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SUMMARY

Organs and organelles represent core biologi-
cal systems in mammals, but the diversity in
protein composition remains unclear. Here, we
combine subcellular fractionation with exhaus-
tive tandem mass spectrometry-based shotgun
sequencing to examine the protein content of
four major organellar compartments (cytosol,
membranes [microsomes], mitochondria, and
nuclei) in six organs (brain, heart, kidney, liver,
lung, and placenta) of the laboratory mouse,
Mus musculus. Using rigorous statistical filter-
ing and machine-learning methods, the subcel-
lular localization of 3274 of the 4768 proteins
identified was determined with high confi-
dence, including 1503 previously uncharacter-
ized factors, while tissue selectivity was evalu-
ated by comparison to previously reported
mRNA expression patterns. This molecular
compendium, fully accessible via a searchable
web-browser interface, serves as a reliable ref-
erence of the expressed tissue and organelle
proteomes of a leading model mammal.

INTRODUCTION

Elucidation of gene-product function and regulation is

a fundamental objective in human biology. It has become

apparent that proper biological activity and cellular ho-

meostasis depend on spatially and temporally restricted

partitioning of functionally related sets of gene products.

Organ- and organelle-selective protein accumulation rep-
resents one basic, conserved mode of biological control.

Yet despite a relatively modest number (�25,000) of puta-

tive protein-coding genes (Lander et al., 2001; Margulies

et al., 2005), much of the human proteome remains poorly

annotated in terms of tissue- and organelle-selective ex-

pression. Knowledge of the global patterns of protein syn-

thesis and subcellular localization across the major mam-

malian organ systems should therefore provide insight

into the fundamental biological information encrypted in

the human genome.

The recent completion of the genomic sequences of hu-

man and other mammalian species provides researchers

with access to a wealth of relevant sequence information

necessary for the functional characterization of gene

products in a systematic and comprehensive manner.

The use of tractable animal models, such as the laboratory

mouse in particular, allows for investigation of the physio-

logical roles, biochemical activities, and disease associa-

tions of evolutionarily conserved proteins on a genome-

wide scale (Skarnes et al., 2004). Indeed, groundbreaking

studies of global mRNA transcript patterns in mouse using

DNA microarrays (Pan et al., 2004; Su et al., 2004; Zhang

et al., 2004) have uncovered evidence of substantive tis-

sue selectivity in terms of gene expression. Not all tran-

scripts generate protein, however, and alternate transla-

tion efficiency and posttranslational turnover may result

in differential protein accumulation. Certain proteins may

also be transported between tissues, particularly those

associated with circulatory or endocrine functions. These

differences may underlie at least in part the modest corre-

spondence reported between quantitative measurements

of cognate gene transcript and protein levels (Griffin et al.,

2002; Gygi et al., 1999), despite an obvious dependency

of protein synthesis upon mRNA. Hence, the biological

significance of differences in mRNA abundance detected
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among tissues remains to be elaborated at the protein

level.

One limitation of transcriptional profiling is that little in-

formation is gleaned with respect to the subcellular local-

ization of the translated gene products. In contrast, an un-

biased ‘‘subtractive proteomics’’ screening approach

based on differential detection of proteins in isolated or-

ganellar compartments using high-throughput mass

spectrometry offers the potential to determine subcellular

enrichment directly (Andersen et al., 2002; Beausoleil

et al., 2004; Krapfenbauer et al., 2003; Mootha et al.,

2003; Nielsen et al., 2005; Schirmer et al., 2003; Wu

et al., 2004). Perhaps because the complexity of the mam-

malian proteome is daunting (Aebersold and Mann, 2003),

most proteomic studies published to date have, however,

been focused on a single organelle or tissue, with only lim-

ited comparisons of the global patterns of protein expres-

sion and subcellular localization across tissues in an ani-

mal model setting. This contrasts with simpler systems

like yeast, where proteomic methods examining protein

expression and subcellular localization (Ghaemmaghami

et al., 2003; Kumar et al., 2002; Washburn et al., 2001)

have been applied successfully on a genome-wide scale.

To address this issue, we have performed an in-depth

comparative proteomic analysis of the organelles of six

representative mouse organs (adult brain, heart, kidney,

liver, lung, and embryonic placenta). Computational and

statistical procedures were used in combination with

available conventional annotations and the observed pro-

teomic profiles to create a high-quality reference map of

the putative subcellular localizations and tissue selectivity

of 4768 proteins. Crosscomparisons of the recorded pro-

teomic patterns to the results of two analogous DNA mi-

croarray-based studies of global mRNA mouse tissue pat-

terns (Su et al., 2004; Zhang et al., 2004) revealed broad

areas of agreement with relatively few (albeit some nota-

ble) inconsistencies, confirming the context dependence

of mammalian protein function. The entire collection of

high-confidence protein profiles, including the primary

supporting tandem mass spectra and database search re-

sults, is fully accessible through a searchable web-

browser interface, allowing for convenient exploration of

the biodistributive and colocalization properties of pro-

teins of particular interest.

