
On the Boolean Algebra of Shape Analysis Constraints

Viktor Kuncak and Martin Rinard

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

{vkuncak,rinard}@csail.mit.edu
MIT CSAIL Technical Report No 916

VK0108, August 2003

Abstract

Shape analysis is a promising technique for statically ver-
ifying and extracting properties of programs that manip-
ulate complex data structures. We introduce a new char-
acterization of constraints that arise in parametric shape
analysis based on manipulation of three-valued structures
as dataflow facts.

We identify an interesting syntactic class of first-order
logic formulas that captures the meaning of three-valued
structures under concretization. This class is broader than
previously introduced classes, allowing for a greater flex-
ibility in the formulation of shape analysis constraints in
program annotations and internal analysis representations.
Three-valued structures can be viewed as one possible nor-
mal form of the formulas in our class.

Moreover, we characterize the meaning of three-valued
structures under “tight concretization”. We show that the
seemingly minor change from concretization to tight con-
cretization increases the expressive power of three-valued
structures in such a way that the resulting constraints are
closed under all boolean operations. We call the resulting
constraints boolean shape analysis constraints.

The main technical contribution of this paper is a natu-
ral syntactic characterization of boolean shape analysis con-
straints as arbitrary boolean combinations of first-order sen-
tences of certain form, and an algorithm for transforming
such boolean combinations into the normal form that corre-
sponds directly to three-valued structures.

Our result holds in the presence of arbitrary shape anal-
ysis instrumentation predicates. The result enables the re-
duction (without any approximation) of the entailment and
the equivalence of shape analysis constraints to the satisfia-
bility of shape analysis constraints. When the satisfiability
of the constraints is decidable, our result implies that the
entailment and the equivalence of the constraints are also
decidable, which enables the use of constraints in a compo-
sitional shape analysis with a predictable behavior.
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1 Introduction

Dynamically Allocated Data Structures Modern
software is becoming increasingly complex. This complexity
corresponds to the complex web of relationships between
different program entities. Object-oriented programming
languages such as Java use references between objects dy-
namically allocated in the heap to model the relationships
between entities of the application domain. Dynamic allo-
cation of objects provides flexibility that helps applications
adapt to the dynamically changing environment. To model
the evolution of the relationships between objects, applica-
tions perform destructive updates of the heap. Because writ-
ing applications in this programming model is error-prone,
tools for statically verifying partial correctness of such pro-
grams are very valuable.

Shape Analysis Shape analysis techniques [49], [20, 21,
43] can verify and derive precise properties of objects in the
heap. Shape analysis therefore appears essential for reason-
ing about programs written in modern imperative program-
ming languages. Shape analysis is promising as a general-
purpose verification technique, because of its ability to rea-
son about graphs as general structures, and the ability to
summarize properties of unbounded sets of objects. Shape
analysis such as [49] is effective in deriving program proper-
ties at each program point and synthesizing loop invariants
while maintaining high precision and strong soundness guar-
antees.

Program Specifications The ability to write program
specifications can greatly improve the effectiveness of shape
analysis (and, for that matter, the effectiveness of any static
or dynamic analysis in general). First of all, specifications
indicate the desired property to be verified. Next, specifi-
cations allow the use of assume/guarantee reasoning, which
improves the scalability of the analysis and enables its ap-
plication to reusable program components. Finally, if neces-
sary, specifications can guide the static analysis and provide
hints for it, while at the same time leaving a documentation
trace explaining the correctness of the program.

Analysis-Specification Gap The representation of pro-
gram properties used by the program analysis is often differ-
ent from the representation of program properties that is ap-
propriate for program annotations. To synthesize invariants
using a fixpoint computation, program analysis often uses a
finite lattice of program properties. On the other hand, pro-
gram annotations should be expressed in some convenient,
well-known notation, such as a variation of first-order logic.
A program analysis that utilizes program specifications must
bridge the gap between the analysis representation and the
program annotations.

Logic-Based Shape Analysis A promising shape anal-
ysis approach [49] based on abstract interpretation [14] uses
the lattice of three-valued logical structures for fixpoint com-
putation. The fact that the approach is based on logic
makes bridging the gap between the program annotations
and the analysis representation much easier, yet it does not
eliminate it entirely. The original TVLA system [38] uses
three-valued structures to specify preconditions, which cor-
responds to specifications with disjoint, non-empty sets of

objects and is sometimes unnecessarily verbose. The fol-
lowup work [46, 52] shows how to use arbitrary first-order
formulas for program annotations and convert the anno-
tations to three-valued structures using a theorem prover.
Because the first-order logic is undecidable in general, it is
interesting to consider alternative approaches with a poten-
tially more predictable behavior.

1.1 Contributions

Mediating the Analysis-Specification Gap This pa-
per addresses the gap between program annotations and
three-valued structures by providing an algorithm for trans-
forming annotations (expressed as formulas) into three-
valued structures, as well as a way of viewing a class of
canonical program annotations as three-valued structures.
Because we restrict our attention to formulas of a particular
form, we are able to find a complete and sound algorithm
for generating three-valued structures. The completeness
makes our algorithm potentially more predictable than the
use of theorem provers on arbitrary formulas. Our algorithm
shows that the expressive power of our specifications is equal
to the expressive power of three-valued structures. Never-
theless, our specifications may use sets that are potentially
intersecting or empty, which makes the annotations more
flexible than three-valued structures themselves where sum-
mary nodes represent only disjoint sets of nodes. Moreover,
the characterization of existing shape analysis constraints
as disjunctive normal forms of formulas suggests that al-
ternative representations for three-valued structures may be
possible [5,41,42].

The characterization of three-valued structures by for-
mulas allows us to easily prove properties that are less ob-
vious in the three-valued structure view, such as closure
of three-valued structures under conjunction. To compute
the conjunction of three-valued structures, we use the fact
that three-valued structures correspond to disjunctive nor-
mal forms of positive boolean combinations of formulas; the
computation of the conjunction of three-valued structures
then corresponds to a transformation of a conjunction of
two disjunctive normal forms into a new disjunctive normal
form.

Boolean Shape Analysis Constraints By considering
the “tight concretization” semantics instead of the con-
cretization semantics of three-valued structures, we obtain a
richer class of formulas, namely the class of all boolean com-
binations of certain atomic formulas. This characterization
implies that three-valued structures under concretization are
closed under all boolean operations. We therefore call the
constraints arising from tight concretization of three-valued
structures boolean shape analysis constraints.

Although the notion of tight concretization is not new,
the characterization of boolean shape analysis constraints
as boolean combinations of certain formulas is surprisingly
elegant and has not been observed before.

Consequences of Boolean Closure The resulting clo-
sure properties of boolean shape analysis constraints have
several potential uses. The closure under disjunction is nec-
essary for fixpoint computation in dataflow analysis and
can be conveniently computed even for shape analysis con-
straints; what our results show is that boolean shape anal-
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ysis constraints are also closed under conjunction and nega-
tion.

The conjunction of constraints is needed, for example, in
compositional interprocedural shape analysis, which com-
putes the relation composition of relations on states. Con-
junction allows the analysis to simultaneously retain the
call-site specific information that the callee preserves across
the call, and the postcondition which summarizes the ac-
tions of the callee.

The negation of constraints is useful for expressing de-
terministic branches in control-flow graphs. For example, an
if statement with the condition c results in conjoining the
dataflow fact d to yield d∧ c in the if branch, and d∧¬c in
the else branch. Similarly, the assert(c) statement, which
is an important mechanism for program specification, has
(in the relational semantics) the condition ¬c for the branch
which leads to an error state.

Finally, the closure under negation implies that both
the implication and the equivalence of shape analysis con-
straints are reducible to the satisfiability of shape analysis
constraints. This result is in contrast to “regular graph con-
straints” of [35], which have a decidable satisfiability prob-
lem but undecidable implication and the equivalence prob-
lems. The entailment problem is also important for composi-
tional analysis which uses assume/guarantee reasoning. By
introducing history variables that store the initial state of
the program, a compositional interprocedural shape analysis
can use shape analysis constraints to represent relations on
program states. The fundamental operations of such compo-
sitional shape analysis are computation of the best approx-
imation of relation composition and checking the subset of
relations. Closure under boolean operations allows reduc-
ing all these operations to the satisfiability of shape analysis
constraints.

Scope of the Result Our result is relevant in the pres-
ence of shape analysis instrumentation predicates defined
using arbitrary first-order formulas. What the particular
choice of instrumentation predicates determines is whether
the satisfiability problem for boolean shape analysis con-
straints is decidable. If the satisfiability problem for shape
analysis constraints with a particular choice of instrumenta-
tion predicates is decidable, our closure results imply that
the entailment problem is also decidable, and that the con-
straints are suitable for use in an instantiation of the shape
analysis framework.

Summary of contributions We can summarize the con-
tributions of this paper as follows:

1. We give a concrete example that shows how elements
of the lattice for fixpoint computation can be viewed as
formulas in a canonical form; we believe that this idea
is useful in general.

2. We identify a syntactic class of formulas whose ex-
pressive power matches exactly the semantics of three-
valued structures under concretization. The resulting
constraints are closed under disjunction and conjunc-
tion, but are not necessarily closed under negation.

3. We identify a syntactic class of formulas whose ex-
pressive power matches exactly the semantics of three-
valued structures under tight concretization. The re-
sulting boolean shape analysis constraints are closed un-

der all boolean operations such as disjunction, conjunc-
tion, negation, implication, and equivalence.

4. We observe that the closure under all boolean opera-
tions allows reducing the entailment and the equiva-
lence problems to the satisfiability problem of boolean
shape analysis constraints.

5. We show that each three-valued structure has a model
within the set of two-valued structures, which means
that the satisfiability problem of shape analysis con-
straints is trivial over the set of all two-valued struc-
tures.

6. We show that, even in the presence of instrumentation
predicates, our results allow reducing the entailment
and the equivalence problems of shape analysis con-
straints to the satisfiability problem.

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2
reviews the basic notions of two-valued and three-valued
structures. Section 3 presents a series of syntactic classes
of formulas of equal expressive power that all characterize
the meaning of two-valued structures under concretization
(Corollary 28). As a consequence, we derive the closure
of constraints under disjunction and conjunction (Corol-
lary 29). Section 3 is to some extent a preparation for
Section 4. Section 4 introduces a series of formulas that
have the same expressive power (Corollary 45) as the three-
valued structures under tight concretization (Definition 30),
and introduces the name boolean shape analysis constraints
(Definition 46). Section 4.1 observes that boolean shape
analysis constraints are closed under all boolean operations
and derives some consequences of these closure properties.
Section 4.2 shows that boolean shape analysis constraints
are the smallest extension of three-valued structures un-
der concretization which is closed under all boolean opera-
tions (Proposition 51). Section 4.3 shows how to transform
a three-valued structure into a structure where all unary
predicates have definite values. Section 5 introduces the de-
cidability problems for three-valued structures, shows that
every three-valued structure is satisfiable, and derives the
decidability of the implication and the equivalence as a con-
sequence of the decidability of satisfiability and the closure
under boolean operations. Section 6 generalizes the results
of the previous sections to the case when the values of some
predicates are constrained by first-order formulas. Section 7
presents the related work and Section 8 concludes.

