-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by AMS Tesi di Laurea

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Specialistica in Informatica

Structure Learning of Graphical Models
for
Task-Oriented Robot Grasping

Relatore: Presentata da:
Chiar.mo Prof. Alessandro Pieropan
Sandro Rambaldi

Correlatori:
Chiar.ma Prof.ssa
Danica Kragic
Dr.ssa Dan Song
Dr. Kai Huebner

IT Sessione

Anno Accademico 2009/2010

https://core.ac.uk/display/11806372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

(1 _Introduction|

2 Bayesian Networks|

2.1 Overviewl.

[2.2 Structure Learning Background| 00000

[2.2.2 Structure Learning Methods|

[2.3 Parameter Learning Background|.

2.4 Our approach|

[2.5 Structure Learning Algorithms|.

[2.6 Summary of Bayesian Network{.

[3 Structure Learning Experiments on Well-Known Networks|

Bl Overview].o

[3.2 Discretization experiment on Incinerator networkl

[3.2.1 Car and Insurance network experiments|

[3.3 Consideration After the Experiments|
[3.3.1 Edge Average Matrix Approach|

[3.3.2 Network Decomposition approach|
[3.3.3 BIC Score Search Approach|

[3.4 Summary of Experiments|. 000000

[4 Grasp Planning|

M1 Overview].

co = ot O

ii CONTENTS

[4.2 Experiments on grasp planner data]00 31
42,1 Real data overviewl L o 31

[4.2.2 Dimensionality Reduction| 33

4.2.3 Discretization|o 33

[4.2.4 Structure learning|. Lo 33

[4.2.5 Parameter Learning and Testing|. 35

4.3 Grasp Planners Comparison| 36
4.4 Summary ot Real Data Analysis| 37
[5__Discussionl 39
b1 Timitationl 39
b2 Future Workl. oo 39
[6.2.1 Discretization Future Workl 39

[5.2.2 Structure Learning Future Work{. 40

[5.2.3 Grasp Planner Integration 41
lA_Code Overview| 43
[A.1 Multivariate Discretization Classl 43
[A.2 Node Discretization|o 47
[A.3 Structure Learning|o 47
(A4 Example 49

(Bibliography| 53

List of Figures

(1.1 Grasping example.| L 1

[2.1 Example of a Bayesian network for the wet grass problem. 6

(2.2 Example of discretization from bi-dimensional data, the numbered points |

| are continuous data and the areas defined by the edges are the discrete |

| values. In this case we want to discretize the data into 9 possible discrete |
[states] 8

[2.3 Example of soft discretization in 2 dimensions and how the discrete states |

| are affected by the spreading function.| 9

[2.4 Overview of Gaussian mixture model (GMM) approach to discretize data. |

| In the example it can be seen the distribution of sample bi-dimensional |

| data and the components calculated by the algorithm.|. 10

[3.1 Activity diagram showing the experiment made with Incinerator network.

|
First, we discretize the mixed network with two different approaches: |
Gaussian Mixture Model (Bnet 5) and Equal Boundaries. Four differ- |

|

ent networks are discretized with Equal boundaries approach changing

the number of discrete boundaries (Egb 1,2,34).. 16

BT S) Himene T I I l

[2 continuous nodes) 17
[3.4 Original structure ot Car networkl 21
[3.3 Original structure of Insurance networkl 21

[3.5 Original Car Dag with edge matrix results.|. 25

11

iv LIST OF FIGURES

[3.6 BIC tree search approach overview. Here the tree is expanded to level 2

| as example.| 26
4.1 Complete system diagram. The selected grasp planner generates a grasp |
| given a robotic hand and an object as an input. The generated grasp is |
| then calculated by the simulation environment Grasplt and all the features |
| are extracted from it and the human expert label the grasp looking at the |
| visualization. The features are then stored to be used to train and testing |
| the Bayesian network framework.|00 30
4.2 Activity diagram for the complete experiment procedure on data of the |
| selected grasp planner.|o oL 32
4.3 Activity diagram for real data structure learning/. 34
[4.4 Resulting Bayesian network after structure learning and inference tests.| . 36
[A.1 Multivariate Discretization Class Diagram| 44
[A.2 Mutivariate Discretization Activity Diagram| 48

List of Tables

B

Number of discrete states for the Bayesian networks nodes created after

discretization. Eqgb 1 to 4 are discrete networks where the continuous

nodes of the ground truth network are discretized with the equal boundary

approach while Gecomp i1s discretized using (GGaussian Mixture Models.| . .

B2

Percentage of runs that return a network’s structure exactly the same as

the ground truth.| oo

[3.3

summary of the results given by the algorithms used for structure learning

of the network Eqb3. Results are for three different algorithm with vari-

ous settings: Causality Search (PC), Greedy Search (GS) and Maximum

Weight Spanning Tree (MWST). Results are in percentage of runs that

return a network equal to the ground truth.|

B4

summary of the results given by the algorithms used for structure learning

of the network Gcomp. Results are in percentage of runs that return a

network equal to the ground truth.|

[3.5

Percentage of runs for Eqb3 that return a structure with differences in

edges from the ground truth between 1 and 5|

[3.6

Percentage of runs for (Gecomp that return a structure with differences in

edges from the ground truth between 1 and 5|

[3.7

Car network learning resulting matrix with ‘divide and conquer’ approach

and 6000 data. Survey percentages for original network edges are in bold.

It can be seen that only edge from node 7 to 8 is not found at all and edge

from node 8 to 11 has a low percentage but the precision increase with a

higher number of data.| L.

vi LIST OF TABLES

[3.8 Car network reconstruction with 15000 data points considering an edge

when the probability in the edge matrix is higher than 75. It can be seen

that the calculated DAG 1is equal to the ground truth.. 25
4.1 Task and Actions structure learning.| 34
4.2 Task and Objects structure learning.| 35
[4.3 Task and Constraints structure learning.| 35

4.4 Confusion matrix for the task mference test. I'l is hand-over, T2 pouring

and '1'3 tool-usel., 36

Chapter 1

Introduction

Figure 1.1: Grasping example.

1

2 1. Introduction

In the collective imaginaries a robot is a human like machine as any androids in
science fiction. However the type of robots that you will encounter most frequently are
machinery that do work that is too dangerous, boring or onerous. Most of the robots
in the world are of this type. They can be found in auto, medical, manufacturing and
space industries. Therefore a robot is a system that contains sensors, control systems,
manipulators, power supplies and software all working together to perform a task. The
development and use of such a system is an active area of research and one of the
main problems is the development of interaction skills with the surrounding environ-
ment, which include the ability to grasp objects. To perform this task the robot needs
to sense the environment and acquire the object informations, physical attributes that
may influence a grasp. Humans can solve this grasping problem easily due to their past
experiences, that is why many researchers are approaching it from a machine learning
perspective finding grasp of an object using information of already known objects. But
humans can select the best grasp amongst a vast repertoire not only considering the
physical attributes of the object to grasp but even to obtain a certain effect. This is why
in our case the study in the area of robot manipulation is focused on grasping and inte-
grating symbolic tasks with data gained through sensors. The learning model is based
on Bayesian Network to encode the statistical dependencies between the data collected
by the sensors and the symbolic task. This data representation has several advantages.
It allows to take into account the uncertainty of the real world, allowing to deal with
sensor noise, encodes notion of causality and provides an unified network for learning.
Since the network is actually implemented and based on the human expert knowledge,
it is very interesting to implement an automated method to learn the structure as in the
future more tasks and object features can be introduced and a complex network design
based only on human expert knowledge can become unreliable. Since structure learning
algorithms presents some weaknesses, the goal of this thesis is to analyze real data used
in the network modeled by the human expert, implement a feasible structure learning
approach and compare the results with the network designed by the expert in order to
possibly enhance it. The rest of the thesis is organized as follows. Chapter II will present
Bayesian network and explain the weaknesses that justify our approach. Chapter IIT will

introduce our approach to structure learning. Chapter IV will outline the experimental

results, and Chapter V will present conclusions.

Nell'immaginario collettivo un robot solitamente € una macchina umanoide come gli
androidi nella fatascienza. Tuttavia i robot che si possono incontrare pitl spesso sono
macchinari che svolgono lavori troppo pericolosi, noiosi, ripetitivi o semplicemente dif-
ficili. La maggior parte dei robot sono di questo tipo. Vengono spesso usati nel settore
automobilistico, medico, manifatturiero e spaziale.