RESULTS

Proteomic Survey of Mouse Organs and Organelles

To assess tissue and organellar enrichment, we applied

a comprehensive comparative proteomic profiling proce-

dure (see Experimental Procedures) based on gel-free

multidimensional protein identification technology (MudPIT)

(Kislinger et al., 2003; Washburn et al., 2001). We examined

the protein composition of four subcellular compartments

(cytosol, membrane-derived microsomes, mitochondria,

and nuclei) isolated by differential ultracentrifugation

from healthy adult laboratory mouse brain, heart, kidney,

liver, lung, and embryonic placenta. To compensate for
174 Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc.
the extreme sample complexity and large dynamic range

in protein levels, we performed multiple (between 7 and

9) repeat profiling analyses on each fraction to improve de-

tection coverage. The �8 million spectra acquired during

203 MudPIT experiments were rigorously searched

against a minimally redundant protein sequence database.

As more accurate protein quantitation techniques on iso-

tope labeling or extracted peptide ion signal correlation

are not well suited for comparative analyses of broadly dis-

similar samples and a project of this scope (Ong and Mann,

2005), relative abundance was estimated based on the cu-

mulative number of high-confidence spectral matches re-

corded for a given protein across each fraction (Liu et al.,

2004; Zybailov et al., 2005).

Essential to this screening process were reliable protein

identifications. To estimate the rate of incorrect identifica-

tions (false positives), the database searches were also

performed in parallel against an equivalent number of

‘‘decoy’’ protein sequences presented in inverted amino

acid orientation (Kislinger et al., 2003; Peng et al., 2003).

A stringent multistep filter was then applied to minimize in-

valid identifications (i.e., reverse sequences) while main-

taining favorable detection of lower-abundance and

smaller proteins (see Experimental Procedures). First,

we used a rigorous statistical model (Kislinger et al.,

2003) to assign a confidence score to each candidate

peptide sequence match. Next, given that spurious iden-

tifications usually have limited supporting spectral evi-

dence (see Figure S1 in the Supplemental Data available

with this article online), we accepted only those proteins

detected with a minimum of two or more high-scoring

spectra (likelihood p value < 0.05). A final parsimonious in-

terpretation of the combined search results led to a set of

4768 high-confidence protein identifications (Table S1),

with an average of approximately 2000 proteins identified

per tissue and�1000 per organelle (Table 1). The vast ma-

jority (>85%) of these proteins were assigned probability

scores >99% based on at least one unique (unambiguous)

peptide sequence (Figure S2). The remaining spectra

mapped to clusters of closely related protein isoforms

(e.g., splice variants, paralogs, orthologs, or overlapping

database entries). After filtering, only�0.3% of the filtered

spectra mapped to decoy proteins and the false positive

rate was conservatively estimated to be <5% per tissue.

Detection Coverage

The majority of the identified proteins were highly enriched

in a particular organelle and tissue (�75% and �50%,

respectively). Hierarchical clustering of the proteomic

profiles (Figure 1) revealed distinct expression patterns,

including broadly expressed (Figure 1A) and tissue-

specific (Figure 1B) groupings. Protein membership within

these clusters was enriched for select functional annota-

tions and phenotypic associations. For example, a signifi-

cant fraction of ubiquitously detected nuclear proteins

were crossreferenced to the Gene Ontology (GO) anno-

tation terms ‘‘DNA binding,’’ ‘‘transcription,’’ and/or

‘‘nucleus.’’



Proteomic screening methods are known to preferen-

tially detect higher-abundance proteins (Ghaemmaghami

et al., 2003; Washburn et al., 2001). Although the MudPIT

experiments were highly reproducible (Figure S3), repeat

analysis of each fraction largely overcame the undersam-

pling bias associated with the stochastic process of pre-

cursor peptide ion selection (Liu et al., 2004). Indeed,

nearly saturating detection was evident (i.e., an asymptote

or plateau was seen in plots of the cumulative number of

Table 1. Numerical Summary of the Proteomics Data

Organ Organelle Proteins Spectra

Brain total 2,243 90,456

cytosol 1,366 37,813

membrane 1,040 15,800

mitochondrion 1,075 19,259

nuclei 907 17,584

Heart total 1,652 79,197

cytosol 806 25,915

membrane 702 16,162

mitochondrion 667 15,621

nuclei 1,044 21,499

Kidney total 1,699 60,768

cytosol 731 19,471

membrane 608 11,182

mitochondrion 789 14,019

nuclei 796 16,096

Liver total 1,728 71,172

cytosol 739 23,411

membrane 567 13,130

mitochondrion 776 17,653

nuclei 824 16,978

Lung total 2,686 90,339

cytosol 1,310 26,945

membrane 1,669 30,414

mitochondrion 1,072 15,566

nuclei 1,452 17,414

Placenta total 2,464 97,158

cytosol 1,170 25,029

membrane 1,162 20,204

mitochondrion 901 25,273

nuclei 1,135 26,652

All total 4,768 489,090

Cumulative number of high-confidence proteins and their as-
sociated spectral counts, identified in each of the six tissues

and four organelles analyzed in this study.
proteins detected per fraction, as seen in Figure S4). Nev-

ertheless, coverage was incomplete in that not all of the

subunits of well-established multimeric protein com-

plexes (e.g., RNA polymerase II), whose levels might be

expected to be stoichiometric, were observed (Table

S1), presumably due to a fundamental limitation in instru-

ment sensitivity. Nevertheless, only a modest overall bias

was evident in terms of sampling of different functional

categories (i.e., GO terms) as assessed using the hyper-

geometric distribution (Table S2). The most notable ex-

ception was that proportionally fewer plasma-membrane

proteins were identified than were expected relative to

the predicted proteome. This bias may stem in part from

overrepresentation of certain membrane-protein classes

(e.g., odorant receptors) in the reference sequence data-

base, as well as from inefficient recovery and/or ionization

of hydrophobic, lower-abundance integral outer-mem-

brane proteins such as transporters (Washburn et al.,

2001).