2 Preliminaries

In this section we define some preliminary concepts used
throughout the paper. We mostly follow the setup of [49]
and for completeness repeat some of the definitions from
[49,52].

Let A be a finite set of unary relation symbols (with a
typical element A ∈ A) and F a finite set of binary relation
symbols (with a element f ∈ F). For simplicity, we consider
only unary and binary relation symbols because they appear
to be the most useful cases. Most of our results generalize
naturally to n-ary relations.
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Two-Valued Structures We next introduce two-valued
structures. A two-valued structure consists of a domain U ♯

and the interpretation ι♯ of relation symbols. Our language
does not contain function symbols because we represent all
functions as relations. In model theory and logic, a two-
valued structure corresponds to a structure (model) whose

domain U ♯ is finite.

Definition 1 A two-valued structure is a pair S♯ = 〈U ♯, ι♯〉
where U ♯ is a finite non-empty set (of “concrete individu-
als”), ι♯(A) ∈ U ♯ → {0, 1} for A ∈ A, and ι♯(f) ∈ (U ♯)2 →
{0, 1} for f ∈ F. Let

2-STRUCT = {S♯ | S♯ = 〈U ♯, ι♯〉 is a two-valued structure}

In program analysis, each two-valued structure represents a
state of the program. The use of structures for representing
program state has proven useful in the shape analysis [49],
Abstract State Machines [7], the Alloy modelling language
and analyzer [27], and relational databases [13,15].

Three-Valued Structures A three-valued structure is
a model for Kleene’s three-valued logic [32, 44] and differs
from two-valued structure by the fact that predicates can
have three-possible values: {0}, {1}, and {0, 1}. (The truth-
values {0}, {1}, {0, 1} of three-valued logic are denoted by,
respectively, 0, 1, 1/2 in [49].)

Definition 2 A three-valued structure is a pair S = 〈U, ι〉
where U is a finite non-empty set (of “abstract individuals”),
ι(A) ∈ U → {{0}, {1}, {0, 1}} for A ∈ A and and ι(f) ∈
U2 → {{0}, {1}, {0, 1}} for f ∈ F. Let

3-STRUCT = {S | S = 〈U, ι〉 is a three-valued structure}

The parametric shape analysis framework [49] uses three-
valued structures to specify sets of two-valued structures
according to Definition 4 below.

Formulas We assume the usual syntax and semantics of
first-order logic. We use an abstract view of the syntax
of formulas in first-order logic which takes into account as-
sociativity, commutativity, and idempotence of conjunction
and disjunction, and the property ¬¬p = p. A conjunction
with zero conjuncts denotes true; a disjunction with zero
disjuncts denotes false.

If S♯ is a two-valued structure and F a formula with free
variables x1, . . . , xn and u♯1, . . . , u

♯
n ∈ S♯, then e = [x1 7→

u♯1, . . . , xn 7→ u♯n] denotes an environment mapping xi to u♯i
for all 1 ≤ i ≤ n, and ([[F ]]S

♯

e) denotes the value v ∈ {0, 1}
of the formula F in the model S♯ under the environment
e. Instead of ([[F (x)]]S

♯

[x 7→ u♯]) we sometimes write S♯ |=
F (u♯) and omit S♯ if it is understood from the context. If F
has no free variables we denote the truth value v of F in S♯

simply by [[F ]]S
♯

and write S♯ |= F for [[F ]]S
♯

=1. Definition 3
below defines the set of models of a formula in the expected
way.

Definition 3 (Models of sets of Formulas) Let F be a
first-order formula. Then

γ∗
F(F ) = {S♯ ∈ 2-STRUCT | [[F ]]S

♯

= 1}

If C is a set of formulas, define

models[C] = {γ∗
F(F ) | F ∈ C}

The transitive closure operator or inductive definitions
are useful for describing instrumentation predicates (Sec-
tion 6), but the presence of such constructs in logic is largely
orthogonal to the results of this paper.

For simplicity we treat equality like any other binary
relation symbol and do not treat summary nodes specially,
but our results are also useful in the presence of summary
nodes (see [36], as well as [44] and Section 6).

3 Three-Valued Structures with Concretization

This section uses first-order formulas to characterize the
meaning of two-valued structures under the usual con-
cretization function. Section 4 presents an alternative se-
mantics using tight concretization, which yields constraints
with better closure properties.

The following notion of concretization corresponds to [48,
Definition 3.5]. The concretization function γ∗ provides the
semantics for sets of three-valued structures.

Definition 4 (Homomorphism and Concretization)
Let S♯ = 〈U ♯, ι♯〉 be a two-valued structure, S = 〈U, ι〉 a

three-valued structure, and h : U ♯ → U a surjective total
function. We write S♯ ⊑h S, iff

1. for every A ∈ A and u ∈ U :

ι(A)(u) ⊇ {ι♯(A)(u♯) | h(u♯) = u}

2. for every f ∈ F and u1, u2 ∈ U :

ι(f)(u1, u2) ⊇ { ι♯(f)(u1
♯, u2

♯) |

h(u1
♯) = u1 ∧ h(u2

♯) = u2}

We write S♯ ⊑ S iff there exists a surjective total function
h such that S♯ ⊑h S. We call any such h homomorphism
from S♯ to S. The concretization of a three-valued structure
S, denoted γ(S), is given by:

γ(S) = {S♯ | S♯ ⊑ S}

We extend γ to γ∗ acting on sets of three-valued structures
so that the set denotes a disjunction:

γ∗(S) =
[

S∈S

γ(S)

The function h from Definition 4 is called “embedding”
in [49]. (We choose to call h “homomorphism” because in lit-
erature the term “embedding” sometimes implies injectivity
whereas in shape analysis h is not required to be injective,
and almost never is injective.)

Bounded Structures Each set of three-valued structures
S specifies a set of heaps γ∗(S). Each such set γ∗(S)
is definable as the set of models of a formula in existen-
tial monadic second-order logic; the second-order existen-
tial quantification arises from the existential quantification
over the homomorphisms h. Constraints that involve unre-
stricted second-order existential quantifications have several
undesirable properties [34,35]. We therefore restrict our at-
tention to bounded structures, where the homomorphism h is
determined as the natural map associated with the partition
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of the elements of U ♯ according to the values some chosen
finite set of predicates.

For the purpose of this paper, we define bounded struc-
tures as follows. Let A1 ⊆ A be a finite subset of unary
predicates. We call elements of A1 abstraction predicates.

Definition 5 (Bounded Structure) We say that a
three-valued structure S = 〈U, ι〉 is A1-bounded iff both of
the following two conditions hold:

1. ι(A)(u) ∈ {{0}, {1}} for all A ∈ A1 and all u ∈ U ;

2. if u1, u2 ∈ U and u1 6= u2 then ι(A)(u1) 6= ι(A)(u2) for
some A ∈ A1.

Definition 6 (Concretization Definability) The set of
sets of heaps definable via three-valued structures with con-
cretization is defined by:

models[T1] = {γ∗(S) | S a finite set of A1-bounded
three-valued structures }

Note that we use the same notation models[X] when X de-
notes a set of structures (Definition 6) and when X denotes
a set of formulas (Definition 3). There is no confusion be-
cause we use distinct names for sets of structures and sets
of formulas.

We proceed to characterize the set models[T1] as the set
of models of formulas of a certain form.

We define the notion of a cube first.

Definition 7 (Exponent Notation) If A ∈ A and α ∈
{0, 1} then Aα is defined by A1 = A and A0 = ¬A.

Definition 8 (Cube) A cube over A1 (or just “cube” for
short) is an expression P (x) of the form

Aα1

1 (x) ∧ . . . ∧A
αq
q (x)

where α1, . . . , αq ∈ {0, 1}.

R1-literals are the building blocks for formulas used to
form constraints that characterize models[T1].

Definition 9 (R1-literal) Let P1(x), P2(y) range over
cubes over A1, let A range over elements of A \ A1, and
let f range over F.

An R1-literal is a formula of one of the following forms:

∃x. P1(x) node present
¬∃x. P1(x) node absent

¬∃x. P1(x) ∧A(x) property does not hold
¬∃x. P1(x) ∧ ¬A(x) property holds

¬∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y) no edge
¬∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y) must edge

We first introduce the class of R1-formulas that satisfy
syntactic invariants that make them isomorphic to three-
valued structures.

Definition 10 (R1-formulas) Let P (x), P1(x), P2(y) de-
note cubes over A1. A canonical conjunction of R1 literals is
a conjunction of R1-literals that satisfies the following con-
ditions:

1. for each P (x) a cube over A1, exactly one of the con-
juncts ∃x.P (x) and ¬∃x.P (x) occurs in the conjunc-
tion;

2. there is at least one cube P (x) such that the conjunct
∃x.P (x) occurs in the conjunction;

3. if the conjunct ¬∃x.P (x) occurs, then this conjunct is
the only occurrence of the cube P (x) (and the cube
P (y)) in the conjunction;

4. for each cube P (x), and A ∈ A \ A1, at most one of
the conjuncts ¬∃x.P (x)∧A(x) and ¬∃x.P (x)∧ ¬A(x)
occur;

5. for every two cubes P1(x) and P2(y), at most one of
the conjuncts

¬∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y)

and
¬∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y)

occurs.

Define an R1-formula as any disjunction of canonical con-
junctions of R1-literals.

In Definition 10 and throughout the paper, the symbol R1

alone denotes R1-formulas, so models[R1] is the set of all
models of all R1-formulas (as opposed to, for example, the
set of models of all R1-literals).

The following Proposition 11 shows that three-valued
structures and R1-formulas define same sets of two-valued
structures. The proof of Proposition 11 is straightforward
because the set of R1 formulas was chosen to facilitate the
proof. The proof shows that there is a semantic-preserving
bijection between three-valued structures and canonical con-
junctions of R1-literals.

Proposition 11 models[R1] = models[T1]

Proof. The idea of the proof is the following. Each
bounded three-valued structure can be represented as a
canonical conjunction of R1-literals, and each canonical con-
junction of R1-literals can be represented as a bounded
three-valued structure. Therefore, disjunctions of canonical
conjunctions of R1-literals correspond to sets of bounded
three-valued structures.

We next give a function µ mapping each bounded three-
valued structure S to a canonical conjunction of R1-literals
µ(S). We show that S and µ(S) represent same set of two-
valued structures. Moreover, each canonical conjunction of
R1-literals is equal to µ(S) for some three-valued structure
S.

Let S = 〈U, ι〉 be an A1-bounded three-valued structure.
Define the formula µ(S) as the conjunction of the following
R1-literals.

