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Abstract. The parametric shape analysis framework of Sagiv, Reps,
and Wilhelm [45,46] uses three-valued structures as dataflow lattice ele-
ments to represent sets of states at different program points. The recent
work of Yorsh, Reps, Sagiv, Wilhelm [48, 50] introduces a family of for-
mulas in (classical, two-valued) logic that are isomorphic to three-valued
structures [46] and represent the same sets of concrete states.

In this paper we introduce a larger syntactic class of formulas that has
the same expressive power as the formulas in [48]. The formulas in [48]
can be viewed as a normal form of the formulas in our syntactic class;
we give an algorithm for transforming our formulas to this normal form.
Our formulas make it obvious that the constraints are closed under all
boolean operations and therefore form a boolean algebra. Our algorithm
also gives a reduction of the entailment and the equivalence problems for
these constraints to the satisfiability problem.

Keywords: Shape Analysis, Program Verification, Abstract Interpretation,
Boolean Algebra, First-Order Logic, Model Checking

1 Introduction

Background. Shape analysis [9,12,15,16,20,22,27,32,37,46] is a technique for
statically analyzing programs that manipulate dynamically allocated data struc-
tures, and is important for precise reasoning about programs written in modern
imperative programming languages. Parametric shape analysis [45,46] is a frame-
work that can be instantiated to provide a variety of precise shape analyses. We
can describe this approach informally as follows. The concrete program state is a
two-valued structure, that is, a finite relational structure 〈U ♯, ι♯〉, which maps, for
example, a binary relation symbol r to a binary relation ι♯(r) : U ♯×U ♯ → {0, 1}.
To represent a potentially infinite set of concrete program states, [46] uses
finite three-valued structures, which are relational structures in three-valued
logic [24, 38]. A three-valued structure 〈U, ι〉 maps a binary relation symbol r
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to a three-valued relation ι(r) : U × U → {{0}, {1}, {0, 1}}. Three-valued struc-
tures generalize the graphs used in several previous shape analyses [9, 22, 44].
The elements of the domain U of a three-valued structure 〈U, ι〉 represent dis-
joint non-empty sets of objects. Given two such sets A and B, we can com-
pute the three-valued relation by ι(r)(A, B) = {ι♯(r)(a, b) | a ∈ A ∧ b ∈ B}.
As observed in [48, 50], the fact ι(r)(A, B) = {0} means that the formula
¬∃x∃y.A(x) ∧ B(y) ∧ r(x, y) holds on the two-valued structure 〈U ♯, ι♯〉. Simi-
larly, the fact ι(r)(A, B) = {1} means that ¬∃x∃y.A(x) ∧B(y) ∧¬r(x, y) holds,
whereas ι(r)(A, B) = {0, 1} means that both ∃x∃y.A(x) ∧ B(y) ∧ r(x, y) and
∃x∃y.A(x) ∧ B(y) ∧ ¬r(x, y) hold. As a result, any three-valued structure can
be described by a corresponding formula in first-order logic [50]. In this pa-
per we take a closer look at the class of formulas that arise when charac-
terizing the meaning of three-valued structures. We characterize such formu-
las as the set of all boolean combinations of certain simple formulas, such as
∃x∃y.A(x) ∧ B(y) ∧ r(x, y) (see Definition 5). As a result, we establish that
the meaning of three valued structures (under the tight concretization seman-
tics [50, Chapter 7]) is closed under all boolean operations and therefore forms
a boolean algebra.

Characterizing structures using formulas. The characterization of three-
valued structures using formulas in first-order logic is presented for the first time
in [48,50]. Section 3.1 of [48] explains that the semantics of general three-valued
structures can represent the existence of graph coloring. As a result, first-order
structures in general are not definable using first-order logic, but require the
use of monadic second-order logic [48, Section 4]. However, an interesting class
of three-valued structures can be represented using first-order logic [48, Section
3.2], in particular, this is the case for bounded structures. Two versions of the
semantics for three-valued structures are of interest: the standard concretization
[45, Definition 3.5], [48, Chapter 3] and the tight concretization [48, Chapter 7]
(the later corresponding to the canonical abstraction [45, Definition 3.6]). One
can view the characteristic formulas for canonical abstraction of [48, Chapter
7] as the starting point for the class of formulas in this paper: we show how to
allow a richer syntactic class of formulas, and give an algorithm for converting
these formulas to the characteristic formulas for canonical abstraction.