To better evaluate the coverage achieved with mem-

brane proteins, we deduced the occurrence of pu-

tative transmembrane helices (TMH) in the identified pro-

teins (see Experimental Procedures). A total of 668

proteins had at least one well-defined TMH, while 244 pro-

teins were predicted to contain two or more TMHs (Table S3

and Figure S5). Although more vigorous membrane-

extraction protocols can improve global proteomic detec-

tion of integral membrane proteins (Wu et al., 2004), we

concluded that reasonable coverage of membrane-

associated proteins, especially internal vesicle bound

factors, was achieved.

To more rigorously assess the overall detection cover-

age obtained by our profiling procedure, we compared

our entire dataset of proteomic tissue patterns to the re-

sults of two recently published genome-scale surveys of

mRNA transcript levels in mouse tissues. The gene ex-

pression study by Zhang et al. (2004) used high-density

inkjet-synthesized long oligonucleotide microarrays,

whereas the report by Su et al. (2004) was based on cus-

tom short oligonucleotide Affymetrix gene chips. Of the

�9000 highly correlated transcripts detected in the six or-

gans by both microarray studies (Q.M., T.R.H., and B.F.,

unpublished data), 1758 gene products were likewise de-

tected in common across all three platforms in a three-

way crossmapping (Table S4). Although it appears highly

unlikely that these microarrays detected every transcript

expressed in these six tissues (Bertone et al., 2004), these

data imply that substantive (albeit incomplete) proteomic

sensitivity was indeed achieved.

Much of the incomplete coverage of the proteome likely

arose from intrinsic limitations in instrument sensitivity,

which is biased toward the detection of more abundantly

expressed proteins. However, hundreds of presumably

lower-abundance proteins, such as sequence-specific

transcription factors, protein kinases, and intracellular sig-

naling molecules, were successfully identified (Table S1).

The coverage may also have been limited in part due to

an overly stringent filtering of the database search results,
Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc. 175
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resulting in a significant false-negative rate. Consistent

with this, the number of protein identifications could be

boosted by �12% (to 5373 candidate proteins) simply

by accepting tentative database matches with marginal

(subthreshold) probabilities (i.e., between 85% and 95%

initial likelihood scores) if the corresponding mRNA was

likewise jointly detected by the two microarray studies

(Figure S6). Alternatively, many lower-level transcripts

may not be efficiently translated, or the resulting proteins

may be unstable or become secreted or modified in such

a way as to make them unrecognizable by spectral

searches against a primary sequence database.

Correspondence and Differences between mRNA

and Protein Expression Landscapes

The conventional procedure for comparing mRNA and

protein abundance has generally been to determine the

correlation coefficient (e.g., Pearson or Spearman) be-

tween respective expression profiles (Cox et al., 2005).

Previous efforts to analyze noisy data with simple correla-

tion metrics have resulted in positive but weak associa-

tions (Griffin et al., 2002; Le Roch et al., 2004; Lian et al.,

2001), while analyses with more robust statistics have

yielded stronger correlations (Gygi et al., 1999). In com-

puting a correlation score, it is generally assumed that

gene-product measurements are noise free and follow

a normal distribution. These assumptions were not valid

in our case; in particular, the spectral counts were discrete

and not continuous (as demanded for fitting of a normal

distribution) and were markedly skewed in distribution.

Therefore, we modeled a Bayesian network to decrease

the effect of residual noise and better evaluate the concor-

dance between the mRNA (Zhang et al., 2004) and protein

patterns recorded by the two respective platforms (see

Experimental Procedures).

Our model was based on the assumption that transcript

levels (as measured by probe intensity) are correlated lin-

early with protein abundance (as measured by filtered

spectral counts), as suggested from double log-plots of

putative mRNA and protein levels recorded for each tissue

(Figure S7). However, unlike traditional correlation analy-

sis, our approach handles measurement uncertainty by

modeling noise in the mRNA levels with a Gaussian distri-

bution and in the spectral counts with a Poisson distribu-

tion. The model also uses a background distribution to

discount unreliable measurements by explicitly explaining

mRNA levels independently of the observed spectral

counts. The output of the learned Bayesian network is

a probability score indicating the strength of the linear re-

lationship between cognate gene-product pairs based on

the respective tissue profiles (Table S5). Permutation test-

ing was then performed to determine statistical signifi-
cance. An important advantage of the model is that arbi-

trary thresholds are not needed to decide on the

closeness of fit. Whereas the Pearson correlation requires

a predefined correlation threshold, our model provides

a more rigorous statistical cutoff for establishing departure

from concordance while at the same time determining the

false discovery rate.

