1,023 research outputs found

    Factors Affecting Spatial Awareness in Non- Stereo Visual Representations of Virtual, Real and Digital Image Environments

    Get PDF
    The increasing number of applications employing virtual environment (VE) technologies as a tool, particularly those that use VE as surrogates, makes it important to examine the ability of VE to provide realistic simulations to users. Accurate space and distance perceptions have been suggested as essential preconditions for the reliable use of VE technologies in various applications. However, space and distance perception in the VE has been reported by some investigators as being perceived differently from the real world. Thus, the overall aim of this thesis is to improve our understanding of factors affecting spatial awareness in the VE. The general approach is based on a strategy of conducting empirical investigations comparing tasks performed in the VE to similar tasks performed in the real world. This research has examined the effect of display related factors on users' spatial task performance in the context of static, dynamic and interactive presentations. Three sets of experiments in these respective contexts were conducted to explore the influence of image type, display size, viewing distance, physiological cues, interface device and travel modes on distance estimate and spatial memory tasks. For distance perception, results revealed that the effect of image type depends on the context of presentations, the type of asymmetrical distances and image resolution. The effect of display size in static and dynamic presentations is consistent with the results of previous investigations. However, results from evaluations conducted by the author have indicated that other factors such as viewing distance and physiological cues were also accountable. In interactive presentations, results indicated that display size had different effects on different users whereby familiarity with display size may influence user's performance. Similarly, it was shown that a commonly used interface device is more useful and beneficial for user's spatial memory performance in the VE than the less familiar ones. In terms of travel mode, the natural method of movement available in the real world may not necessary be better than the unnatural movement which is possible in the VE. The results of investigations reported in this thesis contribute towards knowledge and understanding on factors affecting spatial awareness in the real and VE. In particular, they highlight the influence of these factors in space and distance perception in different contexts of VE presentations which will serve as important scientifically based guidelines for designers and users ofVE applications

    The Effect of Anthropometric Properties of Self-Avatars on Action Capabilities in Virtual Reality

    Get PDF
    The field of Virtual Reality (VR) has seen a steady exponential uptake in the last decade and is being continuously incorporated into areas of popular interest like healthcare, training, recreation and gaming. This steady upward trend and prolonged popularity has resulted in numerous extravagant virtual environments, some that aim to mimic real-life experiences like combat training, while others intend to provide unique experiences that may otherwise be difficult to recreate like flying over ancient Egypt as a bird. These experiences often showcase highly realistic graphics, intuitive interactions and unique avatar embodiment scenarios with the help of various tracking sensors, high definition graphic displays, sound systems, etc. The literature suggests that estimates and affordance judgments in VR scenarios such as the ones described above are affected by the properties and the nature of the avatar embodied by the user. Therefore, to provide users with the finest experiences it is crucial to understand the interaction between the embodied self and the action capabilities afforded by it in the surrounding virtual environment. In a series of studies aimed at exploring the effect of gender matched body-scaled self-avatars on the user\u27s perception, we investigate the effect of self-avatars on the perception of size of objects in an immersive virtual environment (IVE) and how this perception affects the actions one can perform as compared to the real world. In the process, we make use of newer tracking technology and graphic displays to investigate the perceived differences between real world environments and their virtual counterparts to understand how the spatial properties of the environment and the embodied self-avatars affect affordances by means of passability judgments. We describe techniques for creation and mapping VR environments onto their real world counterparts and the creation of gender matched body-scaled self-avatars that provides real time full-body tracking. The first two studies investigate how newer graphical displays and off-the-shelf tracking devices can be utilized to create salient gender matched body-scaled self-avatars and their effect on the judgment of passability as a result of the embodied body schema. The study involves creating complex scripts that automate the process of mapping virtual worlds onto their real world counterparts within a 1cm margin of error and the creation of self-avatars that match height, limb proportions and shoulder width of the participant using tracking sensors. The experiment involves making judgments about the passability of an adjustable doorway in the real world and in a virtual to-scale replica of the real world environment. The results demonstrated that the perception of affordances in IVEs is comparable to the real world but the behavior leading to it differs in VR. Also, the body-scaled self-avatars generated provide salient information yielding performance similar to the real world. Several insights and guidelines related to creating veridical virtual environments and realistic self-avatars were achieved from this effort. The third study investigates how the presence of body-scaled self-avatars affects the perception of size of virtual handheld objects and the influence of the person-plus-virtual-object system created by lifting the said virtual object on passability. This is crucial to understand as VR simulations now often utilize self-avatars that carry objects while maneuvering through the environment. How they interact with these handheld objects can influence what they do in critical scenarios where split second decisions can change the outcome like combat training, role-playing games, first person shooting, thrilling rides, physiotherapy, etc. It has also been reported that the avatar itself can influence the perception of size of virtual objects, in turn influencing action capabilities. There is ample research on different interaction techniques to manipulate objects in a virtual world but the question about how the objects affect our action capabilities upon interaction remains unanswered, especially when the haptic feedback associated with holding a real object is mismatched or missing. The study investigates this phenomenon by having participants interact with virtual objects of different sizes and making frontal and lateral passability judgments to an adjustable aperture similar to the first experiment. The results suggest that the presence of self-avatars significantly affects affordance judgments. Interestingly, frontal and lateral judgments in IVEs seem to similar unlike the real world. Investigating the concept of embodied body schema and its influence on action-capabilities further, the fourth study looks at how embodying self-avatars that may vary slightly from your real world body affect performance and behavior in dynamic affordance scenarios. In this particular study, we change the eye height of the participants in the presence or absence of self-avatars that are either bigger, smaller or the same size as the participant. We then investigate how this change in eye height and anthropometric properties of the self-avatar affects their judgments when crossing streets with oncoming traffic in virtual reality. We also evaluate any changes in the perceived walking speed as a result of embodying altered self-avatars. The findings suggest that the presence of self-avatars results in safer crossing behavior, however scaling the eye height or the avatar does not seem to affect the perceived walking speed. A detailed discussion on all the findings can be found in the manuscript