We have previously studied regular graph constraints [28,29], inspired by the
semantics of role analysis [25–27]. Regular graph constraints abstract the notion
of graph summaries where nodes do not have a unique abstraction criterion. In
[28,29] we observe that such constraints can be equivalently characterized using
graphs summaries and using existential monadic second-order logic formulas.
Somewhat surprisingly, whereas the satisfiability of regular graph constraints is
decidable [29, Section 2.4], the entailment and the equivalence of regular graph
constraints are undecidable [29, Section 3], [28]. These properties of regular graph
constraints are in contrast to the nice closure properties of the boolean shape
analysis constraints of the present paper.
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1.1 Contributions

Main result. The main result of this paper is a new syntactic class of formulas
that characterize the meaning of three-valued structures under tight concretiza-
tion. The new syntactic class is defined as the set of all boolean combinations
of formulas of a certain form. The proof of the equivalence of the new syntactic
class and previously introduced characteristic formulas for canonical abstrac-
tion [48] is a normalization algorithm that transforms formulas in our syntactic
class to the characteristic formulas for canonical abstraction (which are isomor-
phic to three-valued structures). Our characterization immediately implies that
the constraints expressible as the meaning of three-valued structures are closed
under all boolean operations, we thus call them “boolean shape analysis con-
straints”.

Consequences of boolean closure. The resulting closure properties of
boolean shape analysis constraints have several potential uses. The closure un-
der disjunction is necessary for fixpoint computations in dataflow analysis and
can easily be computed even for three-valued structures (by taking the union
of sets of three-valued structures). What our results show is that boolean shape
analysis constraints are also closed under conjunction and negation.

The conjunction of constraints is needed, for example, in compositional inter-
procedural shape analysis, which computes the relation composition of relations
on states. Conjunction allows the analysis to simultaneously retain the call-site
specific information that the callee preserves across the call, and the postcondi-
tion which summarizes the actions of the callee.

The negation of constraints is useful for expressing deterministic branches in
control-flow graphs. For example, an if statement with the condition c results in
conjoining the dataflow fact d to yield d∧c in the then branch, and d∧¬c in the
else branch. Similarly, the assert(c) statement, which is an important mech-
anism for program specification, has (in the relational semantics) the condition
¬c for the branch which leads to an error state.

Finally, the closure under negation implies that both the implication and
the equivalence of shape analysis constraints are reducible to the satisfiability
of shape analysis constraints. The implication problem is important in compo-
sitional shape analysis which uses assume/guarantee reasoning to show that a
procedure conforms to its specification.

Decidability of constraints. The closure of boolean shape analysis con-
straints under boolean operations holds in the presence of arbitrary instrumen-
tation predicates [46, Section 5]. What the particular choice of instrumentation
predicates determines is whether the satisfiability problem for the constraints is
decidable. If the satisfiability problem for three-valued structures with a partic-
ular choice of instrumentation predicates is decidable, our normalization algo-
rithm yields an algorithm for the satisfiability problem of formulas in the richer
syntactic class, which, by closure under boolean operations, gives an algorithm
for deciding the entailment and the equivalence of boolean shape analysis con-
straints.
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Consequences for program annotations. The ability to write program
annotations can greatly improve the effectiveness of static analysis, but the rep-
resentation of program properties in the program analysis is often different from
the representation of program properties that is appropriate for program anno-
tations. On the one hand, to synthesize invariants using fixpoint computation,
program analysis often uses a finite lattice of program properties. On the other
hand, program annotations should be expressed in some convenient, well-known
notation, such as a variation of first-order logic. A program analysis that utilizes
program specifications must bridge the gap between the analysis representation
and the program annotations, for example, by providing a translation from a
logic-based annotation language to the analysis representation. The translation
from the full first-order logic to three-valued structures is equivalent to first-
order theorem proving, and is therefore undecidable. Because we restrict our
attention to formulas of a particular form, we are able to find a (complete and
sound) decision procedure for generating three-valued structures that have the
same meaning as these formulas.1 The existence of this information-preserving
translation algorithm indicates that our formulas have the same expressive power
as three-valued structures. Nevertheless, our formulas are more flexible than the
direct use of three-valued structures (or formulas isomorphic to three-valued
structures). For example, our formulas may use sets that are potentially inter-
secting or empty, while the summary nodes of three-valued structures represent
disjoint, non-empty sets of nodes.