Define first, for each u ∈ U , a cube over A1 corresponding
to u, denoted π(u)(x), by

π(u)(x) =
^

A∈A1

Aα(A)(x)

where

α(A) =

(

1, if ι(A)(u) = {1}

0, if ι(A)(u) = {0}

α is well-defined because ι(A) ∈ {{0}, {1}} for A ∈ A1. We
next introduce the R1-literals.
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Node existence. For each u ∈ U , introduce an R1-literal

∃x.π(u)(x) (1)

For each remaining A1-cube P (x), that is, for each cube
P (x) such that π(u)(x) 6= P (x) for all u ∈ U , introduce an
R1-literal

¬∃x.P (x) (2)

Node properties. Let u ∈ U and A ∈ A \ A1. If ι(A)(u) =
{1}, introduce the R1-literal

¬∃x. π(u)(x) ∧ ¬A(x) (3)

If ι(A)(u) = {0}, introduce the literal

¬∃x. π(u)(x) ∧A(x) (4)

If ι(A)(u) = {0, 1}, we do introduce no conjuncts.
Edges. Let u1, u2 ∈ U (we allow u1 = u2) and let f ∈ F . If
ι(f)(u1, u2) = {1}, introduce the must-edge R1-literal

¬∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y) (5)

If ι(f)(u1, u2) = {0}, introduce the no-edge R1-literal

¬∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ f(x, y) (6)

If ι(f)(u) = {0, 1}, we introduce no conjuncts.
Define formula µ(S) as the conjunction of all formulas

(1), (2), (3), (4), (5), (6), introduced as described above.
We next show γ∗

F(µ(S)) = γ∗(S). In both directions, we es-
tablish the following property of the homomorphism h from
S♯ to S:

h(u♯) = u iff S♯ |= π(u)(u♯) (7)

Direction γ∗
F(µ(S)) ⊇ γ∗(S). Let S♯ ∈ γ∗(S). Then S♯ ⊑h

S for some homomorphism h. We establish that (7) holds

for h. For A ∈ A1, we have {ι♯(u♯)(A)} = ι(u)(A), so

|= Aα(A)(u♯). Therefore, |= π(u)(u♯), which establishes (7).
We next show S♯ |= C for each conjunct C of µ(S).
1) Consider C ≡ ∃x.π(u)(x) for some u. Because h is a

surjection, h(u♯) = u for some u♯, so |= π(u)(u♯), and |= C.
2) Consider C ≡ ¬∃x.P (x) for the cube P (x) distinct

from all cubes π(u)(x). Consider any u♯ ∈ U ♯. Then |=

π(h(u♯))((♯u)), and P (x) and π(h(u♯))(x) are distinct cubes,
so ¬ |= P (u♯). Therefore, |= C.

3) Consider C ≡ ¬∃x.π(u)(x)∧ ¬A(x) for some A ∈ A \
A1. Then ι(A)(u) = {1}. Consider any u♯. If ¬ |= π(u)(u♯),

then clearly |= C. If |= π(u)(u♯), then h(u♯) = u by (7), and
because h is a homomorphism, ι♯(u♯) = 1, so ¬ |= ¬A(u♯),
so again |= C.

4) Consider C ≡ ¬∃x.π(u)(x)∧A(x) for some A ∈ A\A1.
Analogously to the previous case, ι(A)(u) = {0}. Consider
any u♯. If |= π(u)(u♯), then h(u♯) = u, and because h is a

homomorphism, ι♯(u♯) = 0, so ¬ |= A(u♯) and thus |= C.
5) Consider C ≡ ¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y).

Then ι(f)(u1, u2) = {1}. Consider any u1
♯, u2

♯ ∈ U ♯. If
¬ |= π(u1)(u1

♯) or ¬ |= π(u2)(u2
♯), then |= C. Sup-

pose |= π(u1)(u1
♯) and |= π(u1)(u1

♯). Then h(u1
♯) = u1

and h(u2
♯) = u2 by (7), and h is a homomorphism so

ι♯(f)(u1
♯, u2

♯) = 1. Then ¬ |= ¬f(u1
♯, u2

♯) so |= C.
6) Consider ¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ f(x, y). Anal-

ogously to the previous case, ι(f)(u1, u2) = 0; for any

u1
♯, u2

♯ ∈ U ♯, if |= π(u1)(u1
♯) and |= π(u1)(u1

♯) then

h(u1
♯) = u1 and h(u2

♯) = u2, so ι♯(f)(u1
♯, u2

♯) = 0,

¬ |= f(u1
♯, u2

♯) so |= C.
Direction γ∗

F(µ(S)) ⊆ γ∗(S). Let S♯ ∈ γ∗
F(µ(S)), then all

conjuncts of µ(S) are true in S♯. We show that S♯ ⊑h S
where h is defined in the following way. Consider any u♯ ∈
U ♯. There is exactly one cube C(x) such that |= C(u♯).
Moreover, because µ(S) contains ¬∃x.P (x) for cubes P (x)
other than π(u)(x), the cube C(x) is of the form π(u)(x) for
some u ∈ U . Define h(u♯) = u. This defines the function
h. By construction, (7) holds. Furthermore, h is surjective:
for each u ∈ U , the conjunct ∃x.π(u)(x) is in µ(S), so there
exists u♯ such that π(u)(u♯) and thus h(u♯) = u. We next
show that h is a homomorphism.

1) Let us show

{ι♯(A)(u♯) | h(u♯) = u} ⊆ ι(A)(u)

for all A ∈ A and for all u ∈ U . Consider A ∈ A1 and u♯ such
that h(u♯) = u. Then |= π(u)(u♯), so |= Aα(A)(u♯), which
implies ι♯(A)(u♯) ∈ ι(A)(u). Next, consider A ∈ A \ A1.
If ι(A)(u) = {0, 1} the property trivially holds. Consider
ι(A)(u) = {1}. Then ¬∃x.π(u)(x) ∧ ¬A(x) occurs in µ(S).
Therefore, if h(u♯) = u, then |= A(u♯), otherwise the con-

junct would be false. Therefore, ι♯(u♯) = 1 ∈ ι(A)(u). The
case ι(A)(u) = {0} is analogous: ¬∃x.π(u)(x)∧A(x) occurs
in µ(S), so if h(u♯) = u then |= A(u♯), and ι♯(u♯) = 0 ∈
ι(A)(u).

2) Let us show

{ι♯(f)(u1
♯, u2

♯) | h(u♯) = u1 ∧ h(u2
♯ = u2} ⊆ ι(f)(u1, u2)

(8)
for all f ∈ F and u1, u2 ∈ U . This is similar to 1). If
ι(f) = {0, 1}, the inclusion trivially holds. Consider the
case ι(f)(u1, u2) = {1}. Then ¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧
¬f(x, y) occurs in µ(S). Suppose that h(u1

♯) = u1 and
h(u2

♯) = u2. Then |= π(u1)(u1
♯) and |= π(u2)(u2

♯), so
|= f(u1, u2) as well, otherwise the conjunct would be false.
Therefore, ι♯(u1

♯, u2
♯) = 1 and the inclusion (8) holds. The

case ι(f)(u1, u2) = {0} is analogous: ¬∃x∃y.π(u1)(x) ∧
π(u2)(y) ∧ f(x, y) occurs in µ(S), so if h(u1

♯) = u1 and
h(u2

♯) = u2, then |= π(u1)(u1
♯) and |= π(u2)(u2

♯) so
¬ |= f(u1, u2) and ι♯(f)(u1

♯, u2
♯) = 0. The inclusion (8)

holds, and S♯ ⊑h S.
Because every structure S has a corresponding equiva-

lent formula µ(S), we conclude models[T1] ⊆ models[R1]. To
conclude models[T1] ⊇ models[R1], we show that µ is surjec-
tive: every canonical conjunction F of R1-formulas is equal
to µ(S) for some structure S.

Let F be a canonical conjunction of R1-literals. For each
cube P (x) such that ∃x.P (x) occurs in F , let uP (x) be a dis-
tinct element. Let U be the set of all such elements uP (x).
Property 2 of Definition 10 ensures that U is non-empty.
Let α be such that P (x) =

V

A∈A1
A(x)α(A). Then define

ι(A)(uP (x)) = {α(A)} for all A ∈ A1. For A ∈ A\A1, define
ι(A)(uP (x)) as {1} if ¬∃x.P (x)∧¬A(x) occurs in F , as {0} if
¬∃x.P (x)∧A(x) occurs in F , and as {0, 1} otherwise. Such
definition of ι(uP (x))(A) is possible because of the Prop-
erty 4 of Definition 10. Analogously, using Property 5 of
Definition 10, for each f ∈ F , define ι(f)(uP1(x), uP2(x)) as
{1} if ¬∃xy.P1(x) ∧ P2(y) ∧ ¬f(x, y) occurs in F , as {0} if
¬∃xy.P1(x)∧P2(y)∧f(x, y) occurs in F , and as {0, 1} other-
wise. Let S = 〈U, ι〉. To show F = µ(S), recall first that we
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use an abstract view of the syntax that takes into account as-
sociativity, commutativity and idempotence of conjunction.
It therefore suffices to show that F and µ(S) contain the
same set of conjuncts. It is easy to see that each conjunct
of µ(S) occurs in F . The converse is also straightforward by
Definition 10.

We conclude that µ is surjective, and models[R1] ⊆
models[T1], which completes the proof.

Although this fact is not needed for the proof, we remark
that µ is also injective, so µ is, in fact, a bijection between
the set 3-STRUCT and the set of canonical conjunctions of
R1-literals.

We proceed to show that a syntactically richer class of
formulas defines the same set of constraints as R1-formulas.

Definition 12 (R2-formulas) An R2-formula is a dis-
junction of (not necessarily canonical) conjunctions of R1-
literals.

The proof of the following Lemma 13 provides a nor-
malization algorithm that converts every conjunction of R1-
literals into an equivalent disjunction of canonical conjunc-
tions of R1-literals.

Lemma 13 Each conjunction of R1-literals can be written
as an equivalent R1-formula.

Proof. Consider an arbitrary, not-necessarily canonical,
conjunction F of R1-literals. We show how to transform F
into an equivalent disjunction of canonical R1-literals. The
idea is to transform each conjunction into a disjunction of
multiple conjunctions to ensure that all properties in Defini-
tion 10 are satisfied. We perform the following transforma-
tions as long as some property of Definition 10 is violated.
Property 1. If both ∃x.P (x) and ¬∃x.P (x) occur, use the
rule Q ∧ ¬Q → false and eliminate the entire conjunction
from the disjunction of conjunctions. If none of ∃x.P (x) and
¬∃x.P (x) occur, use the rule true → Q ∨ ¬Q to introduce
the missing P (x), and then distribute the disjunction to the
top level of the formula.
Property 2. First ensure that Property 1 holds. If the result-
ing conjunction contains no conjuncts of the form ∃x.P (x),
then the conjunction contains a conjunct ¬∃x.P (x) for ev-
ery P (x) a cube over A1. Therefore, the entire conjunction
is false and can be eliminated from the disjunction of con-
junctions.
Property 3. First ensure that Property 1 holds. Then, if the
literal ¬∃x.P (x) occurs in the conjunction, remove from the
conjunction all literals containing P (x). Such literals are of
the form ¬∃x.P (x) ∧ F1(x) for some F1(x), ¬∃x∃y.P (x) ∧
F1(x, y), for some F2(x, y), or ¬∃x∃y.P (y) ∧ F1(x, y), for
some F1(x, y); all these literals are implied by ¬∃x.P (x) so
removing them yields an equivalent formula.
Property 4. If both conjuncts ¬∃x.P (x) ∧ A(x) and
¬∃x.P (x) ∧ ¬A(x) occur, replace them with the equivalent
conjunct ¬∃x.P (x).
Property 5. If both

¬∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y)

and
¬∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y)

occur, replace them with

(¬∃x.P1(x)) ∨ (¬∃y.P2(y)),

then propagate the disjunction to the top level of the for-
mula.

