797 research outputs found

    Improving the performance of the iterative signature algorithm for the identification of relevant patterns

    Get PDF
    The iterative signature algorithm (ISA) has become very attractive to detect co-regulated genes from microarray data matrices and can be a useful tool for the identification of similar patterns in many other kinds of numerical data matrices. Nevertheless, its algorithmic strategy exhibits some limitations since it is based on statistical behavior of the average and considers averages weighted by scores not necessarily positive. Hence, we propose to take the median instead of the average and to use absolutes scores in ISA's structure. Furthermore, a generalized function is also introduced in the algorithm in order to improve its algorithmic strategy for detecting high value or low value biclusters. The effects of these simple modifications on the performance of the biclustering algorithm are evaluated through an experimental comparative study involving synthetic data sets and real data from the organism Saccharomyces cerevisiae. The experimental results show that the proposed variations of ISA outperform the original version in many situations. Absolute scores in ISA are shown to be essential for the correct interpretation of the biclusters found by the algorithm. The median instead of the average turns the biclustering algorithm more resilient to outliers in the data sets. Copyright © 2011 Wiley Periodicals, Inc

    Pairwise gene GO-based measures for biclustering of high-dimensional expression data

    Get PDF
    Background: Biclustering algorithms search for groups of genes that share the same behavior under a subset of samples in gene expression data. Nowadays, the biological knowledge available in public repositories can be used to drive these algorithms to find biclusters composed of groups of genes functionally coherent. On the other hand, a distance among genes can be defined according to their information stored in Gene Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each pair of genes which establishes their functional similarity. A scatter search-based algorithm that optimizes a merit function that integrates GO information is studied in this paper. This merit function uses a term that addresses the information through a GO measure. Results: The effect of two possible different gene pairwise GO measures on the performance of the algorithm is analyzed. Firstly, three well known yeast datasets with approximately one thousand of genes are studied. Secondly, a group of human datasets related to clinical data of cancer is also explored by the algorithm. Most of these data are high-dimensional datasets composed of a huge number of genes. The resultant biclusters reveal groups of genes linked by a same functionality when the search procedure is driven by one of the proposed GO measures. Furthermore, a qualitative biological study of a group of biclusters show their relevance from a cancer disease perspective. Conclusions: It can be concluded that the integration of biological information improves the performance of the biclustering process. The two different GO measures studied show an improvement in the results obtained for the yeast dataset. However, if datasets are composed of a huge number of genes, only one of them really improves the algorithm performance. This second case constitutes a clear option to explore interesting datasets from a clinical point of view.Ministerio de Economía y Competitividad TIN2014-55894-C2-

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.</p> <p>Results</p> <p>We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm.</p> <p>Conclusion</p> <p>We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model.</p

    Construction of gene regulatory networks using biclustering and bayesian networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling.</p> <p>Results</p> <p>In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method.</p> <p>Conclusions</p> <p>Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.</p

    Preparation and characterization of magnetite (Fe3O4) nanoparticles By Sol-Gel method

    Get PDF
    The magnetite (Fe3O4) nanoparticles were successfully synthesized and annealed under vacuum at different temperature. The Fe3O4 nanoparticles prepared via sol-gel assisted method and annealed at 200-400ºC were characterized by Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction spectra (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscopy (AFM). The XRD result indicate the presence of Fe3O4 nanoparticles, and the Scherer`s Formula calculated the mean particles size in range of 2-25 nm. The FESEM result shows that the morphologies of the particles annealed at 400ºC are more spherical and partially agglomerated, while the EDS result indicates the presence of Fe3O4 by showing Fe-O group of elements. AFM analyzed the 3D and roughness of the sample; the Fe3O4 nanoparticles have a minimum diameter of 79.04 nm, which is in agreement with FESEM result. In many cases, the synthesis of Fe3O4 nanoparticles using FeCl3 and FeCl2 has not been achieved, according to some literatures, but this research was able to obtained Fe3O4 nanoparticles base on the characterization results