In addition to the benefits for writing program annotations, the richer syn-
tactic class of formulas is potentially useful for analysis representations. A set
of three-valued structures corresponds to a disjunctive normal form; alternative
representations for three-valued structures may be more appropriate in some
cases.

2 Preliminaries

We mostly follow the setup of [46]. Let A be a finite set of unary relation symbols
(with a typical element A ∈ A) and F a finite set of binary relation symbols
(with a typical element f ∈ F). For simplicity, we consider only unary and
binary relation symbols, which are usually sufficient for modelling dynamically
allocated structures. A two-valued structure is a pair S♯ = 〈U ♯, ι♯〉 where U ♯

is a finite non-empty set (of “concrete individuals”), ι♯(A) ∈ U ♯ → {0, 1} for
A ∈ A, and ι♯(f) ∈ (U ♯)2 → {0, 1} for f ∈ F . Let 2-STRUCT be the set of all
two-valued structures. A three-valued structure is a pair S = 〈U, ι〉 where U is a
finite non-empty set (of “abstract individuals”), ι(A) ∈ U → {{0}, {1}, {0, 1}}
for A ∈ A and and ι(f) ∈ U2 → {{0}, {1}, {0, 1}} for f ∈ F . Let 3-STRUCT
denote the set of all three-valued structures. If S♯ is a two-valued structure and
F a closed formula in first-order logic, then [[F ]]S

♯

∈ {0, 1} denotes the truth-

value of F in S♯, and γ∗
F
(F ) = {S♯ ∈ 2-STRUCT | [[F ]]S

♯

= 1} is the set of

1 An alternative approach proposes the use of theorem provers to synthesize three-
valued structures from arbitrary first-order formulas [40,41,49,49], [48, Chapter 6].
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models of F . If C is a set of formulas, then models[C] = {γ∗
F
(F ) | F ∈ C} is

the set of sets of models of formulas from C. Let A1 ⊆ A be a finite subset of
unary predicates. We call elements of A1 abstraction predicates. An A1-bounded
structure is three-valued structure 〈U, ι〉 for which the following two conditions
hold: 1) ι(A)(u) ∈ {{0}, {1}} for all A ∈ A1 and all u ∈ U ; 2) if u1, u2 ∈ U and
u1 6= u2 then ι(A)(u1) 6= ι(A)(u2) for some A ∈ A1. The following definition of
tight concretization corresponds to [48, Chapter 7], [45, Definition 3.6].

Definition 1 (Tight Concretization). Let S♯ = 〈U ♯, ι♯〉 be a two-valued
structure, let S = 〈U, ι〉 be a three-valued structure, and let h : U ♯ → U be a
surjective total function. We write S♯ ⊑hT S iff

1. for every A ∈ A and u ∈ U : ι(A)(u) = {ι♯(A)(u♯) | h(u♯) = u};
2. for every f ∈ F and u1, u2 ∈ U :

ι(f)(u1, u2) = { ι♯(f)(u1
♯, u2

♯) | h(u1
♯) = u1 ∧ h(u2

♯) = u2}

We write S♯ ⊑T S iff there exists a surjective total function h such that S♯ ⊑hT
S, and in that case we call h a homomorphism. The tight concretization of a
three-valued structure S, denoted γT (S), is given by: γT (S) = {S♯ | S♯ ⊑T
S}. We extend γT to γ∗

T that acts on sets of three-valued structures so that
the set denotes a disjunction: γ∗

T (S) =
⋃
S∈S

γT (S). The set of sets of two-
valued structures definable via three-valued structure with tight concretization is
models[T2] = {γ∗

T (S) | S a finite set of A1-bounded three-valued structures}. We
call the set of sets models[T2] boolean shape analysis constraints (the results of
this paper justify to the name).

