10 research outputs found

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Evidence-enabled verification for the Linux kernel

    Get PDF
    Formal verification of large software has been an elusive target, riddled with problems of low accuracy and high computational complexity. With growing dependence on software in embedded and cyber-physical systems where vulnerabilities and malware can lead to disasters, an efficient and accurate verification has become a crucial need. The verification should be rigorous, computationally efficient, and automated enough to keep the human effort within reasonable limits, but it does not have to be completely automated. The automation should actually enable and simplify human cross-checking which is especially important when the stakes are high. Unfortunately, formal verification methods work mostly as automated black boxes with very little support for cross-checking. This thesis is about a different way to approach the software verification problem. It is about creating a powerful fusion of automation and human intelligence by incorporating algorithmic innovations to address the major challenges to advance the state of the art for accurate and scalable software verification where complete automation has remained intractable. The key is a mathematically rigorous notion of verification-critical evidence that the machine abstracts from software to empower human to reason with. The algorithmic innovation is to discover the patterns the developers have applied to manage complexity and leverage them. A pattern-based verification is crucial because the problem is intractable otherwise. We call the overall approach Evidence-Enabled Verification (EEV). This thesis presents the EEV with two challenging applications: (1) EEV for Lock/Unlock Pairing to verify the correct pairing of mutex lock and spin lock with their corresponding unlocks on all feasible execution paths, and (2) EEV for Allocation/Deallocation Pairing to verify the correct pairing of memory allocation with its corresponding deallocations on all feasible execution paths. We applied the EEV approach to verify recent versions of the Linux kernel. The results include a comparison with the state-of-the-art Linux Driver Verification (LDV) tool, effectiveness of the proposed visual models as verification-critical evidence, representative examples of verification, the discovered bugs, and limitations of the proposed approach

    The Hob system for verifying software design properties

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 157-164).This dissertation introduces novel techniques for verifying that programs conform to their designs. My Hob system, as described in this dissertation, allows developers to statically ensure that implementations preserve certain specified properties. Hob verifies heap-based properties that can express important aspects of a program's design. The key insight behind my approach is that Hob can establish detailed software design properties--properties that lie beyond the reach of extant static analysis techniques due to scalability or precision issues-by focusing the verification task. In particular, the Hob approach applies scalable static analysis techniques to the majority of the modules of a program and very precise, unscalable, static analysis or automated theorem proving techniques to certain specific modules of that program: those that require the precision that such analyses can deliver. The use of assume/guarantee reasoning allows the analysis engine to harness the strengths of both scalable and precise static analysis techniques to analyze large programs (which would otherwise require scalable, imprecise analyses) with sufficient precision to establish detailed data structure consistency properties, e.g. heap shape properties.(cont.) A set-based specification language enables the different analysis techniques to cooperate in verifying the specified design properties. My preliminary results show that it is possible to successfully verify detailed design-level properties of benchmark applications: I have used the Hob system to verify user-relevant properties of a water molecule simulator, a web server, and a minesweeper game. These properties constrain the behaviour of the program by stating that selected sets of objects are always equal or disjoint throughout the program's execution.by Patrick Lam.Ph.D
    corecore