    Biclustering fMRI time series

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020Biclustering é um método de análise que procura gerar clusters tendo em conta simultaneamente as linhas e as colunas de uma matriz de dados. Este método tem sido vastamente explorado em análise de dados genéticos. Apesar de diversos estudos reconhecerem as capacidades deste método de análise em outras áreas de investigação, as últimas duas décadas tem sido marcadas por um número elevado de estudos aplicados em dados genéticos e pela ausência de uma linha de investigação que explore as capacidades de biclustering fora desta área tradicional Esta tese segue pistas que sugerem potencial no uso de biclustering em dados de natureza espaço-temporal. Considerando o contexto particular das neurociências, esta tese explora as capacidades dos algoritmos de biclustering em extrair conhecimento das séries temporais geradas por técnicas de imagem por ressonância magnética funcional (fMRI). Eta tese propõe uma metodologia para avaliar a capacidade de algoritmos de biclustering em estudar dados fMRI, considerando tanto dados sintéticos como dados reais. Para avaliar estes algoritmos, usamos métricas de avaliação interna. Os nossos resultados discutem o uso de diversas estratégias de busca, revelando a superioridade de estratégias exaustivos para obter os biclusters mais homogéneos. No entanto, o elevado custo computacional de estratégias exaustivas ainda são um desafio e é necessário pesquisa adicional para a busca eficiente de biclusters no contexto de análise de dados fMRI. Propomos adicionalmente uma nova metodologia de análise de biclusters baseada em algoritmos de descoberta de padrões para determinar os padrões mais frequentes presentes nas soluções de biclustering geradas. Um bicluster não é mais que um hipervértice num hipergrafo . Extrair padrões frequentes numa solução de biclustering implica extrair os hipervértices mais significativos. Numa primeira abordagem, isto permite entender relações entre regiões do cérebro e traçar perfis temporais que métodos tradicionais de estudos de correlação não são capazes de detetar. Adicionalmente, o processo de gerar os biclusters permite filtrar ligações pouco interessantes, permitindo potencialmente gerar hipergrafos de forma eficiente. A questão final é o que podemos fazer com este conhecimento. Conhecer a relação entre regiões do cérebro é o objetivo central das neurociências. Entender as ligações entre regiões do cérebro para vários sujeitos permitem traçar perfis. Nesse caso, propomos uma metodologia para extrapolar biclusters para dados tridimensionais e efetuar triclustering. Adicionalmente, entender a ligação entre zonas cerebrais permite identificar doenças como a esquizofrenia, demência ou o Alzheimer. Este trabalho aponta caminhos para o uso de biclustering na análise de dados espaço-temporais, em particular em neurociências. A metodologia de avaliação proposta mostra evidências da eficácia do biclustering para encontrar padrões locais em dados de fMRI, embora mais trabalhos sejam necessários em relação à escalabilidade para promover a aplicação em cenários reais.The effectiveness of biclustering, simultaneous clustering of both rows and columns in a data matrix, has been primarily shown in gene expression data analysis. Furthermore, several researchers recognize its potentialities in other research areas. Nevertheless, the last two decades witnessed many biclustering algorithms targeting gene expression data analysis and a lack of consistent studies exploring the capacities of biclustering outside this traditional application domain. Following hints that suggest potentialities for biclustering on Spatiotemporal data, particularly in neurosciences, this thesis explores biclustering’s capacity to extract knowledge from fMRI time series. This thesis proposes a methodology to evaluate biclustering algorithms’ feasibility to study the fMRI signal, considering both synthetic and realworld fMRI datasets. In the absence of ground truth to compare bicluster solutions with a reference one, we used internal valuation metrics. Results discussing the use of different search strategies showed the superiority of exhaustive approaches, obtaining the most homogeneous biclusters. However, their high computational cost is still a challenge, and further work is needed for the efficient use of biclustering in fMRI data analysis. We propose a new methodology for analyzing biclusters based on performing pattern mining algorithms to determine the most frequent patterns present in the generated biclustering solutions. A bicluster is nothing more than a hyperlink in a hypergraph. Extracting frequent patterns in a biclustering solution implies extracting the most significant hyperlinks. In a first approach, this allows to understand relationships between regions of the brain and draw temporal profiles that traditional methods of correlation studies cannot detect. Additionally, the process of generating biclusters allows filtering uninteresting links, potentially allowing to generate hypergraphs efficiently. The final question is, what can we do with this knowledge. Knowing the relationship between brain regions is the central objective of neurosciences. Understanding the connections between regions of the brain for various subjects allows one to draw profiles. In this case, we propose a methodology to extrapolate biclusters to threedimensional data and perform triclustering. Additionally, understanding the link between brain zones allows identifying diseases like schizophrenia, dementia, or Alzheimer’s. This work pinpoints avenues for the use of biclustering in Spatiotemporal data analysis, in particular neurosciences applications. The proposed evaluation methodology showed evidence of biclustering’s effectiveness in finding local fMRI data patterns, although further work is needed regarding scalability to promote the application in real scenarios
    corecore