5,315 research outputs found

    Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins that interact in vivo tend to reside within the same or "adjacent" subcellular compartments. This observation provides opportunities to reveal protein subcellular localization in the context of the protein-protein interaction (PPI) network. However, so far, only a few efforts based on heuristic rules have been made in this regard.</p> <p>Results</p> <p>We systematically and quantitatively validate the hypothesis that proteins physically interacting with each other probably share at least one common subcellular localization. With the result, for the first time, four graph-based semi-supervised learning algorithms, Majority, <it>χ</it><sup>2</sup>-score, GenMultiCut and FunFlow originally proposed for protein function prediction, are introduced to assign "multiplex localization" to proteins. We analyze these approaches by performing a large-scale cross validation on a <it>Saccharomyces cerevisiae </it>proteome compiled from BioGRID and comparing their predictions for 22 protein subcellular localizations. Furthermore, we build an ensemble classifier to associate 529 unlabeled and 137 ambiguously-annotated proteins with subcellular localizations, most of which have been verified in the previous experimental studies.</p> <p>Conclusions</p> <p>Physical interaction of proteins has actually provided an essential clue for their co-localization. Compared to the local approaches, the global algorithms consistently achieve a superior performance.</p

    IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model

    Get PDF
    BACKGROUND: Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. RESULTS: By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. CONCLUSION: IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer

    PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    Get PDF
    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003)

    Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling

    Get PDF
    SummaryOrgans and organelles represent core biological systems in mammals, but the diversity in protein composition remains unclear. Here, we combine subcellular fractionation with exhaustive tandem mass spectrometry-based shotgun sequencing to examine the protein content of four major organellar compartments (cytosol, membranes [microsomes], mitochondria, and nuclei) in six organs (brain, heart, kidney, liver, lung, and placenta) of the laboratory mouse, Mus musculus. Using rigorous statistical filtering and machine-learning methods, the subcellular localization of 3274 of the 4768 proteins identified was determined with high confidence, including 1503 previously uncharacterized factors, while tissue selectivity was evaluated by comparison to previously reported mRNA expression patterns. This molecular compendium, fully accessible via a searchable web-browser interface, serves as a reliable reference of the expressed tissue and organelle proteomes of a leading model mammal

    Refining Protein Subcellular Localization

    Get PDF
    The study of protein subcellular localization is important to elucidate protein function. Even in well-studied organisms such as yeast, experimental methods have not been able to provide a full coverage of localization. The development of bioinformatic predictors of localization can bridge this gap. We have created a Bayesian network predictor called PSLT2 that considers diverse protein characteristics, including the combinatorial presence of InterPro motifs and protein interaction data. We compared the localization predictions of PSLT2 to high-throughput experimental localization datasets. Disagreements between these methods generally involve proteins that transit through or reside in the secretory pathway. We used our multi-compartmental predictions to refine the localization annotations of yeast proteins primarily by distinguishing between soluble lumenal proteins and soluble proteins peripherally associated with organelles. To our knowledge, this is the first tool to provide this functionality. We used these sub-compartmental predictions to characterize cellular processes on an organellar scale. The integration of diverse protein characteristics and protein interaction data in an appropriate setting can lead to high-quality detailed localization annotations for whole proteomes. This type of resource is instrumental in developing models of whole organelles that provide insight into the extent of interaction and communication between organelles and help define organellar functionality
    corecore