Un robot ¢ quindi un sistema composto da sensori, sistemi di controllo, manipolatori,
fonti energetiche e un software, tutte parti che insieme svolgono un compito. Lo sviluppo
e l'uso di un tal sistema ¢ un campo attivo della ricerca e uno dei problemi maggiori
consiste nello sviluppo di capacita di interazione con 'ambiente circostante, inclusa la
capacita di afferrare oggetti. Per portare a termine questo compito il robot ha bisogno di
percepire ’ambiente esterno e acquisire le informazioni relative all’oggetto, gli attributi
fisici che potrebbero influenzare la presa. Gli esseri umani possono portare a termine
questo compito molto facilmente grazie alla loro esperienza, ed e proprio per questo che
i ricercatori affrontano questo problema nel campo dell’apprendimento automatico, em-
ulando il comportamento umano e cercando una possibile presa usando le informazioni
ottenute da oggetti gia conosciuti. Tuttavia gli essere umani non solo scelgono una possi-
bile presa considerando gli attributi fisici dell’oggetto ma tengono anche in considerazione
il fine di tale azione. Ecco perche nel nostro caso, la ricerca nel campo dell’interazione
robotica si focalizza nell’integrare dati fisici ottenuti dai sensori con informazioni sim-
boliche rappresentanti il fine dell’azione. Il nostro modello di apprendimento ¢ basato
sulle Reti Bayesiane per integrare le dipendenze statistiche tra i dati raccolti dai sensori e
gli obiettivi simbolici. Questo tipo di rappresentazione ha diversi vantaggi. Permette di
tener in considerazione l'incertezza del mondo reale, gestendo il disturbo nelle rilevazioni
dei sensori, incapsulare nozioni di causalita a fornire un rete unica per 'apprendimento.
Dato che 'implementazione della rete utilizzata ¢ basata unicamente sulle conoscienze
di un esperto, siamo interessati a implementare un sistema automatico per apprendere
la struttura dei dati siccome in futuro potranno venir aggiunti piu obiettivi e oggetti
aumentando cosi la complessita della rete e rendendo la progettazione manuale basata

solo sul giudizio umano inaffidabile. Gli obiettivi di questa tesi sono di analizzare i

4 1. Introduction

dati usati dalla rete progettata manualmente, implementare un possibile approccio per
I’apprendimento che possa ovviare alle debolezze degli algoritmi di apprendimento e
confrontare i risultati ottenuti con la rete progettata dall’esperto umano possibilmente
incrementandone le prestazioni. La tesi € organizzata come segue. Il Capitolo II presenta
le reti Bayesiane e evidenzia le debolezze che giustificano il nostro approccio. Il Capi-
tolo III descrive il nostro approccio per I'apprendimento della struttura. Il Capitolo IV
illustra i nostri risultati mentre nel Capitolo V vengono presentate le nostre conclusioni

e sviluppi futuri.

Chapter 2

Bayesian Networks

2.1 Overview

Bayesian network (BN), also known as belief networks belong to the family of prob-
abilistic graphical models. These graphical structures are used to represent knowledge
about an uncertain domain. In particular, each node in the graph represents a random
variable, while the edges between the nodes represent probabilistic dependencies among
the corresponding random variables. Our specific problem is to use Bayesian networks in
robotics to encode the statistical dependencies between objects attributes, grasp actions
and a set of task constraints, and use the model as a knowledge base that allows robots
to reason at a high-level manipulation tasks. Since the input data is usually continu-
ous and noisy, the problem is very high-dimensional and has complex distribution on
many variables, that is why we choose to use Bayesian network as it provides a good
representation of the joint distribution of such complex problem domains. A Bayesian
network is a probabilistic graphical model that represent a set of random variables and
their dependencies using a directed acyclic graph (DAG) where every node is labeled
with a specific probabilistic information [1§],[19],]25],[L7]. The full specification [2§] is
the following.

1. A set of random variables makes up the nodes of the network. Variables may be

discrete or continuous.

2. Bayesian Networks

2. A set of directed links or edges connects pair of nodes. If there is an edge from

node X to node Y, X is said to be a parent of Y.

3. Each node X; has a conditional probability distribution P (X;|Parents(X;)) that

quantifies the effect of the parents on the node.

4. The graph has no directed cycles (and hence, is a directed, acyclic graph or DAG).

PS=F] P(S=T)

P[C=F] P[C=T}

05 035

{" Cloudy

€| PR=E) PIR=T)

i { Sprinkler = {Rain Bl mE D
ful T| 02 08

{ WetGrass

/

Y

S R| PIW=E)] P[W=T)

EE 10 0.0
TF 0l 09
InRle ol 09
TT 001 099

Figure 2.1: Example of a Bayesian network for the wet grass problem.

The topology of the network, as it can be seen in the example in Fig. [2.1] specifies

the conditional independence relationships that hold in the domain. Any arrow from a

node X to a node Y (e.g X = Cloudy, Y = rain) implies that X has a direct influence

on Y. Once the topology of the network is defined, it is needed to specify the proba-

bility distribution of each variable, given its parents. In the figure each distribution is

represented as a conditional probability table (CPT). Each row in the CPT show the

conditional probability of the variable for a conditioning case. A conditioning case is

simply a combination of the parents value. A network provides a complete description

2.2 Structure Learning Background 7

of the domain. Every entry in the full joint probability distribution can be calculated
from network. Every entry value, denoted by P(X; = z1 A ... A X,, = x,,), is given by

the formula:

P(Xi=x1 N ANX, =x,) =[], P (X;|Parents (X;)).

2.2 Structure Learning Background

Usually the network is specified by an expert and then it is used to perform infer-
ence. But in complex cases it is not feasible and unreliable. In these cases the network
structure is learned from data using an automated method. There are two very different
approaches to structure learning: constraint-based and search-and-score. The constraint-
based approach starts with a fully connected graph and remove edges when a certain
condition is met. The search-and-score approach performs a search through the space
of possible DAGs, and returns the best one found using a scoring function. Using an
automated method to learn the Bayesian network structure of a system or environment
gives researchers useful information about the causal relationships among variables. But
it is very hard to learn the network when we have to handle continuous data especially
when distribution is not Gaussian or when we have to deal with a case that is not full ob-
served having missing data or hidden variables. As a consequence most Bayesian network
structure learning algorithms work with discrete data. As data are often continuous and
networks really complex, a common approach to learn the structure with an automated

method is to previously discretize the data.

2. Bayesian Networks

2.2.1 Discretization

I &
4 24
03 &3 v
4849 &0
| <4
0.8 a5 43
. o]
a7l 47 ;| o 40
44
&7 8
06}
A52
a5
0l 29
£
03}
9 26
Dz 1 1 1 1]
1 08 406 02 04 06 08 1

Figure 2.2: Example of discretization from bi-dimensional data, the numbered points are
continuous data and the areas defined by the edges are the discrete values. In this case
we want to discretize the data into 9 possible discrete states.

In statistics and machine learning, discretization refers to the process of converting

continuous features or variables to discretized or nominal features. There are two possible

approach of discretization:

Hard : consists of defining boundaries for the data we want to discretize and turning

the continuous features into discrete ones usually using a proximity function. As in

Fig. [2.2/an area delimited by red edges is a discrete value and every continuous data

point inside it assume the discrete value of that area. Looking at the example, the

continuous data point number 23 will be turned to the discrete value of 1, assuming

we number the discrete areas from top left corner to bottom right.

Soft : the continuous value is not turned directly to the value of the nearest bound but its

value is ‘spread’ to other possible discrete values using a spreading function. This

2.2 Structure Learning Background 9

method, suggested by Imme Ebert-Uphoff [7], has a linear Gaussian distribution as
spreading function and the deviation value of the distribution determines how much
every continuous data point will be spread over the discrete boundaries. With a

deviation equal to zero the soft discretization behave exactly as the hard one.

Soft Discretization with Multidimensional Spreading Function

Following this idea we implemented an algorithm that, given high-dimensional data
and a list of bounds, soft discretizes them using a multidimensional gaussian distribution

and learns the parameters of the built discrete Bayesian network using the soft evidences

as in Fig. 2.3

IR=N 3
0.193652 0.058279 0.0000a0
0sr
|
arr
nEL 0.493230 0.224759 0.0000a0
0sr
04
0.000000 0.000000 0.000000
03F
02 1 1 1 1 1 1 1 1 1 1
-1 a8 08 04 02 o 02 04 0B 0B 1

Figure 2.3: Example of soft discretization in 2 dimensions and how the discrete states
are affected by the spreading function.