If A ∈ A and α ∈ {0, 1} then Aα is defined by A1 = A and A0 = ¬A.
A cube over A1 (or just “cube” for short) is an expression P (x) of the form
Aα1

1
(x) ∧ . . . ∧ A

αq
q (x) where α1, . . . , αq ∈ {0, 1}.

Definition 2 (TR1-literal). Let P1(x), P2(x) range over cubes over A1, let A

range over elements of A \ A1, and let f range over F . A TR1-atomic-formula
is a formula of one of the following forms:

∃x. P1(x)
∃x. P1(x) ∧ A(x)
∃x. P1(x) ∧ ¬A(x)

∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y)
∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y)

A TR1-literal is a TR1-atomic-formula or its negation.

TR1-formulas correspond to formulas in [48, Chapter 7]. TR1-formulas satisfy
syntactic invariants that make them isomorphic to three-valued structures with
tight-concretization semantics.

Definition 3 (TR1-formulas). Let P (x), P1(x), P2(y) denote cubes over A1.
A canonical conjunction of TR1 literals is a conjunction of TR1-literals that
satisfies all of the following properties:
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P1. for each P (x) a cube over A1, exactly one of the conjuncts ∃x.P (x) and
¬∃x.P (x) occurs;

P2. there is at least one cube P (x) such that the conjunct ∃x.P (x) occurs in the
conjunction;

P3. if the conjunct ¬∃x.P (x) occurs, then this conjunct is the only occurrence of
the cube P (x) (and the cube P (y)) in the conjunction;

P4. for each cube P (x) such that ∃x.P (x) occurs, and each A ∈ A \ A1, exactly
one of the following three conditions holds:
(a) ¬∃x. P (x) ∧ A(x) occurs in the conjunction,
(b) ¬∃x. P (x) ∧ ¬A(x) occurs in the conjunction,
(c) both ∃x. P (x) ∧ A(x) and ∃x. P (x) ∧ ¬A(x) occur in the conjunction;

P5. for every two cubes P1(x) and P2(y) such that the conjuncts ∃x.P1(x) and
∃x.P2(x) occur, and for every f ∈ F , exactly one one of the following three
conditions holds:
(a) ¬∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y) occurs in the conjunction;
(b) ¬∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y) occurs in the conjunction;
(c) both ∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y) and ∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y)

occur in the conjunction.

A TR1-formula is a disjunction of canonical conjunctions of TR1-literals.

A small difference between TR1-formulas and formulas in [48, Definition 7.3.3,
Page 31] is that [48, Definition 7.3.3, Page 31] does not contain conjuncts of the
form ¬∃x.P (x) stating the emptiness of each empty cube, but instead contains
one conjunct of the form ∀x.

∨
P P (x) where P ranges over all non-empty cubes.

The following Proposition 4 shows that TR1 formulas capture precisely the
meaning of three-valued structures under tight concretization. The proof of
Proposition 4 was first presented in [48, Appendix B] (and reviewed in [31, Page
9]). The proof shows that TR1 formulas and bounded three-valued structures
can be viewed as different notations for the same mathematical structure.

Proposition 4. models[TR1] = models[T2]

3 A New Characterization of Three-Valued Structures

Definition 5 introduces the new syntactic class of formulas characterizing three-
valued structures under tight concretization semantics. Theorem 6 gives a con-
structive proof of the correctness of the characterization.