Lemma 13 implies that R2-formulas, although a syntacti-
cally a richer class, are no more expressive than R1-formulas,
hence Corollary 14.

Corollary 14 models[R2] = models[R1]

Proof. models[R1] ⊆ models[R2] because R2 is a richer
class of formulas. Conversely, let S♯ ∈ models[R2]. Then
S♯ = γ∗

F(F ) for some R2-formula F . By Lemma 13, let F ′ be
an R1-formula obtained by transforming conjunctions of F
into disjunctions of canonical conjunctions of R1-literals. F

′

is an R1 formula equivalent to F . Therefore, S♯ = γ∗
F(F ′),

and S♯ ∈ models[R1].

Definition 15 (Positive Boolean Combination) If
B(p1, . . . , pn) is a formula built from p1, . . . , pn using
∧,∨,¬, we say that pi (for 1 ≤ i ≤ n) occurs positively in
B(p1, . . . , pn) iff pi occurs under an even number of ¬ signs.
We say that B(p1, . . . , pn) is a positive boolean combination
iff each of p1, . . . , pn occur positively in B(p1, . . . , pn).

Definition 16 (R3-formulas) An R3-formula is a positive
boolean combination of R1-literals.

Lemma 17 states that R2-formulas are simply the dis-
junctive normal forms of R3-formulas.

Lemma 17 Every R3-formula is equivalent to an R2-
formula.

Proof. Let F be an R3-formula. Then the disjunctive
normal form of F is an R2-formula.

Corollary 18 models[R3] = models[R2]

Proof. By Lemma 17.

In the sequel we observe that replacing cubes over A1 in
the definition of R1-literals with boolean combinations over
A1 does not change the set of expressible sets of two-valued
structures. Definition 19 generalizes Definition 9.

Definition 19 (R4-literals) Let B1(x), B2(y) range over
arbitrary boolean combinations of elements of A1, let Q(x)
range over disjunctions of literals of the form A(x) and the
form ¬A(x) for A ∈ A \ A1, and let g(x, y) range over dis-
junctions of literals of the form f(x, y) and ¬f(x, y) where
f ∈ F.

An R4-literal is a formula of one of the following forms:

1. ∃x.B1(x)

2. ¬∃x.B1(x) ∧Q(x)

3. ¬∃x∃y.B1(x) ∧B2(y) ∧ g(x, y)

Definition 20 An R4-formula is a positive boolean combi-
nation of R4-literals.

Lemma 21 models[R4] = models[R3]
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∃x.B1(x) ∨B2(x) → (∃x.B1(x)) ∨ (∃x.B2(x))

¬∃x.B1(x) ∨B2(x) → (¬∃x.B1(x)) ∧ (¬∃x.B2(x))

¬∃x. (B1(x) ∨ B2(x)) ∧Q(x) →

(¬∃x.B1(x) ∧Q(x))∧ (¬∃x.B2(x) ∧Q(x))

¬∃x. B1(x) ∧ (Q1(x) ∨Q2(x)) →

(¬∃x.B1(x) ∧Q1(x)) ∧ (¬∃x.B1(x) ∧Q2(x))

¬∃x∃y. (B11(x) ∨B12(x)) ∧B2(y) ∧ g(x, y) →

¬∃x∃y. B11(x) ∧B2(y) ∧ g(x, y) ∧

¬∃x∃y. B12(x) ∧B2(y) ∧ g(x, y)

¬∃x∃y. B1(x) ∧ (B21(y) ∨ B22(y)) ∧ g(x, y) →

¬∃x∃y. B1(x) ∧B21(y) ∧ g(x, y) ∧

¬∃x∃y. B1(x) ∧B22(y) ∧ g(x, y)

¬∃x∃y. B1(x) ∧B2(y) ∧ (g1(x, y) ∨ g2(x, y)) →

¬∃x∃y. B1(x) ∧B2(y) ∧ g1(x, y) ∧

¬∃x∃y. B1(x) ∧B2(y) ∧ g2(x, y)

Figure 1: Transforming R4-literals into R1-literals

Proof. Note that a formula of the form ¬∃x.B1(x) is equiv-
alent to the formula ¬∃x.B1(x)∧(A(x)∨¬A(x)), which is of
the form ¬∃x.B1(x) ∧ Q(x). Therefore, R4 is a richer class
than R3, so models[R4] ⊇ models[R3]. To show the con-
verse, we transform each R4-literal into a positive boolean
combination of R1-literals.

First, transform each boolean combination B(x) (and
B(y)) of A1 predicates into canonical disjunctive normal
form, so that each B(x) is a disjunction of cubes. Then
apply rules in Figure 1 to decompose R4-literals into R1-
literals.

By eliminating the top-level negation from R4-literals we
obtain R5-literals, which use universal quantifiers.

Definition 22 (R5-literal) Let B1(x),B2(y) be variables
denoting arbitrary boolean combinations of elements of A1,
let QP (x) denote conjunctions of literals of the form A(x)
and of the form ¬A(x) for A ∈ A \ A1, and let gP (x, y)
denote conjunctions of literals of the form f(x, y) and of the
form ¬f(x, y) for f ∈ F.

An R5-literal is a formula of one of the following forms:

1. ∃x.B1(x)

2. ∀x. B1(x) ⇒ QP (x)

3. ∀x∀y. B1(x) ∧B2(y) ⇒ gP (x, y)

Definition 23 An R5-formula is a positive boolean combi-
nation of R5-literals.

Lemma 24 models[R5] = models[R4]

Proof. ∀x. B1(x) ⇒ QP (x) corresponds to ¬∃x.B1(x) ∧
Q(x) with QP = ¬Q, whereas ∀x∀y. B1(x) ∧ B2(y) ⇒
gP (x, y) corresponds to ¬∃x∃y.B1(x)∧B2(y)∧ g(x, y) with
gP = ¬g.

In the end we introduce R6-formulas. Like heap abstrac-
tions based on may-edges, R6-formulas implicitly indicate
the absence of edges by specifying the set of possible end-
points for each edge.

Definition 25 (R6-literals) Let B1(x),B2(y) denote arbi-
trary boolean combinations of elements of A1, let QP (x) de-
note conjunctions of literals A(x) and ¬A(x) for A ∈ A\A1,
and let f denote elements of F.

An R6-literal is a formula of one of the following forms:

1. ∃x.B1(x) (node existence)

2. ∀x. B1(x) ⇒ QP (x) (node properties)

3. ∀x∀y. B1(x) ∧ f(x, y) ⇒ B2(y) (may-edges)

4. ∀x∀y. B1(x) ∧ B2(y) ⇒ f(x, y) (must-edges)

Definition 26 An R6-formula is a positive boolean combi-
nation of R6-literals.

Lemma 27 models[R6] = models[R5]

Proof. Observe first that the may-edge literal

∀x∀y. B1(x) ∧ f(x, y) ⇒ B2(y)

is equivalent to

∀x∀y. B1(x) ∧ ¬B2(y) ⇒ ¬f(x, y) (9)

which is an R5-literal. Conversely, every R5 literal can be
shown to be equivalent to a conjunction of may-edge and
must-edge R6-literals using the transformation

∀x∀y. B1(x) ∧ ¬B2(y) ⇒ g1(x, y) ∧ g2(x, y) →

∀x∀y. B1(x) ∧ ¬B2(y) ⇒ g1(x, y) ∧

∀x∀y. B1(x) ∧ ¬B2(y) ⇒ g2(x, y)

(10)

The following Corollary 28 summarizes the results on dif-
ferent representations of constraints corresponding to three-
valued structures.

Corollary 28

models[T1] =

models[R1] = models[R2] = models[R3] =

models[R4] = models[R5] = models[R6]

3.1 Closure under Disjunction and Conjunction

By definition, the syntactic class of R3-formulas is closed un-
der disjunction and conjunction. As the Corollary 29 below
observes, this provides a way to compute the (disjunction
and) conjunction of three-valued structures.

Corollary 29 The family of sets models[T1] is closed under
union and intersection.

Proof. The closure under union is trivial because union
of sets of three-valued structures corresponds to the union
of their models. For the closure under intersection, consider
two sets of three-valued structures S1 and S2. Let F1 be an
R3 formula such that γ∗

F(F1) = γ∗(S1) and F2 an R3 formula
such that γ∗

F(F2) = γ∗(S2). Then F1 ∧ F2 is also an R3 for-
mula, and the set of three-valued structures corresponding
to F1 ∧ F2 denotes the desired intersection.
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4 Three-Valued Structures with Tight Concretiza-
tion

This section examines the constraints that arise from the
meaning of sets of three-valued structures under tight con-
cretization. These constraints are slightly more expressive
than constraints in Section 3, as Section 4.2 shows. Inter-
estingly, the added expressive power is just enough to make
the constraints in this section closed under all boolean op-
erations (Section 4.1). These closure properties are in con-
trast to the properties of constraints in Section 3, which
are closed only under union and intersection. The closure
under boolean operations allows, for example, reducing the
implication of constraints to the satisfiability of constraints.

The structure of this section mirrors the structure of Sec-
tion 3. We start by defining the interpretation of three-
valued structures under tight concretization.

The following definition corresponds to [48, Definition
3.6], [52, Chapter 7]. Compared to our Definition 4 of Sec-
tion 3, the only difference is the use of “=” instead of “⊇”
in the condition on 1. on ι(A) and the condition 2. on ι(f).

Definition 30 (Tight Concretization) Let S♯ =
〈U ♯, ι♯〉 be a two-valued structure, let S = 〈U, ι〉 be a

three-valued structure, and let h : U ♯ → U be a surjective
total function. We write S♯ ⊑hT S iff

1. for every A ∈ A and u ∈ U :

ι(A)(u) = {ι♯(A)(u♯) | h(u♯) = u}

2. for every f ∈ F and u1, u2 ∈ U :

ι(f)(u1, u2) = { ι♯(f)(u1
♯, u2

♯) |

h(u1
♯) = u1 ∧ h(u2

♯) = u2}

We write S♯ ⊑T S iff there exists a surjective total function
h such that S♯ ⊑hT S, and in that case we call h a homomor-
phism. The tight concretization of a three-valued structure
S, is given by:

γT (S) = {S♯ | S♯ ⊑T S}

We extend γT to γ∗
T that acts on sets of three-valued struc-

tures so that the set denotes a disjunction:

γ∗
T (S) =

[

S∈S

γT (S)

Definition 31 (Tight Concretization Definability)
The set of sets of two-valued structures definable via
three-valued structure with tight concretization is defined by:

models[T2] = {γ∗
T (S) | S a finite set of A1-bounded

three-valued structures}

TR1-literals are used to build formulas that characterize
models[T2].

Definition 32 (TR1-literal) Let P1(x), P2(x) range over
cubes over A1, let A range over elements of A \A1, and let
f range over F. A TR1-atomic-formula is a formula of one
of the following forms:

∃x. P1(x)
∃x. P1(x) ∧ A(x)
∃x. P1(x) ∧ ¬A(x)

∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y)
∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y)

A TR1-literal is a TR1-atomic-formula or its negation.