Contrary to general expectation (Griffin et al., 2002; Gygi

et al., 1999), the overall concordance between the protein

and mRNA tissue patterns (Zhang et al., 2004) was found

to be conspicuously good (Figure 2). Of the 1758 cross-

mapped proteins classified by our approach (Table S5),

only 503 pairs of gene product were deemed to be statis-

tically significant ‘‘outliers’’ (not linearly correlated) after

permutation testing (Figure 2, bottom panel). The rest

were considered to be either highly correlated ‘‘inliers’’

(Figure 2, top panel), wherein the transcript patterns

were highly indicative of the corresponding tissue protein

levels (409 gene products), or ‘‘midliers’’ (Figure 2, middle

panel; 846 gene products), where the gene-product pat-

terns appear similar but did not achieve statistical signifi-

cance (i.e., did not pass permutation testing). Figure S8

and Table S6 present a comparison of our approach

and the results (which are largely in agreement) of tradi-

tional (Pearson correlation) methodologies for inferring

the relationships between the protein and mRNA tissue

profiles.

Several of the outliers were blood-borne factors (e.g.,

complement), which showed the highest mRNA probe sig-

nal intensity in liver (the primary site of synthesis prior to

secretion into the circulation), whereas the corresponding

proteins were preferentially detected in the lung and pla-

centa (which are rich in blood vessels). Although specious,

these classifications confirm the validity of our model. The

other uncorrelated gene products were enriched for nu-

clear and mitochondrial proteins. Mann and colleagues

(Mootha et al., 2003) have previously noted an incomplete

correspondence between the relative abundance of mito-

chondrial proteins and the corresponding mRNA tran-

scripts across mouse tissues. Some of the discrepancy

may be due to our examination of female mice exclusively,

whereas Zhang et al. (2004) and Su et al. (2004) reportedly

used both males and females in their microarray analyses.

Although various outliers were detected with low spec-

tral counts and/or weak probe intensities, making the ap-

parent discordance suspect, plausible biologically inter-

esting outliers were also observed. These include

cytochrome P450 isoform 4B1 (CP4B1), whose transcript

was detected preferentially in kidney and only weakly in

lung, whereas the cognate protein was more abundant

in pulmonary microsomes and virtually absent in kidney

(cf. Table S5), as reported previously (Imaoka et al., 1995).
Figure 1. Mouse Organ and Organelle Protein Expression Patterns

(A) Hierarchical clustering of the proteomic profiles based on the cumulative spectral counts detected in each organelle. A selection of significantly

enriched Gene Ontology (GO) and Phenotype Ontology terms are displayed.

(B) Heat-map display of clusters of tissue- and organelle-selective protein expression.
Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc. 177



Figure 2. Concordance between mRNA and Protein Tissue Patterns

Comparison of protein (this study) and reproducible mRNA (Zhang et al., 2004) levels recorded for a subset of 1758 gene products detected in a three-

dataset crossmapping. The heat maps indicate various model predictions: inliers, highly correlated (linear fit) gene products with a significant p value

(409); midliers, ambiguous gene products that do not deviate from the linear model in a statistically significant manner (846); and outliers, uncorrelated

gene products (503). A selection of enriched ontology terms mapped to each category is listed.
Subcellular Localization

Hierarchical clustering of the protein profiles revealed

striking differences between the four organelles (Figure 3).

Most (>75%) proteins were preferentially detected in a sin-

gle compartment, suggesting a specialized biological role.

Membership in these clusters was likewise enriched for

relevant functional categories. Western blot experiments

(Figure S9) confirmed the appropriate partitioning of sev-

eral well-studied organellar markers across the four frac-

tions, providing a basic confirmation of biochemical

purity. Nevertheless, to verify the reliability of these organ-

ellar maps, we benchmarked our data against previously

reported proteomic analyses of highly purified prepara-

tions of mammalian organelles. These included analogous

large-scale (albeit less comprehensive) surveys of mouse

mitochondria (Mootha et al., 2003), human nuclei and nu-

cleoli (Andersen et al., 2002; Beausoleil et al., 2004), rat

cytosol (Krapfenbauer et al., 2003), and discrete mamma-

lian membrane fractions (Nielsen et al., 2005; Schirmer

et al., 2003; Wu et al., 2004)(see Table S7 for a complete

crosslisting). As expected, the respective subcellular pat-
178 Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc.
terns were highly correlated (Figure 3). For example, the

majority (�65%) of 357 putative mitochondrial proteins

(Mootha et al., 2003) and 446 putative nucleolar proteins

(Andersen et al., 2002) identified in our study were prefer-

entially detected in the mitochondrial and nuclear frac-

tions, respectively. These results confirm that reliable

inferences regarding subcellular localization can be

achieved by differential proteomic comparisons, as previ-

ously reported (Schirmer et al., 2003).

Nearly half (2390) of the identified proteins had not been

previously assigned to an organelle (based on annotation

obtained from the ExPASy web server; Table S8), indicat-

ing that our study provides the first experimental evidence

for the primary subcellular localization of these proteins in

a cell. The modest inconsistencies observed between our

proteomic patterns and the literature (Figure 3) could

reflect several factors, including inaccurate existing anno-

tations, shuttling of certain proteins between compart-

ments, and residual crosscontamination by higher-abun-

dance proteins (e.g., mitochondrial) (cf. Figure 3), a

possibility we address next.