Definition 5 (TR4-formulas). Let B1(x), B2(y) be range over arbitrary
boolean combinations of elements of A1, let Q(x) range over disjunctions of
literals of form A(x) and ¬A(x) where A ∈ A \ A1, and let g(x, y) range over
disjunctions of literals of the form f(x, y) and ¬f(x, y) where f ∈ F .

A TR4-atomic-formula is a formula of one of the following forms:

1. ∃x. B1(x)
2. ∃x. B1(x) ∧ Q(x)
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∃x.B1(x) ∨ B2(x) → (∃x.B1(x)) ∨ (∃x.B2(x))

∃x. (B1(x) ∨ B2(x)) ∧ Q(x) → (∃x.B1(x) ∧ Q(x)) ∨ (∃x.B2(x) ∧ Q(x))

∃x. B1(x) ∧ (Q1(x) ∨ Q2(x)) → (∃x.B1(x) ∧ Q1(x)) ∨ (∃x.B1(x) ∧ Q2(x))

∃x∃y. (B11(x) ∨ B12(x)) ∧ B2(y) ∧ g(x, y) → ∃x∃y. B11(x) ∧ B2(y) ∧ g(x, y) ∨

∃x∃y. B12(x) ∧ B2(y) ∧ g(x, y)

∃x∃y. B1(x) ∧ (B21(y) ∨ B22(y)) ∧ g(x, y) → ∃x∃y. B1(x) ∧ B21(y) ∧ g(x, y) ∨

∃x∃y. B1(x) ∧ B22(y) ∧ g(x, y)

∃x∃y. B1(x) ∧ B2(y) ∧ (g1(x, y) ∨ g2(x, y)) → ∃x∃y. B1(x) ∧ B2(y) ∧ g1(x, y) ∧

∃x∃y. B1(x) ∧ B2(y) ∧ g2(x, y)

Fig. 1. Transforming TR4-literals into TR1-literals.

Ensure each of the Properties of Definition 3 by applying the appropriate rules:

P1. (∃x.P (x))∧ (¬∃x.P (x)) → false

true → (∃x.P (x))∨ (¬∃x.P (x))

P2.
V

P∈cubes

¬∃x.P (x) → false

P3. (¬∃x.P (x))∧ (∃x.P (x)∧ Q(x)) → false

(¬∃x.P (x))∧ (∃x∃y.P (x)∧ Q(x, y)) → false

(¬∃x.P (x))∧ (∃x∃y.P (y)∧ Q(x, y)) → false

(¬∃x.P (x))∧ (¬∃x.P (x)∧ Q(x)) → ¬∃x.P (x)
(¬∃x.P (x))∧ (¬∃x∃y.P (x)∧ Q(x, y)) → ¬∃x.P (x)
(¬∃x.P (x))∧ (¬∃x∃y.P (y)∧ Q(x, y)) → ¬∃x.P (x)

P4. (∃x.P (x)∧ Q(x)) ∧ (¬∃x.P (x) ∧ Q(x)) → false

(¬∃x.P (x)∧ A(x))∧ (¬∃x.P (x)∧ ¬A(x)) → ¬∃x.P (x)
true → (¬∃x.P (x)∧ A(x)) ∨

(¬∃x.P (x)∧ ¬A(x)) ∨

(∃x.P (x)∧ A(x)) ∧ (∃x.P (x) ∧ ¬A(x))
+rules for P3

P5. (∃x∃y.P1(x) ∧ P2(y) ∧ Q(x, y)) ∧ (¬∃x∃y.P1(x) ∧ P2(y) ∧ Q(x, y)) → false

(¬∃x∃y.P1(x) ∧ P2(y) ∧ f(x, y)) ∧ (¬∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y)) →

(¬∃x.P1(x)) ∨ (¬∃y.P2(y))
true → (¬∃x∃y.P1(x) ∧ P2(y) ∧ f(x, y)) ∨

(¬∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y)) ∨

(∃x∃y.P1(x) ∧ P2(y) ∧ f(x, y)) ∧ (∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y))
+rules for P3

Fig. 2. Transforming a conjunction of TR1-literals into a canonical conjunction of
TR1-literals.
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1. apply the rules in Figure 1 to transform the TR4-formula into a boolean combina-
tion of TR1-literals;

2. transform the formula into a disjunction of conjunctions of TR1-literals;
3. apply the rules in Figure 2 to transform each conjunction of TR1-literals into

a canonical conjunction of TR1-literals, while keeping the formula in disjunctive
normal form.