10 2. Bayesian Networks

Gaussian Mixture Models

b

Rl | | 1 | | | |
-8 6 -4 -2 0 2 4 6

Figure 2.4: Overview of Gaussian mixture model (GMM) approach to discretize data.
In the example it can be seen the distribution of sample bi-dimensional data and the
components calculated by the algorithm.

Gaussian Mixture Models (GMMs) are among the most statistically mature methods
for clustering. It consists in the assignment of a set of observations into subsets (called
clusters) so that observations in the same cluster are similar in some sense. Clusters are

assigned by selecting the component that maximizes the posterior probability.

2.2.2 Structure Learning Methods

There are three different approaches for structure learning for continuous data re-

gardless of the specific algorithm used for the structure learning [11]:

Pre Discretization : the data are discretized prior to application of the learning al-

2.2 Structure Learning Background 11

gorithm. There are different techniques for the discretization of data. The most
common one could be Equal-width and Equal-frequency binning. In the first case
the range of values for each variable is divided into k equally sized intervals where
k is pre-defined. Arbitrary values of k are usually chosen but there are also other
methods [20] to determine values of k. Equal-frequency binning, on the other hand,

assigns to each interval an equal number of values.

Integrated Discretization : The integrated approaches [9],[22],[31] require a starting
discretization, usually equal-frequency binning, and they hold the discretization
fixed while learning the structure and hold the learning while discretizing. The

procedures stop repeating when the termination condition is met.

Direct : These approaches adapt the learning of the structure to handle continuous
data [1],[30].

All the approaches are evaluated and compared in terms of quality of the structure
learned and efficiency of the process [11]. The data used for the comparison are both gen-
erated from well-known Bayesian networks and from real data with unknown structure.
The simulated data produced for the comparison use some well-known networks(e.g.
Alarm) with a number of variables between 20 and 56 and edges between 25 and 66.
For pre and integrated discretization approaches the number of possible discrete values
k is 2 or 3 and for each network different sets of data are generated with size from 500
to 5000. It seems that the best overall method is the direct, as it works well both for
simulated and real data but still all the approaches have good and bad points to take

into consideration.

1. The number of discrete values k for pre and integrated discretization methods is
really small and independent from the distribution of continuous data, as we notice
in our test on Incinerator network (Sec. [3.2]) as we increase the number of discrete

values the accuracy increase but with a cost in complexity.

2. The discretization used by Lawrence Fu in his work [11] is only hard and it could
be interesting to see how a soft discretization approach could influence the learning

of the structure of a network.

12 2. Bayesian Networks

3. A discretized approach could include other possible benefits like the efficiency of
the learning algorithms and the aid in understanding the data [6], and if it is
believed that variables are naturally discrete but there are continuous due to noise,
then discretization is justified [I2]. On the other hand even with soft discretization

there is still a loss of information.

4. The learning is very hard when we have to deal with missing data or hidden nodes

in the network.

5. Direct methods threats all data as Gaussian and this can not be good when we

have to deal with continuous data with a different distribution.

Considering all the weaknesses of learning approaches and the nature of real data
we want to analyze, we think that a feasible learning approach can be one base on the

pre-discretization of data.

2.3 Parameter Learning Background

Assuming we have already defined or learned the structure of the network, to fully
represent the joint probability distribution, it is necessary to specify for each node X
the probability distribution. The data we use for the structure learning can be con-
sidered evidences, instantiation of some or all of the random variables describing the
domain. Given evidences the learning process basically calculates the probability of each

hypothesis and makes prediction of that basis.

2.4 Owur approach

The Bayesian network we want to analyze is developed in Matlab using the BNT
package [24] and it is built using both continuous and discrete nodes, in particular
continuous node are determined by multidimensional data. For this reason the first thing
to do is to study a possible discretization approach to turn the continuous nodes into
discrete nodes. Studying the BNT soft discretization package we use a soft discretization

approach for our data using a spreading function following the idea given by Imme

2.5 Structure Learning Algorithms 13

Ebert-Uphoff [7]. However the soft discretization package gives an algorithm for linear
continuous data so we enhance this approach to use a spreading function into more

dimensions. The soft discretized data could be later used for parameter learning.

2.5 Structure Learning Algorithms

Usually a Bayesian network is specified by an expert and is then used to perform
inference. However, defining the network structure by human expert is not easy, es-
pecially when many variables are included. For this reason automatically learning the
structure of a Bayesian network is a problem pursued within machine learning. The basic
is to develop an algorithm to recover the structure of the direct acyclic graph (DAG) of
the network. The first and simple idea could be to evaluate all the possible graph of a
network and choose the best one. Since this solution has a high complexity it is only
feasible to make an exhaustive search with decent performances for networks with at
least 8 nodes [27]. Given that the majority of algorithms used in structure learning use
search heuristics. In the following sections we introduce some of the algorithms of the

BNT structure learning package [§] used for learning in our tests.

Causality Search : the PC algorithm (after its authors, Peter and Clark) [30], [26] use
a statistical test to evaluate the conditional dependencies between variables and

the result is evaluated to build the network structure.

Maximum Weight Spanning Tree : (MWST) [3] given a graph G, calculates a span-
ning tree (subgraph of G) that contains all the vertices of G. The algorithm asso-
ciates a weight to each edge that could be either the mutual information between
the two variables [3] or the score variation when a node becomes a parent of an-
other [I4]. The algorithm needs an initialization node considered the root of the

tree.

K2 : algorithm heuristically searches for the most probable network structure given the
data. The algorithm requires an order over the nodes of the network that could

be an uniform prior of the structure or a topological order over the nodes where a

14 2. Bayesian Networks

node can only be parent of a lower-ordered node. According to the given order as

input the first node can’t have any parent [4].

Greedy Search : (GS) is an algorithm that follows the heuristic of choosing the local
optimal at each stage with the hope of finding the global optimum. In network
structure learning the algorithm takes an initial graph, calculate the neighborhood,
compute the score for every DAG in the neighborhood and choose the best one as
starting point for the next iteration. A neighbor of the DAG G is a defined as a

graph that differ from G by one insertion, reversion or deletion of an edge.

2.6 Summary of Bayesian Network

In this chapter we introduced Bayesian networks, a probabilistic graphical model that
we use as a knowledge base that allows robots to reason at a high-level manipulation
tasks. We decide to use this model because the input of our problem is continuous, noisy
and very high-dimensional and Bayesian network provides a good representation of the
joint distribution of such complex problem domains. We want to implement an approach
to learn the structure automatically because it is not feasible and unreliable for an expert
to specify a network in complex cases. We introduced the most common approaches to
learn the structure of a network underlining the weaknesses to understand which one can
be used in our case. We also introduced the most frequently used learning algorithms
that we use in our experiments to develop our approach to learn the structure of our

network.

Chapter 3

Structure Learning Experiments on
Well-Known Networks

3.1 Overview

Before learning the structure of real data generated by the selected grasp planner
we decided to study the behavior of both discretization and structure learning using
well-known Bayesian networks as ground truth networks. Using sampled data from
different networks we want to test how each algorithm performs in term of recover the
true structure of the network and the quality of it using a Bayesian scoring function.

Our tests focus on the following matters to discover any possible problem.

Discretization : in our tests we use equal-binning and GMMs approach. We desire to
know how they can influence the learning, which one is working better and how
the learning differ if we change the number of boundaries or components of the

discretization.

Learning algorithm : we use different algorithms in our tests to compare the perfor-

mances and discover the weaknesses.

Complexity : we want to figure out how the learning behaves if we increase the number

of nodes of the network we want to learn.

15

16 3. Structure Learning Experiments on Well-Known Networks

Size of dataset : we want to figure out the algorithms performances with different
datasets. The aim is to detect algorithms that perform well with a datasets of a

size as small as the real data produced by the selected grasp planner.

The Bayesian networks we used for our purposes are Incinerator [5], Car [I3] and In-
surance [10] respectively composed by 9, 12 and 27 nodes. Our experiments highlight
that increasing the number of components or boundaries of the discretization the learn-
ing have a significant improvement but that costs in efficiency. Moreover learning the
structure of networks with a high number of nodes is really hard. Given those problems,

we develop new approaches illustrated later to address them.