Figure 3. Concordance between Subcellular Location and Benchmark Data Sets

Comparison of the proteomic patterns obtained for the cytosolic, membrane, mitochondrial, and nuclear fractions against benchmark ‘‘gold stan-

dard’’ previously reported reference proteomic datasets representing similar compartments: cytosol, rat cytosol (Krapfenbauer et al., 2003); mem-

branes, discrete mammalian membrane fractions (Nielsen et al., 2005; Schirmer et al., 2003; Wu et al., 2004); mitochondria, mouse mitochondria

(Mootha et al., 2003); nuclei, human nuclei and nucleoli (Andersen et al., 2002; Beausoleil et al., 2004).
Computational Refinement of Subcellular

Localization by Machine-Learning Classifiers

Given the possibility of interorganelle crosscontamination,

we used machine-learning techniques to assign a primary

subcellular localization and associated confidence score

to each of the proteins. Various supervised computational

classification approaches, including K-nearest neighbor

(KNN) (Cai and Chou, 2004; Huang and Li, 2004), support

vector machine (SVM) (Park and Kanehisa, 2003), and

Bayesian methods (Lu et al., 2004; Scott et al., 2004),

have been used to evaluate protein subcellular localiza-

tion. We used a weighted variant of the KNN algorithm

(WKNN) (see Experimental Procedures), which in our

hands generated the most reliable classifications based

on a panel of standard statistical performance metrics

(P.H., unpublished data). However, there are no firmly es-

tablished measures for assessing multiplex classifications

(i.e., proteins present in multiple compartments) (Chou

and Cai, 2005), an issue not fully addressed in previous

computational studies of subcellular localization (Cai and

Chou, 2004; Huang and Li, 2004; Lu et al., 2004; Park

and Kanehisa, 2003). We therefore used a conservative

implementation (see Experimental Procedures) to assign

a probability to each protein for a given compartment

based on a weighted similarity of its proteomic profile to

its K-nearest neighbors in a training set of 1558 proteins

with known (previously established) localizations (i.e.,

available SwissProt annotations) (Table S9). We evaluated
classifier performance both by 10-fold crossvalidation and

by using a separate holdout ‘‘gold standard’’ set of 820

reference proteins previously identified by proteomic

screening in a single highly purified organelle (Table S10).

High prediction precision (>77%) and accuracy (>66%)

as well as sensitivity and specificity (with the exception of

the membrane microsomes) were obtained for both test

sets as assessed using receiver operating characteristics

(ROC) plots (Figure S10). Based on these classifiers, over

two-thirds (3274) of the remaining proteins could be con-

fidently (i.e., with a minimum probability of 80%) assigned

to at least one subcellular compartment (Figure 4A and

Figure S11). These included 1503 proteins of previously

unknown localization, of which 458 were projected to be

cytosolic, 553 membrane bound, 60 mitochondrial, and

480 nuclear (bold numbers in Table S8). Only 47 proteins

were confidently assigned to more than one compart-

ment, possibly reflecting confounding crosscontamina-

tion by higher-abundance mitochondrial factors.

Our assignments compared favorably with predictions

produced by the alternate PSLT algorithm (Figure 4A),

a Bayesian network predictor that uses orthogonal struc-

tural features present in primary protein sequences (i.e.,

motif occurrence) to forecast subcellular localization

(Scott et al., 2004). Moreover, the localizations were

largely consistent with biological expectation. For in-

stance, many of the nuclear-specific proteins (Figure 4B)

had functional and structural domains consistent with
Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc. 179



Figure 4. Annotation and Prediction of Subcellular Localization

(A) Comparative clustergrams of the normalized organelle proteomic profiles together with annotations obtained from the Expasy web portal (Swiss-

Prot) or GO database and subcellular predictions made using the WKNN (see Experimental Procedures) and PSLT (Scott et al., 2004) machine-

learning algorithms.

(B) Zoom-in of a cluster of 1048 putative nuclear-selective proteins extracted from (A) (red highlight).

(C) Distribution of predicted transmembrane helices (TMH) across the organelles.

(D) Subcompartment assignments generated for a panel of 767 putative membrane proteins (highlighted in [A]) based on the application of the PSLT

algorithm.
a nuclear-related function (e.g., RNA or DNA binding mo-

tifs). Conversely, a sizeable fraction of the proteins prefer-

entially detected in the microsomal fractions had pre-
180 Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc.
dicted TMH (Figure 4C), suggesting they were indeed

membrane bound. Consistent with this, over half (505)

of the putative membrane-associated proteins had



Figure 5. Mining the Proteomics Data for Tissue-Selective Expression Patterns

(A) A cluster of 462 putative placenta-selective proteins together with available microarray-recorded mRNA tissue patterns (Su et al., 2004; Zhang

et al., 2004).

(B) Selection of candidate novel nuclear-localized placental proteins (bold, mentioned in text; *, validated by GFP-fusion imaging).
additional structural properties consistent with a specific

membrane-related subcompartment (such as the endo-

plasmic reticulum or Golgi apparatus) as determined using

the PSLT algorithm (Figure 4D).