Fig. 3. Normalization algorithm for transforming TR4-formulas into TR1-formulas.

3. ∃x∃y. B1(x) ∧ B2(y) ∧ g(x, y)

A TR4-literal is a TR4-atomic-formula or its negation. A TR4-formula is a
boolean combination of TR4-atomic-formulas.

Theorem 6. Algorithm sketched in Figures 3, 1, 2 converts a TR4-formula into
an equivalent TR1-formula in a finite number of steps.

Corollary 7. models[TR4] = models[TR1] = models[T2].

By definition, TR4-formulas are closed under all boolean operations.

Corollary 8. 1. The family of sets models[T2] forms a boolean algebra of sets
which is a subalgebra of the boolean algebra of all subsets of 2-STRUCT.

2. There is an algorithm that constructs, given two finite sets of bounded three-
valued structures S1 and S2, a finite set of bounded three-valued structures
S3 such that γ∗

T (S1) ⊆ γ∗
T (S2) iff γ∗

T (S3) = ∅.
3. There is an algorithm that constructs, given two finite sets of bounded three-

valued structures S1 and S2, a finite set of bounded three-valued structures
S3 such that: γ∗

T (S1) = γ∗
T (S2) iff γ∗

T (S3) = ∅.

Note. Every TR4-formula with the set of abstraction predicates A1 ⊆ A is also
a TR4 formula with the set of abstraction predicates A1 = A. When A = A1,
then the class of TR4-formulas can be defined simply as boolean combinations
of formulas 1) ∃x. B1(x), and 2) ∃x∃y. B1(x) ∧ B2(y) ∧ g(x, y) where B1(x),
B2(y) are boolean combinations of literals of the form A(x) and A(y) for A ∈ A,
and g(x, y) ranges over disjunctions of literals of the form f(x, y) and ¬f(x, y)
for f ∈ F .

4 Decidability of Independent Predicates

We next examine the decidability of the questions of the form: “Given sets A and
F and a TR1-formula F over predicates A and F , is F satisfiable?” (Note that
the sets A and F are part of the input to the decision procedure; for fixed finite
sets A and F there are finitely many three-valued structures, so the decision
problem would be trivial.) It turns out that satisfiability of TR1-formulas over
2-STRUCT is decidable because the family of TR1-formulas over 2-STRUCT
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has small model property. It is easy to construct a model 〈U ♯, ι♯〉 of a canonical
conjunction of TR1-literals by introducing at most two elements of the domain
U ♯ for each non-empty cube.

Proposition 9. Let F be a canonical conjunction of TR1-literals and let the
number of cubes P (x) over A1 such that ∃x.P (x) occurs in F be n. Then there
exists a two-valued structure S♯ = 〈U ♯, ι♯〉 such that |U ♯| = 2n and F is true in
S♯.

Corollary 10. γ∗
T (S) = ∅ iff S = ∅.

Corollary 11. The following questions are decidable for sets S1,S2 of three-
valued structures: 1) γ∗

T (S1) = ∅; 2) γ∗
T (S1) ⊆ γ∗

T (S2); 3) γ∗
T (S1) = γ∗

T (S2).