TR1-formulas satisfy syntactic invariants that make
them isomorphic to three-valued structures under tight con-
cretization.

Definition 33 (TR1-formulas) Let P (x), P1(x), P2(y)
denote cubes over A1. A canonical conjunction of TR1 lit-
erals is a conjunction of TR1-literals that satisfies the fol-
lowing conditions.

1. for each P (x) a cube over A1, exactly one of the con-
juncts ∃x.P (x) and ¬∃x.P (x) occurs;

2. there is at least one cube P (x) such that the conjunct
∃x.P (x) occurs in the conjunction;

3. if the conjunct ¬∃x.P (x) occurs, then this conjunct is
the only occurrence of the cube P (x) (and the cube
P (y)) in the conjunction;

4. for each cube P (x) and A ∈ A \ A1 such that ∃x.P (x)
occurs, exactly one of the following three conditions
holds:

(a) ¬∃x. P (x) ∧A(x) occurs in the conjunction,

(b) ¬∃x. P (x) ∧ ¬A(x) occurs in the conjunction,

(c) both ∃x. P (x)∧A(x) and ∃x. P (x)∧¬A(x) occur
in the conjunction;

5. for every two cubes P1(x) and P2(y) such that the con-
juncts ∃x.P1(x) and ∃x.P2(x) occur, and every f ∈ F,
exactly one one of the following three conditions holds:

(a) ¬∃x∃y. P1(x)∧ P2(y)∧ f(x, y) occurs in the con-
junction;

(b) ¬∃x∃y. P1(x)∧P2(y)∧¬f(x, y) occurs in the con-
junction;

(c) both ∃x∃y. P1(x) ∧ P2(y) ∧ f(x, y) and
∃x∃y. P1(x) ∧ P2(y) ∧ ¬f(x, y) occur in the
conjunction.

A TR1-formula is a disjunction of canonical conjunctions of
TR1-literals.

The following Proposition 34 shows that TR1 formulas
capture precisely the meaning of three-valued structures un-
der tight concretization. The proof of Proposition 34 is sim-
ilar to the proof of Proposition 11, and is similarly straight-
forward.

Proposition 34 models[TR1] = models[T2]

Proof. The idea of this proof is similar to the idea of the
proof of Proposition 11: the meaning of each bounded three-
valued structure under the tight concretization is equal to
the meaning of some canonical conjunction of TR1-formulas,
and conversely. Therefore, disjunctions of canonical con-
junctions of TR1-literals correspond to sets of bounded
three-valued structures under the tight concretization.

We next give a function µ mapping each bounded three-
valued structure S to a canonical conjunction of TR1-literals
µ(S). We show that S under tight concretization and µ(S)
represent the same set of two-valued structures. Moreover,
µ is surjective.

Let S = 〈U, ι〉 be an A1-bounded three-valued structure.
Define the formula µ(S) as the conjunction of the following
TR1-literals. Define π as in the proof of Proposition 11.

9



Node existence. For each u ∈ U , introduce the TR1-literal

∃x.π(u)(x) (11)

For each remaining A1-cube P (x), that is, for each cube
P (x) such that π(u)(x) 6= P (x) for all u ∈ U , introduce the
TR1-literal

¬∃x.P (x) (12)

Node properties. Let u ∈ U and A ∈ A \ A1. If ι(A)(u) =
{1}, introduce the TR1-literal

¬∃x. π(u)(x) ∧ ¬A(x) (13)

If ι(A)(u) = {0}, introduce the literal

¬∃x. π(u)(x) ∧A(x) (14)

If ι(A)(u) = {0, 1}, introduce the following two TR1-literals

∃x. π(u)(x)∧ A(x)

∃x. π(u)(x)∧ ¬A(x)
(15)

Edges. Let u1, u2 ∈ U (we allow u1 = u2) and let f ∈ F . If
ι(f)(u1, u2) = {1}, introduce the TR1-literal

¬∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y) (16)

If ι(f)(u1, u2) = {0}, introduce the TR1-literal

¬∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ f(x, y) (17)

If ι(f)(u1, u2) = {0, 1}, introduce the following two TR1-
literals

∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ f(x, y)

∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y)
(18)

Define formula µ(S) as the conjunction of all formulas
(11), (12), (13), (14), (15), (16), (17), (18), introduced as
described above. We next show γ∗

F(µ(S)) = γ∗(S). As in
the proof of Proposition 11, we establish and then use the
property (7) for a homomorphism h from S♯ to S.
Direction γ∗

F(µ(S)) ⊇ γ∗(S). Let S♯ ∈ γ∗(S). Then S♯ ⊑h

S for some homomorphism h. We establish that (7) holds
for h. For A ∈ A1, we have {ι♯(u♯)(A)} = ι(u)(A). Then

|= Aα(A)(u♯). Therefore, the conjunction |= π(u)(u♯), which

establishes (7). We next show S♯ |= C for each conjunct C
of µ(S).

1) Consider C ≡ ∃x.π(u)(x) for some u. Because h is a
surjection, h(u♯) = u for some u♯, so |= π(u)(u♯), and the
conjunct |= C.

2) Consider C ≡ ¬∃x.P (x) for the cube P (x) distinct
from all cubes π(u)(x). Consider any u♯ ∈ U ♯. Then |=

π(h(u♯)((♯u)), and P (x) and π(h(u♯))(x) are distinct cubes,

so ¬ |= P (u♯). Therefore, |= C.
3) Consider C ≡ ¬∃x.π(u)(x) ∧ ¬A(x) for some A ∈

A \ A1. This means that ι(A)(u) = {1}. Consider any u♯.
If ¬ |= π(u)(u♯), then |= C. If |= π(u)(u♯), then h(u♯) = u

by (7), and because h is a homomorphism, ι♯(u♯) = 1, so
¬ |= ¬A(u♯). Hence |= C.

4) Consider ¬∃x.π(u)(x) ∧ A(x) for some A ∈ A \ A1.
Analogously to the previous case, ι(A)(u) = {0}. Consider
any u♯. If π(u)(u♯), then h(u♯) = u, and because h is a

homomorphism, ι♯(u♯) = 0, so ¬ |= A(u♯). Hence |= C.

5) Consider conjuncts (15). These conjuncts occur only
when ι(A)(u) = {0, 1}. By the definition of tight concretiza-

tion, there exists u♯ ∈ U ♯ such that h(u♯) = π(u) and
ι♯(A)(u♯) = 1. By property (7) of h, |= π(u)(u♯) and thus
|= ∃x.π(u)(x) ∧ A(x, y). Analogously, by the definition of
tight concretization there exist v♯ ∈ U ♯ such that h(v♯) = u,

and ι♯(A)(v♯) = 0, so |= ∃x. π(u)(x) ∧ ¬A(x).
6) Consider C ≡ ¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y).

Then ι(f)(u1, u2) = {1}. Consider any u1
♯, u2

♯ ∈ U ♯. If
¬ |= π(u1)(u1

♯) or ¬ |= π(u1)(u1
♯), we have |= C. Sup-

pose π(u1)(u1
♯) and π(u2)(u2

♯). Then h(u1
♯) = u1 and

h(u2
♯) = u2; h is a homomorphism so ι♯(f)(u1

♯, u2
♯) = 1,

¬ |= ¬f(u1
♯, u2

♯) and |= C.
7) Consider C ≡ ¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ f(x, y).

Analogously to the previous case, ι(f)(u1, u2) = 0; for any

u♯ ∈ U ♯, if |= π(u1)(u1
♯) and |= π(u2)(u2

♯), then h(u1
♯) =

u1 and h(u2
♯) = u2, so ι♯(f)(u1

♯, u2
♯) = 0, ¬ |= f(u1

♯, u2
♯)

and |= C.
8) Consider conjuncts (18). These conjuncts occur

only when ι(f)(u1, u2) = {0, 1}. By the definition of

tight concretization, there exist u♯1, u
♯
2 ∈ U ♯ such that

h(u♯1) = u1, h(u
♯
2) = u2, and ι♯(f)(u♯1, u

♯
2) = 1. By prop-

erty (7) of h, |= π(u1)(u
♯
1) and |= π(u2)(u

♯
2), and thus

|= ∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ f(x, y). Analogously, by the

definition of tight concretization, there exist v♯1, v
♯
2 ∈ U ♯

such that h(v♯1) = u1, h(v
♯
2) = u2, and ι♯(f)(v♯1, v

♯
2) = 0, so

|= ∃x∃y. π(u1)(x) ∧ π(u2)(y) ∧ f(x, y).
Direction γ∗

F(µ(S)) ⊆ γ∗(S). Let S♯ ∈ γ∗
F(()µ(S)), then all

conjuncts of µ(S) are true in S♯. We show that S♯ ⊑h S
where h is defined in the same way as in the proof of the
Proposition 11, so (7) holds and is surjective. We show that
the homomorphism conditions of Definition 30 are satisfied
for h.

1) Let us show

{ι♯(A)(u♯) | h(u♯) = u} = ι(A)(u)

for all A ∈ A and for all u ∈ U . Consider A ∈ A1 and
any u♯ such that h(u♯) = u. Then π(u)(u♯), so Aα(A)(u♯),
which implies {ι♯(A)(u♯)} = ι(A)(u). Moreover, because
∃x.π(u)(x) holds, the left-hand side side is a non-empty set,
so it is equal to ι(A)(u).

Next, consider A ∈ A \ A1. Consider first the case
ι(A)(u) = {1}. Then ¬∃x.π(u)(x) ∧ ¬A(x) occurs in µ(S).
Therefore, if h(u♯) = u, then A(u♯) holds, otherwise the con-

junct would be false. Therefore, ι♯(u♯) = 1. The left-hand
side is non-empty so the equality holds.

The case ι(A)(u) = {0} is analogous: ¬∃x.π(u)(x)∧A(x)
occurs in µ(S), so if h(u♯) = u then A(u♯) holds, so ι♯(u♯) =
0 and the left-hand side is non-empty so the equality holds.

If ι(A)(u) = {0, 1} then the conjuncts (15) hold. There-
fore, there exists a node u♯ ∈ U ♯ such that h(u♯) = u and

ι♯(A)(u♯) = 1, and there exists a node v♯ ∈ U ♯ such that
h(v♯) = u and ι♯(A)(u♯) = 0. The left hand-side is a set
containing both 0 and 1, so it is equal to {0, 1}.

2) Let us show

{ι♯(f)(u1
♯, u2

♯) | h(u♯) = u1 ∧ h(u2
♯) = u2} = ι(f)(u1, u2)

(19)
for all f ∈ F and u1, u2 ∈ U . This is similar to 1).

Consider first the case ι(f)(u1, u2) = {1}. Then
¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ ¬f(x, y) occurs in µ(S). Sup-
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pose that h(u1
♯) = u1 and u2

♯ = u2. Then π(u1)(u1
♯) and

π(u2)(u2
♯) hold, so f(u1, u2) must hold as well, otherwise

the conjunct would be false. Therefore, ι♯(u1
♯, u2

♯) = 1.
Moreover, because of the conjunct ∃x.π(u1)(x) and the con-
junct ∃x.π(u2)(x), the left-hand side is non-empty, so it is
equal to {1}.