Mining Tissue- and Organelle-Selective

Expression Patterns

Roughly half of all functionally uncharacterized proteins

were detected both in a single tissue and organelle (Table

S1). Evidence of subcellular and tissue selectivity can be

used to generate hypotheses regarding their biological

role. For instance, several novel nuclear-localized factors

were present in a cluster of 462 proteins identified exclu-

sively in placenta (Figure 5A), suggesting a role in extra-

embryonic development and/or angiogenesis. Most of

these gene products either were unannotated (Figure 5B)

or were not previously associated functionally with this tis-

sue (Rossant and Cross, 2001). These include Q9DBM1,
an evolutionarily conserved protein composed of D111/

G patch domains implicated in nucleic acid binding and

mRNA processing (Kawai et al., 2001); Q9D5K4, a member

of a small family of mammalian-specific proteins with ho-

mologs in human, chimpanzee, dog, and opossum but not

other vertebrates (Kawai et al., 2001); and Q8K5C0, a ho-

molog of the Drosophila CP2-like transcription factor

Grainyhead/Mindbomb, whose corresponding transcript

was detected exclusively in placenta out of 54 mouse tis-

sues analyzed by microarray (Zhang et al., 2004). These

data imply that proteins with specialized functions can

be recognized via their proteomic profiles.

Validating Novel Expression Results by GFP Labeling

As an independent validation of our subcellular assign-

ments, we used confocal microscopy to image the locali-

zation of several uncharacterized target proteins, similar

to previous large-scale proteomic studies (Mootha et al.,
Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc. 181



Figure 6. Validating Novel Cellular Local-

izations by GFP Labeling

Confocal microscopy images of select, previ-

ously unannotated proteins expressed as

GFP fusions in HEK293T cells (left panel). The

constructs were cotransfected along with red-

fluorescent-protein-labeled histone 2B as a nu-

clear marker (middle panel). A merged image is

shown on the right-hand panel. Yellow indi-

cates colocalized signals.
2003; Schirmer et al., 2003). For these experiments, we

generated sequence-verified clones for ten representative

gene products as N-terminal fusions to a green fluores-

cent marker protein (GFP) and examined their corre-

sponding localization patterns in transient transfections

of HEK293T cells. This panel of proteins had strong KNN

predictions (five nuclear, two cytoplasmic, two membrane

associated, and one mitochondrial; Table S12) but were

lacking previous experimentally derived localizations (al-

though several had inferred [electronic] GO annotations,

these had not been verified). A histone 2B red fluorescent

fusion protein was cotransfected as a nuclear-specific

positive control.

Representative images generated for six of these pro-

teins are shown in Figure 6. The results were largely con-

sistent with expectation (although three of the fusions ex-

amined could not be unambiguously localized; Table S12).

Four of the five putative nuclear proteins were detected

exclusively in the nuclei, whereas the other (Q8K335) lo-
182 Cell 125, 173–186, April 7, 2006 ª2006 Elsevier Inc.
calized alternately to the transfected nuclei and/or cyto-

plasm, possibly due to differences in the cell cycle or sig-

naling. In contrast, a putative ubiquitin-activating E1

enzyme homolog (Q8VE47) displayed diffuse cytoplasmic

staining, consistent with its ubiquitous detection in the cy-

tosolic fractions of all six tissues, while a putative mem-

brane protein (Q99KK1) detected in lung and placenta

was found to localize to discrete intracellular vesicles,

possibly secretory granules.

A Community Resource

The entire proteomic dataset reported here is fully acces-

sible to the scientific community via a dedicated web-

based database with an easily navigated graphical inter-

face (http://tap.med.utoronto.ca/�mts/). Users can

peruse the entire collection of expression profiles ob-

tained for proteins of special interest, accessing complete

details of the database search results, the filtered tissue

and organelle spectral counts, and the high-confidence

http://tap.med.utoronto.ca/~mts/
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subcellular assignments. All of the primary data can be

freely viewed and downloaded, including appropriately la-

beled visual representations of individual MS/MS spectra

together with their respective peptide matches and the

corresponding confidence scores. Different search crite-

ria can be used, including browsing by tissue or organelle

specificity or based on protein descriptions, GO functional

annotation, or similarity to an input protein sequence. Fi-

nally, a ‘‘bulk’’ search option is provided for querying lon-

ger lists of proteins based on either systematic (SwissProt)

names or accession numbers.

DISCUSSION

Eukaryotic cells are generally highly structured, with ded-

icated subsets of functionally related proteins organized

into discrete compartments to provide an optimal context

for cellular processes to occur. Systematic elucidation of

tissue and organelle expression patterns in a mammalian

model therefore provides for a first-pass assessment of

the biological roles and molecular functions of evolution-

arily conserved proteins on a genome-wide basis. Al-

though this concept has been exploited before in func-

tional genomics studies (Zhang et al., 2004), the

consistency of mRNA patterns recorded using different

microarray platforms has proven to be less than absolute

(Kuo et al., 2002). Hence, we have performed a large-scale

proteomic survey of mouse tissue using a rigorous com-

parative profiling strategy based on a relatively unbiased

and sensitive method of detection (i.e., MudPIT) to exam-

ine differential protein expression directly (Kislinger et al.,

2003; Schirmer et al., 2003; Washburn et al., 2001). Our

study builds on a substantive existing body of targeted

proteomic studies in mammalian systems (Andersen

et al., 2002; Beausoleil et al., 2004; Krapfenbauer et al.,

2003; Mootha et al., 2003; Nielsen et al., 2005; Schirmer

et al., 2003; Wu et al., 2004) and provides a complemen-

tary perspective into the functional organization and regu-

lation of mammalian gene products.

