads/data/3-epanet/MOD.inp.
(2014).
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