The case ι(f)(u1, u2) = {0} is analogous:
¬∃x∃y.π(u1)(x) ∧ π(u2)(y) ∧ f(x, y) occurs in µ(S),
so if h(u1

♯) = u1 and u2
♯ = u2, then π(u1)(u1

♯) and

π(u2)(u2
♯) so f(u1, u2) is false and ι♯(u1

♯, u2
♯) = 0. More-

over, because of the conjunct ∃x.π(u1)(x) and the conjunct
∃x.π(u2)(x), the left-hand side is non-empty, so it is equal
to {0}.

Finally, consider the case ι(A)(u) = {0, 1}. Then the
conjuncts (18) hold in S♯. Because the first conjunct holds,

there exist u♯1 and u♯2 such that h(u♯1) = u1, h(u
♯
2) = u2

hold and and ♯ι(f)(u♯1, u
♯
2) = 1. Therefore, 1 belongs to the

left-hand side of 19. Similarly, because the second conjunct
holds, 0 belongs to the right-hand side of of 19. There-
fore (19) holds.

We conclude that S♯ ⊑hT S. Because every struc-
ture S has a corresponding equivalent formula µ(S), we
have models[T2] ⊆ models[TR1]. To conclude models[T2] ⊇
models[TR1], we show that µ is surjective.

Let F be a canonical conjunction of TR1-literals. For
each cube P (x) such that ∃x.P (x) occurs in F , let uP (x) be
a distinct element. Let U be the set of all such elements
uP (x). Property 2 of Definition 33 ensures that U is non-

empty. Let α be such that P (x) =
V

A∈A1
A(x)α(A). Then

define ι(A)(uP (x)) = {α(A)} for all A ∈ A1. For A ∈ A\A1 ,
define ι(A)(uP (x)) as {1} if ¬∃x.P (x) ∧ ¬A(x) occurs in F ,
as {0} if ¬∃x.P (x) ∧ A(x) occurs in F , and as {0, 1} other-
wise. Such definition of ι(uP (x))(A) is possible because of the
Property 4 of Definition 33. Analogously, using Property 5
of Definition 33, for each f ∈ F , define ι(f)(uP1(x), uP2(x))
as {1} if ¬∃xy.P1(x) ∧ P2(y) ∧ ¬f(x, y) occurs in F , as {0}
if ¬∃xy.P1(x) ∧ P2(y) ∧ f(x, y) occurs in F , and as {0, 1}
otherwise. Let S = 〈U, ι〉. To show F = µ(S), it suffices to
show that F and µ(S) contain the same set of conjuncts. It
is easy to see that each conjunct of µ(S) occurs in F . The
converse is also straightforward by Definition 33.

We conclude that µ is surjective, and models[T2] ⊇
models[TR1], which completes the proof.

It is easy to see that µ is, in fact, a bijection between
the set 3-STRUCT and the set of canonical conjunctions of
TR1-literals.

As in Section 3, we proceed to show that we can permit
a richer syntactic structure without changing the expressive
power of constraints.

Definition 35 (TR2-formulas) A TR2-formula is a dis-
junction of conjunctions of TR1-literals.

The following Lemma 36 is analogous to Lemma 13; it
shows that any conjunction of TR1 literals can be trans-
formed into an equivalent disjunction of canonical conjunc-
tions of TR1 literals.

Lemma 36 Each conjunction of TR1-literals can be written
as an equivalent TR1-formula.

Proof. Consider an arbitrary, not-necessarily canonical,
conjunction F of TR1-literals. We show how to transform
F into an equivalent disjunction of canonical conjunctions

of TR1-literals. The idea is to transform conjunctions into
disjunctions of multiple conjunctions to ensure that all prop-
erties in the Definition 33 are satisfied. We perform the fol-
lowing transformations as long as any of the properties in
Definition 33 is violated.
Property 1. If both ∃x.P (x) and ¬∃x.P (x) occur, the entire
conjunction is false and we eliminate it from the disjunction
of conjunctions. If none of the ∃x.P (x) and ¬∃x.P (x) use
the rule true → (∃x.P (x))∨ (¬∃x.P (x)) and then distribute
the disjunction to the top level of the formula.
Property 2. First ensure that Property 1 holds. If the result-
ing conjunction contains no conjuncts of the form ∃x.P (x),
then the conjunction contains a conjunct ¬∃x.P (x) for ev-
ery P (x) a cube over A1. Therefore, the entire conjunction
is false and can be eliminated from the disjunction of con-
junctions.
Property 3. Suppose that the literal ¬∃x.P (x) occurs in
the conjunction. If the conjunction contains a literal of
one of the forms ∃x.P (x) ∧ Q(x), ∃x∃y.P (x) ∧ Q(x, y), or
∃x∃y.P (y) ∧ Q(x, y), then the entire conjunction is contra-
dictory and may be omitted from the disjunction of conjunc-
tions. If there are no such conjunctions, then (as in the proof
of Lemma 13) remove all , literals of forms ¬∃x.P (x)∧Q(x),
¬∃x∃y.P (x) ∧ Q(x, y), and ¬∃x∃y.P (y) ∧ Q(x, y). because
they are implied by ¬∃x.P (x).
Property 4. If both a literal and its negation occur in the
conjunction, the entire conjunction is false. Hence, we can
assume that (a) and (c) do not occur simultaneously and (b)
and (c) do not occur simultaneously. To ensure that (a) and
(b) do not occur simultaneously, use the replacement rule

(¬∃x.P (x) ∧A(x)) ∧ (¬∃x.P (x) ∧ ¬A(x)) → ¬∃x.P (x)

and then ensure again the Property 3. We have thus shown
how to ensure that no two of the cases (a), (b), (c) hold
simultaneously. To ensure that at least one of the cases (a),
(b), (c), holds, use the fact that ¬p∨¬q∨(p∧q) is a tautology,
and apply the rule

true → (¬∃x.P (x) ∧A(x)) ∨

(¬∃x.P (x) ∧ ¬A(x)) ∨

(∃x.P (x) ∧A(x)) ∧ (∃x.P (x)∧ ¬A(x))

Then propagate the disjunction to the top level of the for-
mula. Then ensure that no two cases apply simultaneously,
as described previously.
Property 5. Ensuring Property 5 is analogous to ensuring
Property 4. If both a literal and its negation occur in the
conjunction, the entire conjunction is false. Hence, we can
assume that (a) and (c) do not occur simultaneously and (b)
and (c) do not occur simultaneously. To ensure that (a) and
(b) do not occur simultaneously, use the replacement rule

(¬∃x∃y.P1(x) ∧ P2(y) ∧ f(x, y)) ∧

(¬∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y)) →

(¬∃x.P1(x)) ∨ (¬∃y.P2(y))

and then ensure again Property 3. We have thus shown
how to ensure that no two of the cases (a), (b), (c) hold
simultaneously. To ensure that at least one of the cases (a),
(b), (c), holds, use the fact that ¬p∨¬q∨(p∧q) is a tautology,
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and apply the rule

true → (¬∃x∃y.P1(x) ∧ f(x, y)) ∨

(¬∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y)) ∨

(∃x∃y.P1(x) ∧ f(x, y)) ∧

(∃x∃y.P1(x) ∧ P2(y) ∧ ¬f(x, y))

Then propagate the disjunction to the top level of the for-
mula. Then ensure that no two cases apply simultaneously,
as described previously.

Corollary 37 models[TR2] = models[TR1]

Proof. Every TR1-formula is a TR2-formula. Conversely,
let F be a TR2-formula. Then F is a disjunction of conjunc-
tions of TR1. By Lemma 36, transform each conjunction of
F into a disjunction of canonical conjunctions of TR1 liter-
als. The result is a TR1-formula.

TR3-formulas remove the disjunctive normal form re-
quirement on TR2-formulas.

Definition 38 (TR3-formulas) TR3-formula is a boolean
combination of TR1-atomic-formulas.

TR2-formulas are the disjunctive normal forms of TR3-
formulas.

Lemma 39 Every TR3 formula is equivalent to a TR2 for-
mula.

Proof. Let F be a TR3 formula. Then the disjunctive
normal form of F is a TR2 formula.

Corollary 40 models[TR3] = models[TR2]

Proof. Every TR2 formula is a TR3 formula, so
models[TR3] ⊇ models[TR2]. The converse models[TR3] ⊆
models[TR2] follows from Lemma 39.

Analogously to R4 formulas in Section 3, we introduce
TR4 formulas that allow using boolean combinations of more
complex atomic formulas.

Definition 41 (TR4-formulas) Let B1(x),B2(y) be range
over arbitrary boolean combinations of elements of A1, let
Q(x) range over disjunctions of literals of form A(x) and
¬A(x) where A ∈ A \ A1, and let g(x, y) range over dis-
junctions of literals of the form f(x, y) and ¬f(x, y) where
f ∈ F.

A TR4-atomic-formula is a formula of one of the follow-
ing forms:

1. ∃x. B1(x)

2. ∃x. B1(x) ∧Q(x)

3. ∃x∃y. B1(x) ∧B2(y) ∧ g(x, y)

A TR4-literal is a TR4-atomic-formula or its negation.
A TR4-formula is a boolean combination of TR4-atomic-
formulas.

Lemma 42 models[TR4] = models[TR3]

∃x.B1(x) ∨ B2(x) → (∃x.B1(x)) ∨ (∃x.B2(x))

∃x. (B1(x) ∨B2(x)) ∧Q(x) →

(∃x.B1(x) ∧Q(x)) ∨ (∃x.B2(x) ∧Q(x))

∃x. B1(x) ∧ (Q1(x) ∨Q2(x)) →

(∃x.B1(x) ∧Q1(x)) ∨ (∃x.B1(x) ∧Q2(x))

∃x∃y. (B11(x) ∨ B12(x)) ∧B2(y) ∧ g(x, y) →

∃x∃y. B11(x) ∧ B2(y) ∧ g(x, y) ∨

∃x∃y. B12(x) ∧ B2(y) ∧ g(x, y)

∃x∃y. B1(x) ∧ (B21(y) ∨B22(y)) ∧ g(x, y) →

∃x∃y. B1(x) ∧B21(y) ∧ g(x, y) ∨

∃x∃y. B1(x) ∧B22(y) ∧ g(x, y)

∃x∃y. B1(x) ∧B2(y) ∧ (g1(x, y) ∨ g2(x, y)) →

∃x∃y. B1(x) ∧B2(y) ∧ g1(x, y) ∧

∃x∃y. B1(x) ∧B2(y) ∧ g2(x, y)

Figure 2: Transforming TR4-literals into TR1-literals

Proof. Each formula of the form ¬∃x.B1(x) is equivalent
to the formula ¬∃x.B1(x)∧ (A(x)∨ ¬A(x)), which is of the
form ¬∃x.B1(x)∧Q(x). Therefore, TR4 is a richer class than
TR3, so models[TR4] ⊇ models[TR3]. To show the converse,
transform each TR4-literal into a boolean combination of
TR1-literals.

First, transform each boolean combination B(x) (and
B(y)) of A1 predicates into canonical disjunctive normal
form, so that each B(x) is a disjunction of cubes. Then
apply rules in Figure 2 to decompose TR4-literals into TR1-
literals.

Instead of existential quantifiers, we may use atomic for-
mulas that contain universal quantifiers.