One of the main outstanding questions in expression

profiling is how well mRNA levels reflect protein abun-

dance and the biological basis (if any) for any observable

differences. Despite the obvious fact that protein synthe-

sis is dependent upon mRNA, earlier studies of the rela-

tionships between mRNA and protein profiles have con-

sistently reported a modest correlation between mRNA

and protein levels (Griffin et al., 2002; Gygi et al., 1999;

Mootha et al., 2003). However, the conclusions drawn

from previous reports were generally based on computa-

tional methods that may not have fully accounted for sys-

tematic or spurious noise. Using a probabilistic framework

to better model the relationship between the experimen-

tally recorded protein and mRNA patterns, we have now

largely confirmed the overall good concordance of tissue

expression patterns of gene products reproducibly de-

tected by microarray-based (Su et al., 2004; Zhang

et al., 2004) and proteomic (this study) global profiling pro-

cedures. Although our experimental method provided for
only a semiquantitative estimate of relative protein abun-

dance (Liu et al., 2004), the overall correspondence be-

tween pairs of cognate mRNA and protein profiles was

quite impressive, with only �1/4 of all gene products ex-

hibiting a statistically significant departure from a simple

linear relationship at the predicted protein and transcript

levels. Some of the remaining discordance likely stems

from irrelevant epiphenomena (e.g., different mouse ge-

netic backgrounds) or residual differences in data signal

processing (Larkin et al., 2005), but it may also point to in-

teresting posttranscriptional control mechanisms. Never-

theless, incomplete proteome/transcriptome coverage

stemming from sheer sample complexity, unknown pro-

tein modifications, and poor recovery and detection of

lower-abundance and membrane-associated proteins still

confounds rigorous definition of the expressed proteome.

These problems are also compounded by a dependency

on public sequence databases, which are incomplete

and often contain errors, for mass spectrometry-based

proteomic screening.

Organ-selective gene products can potentially be used

as biomarkers to monitor homeostatic perturbations as-

sociated with tissue-specific pathologies, such as heart

disease, neurological disorders, and cancer. One unique

advantage of proteomic measurements over mRNA profil-

ing is the ability to deduce protein subcellular localization

directly, providing additional insight into the biological

context of uncharacterized gene products that can lead

naturally to testable hypotheses regarding function. As

the isolation of completely pure organelles is notoriously

difficult (Brunet et al., 2003), we opted to combine differ-

ential proteomic detection with machine-learning

methods to more accurately deduce the primary subcellu-

lar localization, benchmarking our results against estab-

lished (e.g., SwissProt) annotations and alternate hypoth-

eses (Andersen et al., 2002; Beausoleil et al., 2004;

Krapfenbauer et al., 2003; Mootha et al., 2003; Nielsen

et al., 2005; Schirmer et al., 2003; Wu et al., 2004). The

high-confidence assignments for 1503 previously unas-

signed proteins reported here add substantively to our

knowledge of the organization of the organellar proteomes

of a leading mammalian model. Nevertheless, �1/3 of

the proteins identified (1494) were assigned to organelles

with confidence scores below our threshold cutoff (likeli-

hood < 80%). Much of this ambiguity stems from proteins

identified with low spectral counts, ubiquitous organellar

distributions, or differences in the organellar patterns

among the six tissues.

Despite the fact that many proteins likely shuttle be-

tween compartments or have multiple (i.e., pleiotropic)

roles in the cell, relatively few proteins could be unambig-

uously assigned to more than one compartment (aside

from cases of probable crosscontamination). These re-

sults highlight the ongoing challenges of rigorously defin-

ing subcellular localization (Phizicky et al., 2003). While

such patterns may indeed be reflected in the raw proteo-

mic datasets, we chose to be cautious in our current inter-

pretation of the data.
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These statistics might, however, be enhanced by apply-

ing improved forms of pattern recognition. Computational

methods for predicting subcellular localization generally

fall into one of three categories based on either amino

acid composition (Nakashima and Nishikawa, 1994), se-

quence-derived parameters integrating literature-derived

rules (e.g., PSORT; Nakai and Kanehisa, 1992), or se-

quence homology (Chou and Cai, 2005; Lu et al., 2004;

Mott et al., 2002). It is possible that integrating aspects

of these alternate approaches together with the proteomic

profiles reported here might allow for more complete and

accurate classifications, ideally without the bias toward

monocompartment predictions.

Despite these caveats, the protein patterns reported

here should serve as a useful bridgehead for more exten-

sive experimental characterization of core mammalian bi-

ological systems, including relatively poorly defined or-

gans like the placenta and the mechanisms controlling

protein expression, stability, and organellar trafficking.

By providing unfettered access to the data via a web por-

tal, investigators are encouraged to navigate and contem-

plate this proteomic landscape.