5 Structures with Defined Predicates

Previous sections interpret three-valued structures and formulas over the set
2-STRUCT of all two-valued structures. In general, it is useful to interpret three-
valued structures and formulas over some subset 2-CSTRUCT ⊆ 2-STRUCT of
compatible two-valued structures [46, Page 268]. The meaning of tight concretiza-
tion with respect to 2-CSTRUCT is cγ∗

T (S) = γ∗
T (S) ∩ 2-CSTRUCT and we let

models[cT2] denote the set of all cγ∗
T (S) for all finite sets of bounded three-

valued structures. To characterize the meaning of three-valued structures over
2-CSTRUCT, for each class of formulas TRi we introduce the corresponding class
cTRi by conjoining the formulas with a first-order formula Fψ that characterizes
the subset 2-CSTRUCT. It then follows models[cTRi] = {S♯ ∩ 2-CSTRUCT |
S♯ ∈ models[TRi]}. Hence, models[cTR4] is a subalgebra of the boolean algebra
of subsets of 2-CSTRUCT, its sets are subsets of elements of models[TR4], and
the following generalization of Corollary 11 holds.

Corollary 12. Assume that the satisfiability for three-valued structures inter-
preted over 2-CSTRUCT using tight concretization is decidable. Then the entail-
ment and the equivalence of three-valued structures interpreted over 2-CSTRUCT
using tight concretization are also decidable.

6 Further Related Work

Researchers have proposed several program checking techniques based on
dataflow analysis and symbolic execution [6, 8, 10, 13, 14, 19, 35]. The primary
strength of shape analysis compared to the alternative approaches is the abil-
ity to perform sound and precise reasoning about dynamically allocated data
structures.

Our work follows the line of shape analysis approaches which view the pro-
gram as operating on concrete graph structures [9, 15, 16, 20, 22, 27, 32, 37, 46].
An alternative approach is to identify each heap object using the set of paths
that lead to the object [7, 12, 18]. Other notations for reasoning about the heap
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include spatial logic [21] and alias types [47]. In the past we have seen a contrast
between the approach to verification of dynamically allocated data structures
based on Hoare logic [14, 21, 37], and the approach based on manipulation of
graph summaries [9, 16, 22, 32]. The work [20] and especially [45] are important
steps in bringing these two views together. Along with the recent work [40,48–50]
our paper makes further contributions to unifying these two approaches.

The parametric framework for shape analysis is presented in [45, 46]. A sys-
tematic presentation of three-valued logic with equality is given in [38]. A de-
scription of a three-valued logic analyzer TVLA is in [33], an extension to inter-
procedural analysis is in [42,43], and the use of shape analysis for program veri-
fication is demonstrated in [34]. A finite differencing approach for automatically
computing transfer functions for analysis is presented in [39]. A shape analysis
tool must ultimately take into account the definitions of instrumentation predi-
cates, which requires some form of theorem proving or decision procedures. The
original work [46, Page 272] uses rules based on Horn clauses for such reasoning,
whereas [40,48–50] (see Section 1) propose the use of theorem provers and deci-
sion procedures. In this paper we have identified one component of the problem
that is always decidable and useful: it is always possible to reduce entailment
and equivalence problems to the satisfiability problem. Of great importance for
taking advantage of our result, as well as the results of [40,48–50], are decidable
logics that can express heap properties. Among the promising such logics are
monadic second-order logic of trees [23], the logic Lr [4], and role logic [30].

It is possible to apply predicate abstraction techniques [2, 3, 17] to perform
shape analysis; the view of three-valued structures as boolean combinations of
constraints of certain form may be beneficial for this direction of work and
enable the easier application of representations such as binary decision diagrams
[5, 11, 36]. The boolean algebra of state predicates and predicate transformers
has been used successfully as the foundation of refinement calculus [1]. In this
paper we have identified a particular subalgebra of the boolean algebra of all
state predicates; we view this boolean algebra as providing the foundation of
shape analysis.

7 Conclusions and Future Work

We have presented a new characterization of the constraints used as dataflow
facts in parametric shape analysis. Our characterization represents these
dataflow facts as boolean combinations of formulas. Among the useful conse-
quences of the closure of boolean shape analysis constraints under all boolean
operations is the fact that the entailment and the equivalence of these constraints
is reducible to the satisfiability of the constraints.