Network Information:
Discrete nodes: 7

e - 2D continuous nodes: 1
Bayesian Network 3D continuous nodes: 1

Metwaorks
generated with

of equal
houndaries

Discretized nodes

Bnet 1 Bnet2 Bnet3 Bnet4 Bets |---- States:
2D node: 3

‘ ‘ | | ‘ 3D node: 3

(o)

2
[Rosu Anayis]
o

Figure 3.1: Activity diagram showing the experiment made with Incinerator network.
First, we discretize the mixed network with two different approaches: Gaussian Mixture
Model (Bnet 5) and Equal Boundaries. Four different networks are discretized with
Equal boundaries approach changing the number of discrete boundaries (Eqb 1,2,3.4).

3.2 Discretization experiment on Incinerator network 17

3.2 Discretization experiment on Incinerator network

Figure 3.2: Structure of the modified Incinerator network with 7 discrete nodes and 2
continuous nodes.

The first test used the well known Incinerator Bayesian network of 9 nodes but with
some changes because we wanted to test structure learning with a discretized network.
The network used in the experiment has the same DAG (Figi3.2)) as the original one but

the nodes are modified as follows:
e Discrete nodes: 1,2,4,5,6,8,9
e 2-dimensional gaussian mixture node: 3
e 3-dimensional gaussian mixture node: 7

The data for node 3 and 7 were generated by some multiple dimensional Gaussian
distributions. Given that Bayesian network with both continuous and discrete nodes,
the aim of the test was to figure how the learning of the structure could be influenced
by the discretization of the data for the continuous nodes. For that reason first of
all we discretized the continuous node data with two different approaches: the Gaussian

mixture approach to find clusters as it can be seen in Fig2.4 and equal space subdivision

18 3. Structure Learning Experiments on Well-Known Networks

where data are spread in areas of the same width as in the example in Fig[2.2] Using this

approach we built different Bayesian networks with discretized data for the continuous
nodes as in Fig. 3.1]

Bnet Node 3 Node 7
states | bounds | states | bounds
Egb 1 4 2x2 8 2x2x2
Eqgb 2 6 2x3 18 3x3x2
Eqgb 3 9 3x3 27 3x3x3
Eqb 4 4 1x4 16 1x4x4
Gcomp 4 - 8 -

Table 3.1: Number of discrete states for the Bayesian networks nodes created after
discretization. Eqgb 1 to 4 are discrete networks where the continuous nodes of the
ground truth network are discretized with the equal boundary approach while Geomp is
discretized using Gaussian Mixture Models.

Bnet 5000 10000 20000 50000 Avg
Eqgb1 0% 0% 0% 8% 1%
Eqgb2 0% 9% 0% 10% 5%
Eqhb3 0% 19% 2% 28% 13%
Eqh4 0% 1% 4% 13% 4%
Geomp 0% 12% 12% 2% ™%

Table 3.2: Percentage of runs that return a network’s structure exactly the same as the
ground truth.

The Table 3.2 shows the percentage of times that a learning algorithm returned the
ground truth network structure. It could be seen that for a dataset of 5000 we never have
the original network back but increasing the number of data the methods become much
more accurate. It can be also noticed that the network discretized with equal boundaries

(Egb 3) and the one discretized with the Gaussian Mixture Model (Gcomp) can recover

3.2 Discretization experiment on Incinerator network 19

the ground truth network more often for two different reasons. The network Eqb 3 is
the equal boundary network with most states for continuous nodes granting a refined
discretization. On the other hand Gcomp has less states but as the continuous data are
generated by multiple Gaussian distributions, this approach works perfectly with them.
After this first run we decided to proceed with further analysis on Eqb 3 and Gcomp to
find the algorithms that work the best.

Algorithm /Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 0% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache ™% 0% 0% 3% 2%
GS without cache 0% 10% 0% 0% 2%
MWST 0% 0% 0% 0% 0%

GS + MWST(random root) 50% 10% 23% 0% 21%
GS + MWST (known root) 100% 0% 100% 100% 75%

Table 3.3: Summary of the results given by the algorithms used for structure learning of
the network Eqb3. Results are for three different algorithm with various settings: Causal-
ity Search (PC), Greedy Search (GS) and Maximum Weight Spanning Tree (MWST).
Results are in percentage of runs that return a network equal to the ground truth.

Algorithm /Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 0% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache 0% 0% 0% 0% 0%
GS without cache 0% 0% 0% 0% 0%
MWST 0% 0% 0% 0% 0%

GS + MWST(random root) 0% 0% 13% 0% 3%
GS + MWST(known root) 100% 100% 0% 0% 50%

Table 3.4: Summary of the results given by the algorithms used for structure learning
of the network Gcomp. Results are in percentage of runs that return a network equal to
the ground truth.

20 3. Structure Learning Experiments on Well-Known Networks

Algorithm /Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 0% 0% 100% 0%
Causality Search(PC) 0% 0% 0% 0% 0%
Causality Search(PC2) 0% 0% 0% 0% 0%
GS with cache % 1% 10% 1% 2%
GS without cache 20% 10% 3% 2% 2%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 20% 63% 3% 50% 21%
GS + MWST(known root) 0% 100% 0% 0% 75%

Table 3.5: Percentage of runs for Eqb3 that return a structure with differences in edges

from the ground truth between 1 and 5.

Algorithm /Set 5000 10000 20000 50000 Avg
Causality Search(BNPC) 0% 100% 100% 100% 75%
Causality Search(PC) 0% 100% 100% 100% 0%
Causality Search(PC2) 100% 0% 0% 0% 0%
GS with cache 13% 3% % 10% 2%
GS without cache 23% 10% 0% 10% 2%
MWST 0% 0% 0% 0% 0%
GS + MWST(random root) 7% 3% 13% 3% 21%
GS + MWST (known root) 0% 0% 100% 100% 75%

Table 3.6: Percentage of runs for Gecomp that return a structure with differences in edges

from the ground truth between 1 and 5.

3.2.1 Car and Insurance network experiments

The first test focused on studying how the discretization could affect the behavior

and results of algorithms. With the second test we want to see how a higher number

of nodes could influence the results. For this experiment we used the well-known Car

network shown in Fig. and Insurance network in Fig. [3.3] the network are used as

they are originally designed with no modification to the structure or the type of node.

The initial results on the Car network shown a lower precision compared to Incinerator

network results due to a higher number of nodes. On the other hand the preliminary test

3.2 Discretization experiment on Incinerator network 21

Figure 3.4: Original structure of Car network

on Insurance network made of 27 nodes point out that the learning for a very complex

network needs unacceptable time and memory.

22 21 o

Figure 3.3: Original structure of Insurance network

22 3. Structure Learning Experiments on Well-Known Networks

3.3 Consideration After the Experiments

In Section we test most of the learning algorithms on three well-known networks
to see how they behave with different settings to implement an approach that could work
with real data from the selected grasp planner. Once get the results from the learning
we check the quality using both a scoring function based on ‘Bayesian’ score [8] and a
distance function to calculate the exact distance of the learned DAG from the ground

truth. Our experiments point out some weaknesses:

Initialization : most of the algorithms need to be initialized properly to produce a
DAG near to the ground truth, to solve this problem, as suggested in [8] we used
Maximum Weight Spanning Tree algorithm (MWST) to calculate a starting order
for the Greedy Search algorithms but still this does not solved completely the
problem of initialization as it can be seen in Table[3.3] In that example algorithms
labeled with GS2MWST and GS2MWST2 use the same approach using Greedy
Search algorithm to calculate the DAG and MWST for initialization but the results
are completely different because in the first case the algorithm is used without any
assumption on the network, so in every run the algorithm choose a random node
as initialization for MWST. On the other hand, using GS2MWST2 we suppose
to know the root node of the network and with that assumption the results are

significantly better.

Local optimum : it is possible that the result with the best ‘BIC’ score is not the
nearest to the ground truth as the greedy search algorithm can eventually find a

local optimum.

Complexity : Finally we could notice that increasing the number of nodes and complex-
ity the learning algorithm has a significant drop, high memory usage and extremely

inefficient.