    Phenomenal regression as a potential metric of veridical perception in virtual environments

    Get PDF
    It is known that limitations of the visual presentation and sense of presence in a virtual environment (VE) can result in deficits of spatial perception such as the documented depth compression phenomena. Investigating size and distance percepts in a VE is an active area of research, where different groups have measured the deficit by employing skill-based tasks such as walking, throwing or simply judging sizes and distances. A psychological trait called phenomenal regression (PR), first identified in the 1930s by Thouless, offers a measure that does not rely on either judgement or skill. PR describes a systematic error made by subjects when asked to match the perspective projections of two stimuli displayed at different distances. Thouless’ work found that this error is not mediated by a subject’s prior knowledge of its existence, nor can it be consciously manipulated, since it measures an individual’s innate reaction to visual stimuli. Furthermore he demonstrated that, in the real world, PR is affected by the depth cues available for viewing a scene. When applied in a VE, PR therefore potentially offers a direct measure of perceptual veracity that is independent of participants’ skill in judging size or distance. Experimental work has been conducted and a statistically significant correlation of individuals’ measured PR values (their ‘Thouless ratio’, or TR) between virtual and physical stimuli was found. A further experiment manipulated focal depth to mitigate the mismatch that occurs between accommodation and vergence cues in a VE. The resulting statistically significant effect on TR demonstrates that it is sensitive to changes in viewing conditions in a VE. Both experiments demonstrate key properties of PR that contribute to establishing it as a robust indicator of VE quality. The first property is that TR exhibits temporal stability during the period of testing and the second is that it differs between individuals. This is advantageous as it yields empirical values that can be investigated using regression analysis. This work contributes to VE domains in which it is desirable to replicate an accurate perception of space, such as training and telepresence, where PR would be a useful tool for comparing subjective experience between a VE and the real world, or between different VEs

    Virtual reality obstacle crossing: adaptation, retention and transfer to the physical world