In this paper we have focused on the tight-concretization semantics of three-
valued structures. In the full version of the paper [31] we additionally show
similar results for standard-concretization semantics of three-valued structures,
with one important difference: the resulting constraints are closed under conjunc-
tion and disjunction, but not under negation. In fact, the least boolean algebra
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generated by those constraints is precisely the boolean algebra of boolean shape
analysis constraints.

We view the results of this paper as a step in further understanding of the
foundations of shape analysis. To make the connection with [46], this paper starts
with three-valued structures and proceeds to characterize the structures using
formulas. An alternative approach is to start with formulas that express the de-
sired properties and then explore efficient ways of representing and manipulating
these formulas. We believe that the entire framework [46] can be reformulated
using canonical forms of formulas instead of three-valued structures. We also
expect that the idea of viewing dataflow facts as canonical forms of formulas is
methodologically useful in general, especially for the analyses that verify complex
program properties.
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Appendix: Example

Figure 4 illustrates the use of boolean shape analysis constraints and their closure
properties. The left column introduces a set of constraints that provide a partial
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specification of an operation that removes some elements from a list. The right
column shows that the conjunction of these constraints is a TR4-formula. In this
example A1 = A = {Al, Ar, Ar0} and F = {f}. The predicate Al represents the
object referenced by a local variable. The predicate Ar0 denotes the set of nodes
reachable from the local variable in the initial state, whereas the predicate Ar

denotes the set of nodes reachable from the local variable in the final state of the
operation. The binary relation f represents the value of the “next” pointer of
the list in the final state. The meaning of the constraints is the following: C1) the
first element of the list has no incoming references; C2) the list has at least two
elements; C3) the object referenced by local variable is reachable from the local
variable in both pre- and post- state; C4) following reachable nodes along the f

field yields reachable nodes; C5) all nodes are reachable; C6) the data structure
operation only removes elements from the set, it does not add any elements.

Consider the question whether the formula C7 in Figure 4 is a consequence
of the conjunction of constraints

∧6

i=1
Ci. Transform the formula ¬C7 ∧

∧6

i=1
Ci

into a TR1-formula using our normalization algorithm in Figure 3. The result is
the set of counterexamples in Figure 5 (represented as three-valued structures).
These counterexamples show that the formula C7 is not a consequence of the
constraints in Figure 4, and show the set of scenarios in which the violation of
formula C7 can occur.

C1 : ∀y.Al(y) ⇒ ¬∃x.f(x, y) ¬∃x.∃y.Al(y) ∧ f(x, y)
C2 : ∃x∃y.Al(x) ∧ ¬Al(y) ∧ f(x, y) ∃x∃y.Al(x) ∧ ¬Al(y) ∧ f(x, y)
C3 : ∀x.Al(x) ⇒ Ar(x) ∧ Ar0(x) ¬∃x.¬(Al(x) ⇒ Ar(x) ∧ Ar0(x))
C4 : ∀x∀y.Ar(x) ∧ f(x, y) ⇒ Ar(y) ¬∃x∃y.Ar(x) ∧ ¬Ar(y) ∧ f(x, y)
C5 : ∀x.Al(x) ∨ Ar(x) ∨ Ar0(x) ¬∃x.¬(Al(x) ∨ Ar(x) ∨ Ar0(x))
C6 : ∀x.Ar(x) ⇒ Ar0(x) ¬∃x.¬(Ar(x) ⇒ Ar0(x))

Potential consequence:

C7 : ∀x∀y.¬Al(x) ∧ ¬Ar(x) ∧ f(x, y) ⇒ ¬Ar(y)

Fig. 4. Example verification of entailment of boolean shape analysis constraints.
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Al ∧ Ar ∧ Ar0 ¬Al ∧ Ar ∧ Ar0

¬Al ∧ ¬Ar ∧ Ar0

-1

61

2
, 1

?
0, 1

2
, 1

?
0, 1

2
, 1

Fig. 5. Counterexample structures for the entailment of constraints in Figure 4. There
are 2 · 3 · 3 counterexample three-valued structures, for different values of edges.
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