Taking into consideration all this weakness we try to develop an approach that could
minimize the effects of them. First of all, to minimize the weakness of the initialization
and local optimum we use a method that does not compute a DAG but calculates a

matrix of possible edges for the network we want to learn. This method is described in

3.3 Consideration After the Experiments 23

the following paragraph However this method still does not solve the problem of
the drop in accuracy of the learning increasing the size of the network. For this reason
we also test if we can get good learning results developing our method with a ‘divide and
conquer’ approach described in paragraph [3.3.2

3.3.1 Edge Average Matrix Approach

If we want to learn the structure from real data and we do not have any clue about
a possible structure or in case we want to check if the network built by a human expert
is correct, we prefer not to take any assumption for the initialization of the learning
algorithm as a wrong assumption could produce deceiving results. Because of that we
implement an approach that explores all possible initializations and produce a matrix
as in Table that gives hint to the user about the possible edges in the network. The
higher the percentage in a cell(i,j) is the most it is probable that the edge from the node
i to node j exists. This method does not produce a DAG as output but needs the human
expert to analyze the resulting matrix to build the DAG. It would be interesting to see
how this approach could be refined adding weights based on the complexity, quality and

equivalence of networks.

3.3.2 Network Decomposition approach

Due to the fact that the real data from the grasp planner includes 24 nodes we
want to implement a method that can give structure information for big networks. A
possible solution we implement and test is a ‘divide and conquer’ approach that, given
a network, decomposes it in smaller networks, applies the structure learning on them
and then combines the results. The first test is done on the 12 nodes Car Network and

consist in the following approach:

Decomposition : The network is decomposed to build a subset of 8 nodes networks
to cover all the possible combination of nodes. So given the car network of
nodes (1,2,3,4,5,6,7,8,9,10,11,12), the subset of networks included: (1,2,3,4,5,6,7,8),
(1,2,3,4,9,10,11,12) and (5,6,7,8,9,10,11,12). The Decomposition is independent

from the size of the network and, defined the size of the decomposed subsets(suggested

24 3. Structure Learning Experiments on Well-Known Networks

8 nodes for complexity), the method build all the subsets covering all possible com-

bination of nodes and learn the structure of all the subsets.

Learning : After all the tests done on different learning algorithms we decide to use
Greedy Search (GS) algorithm combined with MWST to solve the initialization
problem. Given that MWST algorithm require also a root node for initialization
we decided to run the MWST algorithm as many times as the number of nodes
giving every time a different node as root. Once calculated the starting order
required for GS initialization we decide to run the algorithm multiple times for

every given order.

Dag Analysis : At the end of all runs we get as output a matrix of N*N as in Fig.
where N is the number of nodes of our network and the single element 4,5 represent

the percentage of times we get the corresponding edge out of the learning.

Node | 1| 2 | 3] 4 5|16 |78]9]10]11 |12
1 07194 0] O 0,000]0]0]0]|O0
2 71013110093 0 (0[O0]0]0}]O0]O0
3 04 (0] 0 {950]|0] 0|0, 0]0]O0
4 00 0] O 0{0(0]O0]0L0]0]O0
) 8 50| 0 0000]0]0]O0]|O0
6 0010} O 010(0]75]0 0] 010
7 0010 O 0000 j0[0]O0]|O0
8 0010} O 0125/0 000|110
9 0010} O 010100]0]0] 0|69
10 O] 0O 0| O 00 (0]13]0|0]|57] 0
11 (0] 0 (0] O 0 0|0[13]01{44] 0 | O
12 10} 0 (0] O 01010} 01(32]0] 010

Table 3.7: Car network learning resulting matrix with ‘divide and conquer’ approach
and 6000 data. Survey percentages for original network edges are in bold. It can be seen
that only edge from node 7 to 8 is not found at all and edge from node 8 to 11 has a low
percentage but the precision increase with a higher number of data.

3.3 Consideration After the Experiments 25

94

100

Figure 3.5: Original Car Dag with edge matrix results.

Node |12 |34 |5(6[7|8]9]1011]12
1 0/2/0/0({0]00{0]0] 0|00
2 0/0/]0(2(2(0,0{0]0] 0|00
3 0/0/]0/0(2]0/0{0]0] 0|00
4 0/0/]0/0(0]00{0]0] 0|00
5 0/0/]0/0(0]00{0]0O] 0|00
6 0,0/0{0f010{0}|2]0]0}|0]O0
7 0/0/]0/0(0]0O0{2]0] 0|00
8 0/0/]0/0(0]0O0{0]0O] 0|10
9 0/0/]0/0(0]00{0]0] 0|01
10 (0{0|0{0]0OJO]O[O]OL O] 1]O0
1 {0{00{0]0J0O]O[O]OL O] O0]O0
12 |0j0|0[{0J0J0[0O]O]O] O }|0O0]O

Table 3.8: Car network reconstruction with 15000 data points considering an edge when
the probability in the edge matrix is higher than 75. It can be seen that the calculated
DAG is equal to the ground truth.

It can be noticed in Figl3.5] and Fig[3.7) that the majority of edges of the original
network are detected by the algorithm with a good percentage. Some of the edges are
detected with a low percentage or the algorithm can not tell for sure the orientation and
only one edge is not learned at all. For example the test learn that there is a connection
between node 10 and 11 but there is a probability of 57% that this edge is from node 10
to 11 and 44% that is the other way round, this is caused mainly by the DAG equivalence

26 3. Structure Learning Experiments on Well-Known Networks

determined by the Bayes’ rule:
P(A,B,C)=P(A)P(B|A)P(C|B) = P(A|B)P(B)P(C|B) = P(A|B)P(B|C)P(C).

Though increasing the size of the dataset we can get better results as shown in Table
3.8, Another possible implementation of this approach can be an exaustive search and
evaluation of all possible DAG [8] for every subset of nodes and combine the results

depending on the quality of every DAG.

3.3.3 BIC Score Search Approach

Initial Node Order
(eg.[123 4))

==
S A R

‘ Result 1 BIC =-2.4 ‘ ‘ Result 2BIC =-2.7

T ()

LEVEL 1

‘ Resuft 3BIC =-2.4

‘ Result 4 BIC =-2.2

LEVEL 2

‘ Result 1 ‘ ‘ Result 2 ‘ ‘ Result 3 ‘

Figure 3.6: BIC tree search approach overview. Here the tree is expanded to level 2 as
example.

As previously said, one of the weaknesses of learning algorithms is the local maximum
problem. In the previous section we illustrate two approaches that can reduce this issue
but we also consider to develop an alternative approach based on tree search. For this test
we use Car network, K2 search algorithm, MSW'T as initialization and a scoring function
based on BIC score to classify the results. This experiment is really computational intense
so we decide to use K2 search algorithm because, even if it is not precise as GS, this

algorithm is faster. The idea is to run at every step K2 learning algorithm for any possible

3.4 Summary of Experiments 27

starting order, calculate the score for the resulting DAG and consider only the starting
orders that give the best score for the next step of learning. To avoid local maximum the
approach could expand the tree of possible results to a given depth as in Fig. before
calculating the score and cutting the useless choices. Even if we can get good results
from this approach, due to the poor efficiency we decide to focus the attention on the

other two methods.

3.4 Summary of Experiments

The experiments examined different learning situations and algorithms. Results were
measured by the quality of learned structure and efficiency. The equal boundary dis-
cretization approach with the highest number of discrete states yielded the best results
but the efficiency dropped significantly. GMMs discretization gave also good results
keeping the efficiency at affordable level. Then we consider to choose the discretization
method for real data depending on their distribution and dimensionality to have the
best result with a good efficiency. However learning the structure of networks with many
nodes it is very difficult especially for networks with nodes more than 20 when we also
have to deal with really poor efficiency and memory usage by the learning algorithms.
To deal with this problem we think to use our network decomposition approach
Finally the majority of algorithms revealed an initialization weakness that we face with
our Edge Average Matrix Approach as no ground truth network for real data is

known.

28 3. Structure Learning Experiments on Well-Known Networks

Chapter 4

Grasp Planning

4.1 Overview

After all the tests done on well-known networks our attention focused on learning the
structure of the network given real data computed by the selected grasp planner. The
complete system architecture is shown in Fig[d.1l To generate a set of grasping hypothe-
ses for each pair of object-hand we use the grasp planner BADGr, Box Approximation,
Decomposition and Grasping [16], [15]. The grasp hypotheses are then calculated by
the simulation environment Grasplt [21], a simulation environment to provide data gen-
eration and visualization of experiments. Grasp features are then extracted from the

simulator and a human expert label them with task feature [29].