EXPERIMENTAL PROCEDURES

Tissue Fractionation and Organelle Isolation

The preparation of mouse tissue organelle fractions was as previously

described (Kislinger et al., 2003). For detailed protocols, see Supple-

mental Experimental Procedures.

Mass Spectrometry and Database Searches

The protein fractions were denatured and digested sequentially with

endoprotease Lys-C and trypsin and analyzed by data-dependent

shotgun (MudPIT) profiling as previously reported (Kislinger et al.,

2003). Full details of the entire procedure are provided in Supplemental

Experimental Procedures.

Quantitative Analysis

The profiles were clustered based on Spearman correlation ranking

with average linkage using Cluster 3.0 (Eisen et al., 1998), as modified

by de Hoon and colleagues, and visualized using TreeView (Saldanha,

2004). Protein relative abundance was inferred either using raw spec-

tral counts as a semiquantitative measure (Figures 1A and 1B) or after

normalizing the spectral counts per fraction relative to the total re-

corded per protein (Figures 2–5; ‘‘Ratio of total’’) essentially as previ-

ously described (Cox et al., 2005). Functional classification and statis-

tical enrichment were evaluated using an in-house program

(MouseSpec; available upon request). Annotations were compiled

from the GO and Expasy websites (Table S11). Phenotype Ontology

terms were obtained from the Mouse Genome Informatics database

(http://www.informatics.jax.org/)

Microarray Dataset Crosscomparison

Global mRNA expression profiles (Su et al., 2004; Zhang et al., 2004)

were crossmapped and linked to the proteomics data via SwissProt

accession numbers. Only the �9000 closely correlated transcripts

(Q.M., T.R.H., and B.F.; unpublished data) were used for further

consideration.

Mathematical Modeling

We took a probabilistic approach to model the relationship between

the protein and mRNA tissue patterns. A detailed description is pro-

vided in Supplemental Experimental Procedures. Briefly, we used an
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automatically inferred Bernoulli switch variable that directs toward ex-

plaining microarray expression levels of mRNA (probe intensities) ei-

ther as a linear function of the spectral counts or independently of

the counts using a background distribution learned on the mRNA ex-

pressions alone using kernel density estimation. The spectral counts

were assumed to be Poisson distributed, while the mRNA measure-

ments were modeled as a Gaussian function. The learned model

was used to score the strength of relationship between the tissue pro-

files for each pair of gene products on a gene-by-gene basis. Permu-

tation testing was performed to assign a confidence measure (p value)

based on the possibility of observing an extreme probability value with

randomized data. Finally, we applied a rigorous probability cutoff

of >0.66 to select inliers (positive for a linear relationship), and <0.33

for outliers (negative for a linear relationship), with the remaining

gene products (intermediate probabilities 0.33 % p % 0.66) classified

as ambiguous midliers.

Prediction of Subcellular Localization and Annotation

of Organelle Localization

We used a kernel-based variant of the classic KNN algorithm (Hechen-

bichler and Schliep, 2004) to build the localization classifiers. A de-

tailed description of the training, testing, and prediction process is pro-

vided in Supplemental Experimental Procedures. Alternate predictions

using the PSLT algorithm based on protein domain architecture (i.e.,

combinatorial presence of predicted InterPro motifs and putative

membrane-spanning domains) were generated following training on

mammalian protein sequences in the Hera database as previously de-

scribed (Scott et al., 2004) using motifs defined in InterPro release 8.0

(Mulder et al., 2005), signal peptides/anchors predicted by SignalP

version 3.0 (Bendtsen et al., 2004), and transmembrane domains as

deduced by TMHMM version 2.0 (Krogh et al., 2001).

Cloning, Expression, and Imaging

Commercially available plasmids bearing full-length cDNAs of interest

were ordered as bacterial glycerol stocks from Open Biosystems

(Huntsville, AL, USA). Oligonucleotide primers were designed to am-

plify the open reading frame from the start codon to the last amino

acid, removing the stop codon. Restriction sites were embedded

into the primers to facilitate subcloning. PCR was performed with

a high-fidelity enzyme (BD Biosciences, Advantage 2), and the end

products were TA cloned into TOPO (Invitrogen) or pGEM (Promega;

pGEM-T) for dideoxy sequencing. Sequence-verified cDNA clones

were subcloned in frame into a vector encoding a C-terminal GFP

fusion (Clontech; catalog #6085-1).

Human embryonic kidney 293T cells were plated 24 hr prior to trans-

fection onto gelatin-treated 35 mm glass-bottom culture dishes (Mat-

Tek; P35G-0-10-C) to achieve an �50%–80% confluency. Each GFP

fusion plasmid (�0.75 mg) and a histone H2B-RFP control construct

(a kind gift from Sean Megason) were cotransfected using FuGENE 6

(Roche). The cells were cultured for a further 24 hr prior to imaging.

The cells were live imaged by confocal microscopy using a Zeiss Axi-

overt 200M inverted microscope fitted with an LSM 510 META confo-

cal system. Channels were sequentially scanned and images collected

for each fluorophore using 25� and 40� objectives.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, 12 tables, and 12 figures and can be found

with this article online at http://www.cell.com/cgi/content/full/125/1/

173/DC1/.
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