    Get PDF
    Virtual reality (VR) paradigms are increasingly being used in movement and exercise sciences with the aim to enhance motor function and stimulate motor adaptation in healthy and pathological conditions. Locomotor training based in VR may be promising for motor skill learning, with transfer of VR skills to the physical world in turn required to benefit functional activities of daily life. This PhD project aims to examine locomotor adaptations to repeated VR obstacle crossing in healthy young adults as well as transfers to the untrained limb and the physical world, and retention potential of the learned skills. For these reasons, the current thesis comprises three studies using controlled VR obstacle crossing interventions during treadmill walking. In the first and second studies we investigated adaptation to crossing unexpectedly appearing virtual obstacles, with and without feedback about crossing performance, and its transfer to the untrained leg. In the third study we investigated transfer of virtual obstacle crossing to physical obstacles of similar size to the virtual ones, that appeared at the same time point within the gait cycle. We also investigated whether the learned skills can be retained in each of the environments over one week. In all studies participants were asked to walk on a treadmill while wearing a VR headset that represented their body as an avatar via real-time synchronised optical motion capture. Participants had to cross virtual and/or physical obstacles with and without feedback about their crossing performance. If applicable, feedback was provided based on motion capture immediately after virtual obstacle crossing. Toe clearance, margin of stability, and lower extremity joint angles in the sagittal plane were calculated for the crossing legs to analyse adaptation, transfer, and retention of obstacle crossing performance. The main outcomes of the first and second studies were that crossing multiple virtual obstacles increased participants’ dynamic stability and led to a nonlinear adaptation of toe clearance that was enhanced by visual feedback about crossing performance. However, independent of the use of feedback, no transfer to the untrained leg was detected. Moreover, despite significant and rapid adaptive changes in locomotor kinematics with repeated VR obstacle crossing, results of the third study revealed limited transfer of learned skills from virtual to physical obstacles. Lastly, despite full retention over one week in the virtual environment we found only partial retention when crossing a physical obstacle while walking on the treadmill. In summary, the findings of this PhD project confirmed that repeated VR obstacle perturbations can effectively stimulate locomotor skill adaptations. However, these are not transferable to the untrained limb irrespective of enhanced awareness and feedback. Moreover, the current data provide evidence that, despite significant adaptive changes in locomotion kinematics with repeated practice of obstacle crossing under VR conditions, transfer to and retention in the physical environment is limited. It may be that perception-action coupling in the virtual environment, and thus sensorimotor coordination, differs from the physical world, potentially inhibiting retained transfer between those two conditions. Accordingly, VR-based locomotor skill training paradigms need to be considered carefully if they are to replace training in the physical world

    Perception and Emotion in Virtual Reality: The Role of the Body and the Contribution of Presence

    Get PDF
    This thesis reports four studies in the context of virtual reality (VR), feelings of presence, emotion, and perception. Previous research established the existence of cross-dimensional perceptual interrelations such as the interconnection between experienced motion and subjective time. This is thought to result from a common perceptual system. However, the specifics of this system are a matter of ongoing research. An important binding factor between perceptual dimensions is the bodily self, which was described as a reference for perception. In Study I, manipulations of the size of a virtual self-representation were shown to affect the spatial judgment of objects. In Study II, the degree of self-motion in an immersive virtual environment (IVE) influenced the subjective perception of time, corroborating previous findings about the common perceptual system. Besides the virtual self-representation, there is another important variable in VR experiments: Presence is described as the feeling of being in a mediated environment. Presence was not associated with improved performance in the spatial and temporal judgments of Studies I and II. However, in Study III, presence in a gaming activity was linked to improved mood after an experimental stress-induction. This especially applied to VR gaming, where impressions about the subjective realism of the IVE might have been crucial for mood repair. As outlined in Study IV, it is important to distinguish between presence as an attentional allocation to the mediated world and as an individual judgment about its realism. Taken together, the results from all studies corroborate the idea of the self as a fundamental perceptual reference, confirm results about the psychological connection between space and time, emphasize the benefits of VR gaming in improving mood, and elucidate the role of perceived realism in assessing presence in IVEs

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Human engineering design criteria study Final report

    Get PDF
    Human engineering design criteria for use in designing earth launch vehicle systems and equipmen

    Developing an Innovative Method for Visual Perception Evaluation in a Physical-Based Virtual Environment

    Get PDF
    With the developments in virtual reality technologies, significant researches have been conducted for human response on indoor luminous environment using head-mounted display to replace those in real environment. However, the limited resolution and luminance values offered by the devices might affect the perceived appearance and high-order impressions in the simulated virtual environment. In this study, a simulated 3-dimensional virtual office was compared against a real one. Both settings presented similar physical and luminous conditions to twenty participants (N = 20). The study investigated subjective and objective visual responses and participants' interaction with the virtual environment based on measurements of perceived presence. Subjective assessments included questions on luminous environment appearance (brightness, colour-temperature, distribution) and high-order perceptions (pleasantness, interest, spaciousness, excitement and complexity). Objective assessments measured contrast-sensitivity and colour-discrimination tasks to assess visual performance across the two representation environments. Results showed no significant differences between the two environments based on the studied parameters, indicating a high level of perceptual accuracy of appearance and high-order perceptions. Minor physical symptoms related to the headset use and high level of perceived presence were found, indicating the proposed methodology's capability to provide realistic immersive environments. Although attributes regarding scene quality: colours, details, and contrast were perceived significantly different to the real environment, objective tasks showed that similar contrast and colour appearance can be produced in the virtual environment with minor impact on fine-details due to limited resolution. Virtual reality maybe a promising alternative representation medium to investigate visual perceptions as the overall appearance of the scene can still be correctly acquired