Task :

This feature refers to basic task that involves grasping or manipulation of an object.
Every task is formally defined as a manipulation segment that starts and ends
with both hands free and the object in a stationary state. The tasks taken in

consideration for the classification of grasps are: hand-over, pouring and tool-use .

Objects :

This subset of features specify the physic attributes of the grasped object and are:

size, convexity, zernike, shape class vector, shape class and eccentricity.

29

30 4. Grasp Planning

Object

BADGr Grasp Planner

Hand (selected planner)

==

Grasplt (simulation
(Extract Features]& e)
(Visualze Grasp]

Features: Objects, Actions, (Label Grasp]

Features: Task, Objects,

Bayesian Matwork Learning Framework

Figure 4.1: Complete system diagram. The selected grasp planner generates a grasp
given a robotic hand and an object as an input. The generated grasp is then calculated
by the simulation environment Grasplt and all the features are extracted from it and the
human expert label the grasp looking at the visualization. The features are then stored
to be used to train and testing the Bayesian network framework.

4.2 Experiments on grasp planner data 31

Actions :

This subset describe the static, object-centered, kinematic grasp features like: eigen
grasp pre configuration, pre configuration, position, orientation, distance, unified

position and post configuration.

Constraints :

This is a subset of features strictly dependent from Object and Action features.
These features includes: part zernike, part shape class vector, part eccentricity, is
box decomposed, free volume, grasp on one box, grasped box volume, quality of

stability and quality of volume.

The result of a simulation consists in a set of data that is then visualized by the
simulator and a human tutor label the grasp hypotheses with the corresponding grasp
task T.

4.2 Experiments on grasp planner data

4.2.1 Real data overview

The grasp planner provides 24 features determined by continuous data from 1 up to

121 dimensions. So the process to learn the structure of those data is made of five steps:

1. Dimensionality reduction
2. Discretization

3. Structure learning

4. Parameter learning

5. Test of evidences

32 4. Grasp Planning
;

Figure 4.2: Activity diagram for the complete experiment procedure on data of the
selected grasp planner.

4.2 Experiments on grasp planner data 33

4.2.2 Dimensionality Reduction

In order to reduce the dimensions of nodes like zern, pzern and fcon we used the Mat-
lab Toolbox for Dimensionality Reduction [32]. That toolbox includes different methods
to reduce the dimensionality, after some tests we decide to use the PCA approach that

reduced zern, pzern and fcon nodes with a covariance of 85-90 from original data.

4.2.3 Discretization

The reduced data has 1 to 6 dimensions, for this reason we decided to use different
discretization methods depending on the number of dimensions we want to discretize
and the distribution of data in the space. We saw from our experiments (Table
that equal boudaries approach has a higher precision than GMM but paying a high price
in terms of complexity and memory usage, problems that can make the learning not
feasible. For this reason, we decide to discretize nodes with dimensions less or equal
than 3 with both approaches, after a manual analysis of the distribution of the data,

keeping the complexity at an affordable level and discretize nodes with more dimensions
only with GMM.

4.2.4 Structure learning

After all the data are refined with dimensionality reduction and discretization, we
split each dataset in two different sets: one bigger set (3000) used for structure and
parameter learning and the other (150) used to infer the task on the network built from
the learning. At the beginning we start studying a possible structure of the network given
the nodes of the network built by the human expert|29]: Task, free volume, stability of
the grasp, size, convexity, unified position, eigen grasp pre configuration and direction.
The learning used the procedure shown in Figl4.2.4}

34 4. Grasp Planning

The learning processis

repeated till all nodes

involved are selected as

root node by MWST Given an objectwith discretized B
Input parameter definition |- - data for all nodes, define the

nodes involved in the learning

parameters

G52 learning using mwst output B
" las starting seed

Maximum weight spanning tree B
MWST _ linitialization chosing a different
node as root in the input

Qutput indicates all possible B
aé _________ edges between nodes after the
learning

Figure 4.3: Activity diagram for real data structure learning

From the first learning run we gain the interesting result that the Eigengrasp pre-
configuration(Egpc node) is not significant for the network. So we decide to not consider
this data any further in the learning. From this starting point we study through the
learning all the possible relations between task feature and objects, constraints and ac-
tions. We learn all the relations between task and the different subsets of data separately
and the results are reported in Table , and . The number in each cell(i,j) cor-
responds to the average we get an edge from node ¢ to node j out of all the learning
runs. For example considering in Table node Upos we can notice that the learning

procedure returns as output an edge to node Dist 83 percent of runs.

Node | Task | Pos | Dir | Dist | Upos | Fcon
Task 0 68 | O 0 50 67
Pos 32 0 0 0 17 0
Dir 0 0 0 0 33 0
Dist 0 0 0 0 0 17
Upos | 50 83 | 67 0 0 0
Fcon | 33 0 0 83 0 0

Table 4.1: Task and Actions structure learning.

4.2 Experiments on grasp planner data

35

Node | Task | Size | Conv | Zern | Shev | Shel | Ecce | Obel
Task 0 0 16 4 0

Size | 100 0 59 64 0 88 93
Conv | 84 34 0 35 58 88 76
Zern 4 36 65 0 75 88
Shcv 0 25 43 25 0 100

Shel 0 13 0 0 0 88

Ecce 0 13 13 13 13 13

Obcl 0 8 24 13 75 75

Table 4.2: Task and Objects structure learning.

Node | Task | Pzern | Pshev | Pshel | Pecce | Isbx | Fvol | Glbx | Gbvl | Qeps | Qvol
Task 0 18 19 16 19 0 91 30 87 7 85
Pzern | 82 0 85 76 90 0 0 90 87 85 0
Pshev | 81 15 0 30 48 0 91 81 91 0 0
Pshcl 0 24 27 0 26 91 0 0 0 0 0
Pecce | 81 10 52 31 0 0 0 90 86 76 0
Isbx 0 0 44 9 42 0 0 0 0 0 0
Fvol 9 9 9 0 9 0 0 9 0 0 0
Glbx | 70 10 10 7 8 0 91 0 86 0 0
Gbvl 18 13 9 8 14 0 0 14 0 0 0
Qeps 0 15 10 0 24 0 0 0 0 0 87
Qvol 0 0 16 0 0 0 0 0 0 13 0

Table 4.3: Task and Constraints structure learning.

4.2.5 Parameter Learning and Testing

Analyzing the results we got from the structure learning we consider to add nodes

and modify the structure of the starting Bayesian network, learn the parameters of the

new built network and test its quality. To test it we decided to pick randomly from our

data 50 samples for every task and know the probability:

P(T|0, A, C).

36

After checking the most influencing nodes we achieve a network (see Figld.4)) that, given

the evidences as input has the following confusion matrix:

Task T1 T2 T3
T1 | 0.9060 | 0.0541 | 0.0399
T2 | 0.1332 | 0.8668 0
T3 | 0.1469 0 0.8531

4. Grasp Planning

Table 4.4: Confusion matrix for the task inference test. T1 is hand-over, T2 pouring
and T3 tool-use.

Figure 4.4: Resulting Bayesian network after structure learning and inference tests.

4.3 Grasp Planners Comparison

Several research groups work in the field of robot manipulation developing their own
grasp planners. The approach implemented in a grasp planner can be very different from

the selected one we use in our network but it is interesting to analyze other methods to

4.4 Summary of Real Data Analysis 37

compare them and see if other possible features can be considered in order to increase the
inference performance of the network learned out of the real data from the grasp planner
we analyzed. In order to possibly do that we must first find some term of comparison
between grasp planners and even if the approaches and features could be very different
we think that every grasp planner we can consider for future comparison at least should
have data related to the quality of stability, in our learned network is geps node (Fig.
. This feature is very important in grasping as it describes how much the grasped
object is stable in the robotic hand. A low value indicates that the object could slip out
of the hand. Thus we think that using the quality of stability to develop a data mapping
between grasp planners, we can possibly find out important influencing features that

could be integrated in the respective planner networks.

4.4 Summary of Real Data Analysis

We used our learning approach to develop a network with the features generated by
the grasp planner detecting the most relevant ones, discarding the useless and comparing
the quality of the network with the one developed by the human expert. Our quality
measure is the probability that the network can detect the right task given objects,
actions and constraints data as evidences. As we said in the previous chapter we have
to face many problems if we want to learn the structure of a network with more than 20
nodes, so we learned the structure of the features of the network developed by the human
expert [29] as starting point and subsequently added more features to the network testing
the quality of it. Our actual network is build by 13 nodes and has a quality measure of 90
percent to detect hand-over task, 87 percent for pouring and 86 percent for tool-use. In
the future we think to refine our network considering DAGs equivalence and BIC score

as quality measures.