Definition 43 (TR5-formulas) Let B1(x),B2(y) denote
arbitrary boolean combinations of elements of A1, let QP (x)
denote conjunctions of literals of the form A(x) and ¬A(x)
for A ∈ A \ A1, and let gP (x, y) denote conjunctions of
literals f(x, y) and ¬f(x, y) for f ∈ F.

An TR5-atomic-formula is a formula of one of the fol-
lowing forms:

1. ∀x.B1(x)

2. ∀x.B1(x) ⇒ QP (x)

3. ∀x. B1(x) ⇒ ∀y. B2(y) ⇒ gP (x, y)

A TR5-formula is a boolean combination of TR5-atomic-
formulas.

Lemma 44 models[TR5] = models[TR4]

Proof. For each TR5-atomic-formula there exists a
corresponding equivalent TR4-formula, and for each TR4-
atomic-formula there exists a corresponding equivalent TR5-
formula.

The mapping from TR5-atomic-formulas to TR4-
formulas is in Figure 3, the mapping of TR4-atomic-formulas
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TR5 − atomic formula TR4 − formula
∀x. B1(x) ¬∃x. ¬B1(x)

∀x. B1(x) ⇒ (L1(x) ∧ . . . ∧ Lk(x)) ¬∃x. B1(x) ∧ (L1(x) ∨ . . . ∨ Lk(x))
∀x. B1(x) ⇒ ∀y. B2(y) ⇒ (L1(x, y) ∧ . . . Lk(x, y)) ¬∃x∃y. B1(x) ∧ B2(y) ∧ (L1(x, y) ∨ . . . Lk(x, y))

Figure 3: Mapping TR5-atomic-formulas to TR4-formulas

TR4 − atomic formula TR5 − formula
∃x. B1(x) ¬∀x.¬B1(x)

∃x. B1(x) ∧ (L1(x) ∨ . . . Lk(x)) ¬∀x. B1(x) ∧ (L1(x) ∧ . . . ∧ Lk(x))
∃x∃y. B1(x) ∧ B2(y) ∧ (L1(x, y) ∧ . . . ∧ Lk(x, y)) ¬∀x. B1(x) ⇒ ∀y. B2(y) ⇒ (L1(x, y) ∨ . . . ∨ Lk(x, y))

Figure 4: Mapping TR4-atomic-formulas to TR5-formulas

to TR5-formulas is in Figure 4. We use the notation L to
denote L1 if L is of the form ¬L1 for some L1, and ¬L if L
is not of the form ¬L1 for some L1.

The following Corollary 45 summarizes the results on dif-
ferent representations of constraints corresponding to three-
valued structures with tight concretization.

Corollary 45

models[T2] = models[TR1] = models[TR2] =

models[TR3] = models[TR4] = models[TR5]

Definition 46 (Boolean Shape Analysis Constraints)
We call the set of sets models[T2] boolean shape analysis
constraints.

4.1 Closure under Boolean Operations

By definition, TR3-formulas are closed under all boolean
operations.

Corollary 47 The family of sets models[T2] forms a
boolean algebra of sets which is a subalgebra of the boolean
algebra of all subsets of 2-STRUCT.

As an example consequence of closure under all boolean
set operations we obtain the following proposition.

Proposition 48 There is an algorithm that constructs,
given two finite sets of bounded three-valued structures S1

and S2, a finite set of bounded three-valued structures S3

such that:

γ∗
T (S1) ⊆ γ∗

T (S2) iff γ∗
T (S3) = ∅

Similarly, the equivalence of two three-valued structures re-
duces to the satisfiability.

Proposition 49 There is an algorithm that constructs,
given two finite sets of bounded three-valued structures S1

and S2, a finite set of bounded three-valued structures S3

such that:

γ∗
T (S1) = γ∗

T (S2) iff γ∗
T (S3) = ∅

4.2 Relationship with Non-Tight Concretization

In Proposition 50 below we observe that three-valued struc-
tures with tight concretization (Definition 30) are at least
as expressive as three-valued structures with concretization
(Definition 4).

Proposition 50 models[T2] ⊇ models[T1].

Proof. By definition, every R4-formula is a TR4-formula,
so models[TR4] ⊇ models[R4]. Therefore,

models[T2] = models[TR4] ⊇ models[R4] = models[T1]

Proposition 50 implies that, even if we work with the
interpretation of three-valued structures under concretiza-
tion, we can convert three-valued structures into boolean
shape analysis constraints and check for entailment or equiv-
alence of the original constraints via satisfiability of the,
richer, boolean shape analysis constraints. In fact, the
Proposition 51 below shows that boolean shape analysis
constraints models[T2] are the smallest extension of the con-
straints models[T1] which have this desirable property.

Proposition 51 models[T2] is the smallest superset of
models[T1] that is closed under all boolean operations.

Proof. models[T2] ⊇ models[T1] by Proposition 50,
and models[T2] is closed under all boolean operations by
Corollary 47. Because models[T2] = models[TR4] and
models[T1] = models[R4], it remains to show that every TR4

formula is (equivalent to) a boolean combination of some
R4-literals. By definition, TR4-formulas are boolean combi-
nations of TR4 atomic formulas, so it suffices to show that
each TR4 atomic formula is a boolean combination of R4

literals. That is certainly true, in fact, it suffices to use at
most one negation of an R4 literal to obtain any TR4 literal.

4.3 Node Splitting

Given a three-valued structure S = 〈U, ι〉, it is desirable if
ι(A)(u) ∈ {{0}, {1}} for all u ∈ U and A ∈ A. This property
holds if all predicates are abstraction predicates, that is, if
A1 = A. The following Proposition 52 shows that we can
always assume that A1 = A if the syntactic class of formulas
is sufficiently rich.
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Proposition 52 Every TR4-formula with the set of ab-
straction predicates A1 ⊆ A is also a TR4 formula with
the set of abstraction predicates A1 = A.

Proof. Observe that, in the atomic formula F1(x) ≡
∃x. B1(x) ∧ Q(x) of the Definition 41, the subformula
B2(x) ≡ B1(x) ∧ Q(x) is a boolean combination of predi-
cates from A, so F1(x) is of the form ∃x.B2(x) for a boolean
combination of predicates from A.

Note that the converse of Proposition 52 is not true. For
example, if A,A′ ∈ A \ A1 then the property ¬∃x. A(x) ∧
¬A′(x), which correlates two non-abstraction predicates is a
TR4-formula with the set of abstraction predicates A, but is
not equivalent to any TR4-formula with the set of abstrac-
tion predicates A1.

Definition 53 (Split Form) Let F1 be a TR4-formula
with the set of abstraction predicates A1 ⊆ A. By Propo-
sition 52 and Corollary 45, let F2 be a TR1-formula with
the set of abstraction predicates A such that F2 is equivalent
to F1. We call F2 the split form of F1.

Letting A1 = A in Definition 41, we obtain the following
Corollary 54.

Corollary 54 (Split Form Formulas) The set of split
forms of TR4 formulas is precisely the set of boolean combi-
nations of formulas of the form

1. ∃x. B1(x)

2. ∃x∃y. B1(x) ∧B2(y) ∧ g(x, y)

where B1(x), B2(y) are boolean combinations of literals of
the form A(x) and A(y) for A ∈ A, and g(x, y) ranges over
disjunctions of literals of the form f(x, y) and ¬f(x, y) for
f ∈ F.

5 Decidability of Independent Predicates

In this section we present decidability results for constraints
expressed by three-valued structures under tight concretiza-
tion. We show that satisfiability, entailment and equiva-
lence of boolean shape analysis constraints are all decidable.
Boolean shape analysis constraints (TR1-formulas) are more
expressive than R1-formulas by Proposition 50, so we obtain
decidability results for R1-formulas as well.

Formulation of Decidability Problems We assume fi-
nite sets A and F of predicates. As a result, the num-
ber of non-isomorphic bounded three-valued structures, and,
therefore, the number of non-equivalent R1-formulas, is fi-
nite. Therefore, for fixed A and F , a problem of the form:

Given a TR1-formula F , is F satisfiable?

is essentially finite and therefore trivially decidable. How-
ever, we are interested in having a single algorithm that
would give decidability for any number of unary and binary
predicates. Therefore, the size of sets A and F is part of
the input to the decision procedure we are looking for. For
example, we are interested in the questions of the form:

Given sets A and F and a TR1-formula F over
predicates A and F , is F satisfiable?

In this section we study such decidability questions for in-
dependent predicates, when the three-valued structures are
interpreted over the entire set 2-STRUCT. Section 6.4 ad-
dresses the more general case where some of the predicates
are defined using first-order formulas, which means that for-
mulas are interpreted over a subset of 2-STRUCT.

Satisfiability of TR1-formulas over 2-STRUCT is decid-
able. In fact, the proof of the following Lemma 55 shows
that every disjunct of a TR1-formula has a small model in
2-STRUCT.

Lemma 55 Let F be a canonical conjunction of TR1-
literals and let the number of cubes P (x) over A1 such that
∃x.P (x) occurs in F be n. Then there exists a two-valued
structure S♯ = 〈U ♯, ι♯〉 such that |U ♯| = 2n and F is true in

S♯.

Proof. Let S = 〈U, ι〉 be the structure that corresponds
to F by the proof of Proposition 34. Let U = {u1, . . . , un}.

Define S♯ = 〈U ♯, ι♯〉 as follows. Let U ♯ = {u♯1, u
♯
2, . . . , u

♯
2n}.

In the sequel we define ι♯ so that S♯ ⊑hT S where h is given
by

h(u♯2i−1) = ui

h(u♯2i) = ui

for 1 ≤ i ≤ n. By definition, h is surjective.
Define ι♯(A) for A ∈ A1 as follows. Let 1 ≤ i ≤ n. Then

ι(ui) = {0} or ι(ui) = {1}. If ι(ui) = {0}, define

ι♯(A)(u♯2i−1) = ι♯(A)(u♯2i) = 0

If ι(ui) = {1}, define

ι♯(A)(u♯2i−1) = ι♯(A)(u♯2i) = 1

Define ι♯(A) for A ∈ A\A1 as follows. Let 1 ≤ i ≤ n. If
ι(ui) = {0}, define

ι♯(A)(u♯2i−1) = ι♯(A)(u♯2i) = 0

If ι(ui) = {1}, define

ι♯(A)(u♯2i−1) = ι♯(A)(u♯2i) = 1

If ι(ui) = {0, 1}, define

ι♯(A)(u♯2i−1) = 0

ι♯(A)(u♯2i) = 1

Define ι♯(f) for f ∈ F as follows. Let 1 ≤ i, j ≤ n. If
ι(f)(ui, uj) = {0}, define

ι♯(f)(u♯k, u
♯
l ) = 0

for k ∈ {2i−1, 2i} and l ∈ {2j−1, 2j}. If ι(f)(ui, uj) = {1},
define

ι♯(f)(u♯k, u
♯
l ) = 1

for k ∈ {2i − 1, 2i} and l ∈ {2j − 1, 2j}. If ι(f)(ui, uj) =
{0, 1}, define

ι♯(f)(u♯k, u
♯
2j−1) = 0

ι♯(f)(u♯k, u
♯
2j) = 1

for k ∈ {2i− 1, 2i}.
It is straightforward to show S♯ ⊑hT S. Therefore, F

holds in S♯.
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Corollary 56 γ∗
T (S) = ∅ iff S = ∅.