    Computer-aided investigation of interaction mediated by an AR-enabled wearable interface

    Get PDF
    Dierker A. Computer-aided investigation of interaction mediated by an AR-enabled wearable interface. Bielefeld: Universitätsbibliothek Bielefeld; 2012.This thesis provides an approach on facilitating the analysis of nonverbal behaviour during human-human interaction. Thereby, much of the work that researchers do starting with experiment control, data acquisition, tagging and finally the analysis of the data is alleviated. For this, software and hardware techniques are used as sensor technology, machine learning, object tracking, data processing, visualisation and Augmented Reality. These are combined into an Augmented-Reality-enabled Interception Interface (ARbInI), a modular wearable interface for two users. The interface mediates the users’ interaction thereby intercepting and influencing it. The ARbInI interface consists of two identical setups of sensors and displays, which are mutually coupled. Combining cameras and microphones with sensors, the system offers to record rich multimodal interaction cues in an efficient way. The recorded data can be analysed online and offline for interaction features (e. g. head gestures in head movements, objects in joint attention, speech times) using integrated machine-learning approaches. The classified features can be tagged in the data. For a detailed analysis, the recorded multimodal data is transferred automatically into file bundles loadable in a standard annotation tool where the data can be further tagged by hand. For statistic analyses of the complete multimodal corpus, a toolbox for use in a standard statistics program allows to directly import the corpus and to automate the analysis of multimodal and complex relationships between arbitrary data types. When using the optional multimodal Augmented Reality techniques integrated into ARbInI, the camera records exactly what the participant can see and nothing more or less. The following additional advantages can be used during the experiment: (a) the experiment can be controlled by using the auditory or visual displays thereby ensuring controlled experimental conditions, (b) the experiment can be disturbed, thus offering to investigate how problems in interaction are discovered and solved, and (c) the experiment can be enhanced by interactively comprising the behaviour of the user thereby offering to investigate how users cope with novel interaction channels. This thesis introduces criteria for the design of scenarios in which interaction analysis can benefit from the experimentation interface and presents a set of scenarios. These scenarios are applied in several empirical studies thereby collecting multimodal corpora that particularly include head gestures. The capabilities of computer-aided interaction analysis for the investigation of speech, visual attention and head movements are illustrated on this empirical data. The effects of the head-mounted display (HMD) are evaluated thoroughly in two studies. The results show that the HMD users need more head movements to achieve the same shift of gaze direction and perform less head gestures with slower velocity and fewer repetitions compared to non-HMD users. From this, a reduced willingness to perform head movements if not necessary can be concluded. Moreover, compensation strategies are established like leaning backwards to enlarge the field of view, and increasing the number of utterances or changing the reference to objects to compensate for the absence of mutual eye contact. Two studies investigate the interaction while actively inducing misunderstandings. The participants here use compensation strategies like multiple verification questions and arbitrary gaze movements. Additionally, an enhancement method that highlights the visual attention of the interaction partner is evaluated in a search task. The results show a significantly shorter reaction time and fewer errors

    Human cortical dynamics during full-body heading changes

    Get PDF
    The retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading direction and translating between distinct spatial reference frames based on multi-sensory information. While invasive studies allow investigating heading computation in moving animals, established non-invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging approach synchronizing electroencephalography with motion capture and virtual reality. Data from physically rotating participants were contrasted with rotations based only on visual flow. During physical rotation, varying rotation velocities were accompanied by pronounced wide frequency band synchronization in RSC, the parietal and occipital cortices. In contrast, the visual flow rotation condition was associated with pronounced alpha band desynchronization, replicating previous findings in desktop navigation studies, and notably absent during physical rotation. These results suggest an involvement of the human RSC in heading computation based on visual, vestibular, and proprioceptive input and implicate revisiting traditional findings of alpha desynchronization in areas of the navigation network during spatial orientation in movement-restricted participants.TU Berlin, Open-Access-Mittel – 202
    • …
    corecore