38

4. Grasp Planning

Chapter 5

Discussion

5.1 Limitation

Even if our approach allow to reduce some weaknesses of the majority or structure
learning algorithm, it has the strong limitation in the need of an analysis of results by
a human expert. Moreover as a consequence of human choices the resulting network
could present weaknesses. For this reason there are many points we are taking into

consideration as future development to refine our approach.

5.2 Future Work

Our approach consist in two main steps: discretization and learning. Both steps have
different possible settings but there are some that are not yet developed and should be
added.

5.2.1 Discretization Future Work

Up to now our approach allow the user to discretize data using three different meth-
ods:

GMM : a statistical method for clustering using Gaussian function.

Equal-width binning : divides variables space into discrete states of the same width.

39

40 5. Discussion

Manual boundaries : the boundaries are defined manually by an expert after the

analysis of data distribution.

Another approach we want to test is the equal-frequency binning where, given k bound-
aries, the continuous data are distributed equally among all the intervals. According to
Lawrence D. Fu [I1] this approach work well with real data. However the weak point of
all this methods is the number of boundaries (equal-width, equal-binning) or components
(GMM) that usually is arbitrary. It should be interesting to find a method to determine
the ‘right number of clusters’ given a dataset [2], [20].

5.2.2 Structure Learning Future Work

Our method calculate a matrix of possible edges (Sec. to design the network for
our data using a greedy search learning algorithm, as we consider it the most reliable after
all the tests done on well-known networks. However this approach has some weaknesses
as it needs the human to analyze the results of the matrix to build the DAG for the
network. Moreover the matrix just give a statistical hint regarding the existence of edges
calculated only on the output DAG of the learning algorithm run multiple times with
an exhaustive initialization. It should be very interesting to refine this approach adding
weights to influence the results of the learning algorithm. A possible idea should be
to use the score calculated by a scoring function on the computed DAGs to give more
importance to edges of those DAGs that have a better score. Finally the edge matrix
should be refined developing a method to check DAG equivalence determined by Bayes’

rule, like for instance:
P(A,B,C)=P(A)P(B|A)P(C|B) = P(A|B)P(B)P(C|B) = P(A|B)P(B|C)P(C).

Another possible upgrade for our approach is to integrate more learning algorithms in
the possible edge matrix computation and leave the choice to the expert. Three possible
algorithms that are considered to be integrated are K2, PC and Markov Chain Monte
Carlo [23]. Moreover we are considering to extend our ‘Dag Decomposition’ approach
(Sec. to compute an exhaustive search for the best structure over all possible

DAGs for every subset generated out of the original set of nodes as long as the size of

5.2 Future Work 41

the subsets is up to 7 or 8 nodes to have decent performances. Finally once estimated
the best structure learning algorithm for our approach we are considering to enhance it

as it could work with soft discretized weight and not only with hard ones.

5.2.3 Grasp Planner Integration

As said in Sec. [£.3]we think that stability feature can be useful to map data produced
by different grasp planners. However there can be more possible features in common
between planners so it can be very interesting to study other grasp planners in order to

find common elements to use for mapping and integration of networks.

42

5. Discussion

Appendix A

Code Overview

In this appendix we present an overview of some of the classes used in our work. The
main class is multivariate_discretization and it is used to store all the data and results.
All of the other developed functions and classes work on a multivariate_discretization
object. Last section ([A.4)) of this appendix presents a brief tutorial to explain the learning

process.

A.1 Multivariate Discretization Class

The core class used for discretization and learning is multivariate_discretization (see
FiglA.1)). It provides methods to discretize both hard and soft, learn the parameter and
the structure of a bayesian network and check the inference. It doesn’t provide only

dimensionality reduction.

43

44 A. Code Overview

Figure A.1: Multivariate Discretization Class Diagram

classdef multivariate_discretization

% multivariate_discretization 1s used to discretized multivariate

% continuous data and build discrete bnet.

%

% multivariate_discretization Properties:

% boundingPoints — points used to calculate discrete states

% softWeights — discrete data generated from continuous ones

% discrete_bnet — discrete bayesian network generated from boundaries
%

N

multivariate_discretization Methods:

A.1 Multivariate Discretization Class 45

% edges2bounds — turns multidimensional into pairs of points used as

% boundaries

% INPUT

% obj = multivariate_discretization object

% edges = set of nDimensional points of the form cell<nDimension,1>
% generated by discretizeData function

% OUTPUT

% obj = multivariate_discretization object

%

% generate Weights — compute discretize data from continuous data for
% the given mnode

% INPUT

% obj = multivariate_discretization object

% bnet_soft = discrete bnet

% Sigmas = spreading function deviation

% bounds = boundaries of discrete mode states

% node = the node to discretize

% X = continuous data to be discretized

%

% setNodeWeights — set discrete node weights from the input data
% given

%

% INPUT

% obj = multivariate_discretization object

% samples = discrete data

% node = target node for discrete samples

% type = type of discretization

%

% OUTPUT

% obj = multivariate_discretization object

%

% softCPT — calculate CPT for the given discrete bnet and evidences
% stored in obj

%

% INPUT

% obj = multivariate_discretization object

% bnet = discrete bnet
% OUTPUT

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

N X N N XXX NSNS NN SNNXNXK

%
%
%

46 A. Code Overview

obj multivariate discretization obj

discreteBnet — create a discrete bnet from a continuous one, for
every node if it is discrete the size will not be changed from the
input bnet otherwise the size will be set getting the size from the
corresponding boundingPoints set

INPUT

obj multivariate discretization obj

bnet_-mixed = mized bnet

OUTPUT

0bj = multivariate discretization obj

getDataFromWeights — generate hard evidences from weights,

every weight is stored like an array of ¢ wvalues where is is the
number of mazimum states for the given mnode.

i.e. weight = [0,0,0,1,0] —> 4 = hard evidence

INPUT

0obj = multivariate discretization obj

ouTPUT

obj = multivariate discretization obj

createFvidences — store equally task distributed evidences to test
inference

INPUT

0bj = multivariate discretization obj

nEvidences = number of evidences

ouTPUT

obj = multivariate discretization obj

checkInference — calculate the inference and confusion matric
INPUT

0bj = multivariate discretization obj

node = node indexr we wat to test the inference

ouTPUT

A.2 Node Discretization 47

% obj = multivariate discretization obj
%
% create_specific_bnet — core method to create a discrete network and

% learn the parameters

%

% INPUT:

% obj = multivariate discretization obj

% nodes = idices for the nodes to include in the network

% dag = direct acyclic graph for the network

A.2 Node Discretization

md_obj = discretize_node_data(md_obj, filename ,

node_name ,node , type, bounds)

% discretize continuous data for the given node
% Function Details

% INPUT:

% md_obj = target multivariate_discretization

% object to store discretized data

% filename = continuous data file

% node_name = id name for the target discretized node
% node = index for the target discretized node

% type = discretization method: 1 = equal boundaries,
% 2 =GMM, 38 = store data without any discretization
% OUTPUT:

% md_obj = multivariate_discretization object

A.3 Structure Learning

result = structure_learning (bounds, trials ,filename)

%% structure learning for discretized data
% INPUT

% bounds = array made with the indices of the nodes

48

A. Code Overview

Figure A.2: Mutivariate Discretization Activity Diagram

A.4 Example 49

% we want to learn the structure

% trials = number of times wa want to run the algorithm

% filename = name of the multivariate_discretization

% object file

% oUuTPUT

% total = matriz with the probability of links between nodes
% allDags = all computed dags from the learning process

% errors = times the algorithm throw an error

A.4 Example

% Here it is a tutorial to use multivariate discretization and learning
% package, steps 1 and 2 are shown only in the comment as tutorial because
% we are going to use the multivariate_discretization object stored for

% learning in ”"discrete_md_obj.mat

%% 1) Variable Definition %
% md_obj = multivariate_discretization ;
%% 2) Discretization procedure %

% In this step continuous data are discretize and stored in a

% multivariate_discretization object
% load continuous data for shunk hand
% temp = load (’datashunk ’);

% totaldata = temp.totaldata;

% clear temp;

% Discretization example for Zern data

% index of the md_obj node where we want to store data
% node_indexr = 4;

% 1 = Fqual Boundaries, 2 = GMM, 3 = Direct store without discretization
% discretization_type = 2;

50 A. Code Overview

% number of possible components, for equal boundaries approach this

% variable is a simple value e.g. 8 will generate 3 boundaries for

% every dimension of the continuous node

% components = [1 2 3];

% md_-obj = discretize_-node_data (md_-obj, datashunk ’, ’zern ’,node_idez , ...