Proof. By Lemma 55.

We note that the construction of the model in Lemma 55
becomes even simpler if we assume that the formula F is in
the split form. Corollary 56 then follows from the observa-
tion that if F has at least one disjunct then split form of F
has at least one disjunct.

Corollary 57 The following questions are decidable for
sets S1,S2 of three-valued structures:

1. γ∗
T (S1) ⊆ γ∗

T (S2);

2. γ∗
T (S1) = γ∗

T (S2).

Proof. By Corollary 56, Proposition 48, and Proposi-
tion 49.

6 Structures with Defined Predicates

In this section we introduce the notion of a three-valued
structure with defined predicates. Previous sections in-
terpret three-valued structures and formulas over the set
2-STRUCT of all two-valued structures. In general, it is
useful to interpret three-valued structures and formulas over
some subset 2-CSTRUCT ⊆ 2-STRUCT of compatible two-
valued structures [49, Page 268].

6.1 Compatible Structures

We view structures with defined predicates as a way of defin-
ing a subset 2-CSTRUCT ⊆ 2-STRUCT.

Definition 58 (Compatible Structures) Let A2 ⊆ A
be a set of defined unary predicates and F2 ⊆ F be a
set of defined binary predicates. Let 2-SEM-STRUCT ⊆
2-STRUCT be the set of two-valued structures that satisfy
the constraints of the semantics of the programming lan-
guage. Next, for each A ∈ A2, and each two-valued structure
S♯ ∈ 2-STRUCT where S♯ = 〈U ♯, ι♯〉, let dA(S♯) : U ♯ →
{0, 1} be a unary predicate. For each f ∈ A2, and each two-
valued structure S♯ ∈ 2-STRUCT where S♯ = 〈U ♯, ι♯〉, let
df (S

♯) : (U ♯)2 → {0, 1} be a binary predicate. Define

2-CSTRUCT = {S♯ = 〈U ♯, ι♯〉 |

S♯ ∈ 2-SEM-STRUCT ∧
V

A∈A2

∀u♯ ∈ U ♯. ι♯(A)(u♯) = dA(S♯)(u♯) ∧
V

f∈F2

∀u1
♯, u2

♯ ∈ U ♯. ι(f)(u1
♯, u2

♯) = df (S
♯)(u1

♯, u2
♯)}

(20)

Definition 59 below introduces tight concretization with
respect to compatible structures, in the natural way.

Definition 59 (Compatible Tight Concretization) If
S ⊆ 3-STRUCT is a set of three-valued structures, define

cγ∗
T (S) = γ∗

T (S) ∩ 2-CSTRUCT

We then use cγ∗
T to define the class of definable sets

models[cT2]. With the results of Section 4.3 in mind, we
let A1 = A.

Definition 60 The set of sets of compatible two-valued
structures definable via three-valued structure with tight con-
cretization is defined by:

models[cT2] = {cγ∗
T (S) | S a finite set of A1-bounded

three-valued structures}

Lemma 61

models[cT2] = {S♯ ∩ 2-CSTRUCT | S♯ ∈ models[T2]}

Proof. Immediate by Definition 60 and Definition 59.

6.2 Formulas for Compatible Structures

In Section 4 we have characterized sets of two-valued struc-
tures using formulas. We now characterize sets of compatible
two-valued structures by conjoining the formulas with the
compatibility formula.

Definition 62 (Compatibility Formula) Let ψ0 be a
sentence that axiomatizes the set 2-SEM-STRUCT, so that:

models[{ψ0}] = 2-SEM-STRUCT

Let the value of each predicate dA(S♯) for A ∈ A2 be equal
to the Tarskian semantics of some formula ψA(x) in the

structure S♯:

dA(S♯)(u♯) = [[ψA(x)]]S
♯

[x 7→ u♯]

and let the value of each predicate df (S
♯) for f ∈ F2 be equal

to the Tarskian semantics of some formula ψf (x, y) in the
structure S♯:

df (S
♯)(u1

♯, u2
♯) = [[ψA(x)]]S

♯

[x 7→ u1
♯, y 7→ u2

♯]

Define the compatibility formula Fψ by:

Fψ ≡ ψ0 ∧
V

A∈A2

∀x. A(x) ⇐⇒ ψA(x) ∧
V

f∈F2

∀x y. f(x, y) ⇐⇒ ψf (x, y)

For each class of formulas TRi we introduce the corre-
sponding class cTRi by conjoining the formulas with Fψ.

Definition 63 (Formulas for Compatible Structures)
For each i where 1 ≤ i ≤ 5, let the set of cTRi formulas be
the set of all formulas B ∧ Fψ for B a TRi formula.

Lemma 64 below shows that compatibility formula de-
fines precisely the subset of compatible two-valued struc-
tures.

Lemma 64 (Compatibility Formula is Correct)

2-CSTRUCT = {S♯ ∈ 2-STRUCT | [[Fψ]]S
♯

= 1}

Proof. Immediate by Definition 58 and Definition 62.

As a result, we obtain the following characterization of
the constraints expressible using cTRi formulas.

Lemma 65 For each i where 1 ≤ i ≤ 5,

models[cTRi] = {S♯ ∩ 2-CSTRUCT | S♯ ∈ models[TRi]}
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Proof. By Definition 63 and Lemma 64.

The following Corollary 66 states the desired correspon-
dence between formulas and three-valued structures with
defined predicates.

Corollary 66

models[cT2] = models[cTR1] = models[cTR2] =

models[cTR3] = models[cTR4] = models[cTR5]

Proof. From Lemma 61, Lemma 65, and Corollary 45.

6.3 Closure under Boolean Operations

We next show that, even in the presence of defined predi-
cates, we can reduce the entailment and the equivalence of
constraints to the satisfiability problem. This results fol-
lows from the closure under boolean operations. The results
below generalize the results of Section 4.1.

Corollary 67 The family of sets models[cT2] forms a
boolean algebra of sets which is a subalgebra of the boolean
algebra of all subsets of 2-CSTRUCT.

Proof. From Lemma 61, Lemma 65, and Corollary 47.

Proposition 68 There is an algorithm that constructs,
given two finite sets of three-valued structures S1 and S2,
a finite set of three-valued structures S3 such that:

cγ∗
T (S1) ⊆ cγ∗

T (S2) iff cγ∗
T (S3) = ∅

Proposition 69 There is an algorithm that constructs,
given two finite sets of three-valued structures S1 and S2,
a finite set of three-valued structures S3 such that:

cγ∗
T (S1) = cγ∗

T (S2) iff cγ∗
T (S3) = ∅

6.4 Decidability Properties

The following conditional result generalizes the idea of Sec-
tion 5.

Corollary 70 Let S ,S1,S2 range over finite sets of three-
valued structures with defined predicates. Assume that the
question cγ∗

T (S) = ∅ is decidable. Then the following ques-
tions are decidable as well:

1. cγ∗
T (S1) ⊆ cγ∗

T (S2);

2. cγ∗
T (S1) = cγ∗

T (S2).

Proof. By Proposition 68 and Proposition 69.

We present an example of constraints for which the sat-
isfiability question is decidable in [36]; other examples of
decidable constraints can be formulated based on the tech-
niques of logic Lr of [4] or based on monadic second-order
logic of trees which is in the heart of the graph types ap-
proach [17,28–31,43].

7 Related Work

A parametric framework for shape analysis is presented in
[49]. A systematic presentation of three-valued logic with
equality is given in [44]. A description of three-valued logic
analyzer is in [38], an extension to interprocedural analysis is
in [47] and the use of shape analysis for program verification
is demonstrated in [39]. Other shape analysis techniques
include [16,20,21,25,33,37, 43].

Our paper presents a contribution to the characteriza-
tion of heap summaries by formulas, which is a promis-
ing direction of shape analysis that has been initiated in
[34,35,46,52]. Shape analysis constraints differ from regular
graph constraints [34,35] because shape analysis constraints
characterize sets of objects by defining predicates, instead of
using existential quantification over sets of objects. Logic Lr
in [4] allows specifying reachability properties between local
variables and is therefore appropriate for expressing certain
classes of shape graphs. What Lr does not allow is defining
a set of nodes A using some predicate and then stating fur-
ther properties of objects in the set A, which is one of the
main expressive features of three-valued structures.

Our work follows the line of shape analysis approaches
which view program as transforming concrete graph struc-
tures [20, 21, 25, 33, 37, 43, 49]. An alternative approach is
to identify each heap object using the set of paths that
lead to the object [8, 16, 23]. Other notations for reason-
ing about the heap include spatial logic [10, 11, 26, 45] and
alias types [50,51].

It is possible to apply predicate abstraction techniques
[2,3,22] to perform shape analysis; the view of three-valued
structures as boolean combinations of constraints of certain
form may be beneficial for this direction of work and enable
easier application of representations such as binary decision
diagrams [5,41,42].

A shape analysis tool must ultimately take into account
the definitions of instrumentation predicates, which requires
some form of theorem proving or decision procedures. [49,
Page 272] uses rules based on Horn clauses for such reason-
ing, whereas [46] proposes the use of theorem provers. In
this paper we have identified one component of the problem
that is always decidable and useful: it is always possible to
reduce entailment and equivalence problems to the satisfi-
ability problem. In [36], we report a concrete example of
constraints for which the satisfiability is decidable, the re-
sults in the present paper then imply that the entailment
and the equivalence are decidable as well.

Researchers have proposed several program checking
techniques based on dataflow analysis, symbolic execution,
and abstract interpretation [6, 9, 12, 18, 19, 24, 40]. The pri-
mary strength of the shape analysis approach compared to
the alternative approaches is the ability to perform sound
and precise reasoning about dynamically allocated data
structures.

The boolean algebra of state predicates and predicate
transformers has been used successfully as the foundation
of refinement calculus [1]. In this paper we have identified
a particular subalgebra of the boolean algebra of all state
predicates; we view this boolean algebra as providing the
foundation of shape analysis.
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8 Conclusions

We have characterized constraints used as dataflow facts of
parametric shape analysis based on three-valued logic. Our
characterization represents these dataflow facts as boolean
combinations of formulas. The usual concretization seman-
tics yields only positive boolean combinations. On the other
hand, the tight concretization yields boolean shape analy-
sis constraints, which are closed under all boolean combi-
nations. Among the useful consequences of the closure of
boolean shape analysis constraints under all boolean opera-
tions is the fact that the entailment and the equivalence of
constraints is reducible to the satisfiability of constraints.

We view the results of this paper as a step in further un-
derstanding of the foundations of shape analysis. To make
the connection with [49], this paper starts with three-valued
structures and proceeds to characterize the structures using
formulas. An alternative approach is to start with canonical
formulas that express the desired properties and then ex-
plore efficient ways of representing and manipulating these
formulas. We believe that the entire framework [49] can
be reformulated using canonical forms of formulas instead
of three-valued structures. We also expect that the idea
of viewing dataflow facts as canonical forms of formulas is
methodologically useful in general, especially for the analy-
ses that verify complex program properties.
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