% discretization_type ,components);

%% 3) Structure Learning %

% In this step we use stored information in ”input.mat” file , it contains

% information for the best network learned till now

% bnet_input store 3 structures

% boundaries = node indices used in the network

% names = mame of nodes

% dag = the resulting dag to make the discrete network after structure

% learning

% temp = load(input ’);

% bnet_input = temp.bnet_input;

% clear temp;

% Assuming we don’t know the dag of our network we want to have an idea on

% the possible links between nodes using structure_learning function

% node_indices = bnet_input.boundaries;

% nTrials = 1;

% multivariate_discretization_file = ’discrete_md_obj ’;

% result = structure_learning (node_indices ,nTrials , ...

% multivariate_discretization_file
):

% Looking at resulting_matriz we could have an idea of the possible links

% between mnodes and build a dag for parameter learning

%% 4) Parameter Learning %

% In this step we are going to use the dag we built and stored in

% 7input.mat”, this dag was built after studying multiple structure

% learning results and inference tests

% first of all we split the set of evidences into two subsets one used by

% parameter learning process and the other used for testing

A.4 Example 51

temp = load(’discrete_md_obj’);

md_obj = temp.md_obj;

%clear temp;

% create 50 evidences for wvery task

md_obj2 = md_obj.createEvidences (50);

% create discrete bnet and learn the parameters given mnodes and dag
dag = bnet_input.dag;

md_obj2 = md_obj2.create_specific_bnet (node_indices ,dag);

% test P(T|0,A,C), correct percentage of results are printed as output
% and the confusion matriz is stored in the

% md_obj.learning. confusion_matriz parameter

md_obj2 = md_obj2.checkInference (1);

fprintf('———__Confusion_matrix . \n’);

md_obj2.learning . confusion_matrix

52

A. Code Overview

Bibliography

[1] F. R. Bach and M. I. Jordan. Learning graphical models.

2] M. Chiang and B. Mirkin. Experiments for the number of clusters in k-means.
In J. Neves, M. F. Santos, and J. M. Machado, editors, Progress in Artificial In-
telligence, volume 4874 of Lecture Notes in Computer Science, chapter 33, pages
395-405. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3] C. 1. Chow, S. Member, and C. N. Liu. Approximating discrete probability distri-
butions with dependence trees. IEEE Transactions on Information Theory, 14:462—
467, 1968. [13]

[4] G.F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Mach. Learn., 9(4):309-347, 1992.

[5] R. G. Cowell, P. A. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems (Information Science and Statistics). Springer, New
York, May 2003.

[6] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In International Conference on Machine Learning, pages
194-202, 1995. [12]

[7] I. Ebert-Uphoff. A probability-based approach to soft discretization for bayesian
networks. Technical report, Georgia Institute of Technology, School of Mechanical
Engineering, 2009. [9]

53

8]

[11]

[12]

[13]

[14]

[15]

[16]

54 BIBLIOGRAPHY

O. Francois. Bnt structure learning package: documentation and experiments. Tech-
nical report, Technical Report FRE CNRS 2645). Laboratoire PSI, Universite et

INSA de Rouen, 2004. [13] 22]

N. Friedman and M. Goldszmidt. Discretizing continuous attributes while learning
bayesian networks. In In Proc. ICML, pages 157-165, 1996.

N. Friedman, M. Goldszmidt, and D. Heckerman. Challenge: Where is the impact of
bayesian networks in learning? In In Proceedings of the Fifteenth International Joint

Conference on Artificial Intelligence, pages 10-15. Morgan Kaufmann Publishers,
1997.

L. D. Fu and I. Tsamardinos. A comparison of bayesian network learning algorithms

from continuous data. AMIA Annu Symp Proc, page 960, 2005. [10]

A. Hartemink. Principled computational methods for the validation and discovery
of genetic regulatory networks, 2001.

D. Heckerman, J. S. Breese, and K. Rommelse. Troubleshooting under uncertainty.
Technical report, Communications of the ACM, 1994.

D. Heckerman and D. M. Chickering. Learning bayesian networks: The combination
of knowledge and statistical data. In Machine Learning, pages 20-197, 1995.

K. Huebner and D. Kragic. Selection of robot pre-grasps using box-based shape
approximation. Technical report, IROS, 08.

K. Huebner, S. Ruthotto, and D. Kragic. Minimum volume bounding box decom-
position for shape approximation in robot grasping. Technical report, Icra, 2008.
29

M. I. Jordan. Learning in graphical models. 19(1):140-155, 2004.

J. H. Kim and J. Pearl. Convince: a conversational inference consolidation engine.

IEEE Trans. Syst. Man Cybern., 17(2):120-132, 1987.

BIBLIOGRAPHY 55

[19]

[20]

[21]

[22]
23]

[24]

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems (with discussion), 1988.

D. Margaritis. Distribution-free learning of bayesian network structure in continuous

domains. in proceedings of the twentieth national conference on artificial intelligence

(aaai)., July 2005.

A. T. Miller and P. K. Allen. Graspit!: A versatile simulator for grasp analysis.
In in Proc. of the ASMFE Dynamic Systems and Control Division, pages 1251-1258,
2000.

S. Monti and G. Cooper. Learning hybrid bayesian networks from data.
K. P. Murphy. Active learning of causal bayes net structure, 2001.

K. P. Murphy. The bayes net toolbox for matlab. Computing Science and Statistics,
33:2001, 2001. [T2]

S. Parsons. An introduction to bayesian networks. Knowl. Eng. Rev., 13(2):201-208,
1998.

J. Pearl and T. S. Verma. A theory of inferred causation. In J. F. Allen, R. Fikes,
and E. Sandewall, editors, Principles of Knowledge Representation and Reasoning,
pages 441-452, San Mateo, California, 1991. Morgan Kaufmann.

R. Robinson. Counting unlabeled acyclic digraphs. Combinatorial Mathematics V,
1977. I3

S. Russel and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice-Hall,
Englewood Cliffs, 1995.

D. Song, K. Huebner, V. Kyrki, and D. Kragic. Learning task constraints for robot
grasping using graphical models. 2010. 29} 33]

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, Second
Edition (Adaptive Computation and Machine Learning). The MIT Press, January

2001. [T} [T

56 BIBLIOGRAPHY

[31] H. Steck and T. S. Jaakkola. On the dirichlet prior and bayesian regularization. In
NIPS, 2002.

[32] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality
reduction: A comparative review. 2007.

	1 Introduction
	2 Bayesian Networks
	2.1 Overview
	2.2 Structure Learning Background
	2.2.1 Discretization
	2.2.2 Structure Learning Methods

	2.3 Parameter Learning Background
	2.4 Our approach
	2.5 Structure Learning Algorithms
	2.6 Summary of Bayesian Network

	3 Structure Learning Experiments on Well-Known Networks
	3.1 Overview
	3.2 Discretization experiment on Incinerator network
	3.2.1 Car and Insurance network experiments

	3.3 Consideration After the Experiments
	3.3.1 Edge Average Matrix Approach
	3.3.2 Network Decomposition approach
	3.3.3 BIC Score Search Approach

	3.4 Summary of Experiments

	4 Grasp Planning
	4.1 Overview
	4.2 Experiments on grasp planner data
	4.2.1 Real data overview
	4.2.2 Dimensionality Reduction
	4.2.3 Discretization
	4.2.4 Structure learning
	4.2.5 Parameter Learning and Testing

	4.3 Grasp Planners Comparison
	4.4 Summary of Real Data Analysis

	5 Discussion
	5.1 Limitation
	5.2 Future Work
	5.2.1 Discretization Future Work
	5.2.2 Structure Learning Future Work
	5.2.3 Grasp Planner Integration

	A Code Overview
	A.1 Multivariate Discretization Class
	A.2 Node Discretization
	A.3 Structure Learning
	A.4 Example

	Bibliography

